Revision: 1.4

Local Attributes
for OAG-based Attribute Evaluators

Masayoshi Ishikawa

CU-CS-472-90 May, 1990

ABSTRACT: Attribute grammars permit us to give meaning to a string in a context-free
language. This meaning is expressed using attributes attached to symbols (terminals and non-
terminals) of the underlying context-free grammar. In this paper we extend the concept of
attributes, and allow to attach attributes to each production rule too. These rule-attached at-
tributes are often called local attributes because of their scoping restriction. They can be defined
and referenced only by attribution rules of the production rule to which they are attached. These
attributes provide us the best place to store temporary values which can be used later to define
other attributes in the same rule. First part of the paper describes the theoretical background to
incorporate local attributes with OAG-based attribute evaluator generators such as [2,3]. Then
it introduces the formal definition of local attributes along with a typical example where they
are useful.

2 Revision: 1.4

1. Introduction

Since Knuth [1] proposed attribute grammars(AGs) to describe meanings of context-free lan-
guages(CFLs), many compiler generators based on AGs have been implemented [2,3,4,5]. Or-
dered attributed grammars(OAGs) are a relatively large subclass of AGs originated by [6]. Tt
is known that only polynomial time is required to solve the membership problem(given an AG,
test it if it belongs to OAGs or not). [2,7] reported that the class of OAG was powerful enough
to define the semantics of commonly used programming languages such as Pascal, C, and Ada.

Currently there are two OAG-based attribute evaluator generating systems in use[2,3].
These systems take an AG given by the user, test it if it is an OAG, and if so it generates
an evaluator(compiler) that computes all the values of attributes on the derivation tree at
runtime by traversing the nodes of the tree for any legal user input(source program). When
an AG is submitted to the system, the order of computations of all the attributes are decided
statically by the attribute evaluator generating systems only based on the underlying context-
free grammar(CFG) and the dependencies between attributes. The dependencies are relationship
between attributes. If one attribute is used to define another, the latter is said to be dependent on
the former. If two attributes are dependent each other, the system can not generate an attribute
evaluator(compiler) because there is no way to decide which attribute should be computed before
the other. These dependencies are often called cyclic dependencies.

Since OAG is a subset of all well defined AGs(AGs that compute all values of attributes
effectively for any legal input), it sometimes makes mistakes and recognize acyclic dependencies
as cyclic ones. Normalization of dependencies among attributes[8] is a technique that modify the
original set of dependencies and decrease the degree of mistakes. However such modifications
are not always possible.

This paper describes a situation in which such modification does not work, and present a
simple algorithm that allows the normalization always. Then the concepts of local attributes,
attributes associated with productions of AG, are introduced as a practical application of this
algorithm.

Revision: 1.4 3

2. Preliminaries

We introduce some definitions and notations of AGs and OAGs. We assume the readers are
familiar with the notion of AGs, OAGs, and visit-oriented attribute evaluators[6,9].

An attribute grammar AG is a 4-tuple (G, A, R, B) of a CFG G, attributes A, attribution
rules R, and conditions B.

The CFG G is a 4-tuple (N, T, P, Z) of nonterminals N, terminals T', productions P, and a
unique starting nonterminal symbol Z.

An attribute a of a symbol X is denoted by X.a. The set of all attributes associated with
X is denoted by A(X).

A production is of the form p : Xo — X1 X5+ X,,,, where Xy € N and X;(1 <1< np) €
TUN.

An attribution rule of p : Xo — X1 X5 -+ Xy, is of the form X;.a := f(---X;.b--), where
0 <4,7 < np. The set R(p) consists of all attribution rules of p.

An attribute X.a is said to be defined in the context of p if X.a := f(---) € R(p). The set
of all attributes defined in the context of p is denoted by AF(p).

If an attribute X.a is defined by an attribution rule X.a := f(---Y.b--+), we say that X.a is
dependent on Y.b, or there is a dependency (Y.b, X.a) between X.a, and Y.b. The set DDP(p)
consists of all dependencies specified by some attribution rule in R(p).

The normalized transitive closure of DDP(p), denoted by NDDP(p), is a set given by
NDDP(p) = DDP(p)* — {(X.a,Y.b)|X.a,Y.b € AF(p)}, where T is a non-reflexive transitive
closure operator.

A visit sequence of p : Xg — X1X,--- X, is a sequence of the form (s1, ss,... , Smp), and
is denoted by vs(p). In the visit-oriented attribute evaluator, each visit sequence vs(p) acts as
a co-routine when executed that evaluates some values of attributes defined in the context of
p, and invokes other visit sequences to make them compute some attributes defined in their
contexts. Hence each s;(1 < ¢ < mp) is either a definition of an attribute X.a denoted simply
by X.a, or wth visit to some other visit sequence corresponding to a symbol X, (0 < u < np)
denoted by |, X,. Note that the wth visit to Xy is denoted by 1,Xp in [10], but we use |, Xo
instead.

The complete construction of the visit sequences is beyond the scope of this paper[6,11], so
we only list the steps and the necessary conditions for successful construction.

1. For each p : X9 — X1 -+ X,,,, € P, we construct IDP(p) by the following algorithm.
1-1. First let IDP(p) = DDP(p)
1-2. Let IDP(p) = IDP(p)*
1-3. Let IDP(p) = IDP(p) U{(Xi.a,X;.b)|3gv,-v1 vy Xi = Y; A (Yj.a,Y;.b) € IDP(q)}
1-4. Repeat step 1-2 and 1-3 until no I D P(p) changes.
2. Condition: each IDP(p) must be acyclic.

3. For each X € T'U N, construct IDS(X) = {(X.a, X.0)|3p:xp-x,-x,,X = Xi(0 <4 <
np) A (X;.a,X;.b) € IDP(p)}

4 Revision: 1.4

4. For each X € TUN, construct a partition A;(X), A2(X),..., Ame(X) of attributes A(X)
from the dependencies in I DS(X) such that (X.a, X.b) € IDS(X) implies X.a € A;(X) A
X.be A;(X)Ai <.

5. Foreach p: Xo — X -+ Xy, construct a visit sequence vs(p) from partitions of A(X;)(0 <
i < np), and dependencies in IDP(p).

3. Example

Consider the attribute grammar shown in Fig. 1. The dependencies among attributes of the
symbol X are not cyclic. However, while constructing IDPs, they are recognized as cycles
because of (X.b, X.c) in DDP(p;) and (X.c, X.b) in DD P(p,). Consequently we fail to construct

visit sequences.

Fig. 1

T = {r}
= {Z, X, Y}

A(Z) =
AX) = {Xa X.b, X.c}
AY) = {Y.a}

pr: 4 — XY
R(p1) = {X.a:=genlabel(), X.b:= fi(X.a), X.c:= fo(X.b), Y.a:=1}
DDP(p1) = {(X.a, X.b), (Xb, X.0)}

pe:Y — X
R(ps) = {X.a:=genlabel(), X.b:= fs(X.c), X.c:= f3(X.a,Y.a)}
DDP(py) = {(X.c, X.b), (X.a, X.0), (Y.a, X.c)}

p3: X — 71

R(p3) = ¢
DDP(p3) = ¢

Fig. 2

NDDP(p1) = ¢
NDDP(ps) = {(Yaa, X.b), (Yea, X.c)}
NDDP(p3) ¢

In [11], they suggested to use Bochman normal form of dependencies [8] in order to avoid this
type of bogus cycles. This requires a slight modification of the construction steps mentioned

Revision: 1.4 5

earlier. In step 1-1, now we let IDP(p) = NDDP(p) in place of IDP(p) = DDP(p). The
normalized dependencies of the same AG are shown in Fig. 2, and the visit sequences listed in
Fig. 3 are successfully derived from the modified construction steps. The declarative nature of
AGs should guarantee that re-evaluations of attribution rules yield same values. Although this
theory is the basis of the normalization of dependencies, we sometimes find it unacceptable.

In this case, we can not directly use the attribution rules in Fig. 1 to evaluate the attributes.
For instance at production p, in Fig. 1, the attribute X.b is defined by X.b := f4(X.c). But the
visit sequence vs(ps2) in Fig. 3 tell us to evaluate X.b before X.c. Here the declarative nature of
AG is supposed to enable us to rewrite the original attribution rules in Fig. 1 as shown in Fig. 4
to compute the attribute values in accordance with the derived visit sequences. However this is
not true in practice sometimes. Suppose genlabel() is a function to generate a unique number
every time invoked so that it can be used for a label in the code generation phase of a compiler.

Fig. 3

vs(p1) = (X.b, Xic, Xua, | X, Y, |Y, | Z)
vs(p2) =(X.b, Xic, Xoa, | X, |Y)
vs(ps) = (1 X)

Unfortunately it is obvious that the visit sequences in Fig. 3 and the new evaluation scheme
in Fig. 4 do not give us the same result as the original ones(Fig. 1). For example, consider the
value of X.c in py. The re-evaluation of genlabel() produces a different result from what X.a
gets assigned in the rule X.a := gen label(). In the original attribution rule X.c := f3(X.a,Y.qa),
X.c should depend on the same value as X.a holds, but not the new value returned by gen_label()
. This is not the intention of the person who originally specified the attribution rules.

Fig. 4

R(p1) = {X.a:=genlabel(), X.b:= fi(genlabel()), X.c:= fo(fi(genlabel())), Y.a := 1}
R(p2) = {X.a:=genlabel(), X.b:= fy(fs(genlabel(),Y.a)), X.c:= f3(genlabel(),Y.a)}
R(ps) = ¢

Simple modification of vs(ps) helps this situation. Looking at the visit sequence vs(ps) in
Fig. 3, we realize that X.c appears before X.a and even worse X.a appears before both X.c and
X.a. The problems come from the fact that this order does not reflects the original dependencies
in Fig. 1. If they had been located in the order of X.a, X.c, and X.b in vs(ps), there would
not have been any problems; we could avoid the bogus cycles and successfully evaluate the
attributes in the order that the user specified. There may be a permutation of of vs(ps) more
suitable than vs(pz2). In fact, a permutation (X.a, X.c, X.b, | X, |Y') serves this purpose. In the
following section, we discuss a systematic way to find this permutation, and prove finding such

6 Revision: 1.4

a permutation is always possible and correct in the sense that the permuted visit sequence can
evaluate the attributes as specified by the original attribution rules.

4. Algorithm and Proof

As described in the former sections, we prefer using normalized dependencies to avoid bogus
cycles; we use NDDP(p) instead of DDP(p) in step 1-1 of the construction. However the
resulting visit sequences might conflict with the original attribution rules. The former example
showed us that the permuted visit sequences could help this situation. Assuming we can always
permute the visit sequences, the new construction steps become as follows.

1. For each p: Xy — X; ---X,, € P, we construct IDP(p) by the following algorithm.
1-1. First let IDP(p) = NDDP(p)
1-2. Let IDP(p) =IDP(p)*
1-3. Let IDP(p) = IDP(p) U {(Xi.a,X:.b)|3g:v,—v1 v, Xi = Y; A (Yj.a,Y;.b) € IDP(q)}
1-4. Repeat step 1-2 and 1-3 until no IDP(p) changes.
2. Condition: each IDP(p) must be acyclic.

3. For each X € T'UN, construct IDS(X) = {(X.a, X.0)|3p.x0-x,-.x,,X = Xi(0 <7 <
np) A (Xj.a, X;.b) € IDP(p)}

4. For each X € T'U N, construct a partition A;(X), A2(X),..., Ame(X) of attributes A(X)
from the dependencies in IDS(X) such that (X.a, X.b) € IDS(X) implies X.a € 4;(X) A
X.beAj(X)Ai <.

5. For each p: X — X -+ X,,p, construct a visit sequence vs(p) from partitions of A(X;)(0 <
¢ < np), and dependencies in TDP(p).

6. For each p, if DDP(p) conflicts with the resulting visit sequence vs(p), find a permutation
of vs(p) which does not conflict with DDP(p) and all other attributes are successfully
evaluable as before.

In the rest of this section, we present a simple algorithm to find the permutations de-
scribed in step 6 above, and prove the algorithm is correct. First of all, by comparing the
definitions of DD P(p) and N DDP(p), we notice the only dependencies included DDP(p), but
missing in N DDP(p) are the dependencies between two attributes which are both defined in
the context of p. Let E(p) be such dependencies, namely E(p) = {(X,.a, X,.0)|X,.a, X,.b €

F(p)}. Since vs(p) is created from NDDP(p), it reflects all dependencies of DDP(p) but
E(p). The conflicting problem in step 6 arises if and only if E(p) conflicts with vs(p). More
precisely for each p, the constructed visit sequence vs(p) form step 1 to 5 is unusable if

(p) U {(Xi.a,X;.b)|X;.a appears before X;.b in vs(p)} is cyclic. The algorithm to make this
acyclic by permuting vs(p) is shown as follows.

Algorithm Since E(p) is acyclic, E(p) can be seen as a partial order on the attributes
in E(p). First sort these attributes topologically, and assign a number for each of them such
that if there is a dependency (X,.a, X,.b) in E(p), X,.a has a number less than that of X,.b.

Revision: 1.4 7

Let n(X.a) denote the number assigned for X.a. Then a binary relation <(less than) over the
elements of F(p) can be defined as:

<= {((z,y),(@",y)) | (z,9),(=",y') € E(p),n(y) <n(y)V (n(y) = n(y’) An(z) < n(z))}

This tells us when we compare two dependencies, first compare by the second components,
then compare the first one to break ties. Using <, we can construct a queue of dependencies
by sorting the elements of E(p). Let Q = q1,q¢o,... »4|E(p)| be a queue of the dependencies of
E(p) such that ¢; < ¢ < -+ < q|E(p)|- For each ¢ = (Xy.a,X,.b) in Q, there must be two
distinct elements s; and s; in vs(p) such that s; = X,.a, and s; = X,.b. Remember that
AF(p) = {Xy.a|Xy.a — f(---) € R(p)}. Thus everything defined in the context of p must
appear in vs(p) as a definition of some attribute. The algorithm to patch vs(p) is:

Repeat until) becomes empty:
1. Let ¢ = (Xy.a,X,.b) be the last element of @, and delete ¢ from Q.

2. Let vs(p) = (51,52, .y Sm)-
3. Find s; and s; in vs(p) such that s; = X,.b and s; = X,.a.
4

. If 2 < j, move s; in front of s; in vs(p).

Proof First, we will show each iteration keeps the visit sequence vs(p) consistent with
NDDP. Notice that s; is a definition of some attribute. Changing the position of s; in step 4
does not affect the order of the visits to other nodes. This follows that we only have to prove
every element sx(1 < &k < m) of vs(p) is OK if s; is moved in step 4 including s; itself. Here
OK means:

1. If s is X.a, all attributes needed to define X.a are available before the visit reaches s;, in
vs(p).

2. If sy is |y Xy, all attributes that are defined in the context of p, and used to define the
attributes in the wth visit of X, must be defined before the visit reaches sj in vs(p).

If s; is not moved in step 4, vs(p) will not change. Thus we have to make sure that all
elements of vs(p) are OK after each iteration of the algorithm only when s; is moved. The
following three cases must be considered.

1. It k < j, s is OK since s, is not dependent on s; anyway.

2. It k = j, for s; itself, we have to prove that enough attributes have been defined already to
define s;. This is obvious since when the N DD P(p) was computed, we made s; dependent
on all attributes on which s; was dependent originally by taking the transitive closure of
dependencies. Hence all attributes needed for s; is also sufficient for 55.

3. If k > 7, si is OK since all attributes necessary for s, are still available for s; as described

above. The only difference is that s; is defined earlier than before so that the lifetime of
X,.a becomes longer.

We showed that at the end of each iteration, all elements of vs(p) are OK. i.e. there are
no inconsistent dependencies in vs(p) after each iteration. Hence when the iteration terminates,
the order of elements in vs(p) must be consistent with NDDP.

8 Revision: 1.4

Second, we will show that the resulting vs(p) is consistent with the dependencies in E(p) by
induction. More formally vs(p) = (s1, 52,..., sm) is consistent with E(p) if E(p) U {(sz, s)|z <
Y A Sg, sy are in vs(p)} is acyclic. Let E; (p) be the set of dependenaes already integrated with
vs(p) at the end of the sth iteration.

1. When ¢ = 0, Ey(p) is empty. Hence vs(p) is consistent with Eqy(p).
2. When ¢ = k(k > 0), assume vs(p) is consistent with Ey(p).
3. When 7 = k + 1, there are two cases.

If we did not move the position of s; in step 4 of the current iteration, vs(p) does not
change. Thus vs(p) is consistent with Ey41(p) by assumption 2 above.

Suppose ¢ = (s, s;), and s, was moved in front of s,. Let vs’(p) be the visit sequence before
this change. If this move made vs(p) inconsistent with Ey41(p), then there must be s, in
vs'(p) such that vs'(p) = (81,...,50,..., 8y, Szy. .., 8m), and (s,,5.) € Ex(p). Here the
existence of (s,s;) € E(p) implies n(s.) < n(s,), and further more (s,,s.) < (s, 5¢).
Since all elements of @ are sorted, ¢ must be less than every element in Ej(p). But this
contradicts against what we have, namely (sy,s.) < ¢ = (s.,s,) and (sy,s,) € Exr(p).
Because of this contradiction, this move must be consistent with Eyy;(p) always. After the
last iteration, vs(p) is consistent with E(p), and this is the desired result.

Fig. 5

A(IfStmt) = {IfStmt.else, IfStmt.exit}
A(Fzp) = {Boptype)

A(Id) = {Id.symtab_entry}

p1: Stmt — IfStmt

p2: Stmt — AssignStmt

p3: IfStmt — 'if" Exp 'then’ Stmt, 'else’ Stmts
R(p3) = {IfStmt.else := gen label(), IfStmt.exit := gen_label(), Exp.type := bool}

4. AssignStmt — Id ':=' Ezxp
R(py) = {Ezptype:= get_type(Id.symtab_entry)}

Revision: 1.4 9

5. Local Attributes

It is often convenient to have attributes attached to productions as well as to symbols of AGs.
Fig. 5 shows part of an AG for a small language consisting of only assignments and if statements.
Assume I fStmt.else and I fStmt.exit are attributes that we intend to store the values of labels
for code generation. The attribution rules for these attributes are simplified, yet typical ones
for the conditional constructs of usual programming languages. However this AG is somewhat
unnatural in the following sense.

1. The chain rules Stmt — I fStmt, and Stmt — AssignStmt are introduced only to associate
attributes I fStmt.else and IfStmt.exit to the nonterminal IfStmt. i.e. we had to add
two extra productions and two nonterminals just to find the place where the attributes can
be attached.

2. These attributes are only referenced inside of ps; no attribution rules but those of p3 refer-
ence them.

This observation implies we sometimes need to modify the underlying CFG for the attributes
even if they are very local to some specific attribution rules in the CFG. If we were allowed to
have attributes not only for symbols, but also for productions of the CFG, we would not have
this situation. Here we introduce a concept of local attributes.

Definition 1. An attribute a attached to a production p is denoted by p.a, and its scope
1s within all attribution rules associated with p. The attribute p.a is called a local attribute of
p, or it is local to p. The set of all attributes local to p is denoted by A(p).

We can apply and define the local attributes just like other attributes in the attribution
rules. Again the only difference are their scopes; they must be defined by some attribution rule
of the production to which they are attached, and can be referenced by any attribution rules
for the production. In this framework the attribution rules of a production p : Xo — X - - Xnp
consists of attribution rules of the form Xj.a := f(---) as well as p.b := g(--+). The dependencies
among local attributes and other attributes are also defined.

Fig. 6

Alp1) = {pi.else, p1.ewit}
A(Ezp) = {Ezp.type}
A(ld) = {Id.symtab_entry}

p1: Stmty — 'if' Exp 'then’ Stmty 'else’ Stmitg
R(p1) = {pi.else := genlabel(),p;.ezit := gen_label(), Exp.type := bool}

pe: Stmt — Id ':=" Exp
R(p2) = {Ezp.type:= get_type(Id.symtab_entry)}

10 Revision: 1.4

Definition 2. The set of all dependencies involving local attributes of a production p is
given by LDDP(p) = {(a,b)|a € A(p) Vb € A(p)}.

With the notion of local attributes, we can rewrite the previous AG as shown in Fig. 6.
Note the artificial chain rules and extra nonterminals went away. The attributes I fStmt.else
and I fStmt.exit became p;.else and py.exit respectively, and they are local to p.

The construction of the visit sequences based on OAG needs few modifications to accom-
modate the local attributes because the scope of local attributes are limited to attribution rules
of each production. This means the local attributes do not affect the interfaces between the
visit sequences in a direct way, and all the dependencies that involve local attributes can be
removed as we have removed the dependencies between attributes which were both defined in
the context of the production by using NDDPs instead of DDPs. After a visit sequence has
been constructed, we can insert the definitions of local attributes into the visit sequence, and
obtain the final visit sequence that evaluates both attributes of the symbols and the production.
The new and the final construction steps of the visit sequences are shown below.

1. For each p: Xg — X1 --- Xy, € P, we construct IDP(p) by the following algorithm.
1-1. Firstlet IDP(p) = (DDP(p)ULDDP(p))*—{(a,b)|a,b € AF(p)Va € A(p)Vb € A(p)}
1-2. Let IDP(p) = IDP(p)*
1-3. Let IDP(p) = IDP(p) U{(X;.0, Xs.b)Bgvymvyovi, Xi = ¥j A (Yi.0,Y;.b) € IDP(g)}
1-4. Repeat step 1-2 and 1-3 until no IDP(p) changes.

2. Condition: each IDP(p) must be acyclic.

3. For each X € TUN, construct IDS(X) = {(X.a,X.b)|Fp:xp—x,..x,, X = X;(0 < i <
np) A (X;.a, X;.b) € IDP(p)}

4. For each X € T'U N, construct a partition Ay (X), A2(X),..., Ame(X) of attributes A(X)

from the dependencies in IDS(X) such that (X.a, X.b) € IDS(X) implies X.a € 4;(X) A
XbeA;(X)Ni<y.
5. Foreachp: Xo — X1 -+ X, construct a visit sequence vs(p) from partitions of A(X;)(0 <
¢ < np), and dependencies in IDP(p).
6. For each vs(p) = (s1,582,...,5mp), attach every element of A(p) to its tail in any order, and
construct a new visit sequence vs'(p) = (s1, s3,... ySmps L1512, ..o, L agp))), Where [;(1 <@ <
[Ap)]) € Ap).
For each p, if DDP(p) U LDDP(p) conflicts with the new visit sequence vs'(p), find a
permutation of vs'(p) which does not conflict with DDP(p) and all other attributes are

successfully evaluable as before. In the previous construction, the permutation was based
on F(p), but we use E(p) U LDDP(p) instead of E(p).

~J

In this construction, we look at E(p)ULDDP(p) as the partial order, and create the relation
< between dependencies as we did before based on E(p) U LDDP(p).

Revision: 1.4 11

6. Conclusion

We have seen the concept of local attributes and how they can be integrated into OAG-based,
visit-oriented attribute evaluators. As mentioned earlier, each visit sequence can be seen as a
co-routine. In this view, the conventional attributes associated with symbols are parameters and
forms the interface of the co-routine. As we need local variables, it is convenient to have local
attributes. They hold useful values to compute other attributes so that we can avoid writing
same expressions many times in the attribution rules. As local variables helps us to write more
readable and understandable routines, the concept of local attributes allows us more natural
and readable attribution rules.

ACKNOWLEDGMENTS. I would like to thank Dr. Waite for his kind advises and suggestions
for the usefulness of the concept of local attributes.

REFERENCES

1. Knuth, D. E. ‘Semantics of context-free languages’, Math. Syst. Theory 5, 1968, 127-145.

10.
11.

Kastens, U., Hutt, B., and Zimmermann, E. ‘GAG: A practical compiler generator’, Lecture
Notes in Computer Science, vol. 141. Springer-Verlag, New York, 1982.

. Kastens, Uwe ‘LIGA/LIDO: A Specification Language for Attribute Grammars, University

at Paderborn, Oct. 1989.

Farrow, R., ‘LINGUIST-86 Yet Another Translator Writiﬂg System Based On Attribute
Grammars’, Special Interest Group on Programming Languages 17, 1982.

. Koskimies, K., Réihd, K., and Sarjakoski, M., ‘COMPILER CONSTRUCTION USING

ATTRIBUTE GRAMMARS’, Special Interest Group on Programming Languages 17, 1982.
Kastens, U., ‘Ordered attributed grammars’, Acta Inf. 13, 1980, 229-256.

Gray, R., Heuring, V., Krane, S., Sloane, A., and Waite, M., ‘Eli: A Complete Compiler
Construction System’, SEG 89-1-1, Department of Electrical and Computer Engineering,
University of Colorado, Boulder, CO, June 1989.

. Bochmann, G. V., ‘Semantics Evaluation from Left to Right’, Commun. ACM 19, 2, Feb.

1976, 55-62.

. Engelfriet, J., and Filé, G., ‘Passes, Sweeps, and Visits in Attribute Grammars’, Journal of

ACM, 4, Oct. 1989, 841-869.
Kastens, U., ‘Lifetime Analysis for Attributes’, Acta Inf. 24, 1987, 633-651.

Waite, W., and Goos, G, ‘COMPILER CONSTRUCTION’, Springer-Verlag, New York,
1984,

