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1. Introduction

The Networked Resource Discovery Project at the University of Colorado, Boulder, is investigaling means
by which users can discover the existence of a variety of resources in an internet environment, such as retail pro-
ducts, network services, and people in various capacities. A key problem is organizing the resource space fiexi-
bly. While approaches based on a hierarchical organization (such as the CCITT X.500 directory service [CCITT
1987]) have good scalability properties, they are ultimately of limited use for resource discovery. Asa hicrarch-
ically organized service registers an increasingly wide variety of resources, searching for resources becomes
difficult because users must understand how the nested components are arranged. Moreover, a hierarchically
organized resource space tends to become convoluted and inconsistent as new types of resource information arc
encoded into the hierarchy. For example, the UNIX! file name /users/faculty/schwartzipdp/montelasynchlinit.o
contains (from left to right) information about the file’s disk location, creator’s role, creator, research project,
research subproject, algorithm variant, contents (inir = "initialization routines"), and file type (.0 = "objcct
code").? Reorganizing such a hierarchy is time consuming and not easily accommodated, once a user base has
been established. Finally, a hierarchy is inflexible. For example, in searching for people having technical cxper-
tise in three dimensional graphics algorithms, one person might prefer the resource space to be organized as
"/Computers/Graphics/3D/Experts”, while another might prefer an organization like
"/People/Interests/Technical/Graphics/3D".

The current paper focuses on protocols to support non-hierarchical resource discovery in a large scale inter-
net environment. We do not mean to imply that hierarchically structured resource management mechanisms arc
bad, or that they should not be used. Hierarchical organization is helpful for certain purposes, such as grouping
rclated files together in a file system. Rather, we propose o augment any existing resource space structurc with
a mechanism to support non-hierarchical searches.

We focus on supporting attribute based "yellow pages” searches, for which we assume it is desirable (o find a
small number of instances of a moderately large class of objects. For example, in searching for a supplicr of a
particular piece of computer hardware, finding 5 out of 100 suppliers in a metropolitan area would often suffice.
We also assume that it is acceptable to. return different answers to the same query across search sessions. This
assumption differentiates the resource discovery problem from traditional database and information retricval
problems [Fischer & Stevens 1990]. If consistent responses (o queries were desired, one could build a front-cnd
user nterface that cached results, and provided identical responses across search sessions.

Based on these assumptions, we have designed and simulated a set of probabilistic protocols that support
scalable, non-hierarchical resource discovery. The protocols are scalable in the sense that the number of nct-
work messages needed grows very slowly with the size of the network. This is significant because, o our
knowledge, no scalable system has ever been built that did not depend upon a hierarchical organization [Lamp-
son 1987]. Our approach involves building a resource graph that evolves over time in accordance with what
resources exist, and the types of searches that users make. The graph structure allows nodes (o be related to onc
another through multiple groupings that we call "specialization subgraphs", motivated in part by obscrvations
about the organization of human social networks [Schwartz & Wood 1990]. Each specialization subgraph
corresponds to a grouping of nodes that are related according to some particular criterion. For example, onc spe-
cialization subgraph could link databases containing information about automobile parts, while another subgraph
could link databases according to geographic boundaries. The automobile parts subgraph could, in turn, have
one subgraph organized according to function (engine parts, tires, etc.), another subgraph organized according to
manufacturer, ctc.

We use probabilistic protocols to disseminate resource information and to scarch the graph, and caching
mechanisms to remove edges that are not actively being used. We chose probabilistic protocols for several rea-
sons. First, because we do not require that all matching information be found, probabilistic protocols provide a
less expensive means to support searches. Also, the probabilistic nature of the protocols provides a natural
means to limit potentially large responses, avoiding flooding users with too much information, or overly loading
the network. Moreover, providing high availability in a wide area network environment is difficult, particularly

1 UNIX is a trademark of AT&T Bell Laboratories.
2 This example is a modified version of one given in [Greenspan & Smolensky 19831,
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if no widespread agreement has been reached on common replication protocols. Searching probabilistically
rather than depending on high availability of the network links and information repositories provides a natural
degree of resilience to failures.

Searching for information probabilistically also ensures fair access to competing information providers. This
is an important consideration in commercial environments, in which the provider of an information service could
bias sales to clients that use their service. This is currently an issue of legal contention in airline computer reser-
vation systems. Also, in the 1988 triennial review of the Modified Final Judgement (which divested AT&T of
the Regional Bell Operating Companys), Judge Greene stated this problem as the primary reason for restricting
the RBOC:s from providing information services, since the RBOCs control the vast majority of the communica-
tion networks that are used for information services [Greene 1988].

Because a prototype implementation would need to gain very wide usage before it could yield useful resulls
concerning scalability, we chose to simulate the protocols. The simulation analyzes a number of paramcters for
an environment roughly the size of a large country, with several thousand administrative domains (such as
universities or companies) participating in resource registration and searches. While some aspects of the proto-
cols could have been explored through mathematical analysis, it is difficult to capture the behavior of caching
mechanisms analytically. This was a particularly important consideration because, in an environment of the
scale we consider, far more information exists than can fit within any single memory hierarchy, and hence cache
management must be represented in the analysis.

The remainder of this paper is organized as follows. In Section 2 we introduce our model of the environment
within which resource discovery takes place. In Section 3 we detail the graph construction and searching proto-
cols, as well as the cache management protocols. In Section 4 we overview the simulation structure and paramec-
ters. In Section 5 we present the results of the simulation, showing how the protocols perform in response to
interesting ranges of the input parameters. In Section 6 we discuss related work. Finally, in Section 7, we offcr
our conclusions.

2. Resource Discovery Environment

Our model of the environment within which resource discovery takes place involves four types of entitics: a
set of Resource Information Repositories (RIRs), which will typically be databases or files; brokers that encapsu-
late the heterogeneity and access control concerns of the RIRs; agents that dynamically construct links between
the brokers; and clients that initiate resource searches on behalf of users by communicating with agents. This
architecture is illustrated in Figure 1.

When an RIR enters the network, its broker contacts any agent, and registers a high level description of the
information it maintains. (We also refer to the registration process as "advertising”.) For the sake of simplicity,
in this paper we consider this description to be some list of categories. Category descriptions could be as simple
as textual keywords, or as sophisticated as semantic database class names.

Since resource information is distributed among autonomous systems, sharing the information raises privacy
and security issues. Our approach to this problem involves encapsulating cach autonomous RIR by a broker
responsible for accessing the RIR and deciding exactly what information may be released to the outside world.
Brokers are analogous to human operators that currently allow the general public limited access to many existing
RIRs. For example, telephone directory service operators will refuse to answer queries asking what person has a
particular telephone number, but they will answer other types of queries.

A client initiates a resource search by contacting any agent. If the agent does not have any information about
the specified categories, it tries to find some other agent that does, possibly following a chain of agents. The
agents examine requests and decide, based on the named categories, how best to route searches. In some cascs,
agents initiate transactions with brokers to access online information maintained by various organizations around
the network (e.g., a telephone directory or a company’s product line description) to discover what resources
exist at these organizations. In other cases, searches are routed to other agents that know more about the
resources being sought. The mechanism for deciding how to route searches is discussed in the next section.

There are a number of policy issues that we do not address in this paper. One problem involves restricting
the use of aggressive advertising, which would tend to flood the network with repeated advertisements on behalf
of database owners who wish to magnify their visibility on the network. Other issucs include removing stale
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Figure 1: Basic System Architecture

pointers to resources, and charging for advertisements and searches. While these issues are important, they are
outside the scope of the current work, because we believe they can be resolved in a straightforward fashion.

3. Description of Protocols

The basic resource discovery protocol can be thought of as having two phases. In the dissemination phase,
information about particular resources is replicated at uniformly distributed, randomly chosen nodes around the
network. In the search phase, information is sought by sending search requests randomly around the nctwork, in
a parallel fashion. (Request routing and termination will be discussed shortly.) The point of the dissemination
phase is to place information about any resource within a reasonably small neighborhood of any node in the net-
work, so that during the search phase it is likely that the information can be found using simple random probes.
Randomization provides a natural means to distribute and replicate the data.

The preceding description oversimplified the scenario in two ways. First, the two phases actually occur con-
tinuously and in an arbitrarily interleaved fashion, according to when resources are introduced into the network,
and when searches are requested. Second, searches do not proceed completely at random. Over time, cache
management protocols develop connections between agents that maintain related information, to form speciali-
zation subgraphs. A search initiated at a random agent may cause some random search behavior at the start of
the scarch, until a member of an appropriate specialization subgraph is reached. If such a subgraph is reached,
searches will proceed in a more directed fashion.

Below, we begin by describing a primitive to support probabilistic information dissemination and scarching.
We then describe the usc of this primitive for information dissemination, followed by the cache management
protocols that evolve specialization subgraphs.

3.1. Sparse Diffusion Multicast Primitive

To support probabilistic information dissemination and searches, we have proposed a primitive called a
Sparse Diffusion Multicast (SDM), defined as follows [Schwartz 1989]. Given a network containing N agents, a
message is sent using an SDM to n <« N agents, selected at random. The parameter n determines the SDM



density. In addition to SDM density, the SDM primitive is also parameterized by scope. For example, an SDM
could be initiated within a city, or across a continent. A possible implementation of this primitive based on
modifications to Deering’s multicast groups mechanism [Deering 1988] is discussed in another paper [Angevine,
Butt & Schwartz 1990]. This implementation does not assume that a complete list of agents exists.

As its name implies, the SDM primitive is intended to support information dissemination and searching in
ways roughly analogous to the movement of molecules of an ideal gas within a container. The random diffusion
mechanism of the SDM is analogous to the diffusion of a gas into a region of lower concentration. The concen-
tration of information throughout the network is analogous to the pressure/volume relationship of an ideal gas.
According to ideal gas laws, a gas in a container can be increased in presure by increasing the quantity of gas or
decreasing the volume of the container. By analogy, the SDM primitive provides a means to disseminate and
search for information with the property that the larger the class of object (quantity), the more dense the SDM
(quantity), or the smaller the scope (volume), the "higher pressure" the information dissemination or search will
be, and hence the more individual class members will be located. Hence, a broker advertising a resource within
a metropolitan area will achieve more dense information diffusion than one that advertises nationally, and, simi-
larly, a search will be successful in relation to the size of the class being sought, and to the geographical scope of
the search.

3.2. Disseminating and Searching for Information Using SDMs

We begin by defining a quantity called network diffusion density, which determines how much effort will be
devoted to disseminating and searching for information. Effort here is measured in network messages. In a net-
work containing N' agents, the network diffusion density is defined to be k& + log, (V). The log function was
chosen to cause the expense of SDMs to grow very slowly in the size of the network. Note that, because this
function grows so slowly, it is not necessary to have an accurate estimate of network size. & is a tunable con-
stant that ensures that some minimum set of agents receives the transmission. 4 is a tunable constant that scts
the scale of logarithmic growth.

When an agent is first contacted by a broker, the agent uses an SDM to announce the existence of the infor-
mation available at that broker to a small number of other agents, using an SDM density equal to the network
diffusion density. At randomly selected intervals, agents invoke SDMs to disseminate the set of categories in
their caches to other agents in the network. Agents receiving these SDM announcements respond with the st of
categories in their caches. In other words, when an SDM is used to disseminate information, all of the agents
contacted perform a cache exchange with the agent that initiated the SDM. (Cache management will be con-
sidered shortly.) This protocol is illustrated in Figure 2. In this figure, hashed lines indicate SDM messages, and
solid lines indicate cached pointers. Initially, node A issues an SDM, which reaches four other nodes. When an
agent executes an SDM, it exchanges cache categories with each of the agents contacted. Over time, the infor-
mation is diffused around the network as the agents exchange caches with other agents. Note that this figurc
indicates a much higher network diffusion density than would occur from the logarithmic function we chose.

When a client contacts an agent to initiate a search, the agent checks its cache for information about the
requested resource. In addition to returning any information it has available locally about brokers that advertised
the category, the agent routes the search to a number of agents equal to the network diffusion density. The
choice of agents to which searches are routed depends on how much information the agent has cached about the
category. If the agent has no knowledge of other agents that have information about the category, it uscs an
SDM to involve other agents in the search. These other agents exccute the same protocol. An indication of
maximum depth of recursion is passed along with the SDM to limit the cost of the search.

If, on the other hand, an agent has some information in its cache about other agents that know about the
category in question, it sends queries to these agents rather than to randomly selected agents. More preciscly, if
the network diffusion density is 4 and the agent has n pointers to other agents that know about the category, it
sends min (n ,d) searches to these other agents, and initiates the remaining searches by using an SDM with SDM
density max (0,d-n). We call the min(n,d) searches direct searches, and the max(0,d-n) searches SDM
searches.

While scarches from a particular agent arc chosen in a fashion to guarantce that they are each routed to dis-
tinct sites, no attempt is made to avoid recursively initiated searches to agents that have previously been
scarched, other than avoiding having agents route scarches back to the agent from which they reccived the
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Figure 2: Information Diffusion Using the SDM Primitive

request. While it would be possible to pass a list of égems known to have been searched to agents when initiat-
ing searches at each agent, for large scale networks the probability of searching an agent multiple times is fairly
small anyway. This point is discussed in Section 5.1.

Using the search protocols we have described, the cost of a search is directly proportional to the network dif-
fusion density, and exponential in the search depth. One could modify the protocol to stop initiating new
searches if some number of instances of the resource being sought have been located. We do not simulate this
idea because the effect on search cost would be dependent on real system usage patterns.

3.3. Specialization Subgraph Evolution Through Cache Manage-
ment Protocols

Different resources will be available in different parts of the network, and each user will probably search for
certain types of resources more frequently than others depending on the user’s interests. Because of thesc
points, we have developed a mechanism to allow the graph organization to evolve in accordance with what
resources exist, and the types of searches users make. We utilize a set of caching protocols for this purpose.
When an agent receives an SDM from some other agent, it caches the announced categories, as well as an indi-
cation of other agents known to maintain information about those categories (which we refer to as "cognizant
agents"). It also caches an indication of the brokers that originally announced instances of the categorics (which
we refer to as "originating brokers"). The category cache is the primary data structure involved. The cognizant
agent cache and the cognizant broker cache exist as structures within each category cache. Each of the caches
can be managed using a different caching policy.

Agents set cache timeouts for cach category in proportion to the amount of information already cached for
that category. The effect of this policy is that over time various agents tend to form specialized resource type
“interests” about which they maintain many pointers. ‘If a search is routed to one such agent, searches will be
more successful for the categories with which that agent is concerned. Since agents cache pointers to other cog-
nizant agents, groups of agents that share resource interests will form specialization subgraphs based on this
caching protocol. Searches could be routed to such a subgraph because the agent is running at a site that is
actively involved in using a particular type of resource, causing that focus to be reflected in the agent’s cache.
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Searches could also be routed to such a subgraph through the randomized search procedure described in Section
3.2.

This policy is implemented using Least Frequently Used (LFU) caching. Of course, one could choose a dif-
ferent cache maintenance policy (such as Least Recently Used) to bias caching in other fashions. We use LFU
cache management only for the set of categories held by each agent. The set of cognizant agents and the set of
originating brokers for each category are maintained using FIFO caching, since there is no reason to prefer morce
frequently used cognizant agents or originating brokers. In fact, it may be preferable not to prefer frequently
used cognizant agents or originating brokers in this fashion, to avoid forming "cliques” of agents and brokers
that use only each other for locating resources.

4. Simulation

The simulation does not attempt to capture all of the details of a real distributed implementation of the proto-
cols described in 3. It does not differentiate between the cost of searching local versus remote agents, because
we assume that as long distance network technology improves, this difference will become decreasingly
relevant. Also, the simulation does not represent the possibility that agents might be added to the network incre-
mentally. Instead, all agents are placed in the network at once. Finally, the simulation does not represent the
fact that information dissemination and search activity can occur in an interleaved fashion. To realistically
represent interleaved information dissemination and searching, one would need to represent real usage patterns.

4.1. Overview

When the simulation is initialized, a set of randomly chosen "categories” (represented by integer values) is
generated at each agent, representing a set of broker announcements to that agent. We do not explicitly
represent the existence of brokers in the simulation. Rather, we simulate the size of the network by the number
of agents, with the idea that each agent is contacted by some set of brokers. The number of categories generated
at each agent is a random number between 1 and a parameter that specifies an administrative limit on the number
of categories any broker is allowed to advertise.

After initializing the category list for each agent, a set of SDMAdvertise simulation events is generated for
cach agent, which when executed will cause the agent to perform cache exchanges with a small number of other,
randomly chosen agents, and then schedule another SODMAdvertise event for the agent. The simulation then exc-
cutes continuously, performing SDMAdvertise events and cache exchanges until a specified number of simula-
tion events have taken place. At this point, a set of randomly chosen SDM searches are initiated, based on
categories that are known to have existed when the simulation started executing, and various performance
measurements are collected for the entire process. - 500 searches are performed, to produce statistically averaged
measurements. At the end of the simulation, a number of aggregate measurements are output:

e The total number of simulated categorics generated by the random selection process that runs during simula-
tion initialization.
¢ The total number of cache exchanges.

¢ The number of times cached category, cognizant agent, and originating broker records were dropped becausc
of cache overflows.

o The average number of categories cached by each agent.
o The average number of cached cognizant agents over all categories known by an agent.
e The average number of cached originating brokers over all categories known by an agent.

In addition to these aggregate measurements, the means and standard deviations for several mecasurements per-
taining to the attempted resource searches are output:’

e The number of brokers originating information about the resources being sought.

3 Some categories could have been dropped because of cache overflows.
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e The number of originating brokers that were found through scarches.

e The number of searches conducted based on cached.cognizant agent pointers, representing an agent’s dircct
knowledge of a resource category.

e The number of searches conducted through SDMs, representing a lack of direct information about the
resource category being sought.

o The number of distinct agents reached during searches. This provides an indication of wasted search effort,
when compared with the total number of agents searched.

We do not attempt to model the effect of cached searches on later searches directly, because achieving mean-
ingful results would require a representation of real usage patterns. Instead, cache management is simulated dur-
ing the dissemination phase, and searches are performed on existing caches without modifying their contents.
The reason we do not simulate caching during searches is that the effects of caching during searches can be
modeled by the effects of caching during the dissemination phase. A reasonable caching policy during the dis-
semination phase will tend to form specialization subgraphs in response to agents seeing announcements for cer-
tain types of categories more frequently than for other categories. Similarly, a reasonable caching policy during
the search phase will tend to form specialization subgraphs in response to agents seeing searches for certain
types of categories more frequently than for other categories. Therefore, the effects of caching policy on search
effectiveness for non-uniformly distributed search requests can be modeled by observing the effects of caching
policy on search effectiveness for non-uniformly distributed resource advertisements.

To test the caching policy under such non-uniform situations, we provide a means to instantiate a non-
uniform distribution of announced categories, rather than the default uniform random distribution. This mechan-
ism is described at the end of Section 4.2.

4.2. Parameters

The simulation supports the following parameters. Parameter names are given in italics, to ease referring
back to their descriptions as simulation results are presented. We also give the range of values studied for each
parameter. The parameters are as follows:

e The number of agents (NumAgents). Because an agent supports resource registrations and searches for an
administrative domain, this parameter represents the overall scale of the network. We simulated networks of
between 500 and 5000 agents.

e The constanis £ and b, used to set the network diffusion density. In the simulation we represented the addi-
tive constant k£ as AddK, and the base of the logarithm b as TimesK, since logarithms of different bases are
related multiplicatively. In the simulations we fixed TimesK to be 2, and simulated AddK values between 1
and 50.

e The number of resource categories in the simulated universe (NumCategs). We simulated NumCategs valucs
between 1000 and 9000. These small values forced individual classes to be fairly large, in accordance with
the assumptions of these protocols.

» The maximum number of resource categories that any particular broker is allowed to announce (Maxin-
itCategs). This parameter represents an administrative limit on advertisements. All simulation runs used
MaxInitCategs = 5.

o The size of each agent’s category cache (CategsPerAgent). Because we simulated large networks, we had to
impose an artificially small limit on this parameter. While a realistic system might allow thousands or morc
categories to be cached, for most simulation runs we set cache sizes to allow 50 categories and their associ-
ated agent pointers to be held per agent. Even so, the simulation runs typically needed 50 megabytes of phy-
sical memory to proceed without page thrashing. We simulated fTCategsPerAgent values between 50 and
250. The sizes of the cognizant agent and originating broker caches were fixed as compile-time constants, at
45 entries per category each. ,

¢ The cache maintenance policy to use (CacheMech). This could be either FIFO or LFU. The latter is used
for building specialization subgraphs, as discussed in Section 3.3,

s The range of delays to be used when inserting ncw cvents into the cvent queue (EventDelayRange =
MinEventDelay to MaxEventDelay). These parameters represent the uncertainty in message delivery times
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when using wide-area communication networks. We set EventDelayRange 1o be 1 to NumAgents + 10, 1o
ensure that events representing message transmissions occur in a non-deterministic order.

e The number of events to simulate during the information dissemination phase (MaxEvents). Typically, we
set this value to be equal to the number of agents in the simulation, allowing a subset of the agents to do
SDM advertisements. Many agents do not initiate any SDM advertisements with this setting because cach
SDM advertisement generates a number of cache exchange events equal to the network diffusion density.
However, even if an agent does not itself initiate a cache exchange, it is likely to participate in some cache
exchange initiated by another agent. Note that setting MaxEvents equal to NumAgents is a pessimistic
assumption. In a real implementation in a distributed environment, allowing each agent to do many cache
exchanges would be quite feasible. However, since the simulation run time is dominated by cache
exchanges, we needed to keep this value reasonably low. Also, note that the search phase does not execute
as simulation events. Rather, once MaxEvents events have executed, the dissemination phase completes, and
a set of searches are initiated by simply searching the data structures that contain the simulated caches. We
simulated MaxEvents values between 1000 and 10000.

¢ The maximum depth of recursion in using SDM searches (MaxSearchDepth). The depth is counted starting
at 1, with the meaning that searches are forwarded until depth equals MaxSearchDepth - 1. For example,
MaxSearchDepth = 3 (the value we used) will cause searches to be forwarded from the starting agent to a set
of agents, and then no deeper. We simulated MaxSearchDepth values between 1 and 6.

¢ The number of searches to initiate after the information dissemination phase completes, for statistical averag-
ing purposes (NumSearches). We ran most simulation runs with NumSearches equal to 500, except for one
particularly expensive set of runs, for which we set NumSearches equal to 500.

o The number of instances of a single distinguished category (NumDistinglnsts) to generate during the part of
agent initialization that corresponds to broker announcements. This parameter is used to simulate differential
concentrations of resource categories, as well as differential concentrations of searches made for various
categories, as discussed at the end of Section 4.1. If NumDistinglnsts is set to zero, all categories and
searches are chosen at random. If NumDistinglnsts is greater than zero, it specifics the number of instances
of a particular distinguished category to generate, and all searches are initiated for that distinguished
category. This parameter allows experimenting with the abilities of different caching policies to form spe-
cialization subgraphs. We simulated NumDistinginsts values between 0 and 5000.

4.3. Implementation

The simulation is implemented in the C programming language, and is approximately 2800 lines long. The
primary data structure is an array of structures indexed by agent number. Each entry of this array contains the
set of categories cached by an agent, the set of cached cognizant agents for each category, and the sct of cached
originating brokers for each category. (Since brokers are not explicitly represented in the simulation, each
broker in the originating broker cache is just listed as the index of the agent that originally generated the particu-
lar category instance during initialization.) All cache memory is allocated at the beginning of the simulation.
Overflowed caches do not require freeing dynamically allocated memory.

We initially used a binary tree implementation for the three caches, but because the ability to simulate large
networks is bound by memory limitations, we sought to eliminate the wasted memory required by pointers.
Therefore, we reimplemented the cache mechanism using hash tables. However, we found that hash tables still
had too much memory overhead, because of the need to maintain overflow chains. Thercfore, we eventually sct-
tled on unordered linear lists. While linear lists are inefficient in terms of the number of operations needed to
implement searches and inserts (which are necessary to support cache exchanges), they arc memory cfficicnt.

We ran the simulation on an 8 processor Alliant FX80 with 64 megabytes of primary memory and 117 mega-
bytes of swap space, and on a 3 processor Solbourne Series 4/600 with 49 megabytes of primary memory and
131 megabytes of swap space. While the Solbourne has much faster processors (SPARCs, compared with the
MC68020 processors on the Alliant), the larger simulations had working sets too large to fit in the primary
memory of the Solbourne. These simulations were run on the Alliant. Although both of these are multiproces-
sor machines, the simulation is implemented on a single processor. We considered building a distributed simula-
tion in order to have more memory available for the simulation, but decided against it, because SDMs have poor
locality, and hence a distributed simulation would quickly become limited by network message transmission
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COsts.

The simulation runs reported in Section S ook approximately threc days of computing time to complete. We
ran many trials before the final runs reported here, to arrive at reasonable parameter ranges experimentally.

5. Results

In this section we present the results of our simulations. We begin in Section 5.1 by exploring the effective-
ness of probabilistic information dissemination and searching without the specialization subgraph caching proto-
col, to isolate the cffects of these two protocols. For this purpose we used a simple FIFO cache management
policy. Some cache management policy was nceded, because the simulation quickly filled available memory.
We could also have used a random cache replacement policy for this purpose. Since category advertisements
and searches are generated uniformly at random, these policies are equivalent. In Section 5.2 we explore the
cffect of forming specialization subgraphs on simulated network load, using an LFU cache management policy.

Throughout this section, we vary individual parameters of the simulation, and keep the other parameters
fixed. Unless explicitly stated otherwise, the fixed parameters have the [ollowing values:

NumAgents = 5000

TimesK = 2, AddK =1

NumCategs = 1000

MaxInitCategs = 5

CategsPerAgent = 50

EventDelayRange = 1 10 NumAgents + 10
MaxEvents = NumAgents
MaxSearchDepth = 3

NumSearches = 50

NumDistinglnsts = 0

These values were arrived at experimentally. For example, the maximum number of agents simulated was
arrived at by testing how big a sinulation could be run before page thrashing occurred on the machine running
the simulation. As a diffcrent example, the values for the SDM density parameters & and b were arrived at us a
compromise to reach a reasonable level of search effectiveness without causing too much scarch expense.

5.1. Probabilistic Information Dissemination and Searching

Basic Effectiveness and Cost as a Function of Network and Category Space Size

The basic cffectiveness of using SDMs for building and scarching a resource graph can be mcasurcd by plot-
ting the proportion of brokers found that advertised a particular category being sought, as a function of the
number of agents in the nctwork. This plot is shown in Figure 3. This figure shows that even as the size ol the
network grows (airly large, the proportion of brokers found remains above 3%.

While finding 3% of the resources may seem small, there are several points (o keep in mind. First, the proto-
cols arc designed to support yellow pages scarches, for which we assume that finding a small number of
instances of moderately large resource classes is sufficient. Second, the basic scarch cffectivencss can be
improved by several means, including narrowing the scope of the search to a smaller arca, using a larger net-
work diffusion density and/or search depth, and using a more intelligent caching policy. Each ol these issucs
will be explored below.

Figure 3 also plots the network diffusion density. This value indicates the number of agents scarched (and
hence the scarch cost), since the default MaxSearchDepth value (3) caused all scarches to be initiated from one
agent.

Notc that search effectiveness is not a monotonically decreasing function of nctwork size. The non-
monotonic behavior is caused by the fact that the network diffusion density function is logarithmically propor-
tional to the number of agents, and hence increasing the network size can cause the network diffusion density (o
increase in discrete jumps. This is the case for the increase in search effectiveness when the network size
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Figure 3: Basic Search Effectiveness and Cost as a Function of Network Size

increases from 2500 to 3000 agents.

Table 1 gives a more detailed view of the basic simulation results. In this table, "Actual Categories" is the
sum of all unique categories randomly generated by all agents during initialization. Because these values arc
generated independently at random at each agent, the probability that all of the categories in the simulated
universe will be used approaches 1 as the network size increascs. Moments are given for values computed from
averaging 500 searches on the established graph. From this table we can see that the number of originating
brokers per category is actually fairly small, with a correspondingly small number of brokers being found. The
effect of this small size can be seen in the fact that the standard deviations of the "Originating Brokers Found"
column exceeded the means in magnitude, indicating that search success ranged fairly widely, from failed
searches to very successful searches. Therefore, the search effectiveness curve in Figure 3 should be interpreted
to mean that on average a reasonable proportion of catcgories can be found using the probabilistic dissemination
and search protocol, but that if the resources being sought belong to a very small, broadly distributed class, the
success in locating individual instances has high variance.

Referring to our ideal gas analogy, the next question that arises is how much more predictably searches will
be successful when the "pressure” is incrcased. This can happen two ways: either searches are scoped to
smaller areas (e.g., within a city instead of the entire network), or the resources being sought belong to a larger
class. (The formation of specialization subgraphs can also aid "low pressure" searches, as will be considered in
Section 5.2.) To explore this question, we restricted the size of the simulated category universe, so that cach
category being sought belonged to a large class. The effects of doing this are plotted in Figure 4. As can be
scen, search effectiveness is significantly higher when class size is increased.

We next explored the effect of varying the number of categories on search cffectivencss. The results are
shown in Figure 5. Search cffectiveness drops off slowly in the size of the category space. The occasional
increases were caused by minor statistical inaccuracies resulting from doing 500 searches. These cffccts were
more pronounced when only 50 searches were done per simulation run. We did not rerun the simulations using
more than 500 searches because doing so would increase simulation costs, but would not provide conceptually
more mcaningful results. '
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Agents | Network Actual Cache Originating Originating Proportion
Diffusion | Categories | Exchanges Brokers Brokers Originating
Density Found Brokers
v (4] 5 c Found
500 13 648 461 2.520 | 1.230 | 0.330 | 0.560 0.130
1000 14 862 930 4.088 | 1.642 | 0400 | 0.590 0.103
1500 15 952 1405 5.638 | 2.123 | 0410 | 0.628 0.076
2000 16 970 1878 6.968 | 2.409 | 0.500 | 0.6%4 0.072
2500 16 993 2351 8.358 | 2.684 | 0414 | 0.625 0.049
3000 17 998 2830 9.564 | 3.023 | 0518 | 0.671 0.054
3500 17 998 3302 11.526 | 3.073 | 0.508 | 0.711 0.046
4000 17 999 3776 13.130 | 3.591 | 0472 | 0.685 0.035
4500 17 1000 4244 14.694 | 3.879 | 0470 | 0.699 0.033
5000 18 1000 4735 15.998 | 3.847 | 0.506 | 0.700 0.032

Table 1: Detailed Measurements from Basic Simulation Series of Figure 3
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Figure 4: Search Effectiveness For Large Classes
NumCategs = 5

Effect of Network Diffusion Density and Search Depth

The next parameter combinations we explored involved the protocol parameters that control search expense
and cffectiveness. We began with the network diffusion density. By fixing TimesK and varying AddK , we
achieved a range of network diffusion densities, against which we plotted search effectiveness in Figure 6. This
figure indicates that search effectiveness grows slowly and approximately linearly as a function of the nctwork
diffusion density up to a point. Increasing the network diffusion density beyond that value does not improve
effectiveness significantly, because larger network diffusion density values cause caches to overflow morc
quickly. This effect is exaggerated in our simulation, since the default category cache size was set to only 50

categories per agent.
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Figure 6: Effect of Network Diffusion Density on Search Effectiveness

In Figure 7 we explore the effect of search depth on search effectivencss and wasted search effort. Wasted
effort is defined as the proportion of searches routed to agents that have already been scarched. (See Section 3.2
for a description of how agents could be searched multipie times.) As expected, the expense of a scarch
increases very quickly with search depth, as does wasted search effort. Note that even when all agents have
been reached by a search, not all originating brokers are found. This is because of cache size limitations, which
caused advertised categories to be dropped from full caches. Searches with depth 3 or less do not cause any
wasted effort because searched agents are ail contacted by onc agent that chooses distinct agents to scarch. (Sce
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the definition of the MaxSearchDepth parameter in Section 4.2.) Also note that for this particular set of simula-
tions, we only did 50 searches per run (rather than the standard 500), because of the expense of doing cach
search. At 50 searches per run the series took 10 hours to complete.

Clearly, one must attempt to choose a value below the "knee" of this curve, to avoid infeasible expense in a
large scale environment. One possibility to allow fine tuning would be to support a notion of non-integral search
depth. A simple algorithm to implement this idea would be to generate SDMs up to the largest integral depth
less than the search depth, and then at the final level, choose to generate an SDM at each agent with a probability
equal to the fractional part of the search depth. Alternatively, one could use a search depth of 3, so that all
searches are guaranteed to be unique, and improve search effectiveness by varying the AddK and TimesK net-
work diffusion density parameters. The problem with doing this is it reduces the probability of finding a special-
ization subgraph along which to route searches, because the specialization subgraph would only be found if the
original agent contacted happened to be a member of a specialization subgraph for the resources being sought.

The network diffusion density and search depth parameters could be used as a simple mechanism to allow
users to pay more for more thorough searches, particularly if non-integral values of search depth were sup-
ported.
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Figure 7: Effect of Search Depth on Search Effectiveness and Wasted Effort
NumSearches = 50

S.2. Specialization Subgraph Formation Through Caching Proto-
cols

Section 5.1 indicated that the SDM primitive provides a simple and effective means to disseminate and
search for information without undue expense. The caching policy used (FIFO) was purposefully simplistic, 1o
allow the effects of the SDM to be measured with minimal interference from the effects of caching. We now
consider the effect of caching policy on searches.

Throughout this section, we compare the effect of using FIFO versus LFU cache management during the dis-
semination phase, as measured during the search phase. This comparison is intended to indicate the potential
formation of specialization subgraphs through use of a LFU caching policy. We do not directly measure the for-
mation of specialization subgraphs, because that would require real system usage patterns to model the non-
uniform nature of resource advertisements and searches. Rather, we measure the potential to support such non-
uniform behavior.
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The experiments we performed involved comparing FIFO versus LFU caching only in the category cache.
The cognizant agent and originating broker caches are always maintained using FIFO caching, to avoid forming
“cliques” of agents and brokers that use only each other for locating resources.

Figure 8 compares search effectiveness using a LFU cache maintenance policy with that from using FIFO
caching for a uniform random distribution of categories in advertisements and searches. LFU caching is usually
slightly more effective than FIFO caching, but since all category generations and searches are selected uniformly
at random, neither policy is always superior, and neither policy works very well.
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Figure 8: Basic Search Effectiveness Using Different Category Caching Policies

In a real environment, categories would not be generated or searched uniformly. Therefore, in Figure 9 (and
all subsequent experiments in this section) we examine the differential effectiveness of these two caching poli-
cies for the case where categories are not gencrated or searched uniformly, by plotting search effectivencss
against the simulation parameter NumDistinginsts. (See Section 4.2 for a description of this parameter.) As can
be seen, when the category distribution is not uniform, LFU cache management outperforms FIFO cache
management by a significant margin. Moreover, while the size of the distinguished category class increases ten-
fold, the search effectiveness only decreases by a factor of 3.18. This indicates that the less uniform the
category space distribution, the better LFU performs for popular categories. In particular, it indicates that a
search scoped for a part of the network that has a high level of interest in the category being sought will tend to
be very effective.

Note that the method of generating non-uniform category spaces places an instance of the distinguished
category into NumDistinglnsts different agents’ category caches during initialization. Hence, while the category
space distribution becomes decreasingly uniform, the information is spread among many agents. This fact
accounts for the decrease in absolute search effectivencss as the category space becomes decreasingly uniform.

The suitability of LFU caching for non-uniform category spaces can also be seen by examining what propor-
tion of each search is satisfied through direct scarches versus SDM searches. The higher this proportion, the
more cffective a search will tend to be, because it indicates that an agent has relatively more pointers o other
agents that know about the category being sought. Figure 10 plots the proportion of dircct scarches to SDM
searches as a function of network size, for both LFU and FIFO caching with NumDistingInsts = 500.
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Figure 10: Direct/SDM Searches vs. Network Size for LFU vs. FIFO Caching
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Cache Size and Cache Exchange Count

The next effect we measured concerned the effect of cache size. Figure 11 plots search cffectiveness against
category cache size, for both FIFO and LFU caching policies. We do not simulate caches larger than 250 entries
because larger caches required too much memory. We also limited the number of agents simulated to 1000 to
allow for larger caches. The effectiveness of FIFO caching increases approximately linearly with cache size.
LFU caching effectiveness starts high, and stays approximately level. Further improvements would require
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more cache exchanges.
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Figure 11: Search Effectiveness as a Function of Category Cache Size
NumAgents = 1000
NumbDistinglnsts = 500

Next, we measured the effect of the number of cache exchanges on search effectiveness. Figure 12 shows
that search effectiveness grows approximately linearly until all caches fill under LFU caching, at which point
caches begin to overflow and decrease search effectiveness. FIFO caching performs quite poorly here because it
has no basis for making good use of an increasing number of cache exchanges.

These two sets of measurements also underscore the pessimism of the parameter ranges we needed to chose
because of memory and processing constraints. A real implementation could support much larger caches and
many more cache exchanges, further boosting search effectiveness.

Cache Contents and Cache Overflows

We next measured cache contents as a function of network size. As discussed in Section 3.3, we use LFU
cache management only for the set of categories held by each agent. The set of cognizant agents and the set of
originating brokers for each category are maintained using FIFO caching, since there is no reason to prefer morce
frequently used cognizant agents or originating brokers. This difference is reflected in the differences between
the contents of the various caches using the two cache management policies, as shown in Table 2. This table
reports the average number of entries in the various caches for the smallest and largest networks simulated. The
fact that the averages fall below the maximum cache sizc reflects the fact that some agents received less activity
than others, and hence did not fill their caches. Also, note that the primary cache is the category cache. The ori-
ginating broker cache entry counts represent the total number of originating brokers for all catcgorics in the
category cache. Similarly, the cognizant agent cache entry counts represent the total number of cognizant agents
for all categories in the category cache.

From the table we can see that that average cache had information about slightly more than onc originating
broker per category, for both FIFO and LFU caching. LFU caching tended to keep track of more brokers per
category as the network increased in size. This point is related to the difference between FIFO and LFU caching
for the category cache. LFU caching in the category cache caused agents to locus on fewer catcgorics, and
hence to retain significantly more pointers to other cognizant agents about those morc {ocused categorics than
FIFO caching did. This increase indicates the tendency for agents under LFU cache management to form spe-
cialization subgraphs. Because agents maintain more pointers to other cognizant agents under LFU, morc



217 -

5

45 -

4 -

354

Proportion of 3 h
Originating ’

Brokers 25 —
Found )

[FIFO *, LFUO] 7|

15 4

1

0.05 —

0 | | | ] I I i I

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Cache Exchanges Before Searches Initiated

Figure 12: Search Effectiveness as a Function of Cache Exchanges
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Number of | Category Cache Originating Cognizant
Agents Broker Cache | Agent Cache
FIFO | LFU | FIFO | LFU | FIFO | LFU
500 29.3 280 | 300 | 314 | 410 | 62.8
5000 30.3 302 | 314 | 376 | 38.1 | 704

Table 2: Average Number of Cache Entries as a Function of Network Size and Caching Policy

originating brokers can also be found, which increases search effectiveness.

As another indication of caching behavior, we measured cache overflows. The results are given in Table 3.
To understand the magnitudes of the numbers in this table, note that in the worst case, for a particular cache
(category, cognizant agent, or originating broker), a cache exchange will cause one agent to drop all of its
cached entries when it reccives the categories from the other agent. The number of cache exchanges will be
slightly lower than the number of agents in the network (as discussed in Section 4.2 and Table 1). Hence, an
upper bound on the number of cache drops that could occur for a particular cache is MaxEvents * CacheSize.
The category cache size was set to 50 categories per agent, while the originating broker and cognizant agent
caches were each set to 45 entries per category. Hence, the maximum number of category cache overflows
ranges from 25,000 to 250,000, while the maximum number of originating broker and cognizant cachc
overflows each range from 1.125 million to 11.25 million.

The number of cache overflows in this table underscores the small simulated cache sizes. Also, the fact that
an order of magnitude fewer cache overflows happened under LFU indicates the relative effectiveness of LFU
caching for the category cache. This effect ripples through to the cognmmt agent and originating broker caches,
since they are substructures of the category cache.
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Number of Category Cache Originating Cognizant
Agents Broker Cache ~ Agent Cache
FIFO LFU FIFO LFU FIFO LFU
500 14380 11504 14812 11189 25946 10524
5000 199666 | 158764 | 208544 | 175570 | 345900 | 150607

Table 3: Cache Overflows as a Function of Network Size and Caching Policy

6. Related Work

Most network directory mechanisms built to date take a deterministic approach to resource discovery. This
includes the CCITT X.500 directory service standard [CCITT 1987], Peterson’s Profile service [Peterson 1988],
and the Internet WHOIS service [Harrenstien, Stahl & Feinler 1985]. Each of these services is tailored to handle
situations requiring repeatable responses to searches for specific individuals.

Ahamad et al. developed a multicast scheme for locating specific objects in a distributed operating system
[Ahamad et al. 1987], as opposed to instances of a class of objects, as in the current paper.

Gordon developed a probabilistic scheme for supporting document retrieval, which focused on allowing the
system to adaptively relate keywords over time, to improve document recall as the system was used [Gordon
1988].

Deering has worked on the problem of supporting multicast in an Internet environment [Deering 1988].
Deering’s work attempts to provide full delivery. In another paper we report simulation experiments for an
implementation of SDMs based on modifications to Deering’s multicast protocol [Angevine, Butt & Schwartz
19901.

There have also been a number of applied and theoretical results pertaining to probabilistic information dis-
semination. Demers et al. made use of probabilistic algorithms for circulating updates in the Clearinghouse
name service, and analyzed the performance of this mechanism using techniques from epidemiology [Demers et
al. 1987]. Drezner and Barak developed a probabilistic algorithm for which they showed it is possible to scatter
information to a set of 7 nodes in (1 + In 2)logyn steps with probability approaching 1 for large values of n
(Drezner & Barak 1984]. Alon et al. developed an algorithm for disseminating information reliably without
broadcasting, based on a cyclic permutation matrix that describes how each node routes messages at each time
unit, achieving robust broadcast without hardware support in O (logN) steps for N nodes [Alon, Barak &
Manber 1987]. Megiddo et al. consider the complexity of searching a graph for a fugitive with full knowledge
of the captors, focusing on the complexity of determining the minimum number of searchers needed to guarantec
success [Megiddo et al. 1988]. In all of these research projects, the goal was to reach a large (or complete) set of
nodes through information dissemination, in contrast to our focus on finding a small number of instances of 2
moderately large class of objects. The protocols we have developed are much less costly because they do not
attempt full replication, nor do they guarantee the ability to locate individual instances of data.

7. Conclusions

In this paper we explored a set of protocols that support attribute based "yellow pages” scarches, for which
we assume it is desirable to find a small number of instances of moderately large classes of objects, and that it is
acceptable to return different answers to the same query across search sessions. Thesc assumptions allowed us
to take a probabilistic approach to resource discovery, resulting in a scheme that is scalable yet organizationally
flexible, unlike the hierarchical organizations upon which virtuaily all other systems intended for usc in a large
scale environment depend. Moreover, locating information probabilistically ensures fair access o competing
information providers. '

The basic approach we have taken develops a resource graph structure dynamically, through the usc of pro-

babilistic protocols that support information dissemination and scarches in ways roughly analogous to the move-
ment of gas within a container. The protocols are scalable in the sense that their expense grows very slowly with
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the size of the network. Intuitively, the key to our ability to achieve scalability without hierarchical organization
is that by diffusing information sparsely around a network, a small number of instances of a moderately large
classes information can be found within a reasonably small neighborhood of any node in the network, so that
during the search phase it is likely that the information can be found using simple random probes. This mechan-
ism is based on the Sparse Diffusion Multicast primitive, which provides a simple and effective means to
achieve a natural level of replication and distribution.

The protocols we have investigated are not solely probabilistic. The caching protocols are designed to allow
the resource graph to evolve over time in accordance with what resources exist, and the types of searches that
users make, based on an LFU cache management policy that links related resource information repositories into
specialization subgraphs.

Simulating the dissemination and caching protocols for a realistically large scale environment is difficult
because the simulation is memory intensive. Because of this, we simulated various parameters of environment
size independently, including network size, cache size, and number and diversity of categories. The simulation
also showed the effect of varying parameters that affect the way information and searches are disseminated.
These parameters can be used to achieve desired levels of search effectiveness and per-search costs, Through a
number of experimental runs, we chose an example set of such values. Our choices represent a useful part of the
parameter space, where a network roughly the size of a large country can support resource discovery searches
with rcasonable success rates and search costs.

The measurements we have discussed show that SDM-based information dissemination and searches, com-
bined with LFU caching, can provide a reasonably effective resource discovery mechanism for networks con-
taining up to 5000 agents. Clearly, as the network increases in size, the effectiveness of these mechanisms will
continue to decrease for searches scoped over the entire network. The mechanisms are only effective in relation
to the number of instances of a resource being sought, the scope of the search, and the cached contents of the
contacted agents. Therefore, in a global network containing, say, 1,000,000 agents, searches would only be suc-
cessful if they were scoped to smaller regions, or if the class being sought had more instances, or if the agents
contacted belonged to a specialization subgraph concerning the resources being sought. Note also that scoping
is not limited to geographical designations. The SDM primitive can be implemented based on a notion of mulli-
cast group, the membership of which could be decided by arbitrary criteria.
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