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Efficient algorithms are presented for the matroid intersection problem and its generaliza-
tions on graphic matroids. For weighted intersection, a strongly-polynomial algorithm
runs in time O(n(m+nlogn)logn) and a scaling algorithm runs in time O (Nn (m+nlogn)
log n log (nN)) (n and m denote the number of vertices and edges, respectively; the bound
involving N assumes weights are integers of magnitude at most N). For maximum cardi-
nali\/t_y intersection, an implementation of the scaling algorithm runs in time
O (N\n (m+nlogn)). Each of these bounds is within a factor of logZn of the best
corresponding bound for trivial matroids, i.e., ordinary bipartite graph matching.






1. Introduction.

The matroid intersection problem is interesting theoretically as a generalization of bipartite
graph matching [L]. Its many practical applications include the analysis of continuous systems that
model elastic structures and chemical processing plants [I, Mu]; graphic matroid intersection is
used to analyze electrical networks [I]. This paper presents several efficient algorithms for graphic
matroid intersection.

The starting point is our previous paper [GX], which presents an algorithm for weighted ma-
troid intersection (and its generalizations like independent assignment) on arbitrary matroids. The
algorithm uses cost scaling. The algorithm can be used to find a maximum cardinality intersection;
it becomes more efficient by taking advantage of greater structure in the problem.

This paper presents efficient implementations of the general matroid algorithm for the case of
graphic matroids. In doing so it gives two new data structures that may have further applications,
the heavy path representation of a graph and the connecting tree. (For example [G] uses the heavy
path representation to improve several known algorithms.) The algorithms for graphic matroids
all have a running time that is within a factor log?n of the best corresponding bound for trivial
matroids, i.e., ordinary bipartite graph matching. (An abbreviated and preliminary version of this
paper appears in [GXa]. The results in this paper are asymptotically superior.)

Before summarizing these algorithms, recall the time bounds for ordinary matching on a bipar-
tite graph. If we seek a maximum cardinality matching, the best-known algorithm of Hopcroft and
Karp runs in time O(y/nm) [HK]. If we seek a minimum cost matching, the cost-scaling algorithm
of [GT89] achieves almost the same time, O(y/nmlog(nN)); the best-known strongly polynomial
bound is O(n(m + nlogn)) [FT]. Here and in all other bounds in this paper, n and m denote the
number of vertices and edges, respectively; N denotes the largest magnitude of a cost. When N is
used it is assumed that the given costs are integral.

Consider the problem of finding a maximum cardinality intersection on a graphic matroid.
It arises in determining if an electrical network is uniquely solvable in a general sense. There
is a large literature on this application, e.g., see [RI] and the survey paper [I]. Our time bound is
O(v/n(m+nlogn)), at worst a logarithmic factor more than the Hopcroft-Karp bound for ordinary
matching. (Ordinary matching is a simple special case of our problem.) For planar graphs the time
is the same as [HK], O(n3/?).

Previous work on graphic cardinality intersection is in [GS]. For graphs with m = Q(n*/?1logn)
they achieve the bound of [HK]. For sparser graphs the running time degrades: for m = Q(nlogn)

and O(n%/?logn), the bound is O(nm?/3log!/?n), and a similar bound otherwise. For planar
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graphs they achieve time O(n®/? logn).

The graphic weighted intersection problem is used in determining the order of complexity of
an electrical network [I] and also the unique solvability of open networks [R]. The best previous
bound for this problem is achieved by Frank’s general matroid algorithm [Fra] and many equivalent
algorithms. The time for an implementation of Frank’s algorithm is O(n®*m). Our techniques
implement Frank’s algorithm in time O(n(m + nlogn)logn). This is the best strongly polynomial
bound for graphic weighted intersection; it is a factor logn more than the bound of [FT] for
ordinary graph matching. We also present a scaling algorithm that achieves time O(y/n(m +
nlogn)lognlog(nN)). This is within a factor of log?n of the bound of [GT89] for ordinary graph
matching.

The rest of this section gives some terminology and notation. Section 2 briefly summarizes the
general matroid weighted intersection algorithm. Sections 3 — 4 implement the general cost-scaling
algorithm on graphic matroids. Section 3 implements the Search Step of the algorithm; it also gives
the strongly polynomial bound for graphic intersection. Section 4 implements the Augment Step
of the algorithm, and completes the analysis of the cost-scaling algorithm. Section 5 presents the
algorithms for graphic cardinality intersection. The reader interested in graph theory may prefer
to skip Section 2 and refer back to it only as needed.

Our algorithms use a version of the dynamic tree data structure. In addition to the usual
operations link(e), cut(e) [ST, T83] each node of the dynamic tree has a real-valued key; each
key can be changed arbitrarily, and the minimum or maximum key in a path, tree or subtree can
be found. Goldberg, Grigoriadis and Tarjan [GGT] show that how to implement each of these
operations in amortized time O(logn) for an n node tree. We refer to this data structure as a
minimizing (mazimizing) dynamic tree.

Let T be a graph. We often identify T with its set of vertices or edges, e.g., for vertex v or
edge e, we write v € T or e € T. Usually in this paper this notation is used for T a tree.

For the basic notions of matroids see [L, W]. Let M be a matroid over a set of elements E (for
a graphic matroid, F is the set of edges of a graph G). Let e be an element and B a base (B is a
spanning tree of G). The notation Cp(e) denotes the fundamental circuit of e in B if e ¢ B, or the
fundamental cocircuit of e for B if e € B (fundamental cycle or cocycle of edge €). It will always
be clear from context whether or not e € B. When B is clear from context we write C(e).

Consider a matroid M that is a direct sum of My and My, where M; is a matroid on elements
E;, i = 0,1. (In graphic matroids we have graphs Gy and G; with disjoint vertex sets.) Suppose

EoU E, is partitioned into blocks of size two called pairs, each pair containing one element from each
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E;. If e is an element, € denotes the other element in its pair; we write a pair as e,€. A matching
M is an independent set of pairs. (In a graphic matroid an independent set is a forest. M consists
of a forest in each G;.) A mazimum cardinality matching has the greatest number of pairs possible.
A matching is perfect if it is a base of M (in graphic matroids we have a spanning tree of each G;).
Suppose each element e has a real-valued weight w(e). A mazimum perfect matching is a perfect
matching that has the largest possible total weight. Variants of this notion, like maximum weight
matching (with unrestricted cardinality), maximum cardinality-k matching, etc., have the obvious
meaning. The weighted matroid intersection problem is to find a maximum perfect matching, or to
find any of the above variants. The independent assignment problem is a slight generalization of
weighted matroid intersection, allowing many-to-many pairing functions. All of these problems are

solved by the algorithm of [GX].

2. Matroid intersection algorithm.

This section briefly summarizes the weighted matroid intersection algorithm for general ma-
troids. It points out the features that are difficult to implement on specific matroids. A complete
development is in [GX].

The matroid algorithm generalizes the bipartite graph matching algorithm of [GT89]. It uses
Frank’s version of the linear programming dual problem for matroid intersection [Fra]. Each element
¢ has an integral dual value z(e). The algorithm consists of O(log(nN)) scales. Each scale adds
one bit of precision to the element weights and finds a 1-optimal matching for these weights. The
last scale halts with the desired maximum perfect matching.

The algorithm for a scale is based on the idea of augmenting paths, generalizing augmenting
paths for ordinary graph matching and network flow [L]. To understand this generalization first
consider ordinary graph matching. Let e, f be two consecutive edges in an augmenting path for a
matching M. The relation between e and f is that precisely one of e, f is in M, and e and f have
a common vertex. This relation generalizes to matroids as follows. Recall the matching M is an
independent set. It is convenient to enlarge M to a base M by adding artificial elements, called
singletons. A pair of elements e, f is a swap (for M) if precisely one of e, f isin M, M@ {e, f} is a
base, and z(e) = z(f). (The last condition is analogous to a similar condition for weighted graph
matching.) Note that the common vertex condition in graph matching has been replaced by the
condition, M @ {e, f} is a base. The latter is equivalent to e € C(f) (which is also equivalent to
f € C(e)) where fundamental circuits and cocircuits are with respect to the base M. To ezecute

swap e, f means to replace the current matching M by M @ {e,f}. An augmenting path is a
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sequence of the form
ey €0y €, €01, Eiq Ty - -

whose pairs e;, €; are alternately in M and not; consecutive elements of the form ;,e;41 are swaps;
and executing all these swaps gives a matching with one more pair. (In addition the path begins and
ends with a singleton; both singletons are in swaps of the path, like any other element; executing
the swaps reduces the number of singletons by two.)

What makes matroid matching harder than ordinary graph matching is that the essentially
trivial common vertex condition is replaced by a complicated condition (e € C(f)). Toillustrate the
difficulties this causes, note that e, f and g, h may both be valid swaps for base M, but executing
e, f can make g, h invalid (for the new matching). The reader can easily illustrate this on a graphic
matroid.

The algorithm for a scale works as follows. It initializes the matching to . Then it repeatedly
does a Search Step followed by an Augment Step until the desired perfect matching is found. The
Search Step adjusts the duals values so there is an augmenting path composed of eligible pairs
(“eligible” is a condition on the dual values, not defined here). The Augment Step repeatedly finds
an augmenting path of eligible pairs and uses it to enlarge the matching. It stops when there are
no more such paths.

We give some details of the two Steps. The Search Step is a generalization of the Hungar-
ian search for bipartite graph matching [L] (equivalently it generalizes Dijkstra’s shortest path
algorithm [T83]). It makes a sequence of changes to the dual values. Each change is based on a
positive dual adjustment quantity §. Calculating the appropriate value of § is the main difficulty in
implementing the Search Step. Section 3 discusses this.

The Augment Step is done using a depth-first search. It is similar to the analogous depth-first
search in network flow algorithms [e.g., T83, p. 104]. The important difference is in the operation
of adding an edge to the search path: The new edge must be selected to ensure that the path
gives a sequence of swaps that can be executed validly. Previous matroid intersection algorithms
le.g., Cu, E, Fra, GS, K, L, W] do this by requiring that the augmenting path has no “shortcuts”.
Depth-first search can give paths that have shortcuts. So we use a different strategy, as follows.

A topological numbering assigns a nonnegative integer t(e) to each element e, such that

(i) any swap e, f has t(e) > t(f);

(4t) any pair eg,e; with e; € E; has t(eg) > t(e1) if and only if eo,e1 ¢ M.

Now suppose the depth-first search explores a path P, where for i = 0 or 1, e, f and g, h are swaps
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in PN E; and e, f precedes g, h in P. The definition implies that

t(e) 2 1(f) > U(g) 2 t(R). (1)

As shown in [GX] this implies that an augmenting path P is valid. More precisely, if the swaps of
P are executed according to their order along P then each swap results in a valid matching.

The intersection algorithm changes ¢ as it progresses. To preserve the validity of ¢, the depth-
first search must choose edges according to this rule: To extend the depth-first search path P from
an end e, add an element f such that e, f is a swap and ¢(f) is as large as possible. The main
difficulty in implementing the Augment Step is finding f. Section 4 discusses this.

The basic properties of a scale in the matroid algorithm are similar to the graph matching
algorithm of [GT89]. At any time in the algorithm define A as the sum of all dual adjustment
quantities § in all Hungarian searches of the current scale; also define p as the number of pairs

needed to add to the current matching to make it perfect.

Lemma 2.1. Any scale has the following properties.
(7) At any time, pA < 5n.
(#7) O(y/n) Augment and Search Steps are executed.
(#2¢) There are O(nlogn) swaps total in all augmenting paths. 1

3. Hungarian search.

This section describes the heavy path representation of a graph. It helps solve problems involv-
ing cycles and cocycles of a static spanning tree. We illustrate this by implementing the Hungarian
search for graphic matroid intersection; this gives an efficient strongly polynomial algorithm.

The heavy path representation of a graph is defined for a graph G with spanning tree T. It
is based on the decomposition of T into heavy paths due to Tarjan [T79] which we now review.
Consider a tree with root r. For any nonleaf vertex v, the heavy child of v is the child with the
greatest number of descendants (ties for “greatest” are broken arbitrarily). A tree edge joining
parent to heavy child is a heavy edge and all other tree edges are light. A path P that goes from a
leaf d to one of its ancestors a is an h-path if every edge preceding the last edge is heavy, and either
the last edge is light or @ = r. The h-paths partition the edges of 7. The path from any vertex v
to the root r is thus partitioned into at most logn subpaths — each subpath is included in some
h-path H and ends with the last edge of H.

In the heavy path representation of G (illustrated in Fig. 1) each nontree edge e of G is

represented by between one and three back edges. Each back edge is a directed edge from a vertex
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to one of its ancestors; it is called either initial or final. The back edges of an edge e = vw are
defined as follows. Let a be the nearest common ancestor of v and w. For z = v,w, let P, be
the path from z to a. Let z be the vertex on P, that is closest to a and is on a light edge of P,
(2 = x if no such light edge exists). If z # z then the directed edge zz is the initial (back) edge of
e for z. If z # a then the directed edge za is the final (back) edge of e for z. If z equals z or a
the corresponding back edge does not exist. Any nontree edge e has at most one final edge and at
most two initial edges. Ignoring nontree edges, the fundamental cycle of e is the disjoint union of
the fundamental cycles of its back edges.

The heavy path representation — the decomposition of 7 into heavy paths, plus the back edges
for all nontree edges, can be found in time O(m) [HT]. Simpler algorithms running in time say
O(mlogn) suffice for the applications of this section.

The heavy path representation is usually mapped into the following data structure. Consider
a back edge e. If e is final it joins two vertices on the same h-path H; information about e is stored
in a data structure for H, typically a segment tree or interval tree [Me]. If e is initial it is associated
with a subtree of T as follows. A vertex s of T' that has a light child is the root of an initial tree
I. I is the subtree of T' containing s and all descendants of light children of s. All initial edges e
directed to s are associated with I; information about e is stored in a data structure for I, typically
a search tree or dynamic tree. Often, as in the algorithms of this paper, the h-path data structure
reduces to the initial tree data structure.

This data structure is efficient because efficient data structures usually exist for the h-paths
and initial trees. Note that the number of back edges is O(m), the size of all h-paths is O(n), and
the size of all initial trees is O(nlogn). The latter holds because a vertex is in at most logn initial
trees. The initial trees can usually be modified to have size O(m), as illustrated below.

The data structure can be used to solve many problems involving cycles and cocycles for a
static tree. It is used to implement the 2-data structure for the Augment Step in Section 4.3. Here
we use it to implement the Hungarian search. Additional applications are given in [G].

The Hungarian search reduces to solutions to the (weighted static-base) cycle and cocycle
problems, defined as follows. Given is a graph G with spanning tree T. Each edge e has a numeric
value z(e) (for the Hungarian search this is its dual value). Call an ordered pair e, f with e € C(f)
a swap, having value z(e)—z(f). Each edge is initially unmarked. The problem is to process on-line

an arbitrary sequence of the following operations:

find_min — return a swap e, f with minimum value, subject to the constraint that e is marked
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and f is unmarked;

mark(e) — mark the currently unmarked edge e.

The Hungarian search uses the value of the swap e, f returned by find_min as the next dual adjust-
ment quantity é; it changes duals values, making the value of swap e, f equal to zero, and then does
mark( f). Note that a swap with value zero is a swap in the sense of Section 2. Using “swap” in a
more general sense in this section will not cause confusion. Also, although the Hungarian search
changes dual values, the changes can be ignored here, assuming the search is implemented using
the appropriate offset quantities to dual values, as is usually done. Finally, in the mark operation
the Hungarian search assigns labelling information to e. This also can be ignored in this section.

In the static cycle problem, the swap returned by find-min must have e ¢ T', while in the static
cocycle problem e € T. Using the heavy path representation, each of these two problems splits into
two — for initial edges and for final edges. We now show that for each of these four problems, O(m)
operations can be processed in total time O((m + nlogn)logn). Note that O(m) operations allows
each edge to be returned in a swap of find-min and also to be marked; this bounds the work done
in a Hungarian search.

We start by discussing the problems for initial edges. The data structures are based on these
observations. Call an edge available if it can be returned in a swap by find_min, i.e., in the cycle
problem it is a marked nontree edge or an unmarked tree edge, and in the cocycle problem it is a
marked tree edge or an unmarked nontree edge. Consider an initial tree with root s. Call a tree
edge undominated if it is the unique smallest available edge in its path to s; call a nontree edge vs
undominated if it is the largest nontree edge joining v and s. Clearly a swap returned by find_min
need only involve undominated edges. Note that a given edge e of T can occur in logn initial trees.
Some occurrences can be undominated and others not (more precisely e will be undominated in all
initial trees up to a certain size).

Consider an initial tree I rooted at s. The data structures for the cycle and cocycle problems
both use two minimizing (or maximizing) dynamic trees for I. It is convenient to name them
using matroid terminology — B stores the basic elements and N the nonbasic elements. In graph
terminology, B is a dynamic tree for I representing the tree edges; N is a dynamic tree for I
representing the nontree edges. Now we describe the properties of these dynamic trees that are
common to both the cycle and cocycle data structures. To simplify notation, for vertex v let o'
denote the parent of v in the given tree T'.

In B, a vertex v corresponds to the tree edge vv'. When vv' is in the data structure B,
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key(v) = z(vv'). If it is not in the data structure its key is oo, where the sign is positive for a
minimizing dynamic tree and negative otherwise. (We write oo for +00, which is usually the case.)

In N, each vertex v corresponds to the initial edge vs. It has key(v) equal to the 2 value of
the undominated edge vs, if it exists; otherwise the key is —oo. In addition each undominated tree
edge is cut in N.

The reason for the cutting is that if tree edge vv' is undominated, the subtree descending from
v in N (assuming cuts have been made) contains precisely the vertices d whose smallest tree-edge
ancestor is vv’. In other words a smallest swap for the nontree edge ds uses vv'.

The last part of the data structure is a priority queue pg serving all initial trees. For each
undominated tree edge e, pq contains the swap formed by e and the largest edge in its subtree in
N. The priority of the swap equals its value. Note that a given edge e of T' can have up to logn
entries in pg, but the total number of entries in pq is at most m.

Now we describe the remaining details of the data structures and the algorithms for the cycle
and cocycle initial edge problems.

First consider the cocycle problem. Data structure B contains the undominated tree edges.
Each vertex has two dynamic tree keys whose value is defined as above — one key supports finding
the largest vertex in a subtree and the other key supports finding the smallest vertex in a path. The
data structure for NV has an additional component: Each vertex v maintains a list {(v) of available,
i.e., unmarked, initial edges vs, sorted according to nonincreasing z value. Thus key(v) is the 2
value of the first edge in £(v).

The algorithms for find_min and mark follow in a straightforward way from the description of
the data structure. We now give the details and verify the time bound.

Consider mark(e) for a tree edge e = vv’. This edge is in at most logn initial trees I. Do the
following for each such tree I in order of increasing size: In B, find the nearest ancestor a of v. If
z(aa’) < z(e) then the processing of e is complete — e does not get added to B for this initial tree
or for any larger one. Otherwise add e to B and cut e in N. Then make sure that in B all proper
descendants d of v are undominated: In B find the descendant d of v with largest value z(dd"); if
z(dd') > z(e) then delete d from B, link dd' in N, delete the entry for dd’ from pq, and repeat.
Finally find the best swap for e: in N, find the largest descendant d in the subtree of v, and make
a corresponding entry in pq; if d was previously the best swap for the above ancestor aa’, execute
a similar procedure for aa'.

To account for the time, observe that adding a tree edge e to the data structures for a given

initial tree involves O(1) dynamic tree and priority queue operations; the same holds for deleting
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e. Since e is in O(logn) initial trees this gives total time O(nlog?®n).

Next consider mark(e) for a nontree edge e = vs in the initial tree of s. In the associated tree
N, delete edge e from list £(v), and set key(v) to the value of the edge now first in {(v). If e was
previously the best swap for tree edge ww', then delete this swap from pg; in N find the largest
vertex in the subtree of w and add a corresponding swap to pq.

The time amounts to O(1) dynamic tree and priority queue operations to mark e. This gives
total time O(mlogn).

The implementation of find_min is trivial, since the desired minimum value swap is the smallest
entry in pg. The time for find_min is O(1). We conclude that the desired time bound holds for the
initial edge data structure for the cocycle problem.

Next consider the cycle problem for initial edges. The data structure for B contains the
available tree edges. In addition each undominated tree edge is cut in B as well as in N.

Consider mark(e) for a nontree edge e = vs in the initial tree of s. In the associated tree N, if
key(v) > x(e) then the processing of e is complete. Otherwise set key(v) to z(e). In N let v be in
the subtree for tree edge ww’. If e gives a smaller swap for ww' than its current swap then make
e, ww’ the new entry in pg. The total time is O(mlogn).

Finally consider mark(e) for a tree edge e = vv’. Do the following for each initial tree I where
e is undominated. Let e’ be the undominated edge whose subtree contains ¢'. In €’s subtree of B
(i.e., the subtree of B containing v) find the smallest descendant w, corresponding to available tree
edge ww' = g. If (g) < z(e') then ¢ is undominated, cut g in B and N, find the best swap for g
in N, add it to pg, and repeat. In the opposite case z(g) > z(e'), link e in B and N, delete v from
B (i.e., set its key to co) and recompute the best swap for €’; this completes the processing of e in
B.

Note that the data structure for B is initialized by executing mark(e) for a fictitious edge e
joining the root of I to a fictitous parent, with z(e') = co. The total time for mark(e) for all tree
edges e is O(nlog?n), as in the cocycle problem.

Now consider space. The cycle and cocyle algorithms both use O(m + nlogn) space. The first
term accounts for all swaps in pq, since a nontree edge is in at most two such swaps. The second
term is due to the fact that the initial trees have total size O(nlogn). To eliminate the second
term we introduce an idea that is central in Section 4.

Consider a tree T' and a subset of vertices A C V(T'). Define two associated trees, illustrated
in Fig. 2(a) - (¢). (In Fig. 2 tree edges are solid and nontree edges are dotted. In Fig. 2(a) ignore
the circle and dotted edges, which refer to Section 4. In this figure the set Ag contains the five
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circled vertices.) The connecting tree C(A,T) contains all vertices and edges of T that are on paths
joining two vertices of A. Let A = AU {v|v is a vertex with degree at least three in C(A,T)}.
The contracted connecting tree C(A,T) has vertices A. Two vertices of A are adjacent if the path
joining them in T contains no other vertex of A. Less formally, the paths joining nodes of A in
C(A,T) become edges in C(A,T). It is easy to see that |A| < 2|A| — 2. Section 4 uses some obvious
extensions of this notation: We allow A to contain vertices not in T, and we allow T to be a forest.
(The above definitions are unchanged in these cases.)

The space for the initial edge data structures is reduced by maintaining, for each initial tree I
rooted at s, the trees B and N as dynamic trees for the tree Z = C(A,I), where A = {v| an initial
edge vs exists} U {s}. Clearly this reduces the total space to O(m). Note that tree edges in the
same edge of 7 contain exactly the same initial edges vs in their cocycle.

To use 7 we need an efficient algorithm to find the edge of Z containing a given tree edge vv'.
We use the following characterization. Assume T, the tree that is given for the Hungarian search,
is rooted and numbered in preorder; for convenience identify each vertex with its preorder number.
Let d be the smallest vertex of 7 that is at least v. Then vv' is in an edge of Z if and only if it is
in the edge from d to its parent in Z if and only if v is an ancestor of d.

The characterization follows easily from the observation that an edge of Z joins a vertex to
one of its descendants. It is easy to find the desired edge of Z (or determine that it does not exist)
in time O(logn) by storing the preorder numbers of the vertices of Z in sorted order, and doing a
binary search to find d.

The trees T can be constructed in total time O(m + nlogn) as follows. Process each initial
tree I bottom-up. At each vertex v, with subtree I, in I, construct the contracted connecting tree
I, = C(A - s,I,). This is easy to do: If v has at least two children w with nonempty contracted
connecting trees then 7, contains vertex v with children the roots each such Z,,. The other cases
are similar.

Using the trees 7 in the initial data structures does not increase the time. It only adds an
operation to find the 7 edge containing e in operations mark(e) for tree edges. This completes the
initial edge data structures.

Now consider the final edge data structures. Using interval trees these data structures reduce
to the initial edge data structures. The details are given below. It will be seen that this reduction
applies to the heavy path representation in general.

Each h-path is represented by an interval tree I. Number the vertices of the h-path consecu-

tively from 0 to k£ — 1. Consider a node v of I. It corresponds to an interval [i..j) C [0..k); let p
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denote its midpoint. v stores all final edges £r that have i < £ < p < r < j. Replace each such
edge by edges £p and pr; clearly the fundamental cycle of the original edge is the union of the two
new fundamental cycles, so we can work with the new edges. Call the path from vertex 0 to p a
tree rooted at p, so all edges ¢p are incident to the root. Clearly we can store the edges £p in the
previously-described data structure for an initial tree. Similarly for the edges pr.

The timing analysis is similar to the previous one: An edge e (tree or nontree) is processed
in time O(logn) in each initial tree data structure; e is in at most logn nodes of the interval tree
if it is a tree edge, and in one node if it is nontree. The assignment of nontree edges to interval
tree nodes can be easily done in time O(mlogn) (a time O(m) procedure is described in Section
4.3). The desired time bound follows. Note that various simplifications of this data structure can

be made, since the underlying tree of the initial edge data structure is a path.

Theorem 3.1. A Hungarian search on a graphic matroid can be implemented in time O((m +
nlogn)logn) and space O(m). The weighted graphic matroid intersection problem can be solved

in time O(n(m + nlogn)logn) and space O(m).

Proof. The first result follows from the above discussion. The second result follows since the

matroid intersection algorithm of [Fra] consists of at most n Hungarian searches. i

4. Augment step.

This section presents the Augment Step and finishes the analysis of the graphic weighted
intersection algorithm. Note that [Fre] solves cycle and cocycle problems similar to those discussed
here, but our algorithms are more efficient because they take advantage of various properties of
the matroid intersection algorithm. The section is organized as follows. This introductory portion
defines the dynamic-base cycle and cocycle problems which arise in implementing the Augment
Step. Section 4.1 solves the dynamic-base cycle problem. Section 4.2 gives a high-level solution
to the dynamic-base cocycle problem and completes the timing analysis of the entire algorithm.
Section 4.3 supplies the details of several data structures assumed in Section 4.2.

The general matroid algorithm specifies the Augment Step completely except for two operations
c and swap. To motivate their definition, the Augment Step uses ¢ to grow the depth-first search
path P and swap to execute the swaps in an augmenting path P. More precisely when e is the
last edge of P, an operation c(e) is performed. It returns an edge f that forms a swap e, f. The
Augment Step enlarges P to P, f, f. If this completes an augmenting path, operation swap(g, h)

is done for each swap g,h in the path; this enlarges the matching. If the path is not augmenting,
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the search continues with the operation ¢(f). (Note that e and f are “opposites” with respect to
matroid (Mo or M) and matching M. This means that in one matroid c is always executed with
its argument matched, and in the other matroid the argument is unmatched.) On the other hand
if c(e) returns @ then e is a dead-end of the search and the search backs up. Similarly the returned
edge f may subsequently be declared a dead-end of the search, in which case ¢(e) is executed again.

Now we define the operations by stating the dynamic-base cycle and cocycle problems. Given
is a graph G' where each edge e has a topological number #(e). Also given is a spanning tree M (the
matched edges); initially M is a tree My, and M gets changed by the operations. The operations
concern elements e and f, where in the dynamic-base cycle (cocycle) problem e ¢ M U My, f €
MMy (e€e MN My, f¢é MU M,). There is a set of edges F that contains the possible results
for ¢; in the dynamic-base cycle (cocycle) problem F is initialized to My (G — Mp). The problem

is to process, on-line, a sequence of operations of two types:

swap(e, f) — execute the swap e, f,i.e.,, M — M @ {e, f};
c(e) - find an edge f € Cp(e) N F with maximum value #(f), delete f from F and return f.

The swap operation must be called with e € Ca(f) (equivalently f € Car(e)) so it results in a new
spanning tree M. Note that in ¢(e), a given edge f is returned at most once in the entire sequence
of operations. If no such f exists, ¢(e) returns 0.

The depth-first search of the Augment Step is implemented by executing an algorithm for
the dynamic-base cycle problem on matroid My and an algorithm for the dynamic-base cocycle
problem on M. Thus we need only solve these two problems. Our solution depends on the above
description of the Augment Step. It also uses property (1) (see Section 2) of consecutive swaps in
P.

The careful reader may be puzzled because although the definition of a swap e, f (in Section 2)
requires z(e) = z(f), and the Augment Step performs swaps of the form e, c(e), yet the definition
of ¢(e) ignores dual values. Duals can be ignored because of a simplification of the Augment Step:
For each distinct dual value & the Augment Step maintains a graph G, which has all edges of
M contracted except those with dual value z; thus the matched edges in G, form a tree M,.
The operations c(e) and swap(e, f) are both executed in Gy(c). (A given depth-first search path
or augmenting path may contain a number of swaps in the same graph G,. If the swaps of an
augmenting path are executed according to their order on P then each swap is valid, i.e., it gives

a new spanning tree.) At the end of the Augment Step the new matching is just the union of the
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matched edges from each contracted graph G,. This simplification of the Augment Step is valid in
any matroid [GX]. *

The graphs G are constructed at the start of the Augment Step in time O(m) as follows. We
do a depth-first traversal of the tree M and simultaneous depth-first traversals of each tree M.
Actually M, and G are unknown but get created during this traversal. Initially each G, has one
vertex; it corresponds to the root of M, and is the start vertex of the depth-first search in G,.
When an edge e = vw of M is traversed in the forward direction, reaching vertex w for the first
time, a new vertex W is created in G y(.); if D is the current vertex of the depth-first search of G (),
edge W corresponding to e is added to Gy(.) and W is made the current vertex in G,(); for each
edge f incident to w (in G), an image f is added to the adjacency list of the current vertex in the
depth-first search of G (5. (Thus each edge f of G is eventually added to two adjacency lists in
Go(s)-) When edge e = vw of M is traversed in the reverse direction, the current vertex of the
depth-first search in G () is changed from % to the previous vertex.

The time bound for the Augment Step depends on the fact that the graphs G, have a total
of m edges and O(n) vertices. This follows since each edge of G appears in a unique G, and each
edge of M corresponds to a spanning tree edge in a unique G,.

In the following solutions to the dynamic-base problems it is convenient to use phrases like “the
largest edge”; since the only value associated with an edge is its topological number, the meaning

is clear.

4.1. Cycle problem.

This section presents the algorithm for the dynamic-base cycle problem. It is simpler and
more efficient than the cocycle problem. Some matroid matching problems do not need the cocycle
problem, in which case the running time of our algorithm improves slightly.

The dynamic-base cycle problem can be solved in time O(m + nlogn) per Augment Step,
using the following data structure. The edges of M are stored in a dynamic tree; in this tree an
edge e has key t(e) if e € F, else 0. (As in [ST] the maximum key in a tree path can be found in
time O(logn).) A second data structure does set merging on a universe containing all vertices of
the graph. At any time the universe is partitioned into sets called v_sets. Each v_set is connected
in the graph M — F’; in fact immediately after each augment the v_sets are precisely the connected

components of M — F. (Since M — F is a forest, a v_set is always a subtree.) Initially each vertex

* Our definitions of the dynamic-base problems differ from those of [GX] - here we ignore duals

and use the candidate sets F. It is easy to prove our definitions are equivalent to [GX].
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is a singleton v_set.

The operation swap(e, f), with e = vw, cuts edge f in the dynamic tree and links vertices
v and w, assigning the new edge vw a key of zero; lastly it merges the v_sets for v and w. The
operation ¢(e), e = vw, returns § if v and w are in the same v_set; otherwise it finds the largest
edge f in the dynamic tree path from v to w, changes the key of f to zero, deletes f from F and
returns f. If f = zy is subsequently found to be a dead-end, it merges the v_sets containing = and
Y.

The correctness of this algorithm follows easily from the fact that the ¢ operation does not
return edges that were previously returned or swapped into the matching. The efficiency depends
on the fact that if ¢(e) does a dynamic tree operation then C(e) contains an edge f € F. To show
this observe that a tree edge £ ¢ F with its ends in different v_sets is in the current depth-first
search path P. In fact it precedes e, so ¢(£) > t(e) by (1). This implies £ ¢ C(e). We conclude that
an edge in C(e) — F has its ends in the same v_set. Thus if ¢(e) does a dynamic tree operation,
C(e)N F # 0, as desired.

To estimate the time note that there are O(n) dynamic tree operations: A swap operation
does O(1) dynamic tree operations and removes an edge of My from M; a ¢ operation can do O(1)
dynamic tree operations, but only if it returns an edge of My. Thus the dynamic tree operations
use time O(nlogn). The set merging data structure does O(m) finds and O(n) unions and hence
uses time O(ma(m, n)) [T83]. This gives total time O(m +nlogn) as desired. (Note that this time
bound holds for each graph G, and hence for the entire graph G.)

4.2. Cocycle problem: high-level.

This section gives a high-level description of the algorithm for the dynamic-base cocycle
problem. The remaining details are given in Section 4.3. The cocycle algorithm is more involved
than the cycle algorithm, and its bound dominates the running time.

We use several different graphs. When the graph of interest H may not be clear, we write
H -vertex or H-edge.

It is convenient to assume that the given graph G has maximum degree at most three. This is
achieved by a well-known transformation: Replace a vertex of degree d > 3 by a path P of vertices
v, 1 = 1,...,d. Change each edge incident to v into an edge incident to a distinct v;. Add all
edges of P to M, the given spanning tree of G. The transformed graph (which we still call G) has
maximum degree three and spanning tree M. The artificial edges in paths P will never be used

as arguments to ¢, and hence are never arguments to swap. So the results for ¢ and swap in the
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transformed graph are valid for the given graph. The transformed graph has O(m) vertices and
edges; the operation c(e) is done for less than n distinct edges e.

Our approach is to maintain a representation of G based on the recently swapped edges, called
the wakened graph W. It is defined precisely below. For now we give some relevant terminology.
W is constructed starting at some arbitrary time, called W-initialization time or W-time for short.
W is used to find and process a number of augmenting paths. The parameter

o
specifies the maximum number of swap operations allowed in one wakened graph. Its value is chosen
below. When o swaps have been processed the current wakened graph is discarded, a new W-time
is declared and the next wakened graph is initialized.

At any time, the edges that were matched at W-time are partitioned into sets

SUWUD.
Any matched edge at W-time starts out in S, asleep. At some point it may be moved to W,
becoming wakened. A wakened edge will eventually (before the next W-time) move to D, becoming
dead (it gets killed). At the next W-time, all (currently) matched edges are again asleep.

Here is a brief sketch of how these notions correspond to the depth-first search for an augment-
ing path. At W-time the algorithm wakens at most o edges (this is done for reasons of efficiency).
Thereafter it wakens a subset of the edges that get added to the depth-first search path P. A wak-
ened edge gets added to the wakened graph W. It dies when it is removed from P — either when
it is found to be a dead-end in the depth-first search, or when it gets swapped out of the matching
in an augment. Note that some matched edges in P do not get wakened. They are not processed
in W. Such an edge e eventually becomes either a dead-end or part of the augmenting path. Note
that in the former case e does not become “dead” — its classification remains “asleep”. In the latter
case e is wakened when its swap in the augmenting path is executed; the swap immediately kills e.

Observe this consequence of the sketch: At any time every edge in S U W is matched.

Also, let us characterize the notion of a dead-end. Edge e is declared a dead-end of the depth-
first search when c(e) returns ), i.e., when C(e) N F = (. This condition is equivalent to e being a
bridge of the graph M U F. As the search progresses the set M U F only shrinks (edges may leave
M, leave F, or go from F to M). Thus e remains a bridge of M U F. Equivalently, we conclude
that the condition C(e) N F = @ always holds for a dead-end e.

The algorithm makes certain vertices active. Initially all vertices are inactive; once active, a
vertex remains so until the next W-time, when it becomes inactive again.

In terms of the depth-first search there are two ways for a vertex to become active. If an edge
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that is unmatched at W-time becomes matched in an augment, its ends are activated. Also the
ends of any edge wakened by the algorithm at W-time are activated.

We can now give the high-level description of swap(e, f). If this operation makes makes the
total number of swaps more than o, declare a new W-time and initialize a new wakened graph.
(The remaining swaps of the current augmenting path are processed trivially in the reinitialization.)
Now consider the opposite case. The matched edge e has been wakened if swap e, f was discovered
in the W graph, but otherwise e is currently asleep. Waken e if it is currently asleep. Then (in any
case) remove e from the matching M, kill it, activate the ends of f and add f to M.

We turn to the c operation. It uses another classification of edges, illustrated in Fig. 2(a). Let
U be a set of vertices. An edge of G is an i-edge (with respect to U) if it contains exactly ¢ vertices
of U; hence ¢ = 0,1 or 2. In this definition we will always choose U to be the vertex set of a tree
T, and for convenience we refer to “an i-edge for T”.

The analysis involves several connecting trees. The main one is the contracted connecting tree

T =C(A,SUW),
where the set of vertices A is defined inductively as follows. At W-time (before any edge is wakened)
A = (. Then whenever a vertex v is activated it is added to A. This may create other new vertices
in 7, which are also added to A. (Note that adding these new vertices to A does not change 7.) *
The first part of the analysis uses the related connecting tree
T=C(A,SUW).
Strictly speaking 7 is a forest. The forest changes in two ways. First, an edge e € W may die.
This removes e and possibly other edges from 7. Second, a swap that matches edge vw activates
v and w. This adds edges to 7 if v or w was not previously in 7.

Now we give a high-level statement of the algorithm for c(e). The algorithm is divided into
the Connecting Case and the Unconnecting Case. Recall the task of ¢(e) is to find the largest edge
in C(e) N F. Four data structures are used to find cocycle edges. Each finds its desired edge in

time O(logn). However the data structures have different set-up times.

Unconnecting Case: e ¢ T. Let T be the component of S U W containing e. Define i-edges to be
with respect to 7. Recall that 7" is a tree of matched edges. Furthermore a matched 1-edge e is

either a dead-end or has its ends active (the latter occurs when e was swapped into the matching

* A more parsimonious definition would be to take A as the set of active vertices. Most of
the algorithm works unmodified for this definition. However the 2-data structure becomes more

difficult to implement, because Lemma 4.2(77) — (iv) fail.
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in an augment).

We first show that c(e) does not return any 0-edges. T — e consists of two subtrees. The
hypothesis e ¢ 7 implies that at most one subtree contains active vertices. So consider a subtree
N with no active vertices. Except for e, any matched edge incident to N is a dead-end, i.e., it is
not in any cycle C(f), f € F (recall the above characterization of dead-ends). Hence if a cycle
C(f) contains e then f is incident to N.

Thus ¢(e) does not return 0-edges, only 1- or 2-edges. We use a separate data structure for
each. More precisely, in the Unconnecting Case c(e) works as follows: It uses the I-data structure
to find the largest 1-edge in C(e) N F; similarly it uses the 2-data structure to find the largest
2-edge; the larger of these two edges is deleted from F and returned as c(e). Now we give the
ideas underlying the two data structures. Detailed implementations are in Section 4.3. Both data
structures are initialized at W-time. Both use O(m) time per wakened graph plus O(mlogn) time
per Augment Step. In addition the 2-data structure uses O(nlog?n) time per Augment Step.

Consider 1-edges. If neither subtree of 7' — e contains an active vertex then both subtrees
qualify as the above N. In this case C(e) N F' contains only 2-edges, so the 1-data structure is
irrelevant. In the other case one subtree contains active vertices, so N is unique. We have shown
an edge f € C(e) N F is incident to N. It is easy to see that conversely, any 1-edge incident to
N isin C(e). Thus the 1-edges of C(e) are precisely the 1-edges incident to a vertex of N. This
characterization is the basis of the 1-data structure, which finds the largest 1-edge in C(e) N F.

Next consider 2-edges. A 2-edge is currently in C(e) if and only if it was in C(e) at W-time
(since any edge of T' was matched at W-time). This observation is the basis of the 2-data structure,
which finds the largest 2-edge f in C(e) N F. In slightly more detail, the 2-data structure finds f
as the largest edge in C(e) at W-time, that is currently in F'. Then it checks that the ends of f are
in the same component of SUW as e. If so f is returned. If not, observe that f is not a 2-edge for
any other edge e’ (since f now joins distinct components of S U W). Thus f can be deleted from

the 2-data structure in this case.

Connecting Case: e € T. We discuss the Connecting Case by considering a fixed edge € in 7. Let
€ join vertices £, » € A. Since ¢ corresponds to a path from £ to r in S U W, it makes sense to
refer to a (G-)edge in €. Also note that ¢ is created when £ or r enters A, i.e., when some swap
is executed or when an edge is wakened at W-time. ¢ is destroyed when one of its edges dies, or
it is destroyed by a swap. In the latter case the swap activates a vertex v, which in turn adds a

G-vertex w in ¢ to A, thus replacing ¢ by edges fw and wr in 7.
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We will discuss all operations c(e) that are executed with e in €, while ¢ exists as an edge of
7. Obviously any Connecting Case edge e is in some such .

Let T be the subtree of S UW — {{,r} that contains all G-vertices in € — {{,7}. (T does not
contain all edges of ¢, and in fact T = @ if ¢ consists of a single edge ¢r.) Define i-edges to be with
respect to T. A 2-edge for T was a 2-edge for T' at W-time. Hence 2-edges for c(e) can be found
using the above 2-data structure.

In contrast, the 1-data structure cannot be used for 1-edges in the Connecting Case. Instead
we use the W1-data structure. It is based on the following characterization. Number the G-vertices
in € from 0 to k, assigning 0 to £ and k to r. Deleting the edges of ¢ creates k + 1 trees, each
containing a unique vertex ¢ in [0..k]. Call a G-vertex type ¢ if it is in the same tree as ¢. Then for
a tree edge e = h,h + 1 a 1-edge in C(e) joins a type i vertex to type j, where either i = 0 and
h<j<kori=kand0<j<h.

The W1-data structure has a larger set-up time than those of the Unconnecting Case. Each
time the Wil-data structure is used for a new edge ¢ of 7 there is an additional set-up time of
about i/m. This enables it to process all operations ¢(e) for all edges € € «.

The last data structure is the W-data structure. It has the largest set-up time. It finds the
desired edge f for c(e) (regardless of whether f is a 0-, 1- or 2-edge). Each time the W-data
structure is used for a new edge e there is an additional set-up time of about v/m. This set-up
corresponds to wakening e.

Further details of these data structures are given below. We now describe how ¢(e) works for
all edges e € €. We show that all such executions ¢(e) are processed by wakening at most one edge
of e.

First observe a property of 0-edges. All edges e € ¢ contain exactly the same 0-edges f in
C(e). (This follows since the only matched edges incident to T' that are not dead-ends are incident
to £ or r. The property holds even for a 0-edge £r that joins the ends of €.) Let ¢y be the smallest
topological number of an edge in €. Then any such f has #(f) < to.

Now suppose an edge e € ¢ gets added to the depth-first search path P. To execute c(e), use
the 2-data structure to find the largest 2-edge in C(e) N F. Similarly use the WW1-data structure to
find the largest 1-edge. (If this is the first ¢ operation for any edge of € this involves initializing W1
for €.) Let f be the larger of the two edges found. If ¢(f) > o then delete f from F and return
it as the value ¢(e). Process every edge of ¢ that gets added to P in this manner, until ¢(f) < to.
(This may complete the processing of ¢, if an augmenting path P is found. In this case the above

description of swap shows that the augment wakens and kills every edge of ¢ in P. This destroys
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€.)

In general let ¢(g), g € €, be the operation that first encounters the above condition ¢(f) < to.
(This includes the possibility that no edge f is found in the 2- or W1-data structures.) Waken edge
g. Then use the W-data structure to process this operation ¢(g) and all subsequent operations ¢(g).

We now show that this actually completes the processing for . First observe that as long as
g € P, no other edge of ¢ gets added to P: Let P contain swap g, f. (At different times there may
be different edges f.) Let ¢’ be an edge after f in P, in the same matroid (M or M) as g, f.
Then t(e') < t(f) < to by (1). Thus e’ ¢ ¢.

Eventually g is removed from P, when it dies (i.e., it is a dead-end or in an augmenting path).
Then g ¢ SUW and ¢ is no longer an edge of 7. Thus the processing of ¢ is complete.

Note that if g becomes a dead-end, P may still contain edges e that were in ¢. Subsequent
calls ¢(e), if any, are processed using the Unconnecting Case, since now e ¢ 7.

This completes the high-level description of ¢(e). We can now prove an important property

for the efficiency of the algorithm.

Lemma 4.1. In one wakened graph, O(o) vertices are activated and O(o) edges are wakened.

Proof. Swaps create at most 20 active vertices and o wakened edges. The same holds for edges
wakened at W-time. Thus it remains only to show that ¢ operations waken O(c) edges.

We have seen that ¢ wakens at most one edge in each edge of 7. Furthermore it eventually
destroys the edge of 7. So we need only bound the number of edges ever created in 7. A dead-end
does not create a new edge (this relies on the definition of A). Hence only new active vertices create
new edges of 7. A new active vertex creates at most two new edges in 7. We have seen there are

O(o) active vertices, so the desired bound follows. i

Define an asleep tree to be a maximal tree of asleep edges. (It is possible for an asleep tree to
consist of a single vertex.) The lemma implies there are O(o) asleep trees. We shall see that any
asleep tree has O(m/o) vertices. (In fact this is the purpose of the initialization at W-time).

Now we define the wakened graph W. It consists of W-nodes and W-edges. A W-node is the
contraction of an asleep tree. (Hence there are O(c) W-nodes.) The W-edges are the G-edges that
join distinct W-nodes. More precisely, W contains a spanning tree of matched G-edges — edges
that are wakened, dead-ends or were swapped into the matching. For W-nodes v, v, an unmatched
Wh-edge vv' corresponds to the G-edges joining v and v’ that are in F (equivalently, they have not

been reached in the depth-first search; vv' exists only if such an edge exists).
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The W- and W1-data structures are representations of W. These data structures use time
O(m + o2 logn)
per wakened graph, plus time
O(mlogn)
per Augment Step. The space is O(m + 0?). We describe the W-data structure; details of the
W1-data structure are in the next section. The W-data structure is based on the connecting tree
D =C(A,M).

Recall M denotes the current matching. (Thus M contains all edges that are asleep, wakened,
dead-ends and edges swapped into the matching.)

The implementation maintains asleep trees, and the related connecting tree

S=C(4,5).
This provides the information needed from the other connecting trees such as 7 and 7. For future
reference we state here the properties of asleep trees that are needed in the implementation.

Part (iv) below allows the 1-data structure to be implemented using asleep trees. Recall that
in the Unconnecting Case, T' denotes the component of S U W containing e. When the 1-data
structure is used for c(e), precisely one subtree of T' — e, called N, has no active vertices. The
implementation of the 1-data structure using asleep trees executes c(e) as follows: Let 7 denote the
asleep tree containing e. Let v be the subtree of 7 — e with no vertices of A. Return the largest
1-edge with respect to 7 that is incident to v and in F.

Part (ii7) below refers to the Connecting Case. Recall there ¢ denotes an edge of 7, and T

denotes a subtree of S U W. Let T — ¢ denote the edges in T that are not in edge ¢.

Lemma 4.2.
(i) The edges of S are precisely the edges of T (equivalently, D) that contain only asleep edges.
(7¢) Any asleep tree contains a vertex of A.
(4¢7) In the Unconnecting Case tree N does not contain a wakened edge or a vertex of A.
Similarly in the Connecting Case for forest T — ¢.

(iv) The implementation of the 1-data structure using asleep trees is correct.

Proof. (i) follows from the definition of asleep tree.

(72) It suffices to show that at the instant an edge e is wakened, e is in an edge of §. (Note
that vertices never leave A.)

If e is wakened in the initialization at W-time its ends are first activated. If e is wakened in

the Connecting Case then it is in an edge of S by (¢). Thus it only remains to consider operations
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swap(e, f) that waken e. Wakening e creates two new asleep trees, say T', U. Clearly we can assume
that U contains a vertex of A, and we need only show that T contains a vertex of A.

If f has an end v in T then swap(e, f) activates v, as desired. If there is no such end then
C(f) contains a matched edge g incident to T, g # e. Edge g is either wakened, a dead-end or
has an active end in T'. The last alternative gives the desired conclusion. We show the first two
alternatives cannot hold. Clearly g is not a dead-end (a dead-end is not in cycle C(f)). If g is
wakened, but its ends are not active, it was wakened when it got added to the depth-first search
path. Hence g is in the augmenting path P. But this is impossible: g does not precede e in P, since
it would have already been swapped out of the matching. And since the topological numbering is
valid [GX], t(g) > t(f), so (1) implies that g does not follow e in P.

(#4¢) First consider the Unconnecting Case. Let T — e consist of subtrees N and X. So X
contains an active vertex. A wakened edge g is in 7 (whether g was wakened at W-time or during
the current search in the Connecting Case). Similarly a vertex a € A is in 7. Thus g or a is joined
to the active vertex of X by a path in 7. That path does not contain e, since e ¢ 7. Thus g or a
is in X as desired.

The argument for the Connecting Case is essentially the same, using the observation that edges
in T that are not in ¢ are not in 7.

(iv) First observe that 7 is well-defined — e is asleep, since it is processed in the Unconnecting
Case.

We start by showing v = N: Part (ii7) shows that N does not contain a wakened edge, so N
is a subtree of 7 — e. Furthermore (ii¢) shows that N does not contain a vertex of A, so N = v.
Note that by (i7), v is uniquely defined.

It remains to show that we can use 1-edges with respect to 7 rather than 1-edges with respect to
T. We have already observed that any 1-edge with respect to NV is in C(e). So the implementation
for asleep trees surely returns a valid cocycle edge f. The 1-edges for 7 include all 1-edges for T,
plus some 2-edges for T. If f is a 1-edge for T it is the desired edge. If f is a 2-edge it is larger
than the desired 1-edge and no harm is done — f is simply discovered in two data structures rather

than one. [ |

We proceed to the data structure for the W graph. Each asleep tree has a distinct name in
[1..n]; this is the index of one of its vertices in A (which exists by Lemma 4.2(ii)). Each vertex
is labelled by the name of the asleep tree containing it. The vertices of A are marked. Edges are

labelled asleep, wakened or dead as appropriate. The vertices and edges of S are marked.
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Each unmatched W-edge e stores its corresponding G-edges in a priority queue pg(e). The key
of a G-edge is its topological number.

In addition each W-node v maintains its own copy of the tree D as a maximizing dynamic tree
dt(v). This copy represents the W-edges incident to v as follows: Each W-node p corresponds to a
subtree of dt(v). (This follows from Lemma 4.2(¢) - (4¢).) Let u be the name of asleep tree p. The
key of u in dt(v), key(u), is the largest topological number of an unmatched G-edge in the W-edge
vp. This number is available from the pg(vp). A vertex of dt(v) that is not an asleep tree name
has key —oo. Finally, the copies of a given edge ¢ of D (in all trees dt(v)) are linked together.

To estimate the space for these dynamic trees, Lemma 4.1 implies that |A| = O(c). Hence D
has O(o) vertices (from the discussion of connecting trees in Section 3). There are O(c) dynamic
trees, implying the desired space bound O(c?).

Now we describe the algorithms for W. For each algorithm we verify its correctness (if neces-
sary) and also show that the time is within the above bound for W. We start with two primitive
operations, activating a vertex and wakening an edge.

Activating a vertex v adds a path P to C(A,S5), from v to a vertex w currently in the tree
(by Lemma 4.2(é)); let w be in an edge from £ to r in S. (Possibly v = w or w = £ = r. The
processing is simpler in these degenerate cases.) Scan the asleep tree containing v to find w; mark
v and w as being in A and mark the edges of P as being in §. In each dynamic tree dt(v) cut edge
Lr, create new vertices v, w, and do links to create edges {w, wr and vw. (Some of these dynamic
tree operations are omitted in the degenerate cases.)

To estimate the time to activate a vertex, scanning the asleep tree uses time O(m/o), since
an asleep tree has O(m/o) vertices. There are O(1) dynamic tree operations for each W-node v.
There are O(o) W-nodes and O(o) activations (Lemma 4.1). This gives total time O(m + o logn)
per wakened graph.

Now we describe how to waken an edge e. Let e be in an asleep tree T that corresponds to a
W-node. Wakening e splits this W-node into two, creating new W-edges. This is accomplished as
follows.

Let T — e consist of new asleep trees T;, ¢ = 1,2. Scan the vertices of each T; to find a vertex
t; € A. (Lemma 4.2(i7) shows t; exists. When e is wakened at W-time, its ends have already
been activated; similarly when e is wakened in an operation swap(e, f), the ends of f are already
activated.) Mark e wakened. Make ¢; the name of T; and assign it to each vertex of T;. If e is in
an edge € of S then remove the edges of ¢ from §. (This is done since wakening e destroys ¢. This

occurs when e is wakened in the Connecting Case, or when swap(e, f) is executed and all other
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edges of ¢ are asleep.)

Next update the W-edges. This means splitting each W-edge Tv into edges Tiv, ¢ = 1,2,
and also creating edge 11T (some of these edges may not exist). For each new W-edge create its
associated priority queue. (Discard the data structures for 7'.)

The time for this is proportional to the number of G-vertices and edges involved, O(m/c).
Lemma 4.1 implies the total time for one wakened graph is O(m).

Next update the dynamic trees. Create dynamic trees dt(T13), ¢ = 1,2 with keys set according
to the W-edges incident to T;. Then update the dynamic tree di(v) for each W-node v # Ty, T5:
If T had name ¢, set key(t) to —oo in dt(v), and set key(t;) to the maximum topological number
in W-edge T;v. (Note the wakening does not change the topology of D.)

This procedure does O(1) dynamic tree operations per W-node. This gives O(ologn) time
for each wakened edge. The number of such edges is O(c). Hence the time for the entire wakened
graph is O(o? logn).

Next we describe the main algorithms on the W-data structure: initialization at W-time, swap,
and c. For the initialization, first recall a well-known construction [Fre, GT85]. Given is a tree T
on n vertices, with maximum degree at most three; also given are parameters d and s = n/d. We
wish to delete at most d edges from T" so that each remaining subtree has O(s) vertices. The subtree
construction algorithm accomplishes this as follows: Root T at a degree one vertex and traverse T
in postorder. To visit vertex v, label v with the size s(v) of its (remaining) subtree, 1 + > s(c),
where ¢ ranges over all children of v with edge vc not deleted. If s(v) > s, delete the edge from v
to its parent (if it exists).

The time for this construction is O(n). Any subtree has size s(v) < 2s. At most d edges are
deleted, since each deletion creates a subtree of size s(v) > s. Thus the algorithm works as desired.

We proceed to the initialization at W-time. The object is to have each asleep tree incident
to O(m/o) G-edges. This amounts to having O(m/o) G-vertices, by our assumption of bounded
degree. To achieve this use the subtree construction algorithm. It deletes at most o edges e from
the tree M. For each such e, instead of deleting it waken e and activate its endpoints.

It is easy to see the time for initialization is O(m).

Next we describe the operation swap(e, f) in the W-data structure. It works according to the
high-level description already presented. Thus if a new W-time is not declared proceed as follows:
Let f = wv. Activate u and v. If e is asleep waken it. Note that e is in an edge ¢ of S, which is
also an edge of D (see the opening sentence of the proof of Lemma 4.2(i7)). Mark e dead. In each

dynamic tree dt(v) cut the ends of ¢ and link » and v together. (The activation makes u and v
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vertices of dt(v). The swap e, f gives a new spanning tree as long as the swaps of the augmenting
path are executed in order.)

This procedure uses time O(o logn) per swap, giving O(c? logn) total.

Finally we describe c(e) in the W-data structure. We use an additional data structure, a
priority queue W_pq. If e is the last edge that executed c(e) in the W-data structure then W_pq
contains its candidate cocycle edges. More precisely for each W-node v, W_pq contains the largest
edge f, of C(e) N F that is incident to v, if it exists.

To motivate the definition of W_pq, first recall that ¢ may be executed a number of times for
the same edge e. Thus we save each candidate edge for c(e), i.e., the above edge f,, in a priority
queue. Second recall that in between executions of ¢(e) there may be operations c(e'), ¢’ # e, that
use the W-data structure. We do not attempt to maintain separate priority queues for e and e’.
Instead there is one priority queue W_pq that gets used for the current edge e or €.

An execution of c(e) works as follows. Let e be in edge ¢ of 7. If this is the first execution
of ¢(e) in the W-data structure, waken e. In general, if e was not the last edge to execute ¢ in the
W-data structure then reinitialize W_pq for e, as follows: For each W-node v, in dt(v) cut edge ¢;
of the two trees created, let U be the one not containing v; find f, as the edge corresponding to
the largest key in U; restore dt(v) by linking ¢, and add f, to W_pgq. (Note that the tree U can be
found in a variety of ways; one simple way is to use dynamic tree operations.)

Now find the desired cocycle edge for e: If W_pq is empty then return . Otherwise delete the
largest edge from W_pq. Suppose it corresponds to G-edge f in W-edge uv. Delete f from the
priority queue for yv and find the new maximum edge. In d#(1) update the key for » to this edge,
and similarly for dt(v). Then find the new edge f, as above, add it to W_pg, and similarly for
fv. Finally if f ¢ F (i.e., f has already been returned by some other data structure as a c value),
repeat the entire procedure to find the next largest cocycle edge. When f € F remove f from F
and return it as c(e).

Correctness of this algorithm follows from the fact that the information in W_pq is correct if
c(e) is executed after a previous execution ¢(e), with no intervening executions c(e') in the W-data
structure. This is true because intervening executions c(e’) in the other data structures do not
waken any edges.

Now estimate the time for c(e). Each edge f, is found in O(1) priority queue and dynamic
tree operations. Thus given W _pq, the time to process a cocycle edge f is O(logn). Since any f
is found as a cocycle edge at most once in an Augment Step, the time is O(mlogn) per Augment

Step.
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Finally consider the time for reinitializing W_pgq. One reinitialization uses O(1) dynamic tree
operations per W-node. Thus by Lemma 4.1, the time to reinitialize W_pq is O(o logn).

We prove the time for all reinitializations is O(a? log n) by showing that there are O(o) reini-
tializations. Observe that the number of reinitializations is at most the number of wakened edges
plus the number of W_pg’s destroyed. (If an operation c(e) does not waken e but reinitializes W_pq,
it is because the last operation c(e’) destroyed W_pq.) A priority queue is destroyed by an edge
that is wakened. So Lemma 4.1 shows the number of reinitializations is O(o) as desired.

We conclude this section by deriving the time bound for the weighted intersection algorithm.
To do this we assume that the data structures of the next section achieve the bounds already

claimed.

Theorem 4.1. The graphic matroid weighted intersection problem can be solved in time

O(y/n(m + nlogn)lognlog(nN)) and space O(m).

Proof. The above discussion has proved the algorithm correct. To derive the time bound, the
number of scales is O(log(nN)), so we analyze one scale. First consider the W- and W1-data
structures. They use time O(m + o?logn) per wakened graph plus O(mlogn) per Augment Step.
Recall that the algorithm described above is executed in graph G, for each dual variable z. This
does not change the time estimates, since the graphs G, contain a total of m edges and together
execute a total of o swaps.

The time O(mlogn) per Augment Step is within the desired bound, since Lemma 2.1(3¢)
shows there are O(y/n) Augment Steps. Consider the time per wakened graph. An Augment Step
that does s; swaps constructs at most [s; /o] wakened graphs. Thus Lemma 2.1 implies there are
O(v/n + (nlogn)/o) wakened graphs. Choosing ¢ = 1/m/logn gives time O(m) per wakened
graph, and total time O(y/nm 4 ny/mlog3/?n). Note that the second term is within the desired
bound: If m < nlogn it is at most n3/2 log 2n; if m > nlogn it is at most /nmlogn.

Finally note that the rest of the time is within the desired bound. A scale has O(y/n) Hungarian
searches by Lemma 2.1(i¢). The time for a Hungarian search is O((m + nlogn)logn) by Lemma
3.1. Thus the total time for Hungarian searches is within the bound. The time for 1-data structures
is O(m) per wakened graph plus O(mlogn) time per Augment Step. The time for 2-data structures
is the same, plus an additional O(nlog?n) time per Augment Step. The time for the dynamic-base
cycle problem is O(m +nlogn) per Augment Step. All these terms are dominated by previous ones
and so are within the bound.

Since the W- and W1-data structures use O(a?) space, the desired space bound follows. I
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4.3. Data structures.
This section gives the supporting data structures for the Augment Step — the 1-, W1- and
2-data structures, in that order.

Several of the data structures use a search tree. In this standard data structure [AHU, T83],
each element has a search key and a priority key, both of which are real numbers. A search tree
with n elements can execute each of the following operations in O(logn) time: insert or delete an
element; find an element of largest or smallest priority key subject to the constraint that its search
key is in a given interval [£..r] (alternatively, each end of the interval can be opened or closed).

Since there are a large number of interrelated data structures, it is convenient to use lazy
deletion: Specifically the edges that can be returned by c(e) are in the set F'. When c(e) returns
f, it marks f as no longer in F'. When a data structure retrieves a largest edge f as a possible
value of c(e), it checks that f € F; if not, it deletes its copy of f and repeats the procedure to find
a largest edge.

We begin with the 1-data structure. We show it uses time O(m) per wakened graph, plus
O(mlogn) per Augment Step.

Recall Lemma 4.2(iv): For an edge e ¢ T, if e is in asleep tree T then one of the subtrees of
T — e, call it N, has no vertices of A. The 1-edges of C(e) are precisely the 1-edges (with respect
to T') incident to a vertex of N.

The 1-data structure represents each asleep tree T as a maximizing dynamic tree dt(T'). This
tree is rooted at a vertex of A. The key of a vertex v is the topological number of the largest 1-edge
vw not deleted from the 1-data structure. (Here 1-edge means with respect to T'.) Recall that by
assumption, v is on O(1) edges.

The 1-data structure is initialized at W-time. In each asleep tree T a vertex a € A is chosen,
and then dt(T') is constructed with root a. Initialization uses O(m) time.

Now we give the algorithms for the dynamic cocycle problem. For ¢(e), suppose e is in asleep
tree T. First find the subtree N of T — e that does not contain a vertex of A, as follows. Let
e = vw. Cut e in dt(T) and find the end of e in the same new tree as the root of T'; say the end is
v. Then N is the new tree containing w.

Find the largest 1-edge incident to N as follows. Find a maximum key in N, say for vertex 2
with corresponding l-edge f = zy. If f ¢ F (it has been returned by a different data structure)
then discard it, set the dynamic tree key of z to its new largest 1-edge, and repeat the procedure to

find the next edge. When the desired edge f has been found, restore dt(7T") by linking e and return
f.
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Estimate the time for c(e) as follows. Each edge f found in ¢ uses O(logn) time for O(1)
dynamic tree operations. A given f is found at most twice in the 1-data structure in an Augment
Step (once for each end). This gives time O(m logn) per Augment Step.

The 1-data structure is updated whenever asleep trees change, i.e., when an edge e wakens.
The procedure is essentially the same as wakening e in the W-data structure, so we just sketch it.
Two new dynamic trees are constructed for the new asleep trees T;, 7 = 1,2. The edges joining T}
to T, are new l-edges (for both T}). Previous 1-edges for T now become 1-edges for T} or T5.

The time to waken one edge e is O(m/c), as in the W-data structure.

Note that aside from wakening an edge, there is no need to modify the 1-data structure in a
swap operation.

We turn to the W1-data structure. We show it uses the time stated for the W- and W1-data
structures in Section 4.2. Recall the characterization of 1-edges in C(e) for W1: Suppose e is in
edge € of 7. If e = h,h+ 1 then a 1-edge in C(e) joins a type i vertex to type j, where either i = 0
and h<j<kori=kand0<j<h.

The data structure for ¢ consists of two search trees, collectively storing the 1-edges incident
to T. Consider a l-edge f joining a type ¢ vertex to type j, i < j. If ¢ = 0 then f is stored in
the 0-search tree with search key j and priority key ¢(f). Similarly if j = k then f is stored in the
k-search tree with search key ¢ and priority key ¢(f).

This data structure is initialized the first time c(e) is executed for an edge e of ¢. The W-nodes
are labelled type 0 or k. Thus a vertex in such a node can compute its type in time O(1). Then the
l-edges for T' are scanned and classified. Finally the 0- and k-search trees are constructed. (The
labels on W-nodes can now be discarded.)

To estimate the time, first observe that T is included in an asleep tree, by Lemma 4.2(iii).
Thus a total of O(m/0o) edges are scanned. Now it is easy to see that the time for one initialization
is O(o +m/o). Since there are O(c) edges ¢, the time is O(m + o?) per wakened graph.

Now consider the operation c(e); assume the data structure for ¢ is initialized. Find the largest
cocycle edge in the 0-search tree, and the largest in the k-search tree. For each, execute the lazy
deletion procedure to make sure that the edge is in F. The larger of the two edges found is the
desired edge.

An edge is retrieved from the W1-data structure in O(logn) time. Since an edge is retrieved
at most once per Augment Step (including retrievals for lazy deletion), the time is O(mlogn) per
Augment Step.

Note there is no need to process a swap operation in the W1-data structure: An edge ¢ that
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gets processed in the W1-data structure is destroyed by the time the augmenting path is processed.

The last data structure is the 2-data structure. We begin by giving a data structure for the
following cocycle mazimum problem. Given is a graph with a fixed spanning tree T'. Every nontree
edge e has a real-valued key t(e). We wish to process on-line a sequence of operations of the

following types:

maz_cocycle(e) — for e € T', return an edge of maximum key in the cocycle C(e);
insert(e,z) — add nontree edge e to the graph, with key z;

delete(e) — remove nontree edge e from the graph.

We first assume that initially the graph contains only T'; we discuss different initialization below. We
give a data structure that processes a sequence of m insert and delete operations and ¢ maz_cocycle
operations, on a graph with n vertices, in O(mlogn + clog?n) time and O(m + n) space. (For
generality here we do not assume the graph has bounded degree, unlike Section 4.2.)

The data structure is based on the heavy path representation. Thus every nontree edge is
converted to its back edges. To do this the tree T is preprocessed for nearest common ancestor
operations, in O(n) time; this allows an edge to be converted to its back edges (in an insert
operation) in time O(1) [HT].

Each given operation translates into corresponding operations on initial edges and final edges.
For instance to do maz_cocycle(e), first do this operation for initial edges, then for final edges, and
of the two edges returned choose the one with larger key. We now discuss the data structures for
initial and final edges.

First consider initial edges. For each vertex v of T record pre(v), its preorder number, and
hi(v), the largest preorder number of a descendant. Each initial tree, with root s, is represented
by a search tree storing all initial edges directed to s. An initial edge vs has search key pre(v) and
priority key t(vs).

The search trees for all initial trees are initialized to empty in O(n) time and space. An initial
edge can be inserted or deleted in time O(logn). Each initial edge uses space O(1).

To do maz_cocycle(e), examine each of the logn vertices s that are roots of initial trees
containing e. Examine the corresponding search tree to find the cocycle edge with largest key.
(If e joins child ¢ to parent p in T, an initial edge vs is in C(e) if v is a descendant of ¢, i.e.,
pre(v) € [pre(c)..hi(c)].) The largest of the logn edges found is the largest initial edge in C(e). It
is computed in time O(log?n).

Next consider final edges. Use the same approach as Section 3: Each h-path is represented by
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an interval tree, and each node of the interval tree has an initial edge data structure. The time and
space are the same as for initial edges.

This completes the description of the on-line algorithms for the cocycle maximum problem.
We return to algorithms for initialization. We show that if in addition to T" we are given m nontree
edges then the data structures can be initialized in time O(m + n).

We start by showing that an interval tree I for m subintervals of [0..n) can be initialized in
time O(m 4 n). This amounts to showing that the assignment of subintervals to nodes of I can be
found in linear time. We show that that after O(n) preprocessing time, the node of I that contains
a given interval [£..r] can be found in O(1) time. Recall the description of an interval tree given in
Section 3.

Without loss of generality assume n is a power of two, n = 2¥. The nodes at height A in
I correspond to intervals [i2"..(i + 1)2%), 0 < h < k, 0 < ¢ < 2F~*_ Given two integers £,r,
0 < { <7< n,write them as k + 1 bit binary numbers. If the number of common leading bits is a
(i.e., for some @ bit number i, i2¥¥172 < ¢ < j2k+1-a L 9k—a < p < (54 1)2k+1=2) then the interval
[£..r] is stored in the node at height k 4+ 1 — @ corresponding to 7. Thus we need only compute the
value of a for given numbers £, .

To do this precompute a v/n X 4/n table, where the entry for ¢,j (0 < ¢,5 < 4/n) is the number
of common leading bits. Construct the table in O(n) time, by computing the entry for ¢, from a
previous entry. To compute a for given integers £, 7, in O(1) time determine if they have the same
first k/2 bits. If so find a by using the table on their last k/2 bits; if not use the table on their first
k/2 bits.

It is easy to do the rest of the initialization for the data structure in linear time: There are
O(n) search trees. They all use search keys in the range [1..n]. Hence the edges of all search trees
can be sorted by search key in time O(m + n), using a two-pass radix sort. Each search tree can
be constructed in linear time, given its edges sorted by search key.

We turn to the 2-data structure. It has two parts. The first part of the 2-data structure solves
essentially the cocycle maximum problem, with one difference. In the 2-data structure, ¢(e) may
be executed a number of times for the same edge e, possibly with executions for other edges e’
interspersed. To handle this efficiently we use a priority queue to save candidates for ¢(e), as in
Section 4.2. The second part of the 2-data structure ensures that the edge returned by c(e) is
currently a 2-edge. We discuss the two parts of the 2-data structure in turn. We show the time is
O(m) per awakened graph, plus O((m + nlogn)logn) per Augment Step.

The first part of the 2-data structure contains the data structure for the cocycle maximum
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problem. The spanning tree is the tree of matched edges at W-time. The key t(e) of edge e is its
topological number. In addition there is a priority queue 2_pg. Actually it suffices to implement
2_pq as a linear list of O(logn) edges.

The portion of the 2-data structure for the cocycle maximum problem is initialized at W-time,
using the above initialization procedure for all unmatched edges. The time is O(m).

The priority queue 2_pq is initialized for a given edge e as follows. The above operation
maz_cocycle(e) is executed. It performs logn search tree queries in both the initial and final edge
data structures, finding 2logn edges in C(e). (As usual lazy deletion is done in finding these edges
to ensure that each is in F.) Each of these edges is stored in 2_pq.

Next consider the ¢ operation. Each time c(e) is executed, it checks that e was the last edge
to execute c in the 2-data structure. If not, 2_pq is reinitialized for e, as above. Then, in general,
c(e) is found as a largest edge in 2_pq. Details of the procedure are similar to the one for W_pq in
Section 4.2 and so are omitted.

Correctness of the algorithm is clear. We sketch the timing analysis, which is also similar to
W_pq. Each edge is retrieved from 2_pq in O(logn) time, giving O(mlogn) time per Augment
Step. In one wakened graph the total number of initializations of 2_pq is at most twice the number
of distinct edges e for which ¢(e) is executed. Operation c(e) is executed for a given edge e in only
one wakened graph of an Augment Step. This gives O(n) initializations per Augment Step. Since
an initialization uses time O(log?n), the total time for initialization is O(nlog?n) per Augment
Step.

We turn to the second part of the 2-data structure. Recall that the 2-data structure is used
in both the Unconnecting and Connecting Cases. First consider the Unconnecting Case. In this
case a 2-edge has both its ends in the same component of S U W as e. To check this, the 2-data
structure maintains a label for each asleep tree (i.e., W-node) indicating its connected component
in SUW.

After the largest cocycle edge f is found (in the first part of the 2-data structure) the algorithm
checks that the ends of f are in the same component of SUW as e. If not, f is deleted (as discussed
in Section 4.2) and the next cocycle edge is found. The check adds only O(1) time to the processing
of f.

Each time an edge dies the connected components of SUW in W are recomputed. The time to
compute connected components is O(c) (Lemma 4.1). Since O(o) edges die the time per wakened
graph is O(o?), which is within the bound of Section 4.2.

Finally we show that the Connecting Case can also be handled by this data structure. Consider
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an edge € € T, joining £ to r. The tree T that defines 2-edges for ¢ is the subtree of SUW — {£,r}
containing all G-vertices in ¢ — {¢,r}. Lemma 4.2(%¢7) shows that T is contained in an asleep tree
U. (Recall that when the 2-data structure is used for an edge of ¢, no edge of ¢ is wakened.) An
operation c(e) for e € ¢ is executed exactly as in the Unconnecting Case. In particular the test on
f uses the label of asleep tree U to check that the ends of f are in the same component of S UW
as e.

To show this implementation is correct, suppose first that the ends of f are in the same
component of § U W as e. The argument is similar to Lemma 4.2(iv): f is a valid cocycle edge,
and is either the desired 2-edge or a larger 1- or 0-edge. In the latter case f is simply discovered
in two data structures. (If f is a 0-edge, it has ¢(f) < to and the Connecting Case may switch to
the W-data structure. Even if f is a 0-edge and t(f) = to, there is no harm if the Connecting Case
does not switch to the W-data structure.)

Finally suppose the the ends of f are in different components of S U W. The argument of

Section 4.2 showing that f can be deleted from the 2-data structure remains valid.

5. Cardinality matching.

This section shows how the weighted intersection algorithm can be applied to find a maximum
cardinality intersection on a graphic matroid in time O(y/n(m + nlogn)). For a planar graph the
bound improves to O(n3/?).

For arbitrary matroids [GX] shows several simplifications when the weighted intersection al-
gorithm is specialized to cardinality intersection. Obviously no scaling is needed — the algorithm
assigns each edge a weight of zero, so there is only one scale. Topological numbers are not needed.

Thus the dynamic-base operation ¢(e) simplifies to the following:
¢(e) - find an edge f € Cap(e) N F, delete f from F and return f.

Finally, augmenting paths have the following level property. Recall that A is the total of all dual
adjustment quantities so far, and G is the contracted graph for dual value z. Then in the Augment
Step for A, any augmenting path consists of exactly one swap in each of the graphs G, in Mg and
G_g-1in My, forz = —A,...,—1. (The level property simply states that, as in the Hopcroft-Karp
algorithm for cardinality graph matching, each augmenting path has shortest length, and hence
goes from one level of a breadth-first search to the next.)

Consider first the Hungarian search. It simplifies to the (unweighted) static-base cycle and

cocycle problems, defined as follows [GS]. Given is a graph with a fixed spanning tree T'. There is
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a set F', initialized in the cycle problem to all tree edges and in the cocycle problem to all nontree
edges. The operation sc(e) has e a nontree edge in the cycle problem and a tree edge in the cycle
problem. It returns all edges of Cr(e) N F and also deletes these edges from F. The problem is
to process a sequence of sc operations, on-line. [GS] solves the static-base cycle problem in time
O(m) and the static-base cocycle problem in time O(m + nlogn). The latter is improved to O(m)
in [G]. Thus Lemma 2.1(i7) implies that the total time for Hungarian searches in the cardinality
algorithm is O(y/nm).

We turn to the Augment Step, the dominating part of the algorithm. For graphic matroids, an
important consequence of the above properties is that a wakened graph in the cardinality algorithm
can process more augmenting paths than in the weighted algorithm. To accomplish this redefine
the parameter o of Section 4 to be the number of augmenting paths that are allowed in one wakened
graph. Note that since each augmenting path executes precisely one swap in each contracted graph
G, the new definition still represents the number of swaps allowed in each G,.

We show below that in one wakened graph, the total time to process a given contracted graph
Gy is O(m + o?logn) and the space is O(m + 0?). Let us first show that this implies the desired

result.

Theorem 5.1. The graphic matroid cardinality intersection problem can be solved in O(y/n(m +
nlogn)) time and O(m) space.

Proof. First note that the algorithm of Section 4.1 for the cycle problem of the Augment Step
runs within the desired time bound. So we need only analyze the cocycle problem. Define phase i
to consist of all the Augment Steps where 2 < A < 2¢*+!, In phase i set 0 = \/m

We first show that the entire cocycle algorithm constructs a total of O(y/n) wakened graphs.
Consider any phase i. Lemma 2.1(7) implies that it processes O(n/2') augmenting paths. Thus
the number of wakened graphs that process ¢ augmenting paths is O(W} Summed over all
phases this gives O(y/n) wakened graphs. In addition each Augment Step may contribute another
wakened graph. This gives O(y/n) more wakened graphs by Lemma 2.1(i7), and implies the desired
conclusion.

We complete the proof by showing that each wakened graph uses O(m + nlogn) time total.
Clearly the term O(m) in the time bound for one contracted graph G, gives a total contribution
within the bound. So consider the second term O(a?logn).

In phase ¢ an augmenting path has length at most 2A < 2i+2, by the level property. Hence a
wakened graph in phase i has O(2') contracted graphs G. Each uses time O(o%logn). This gives

32



total time O(nlogn) per wakened graph, as desired.

The same reasoning implies the space bound. 1

Before discussing the supporting data structures note some simplifications in the ¢ routine.
First consider the Unconnecting Case. There are no topological numbers, so ¢(e) can return cocycle
edges in any order. It first returns edges found in the 1-data structure, and then the 2-data structure.
Also note that at any time the depth-first search path contains at most one edge from any given
contracted graph G, by the level property. Thus at any time at most one edge e of G, is in the
process of executing c(e). There is no need to worry about another edge e’ destroying the data
structures for e (as in the 2- and W-data structures of the weighted algorithm.)

Next consider the Connecting Case. Only one G-edge e in a given edge ¢ of 7 will execute
c(e). (This follows from the preceding observation on the depth-first search path, and from the
discussion of the Connecting Case in Section 4.2.) Thus there is no need for the W1-data structure:
When c(e) is executed for an edge e € T the algorithm immediately wakens e and processes it in
the W-data structure.

Now we discuss the 2-, 1- and W-data structures, in that order.

The 2-data structure is based on an algorithm for the static-base cocycle problem (defined
above) for the spanning tree of matched edges at W-time. In addition, as in the weighted case it
maintains labels for asleep trees, so the components of S U W can be identified.

To process a dynamic operation ¢(e), execute the static operation sc(e). Use each edge returned
by sc(e) that is a 2-edge as a value for ¢(e), until either an augmenting path is found or the edges
are exhausted.

Obviously this algorithm achieves the desired time bound O(m). The correctness of c(e) is
clear if e is eventually declared a dead-end. Correctness may not be clear if e gets swapped in an
augment - the 2-data structure effectively deletes all edges f € C(e), so some of them may never
get explored. However note that e dies when it gets swapped. Thus edges f € C(e) are no longer
2-edges, and deleting them from the 2-data structure is correct.

Next consider the 1-data structure. It represents each asleep tree T as tree rooted at an
arbitrary vertex of A. Each node has a list of its children and each child has a pointer to its parent.

The 1-data structure is initialized at W-time in the obvious way. Consider the operation c(e),
where e joins child ¢ to parent p. N, the subtree of T — e that does not contain a vertex of A4, is
the subtree of q. Construct a list of all 1-edges incident to N. (Do this by examining the edges vw

incident to each vertex v € N. vw is a 1-edge if w is in a different asleep tree.) Use each edge in
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the list as a value for ¢(e), until either an augmenting path is found or the edges are exhausted. In
the latter case delete N from the 1-data structure.

To estimate the time for ¢(e), observe that a given asleep tree T gets processed in the 1-data
structure as follows. First operations c(e) for zero or more edges e eventually delete a subtree N.
Then, possibly, an operation ¢(e) eventually returns a swap e, f that becomes part of an augmenting
path. In this case e gets wakened when it gets swapped in the augment, thus destroying 7. This
summary shows that a vertex of v gets visited at most once in the entire processing of T'. Thus
time O(|T']) is spent on T. There are O(c) asleep trees, each of size O(m/c). This gives total time
O(m) per wakened graph.

The 1-data structure is updated whenever asleep trees change, i.e., when an edge wakens.
The procedure simply creates the above data structure for the two new asleep trees and labels the
vertices in them. The time to waken an edge is O(m/o), giving time O(m) per wakened graph.

Finally consider the W-data structure. It is essentially the same as Section 4.2. As in the
weighted case each W-node v maintains its own copy of D as a maximizing dynamic tree di(v).
The difference is that now, if u is the name of an asleep tree y, key(u) in dt(v) equals one if a
W-edge v exists, else zero. In addition if key(u) = 1 then u points to a list £(u) of G-edges in the
W-edge vu. (These lists replace the priority queues pg(e) of the weighted case.) As in the weighted
case the dynamic trees and edge lists use space O(m + o?).

Most operations of the W-data structure are similar to the weighted case, Section 4.2. Ac-
tivating a vertex and wakening an edge both use the same time as Section 4.2, O(m + o?%) per
contracted graph of each wakened graph. Initialization at W-time uses the same time, O(m). The
operation swap(e, f) uses the same time O(o logn) per swap, O(a? logn) total.

Now consider the operation ¢(e). Let e be in edge ¢ of 7. The first time c(e) is executed for e,
waken e. Then, in general, process each W-node v as follows. In dt(v) cut edge ¢; of the two trees
created, let U be the one not containing v; in U find a vertex u with key(u) = 1; return G-edges
in the list {(u). (Note that vertex u can be found as a vertex of maximum key in U.) The two
possible outcomes for u are that a returned edge leads to an augmenting path, or the edges of £(u)
are exhausted. In the latter case set key(u) to zero and proceed to find the next vertex u of U. If
all these vertices are exhausted then restore dt(v) by linking ¢ and proceed to the next W-node v;
if all of these are exhausted then e is a dead-end.

We show that the total time for ¢ operations in the W-data structure is O(m + o? logn).
Charge each G-edge O(1) time to be returned from a list £(u). Charge each node v O(logn) time

for the dynamic tree operations the first time it is examined in ¢(e). The remaining overhead of
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the data structure is O(logn) time to find each vertex u. (This corresponds to O(1) dynamic tree
operations.) Account for this time as follows. There are two possible outcomes for processing u.
First suppose all edges of £(u) get returned and key(u) set to zero. Clearly u is never examined
again in di(v). Vertex u is the name of a W-node u. Charging the time to u gives O(a?logn)
time total. The second possibility is that a swap for an edge of £(u) leads to an augmenting path.
Charging the time to this swap gives O(o logn) time total.

This completes the discussion of the data structures for Theorem 5.1.

To improve the time for planar graphs we solve the cycle problems more efficiently. As noted
above, we need only consider the Augment Step, i.e., the dynamic cycle problem.

We classify the edges that are matched at W-time as asleep, wakened and dead, exactly as
in the cocycle problem. There is one change, which makes the asleep edges of the cycle problem
a superset of those of the cocycle problem: The cycle algorithm wakens an edge f only when
swap(e, f) is executed. (Thus f wakens and immediately dies.)

Consider the wakened graph W for the cycle algorithm. Its vertices are the contractions of
asleep trees. There is a spanning tree T of matched edges; it contains the edges that have been
swapped into the matching.

The algorithm maintains two trees. The first is 7. The second is Mp (the matched edges at
W-time). Both trees use the same data structure: First, each node has a parent pointer and its
preorder number. To do this a root vertex is chosen arbitrarily. Additionally in T, each asleep
tree chooses its root as the vertex closest to the root of T'. Second, set merging is done on the tree
using the static tree set-merging data structure [GT85]. The sets represent subtrees of dead-ends
as follows. Consider a tree edge vv', where v' is the parent of v. In My, v is in the same set as v/
only if vv' is a dead-end. In T', let W-edge v’ correspond to G-edge ww', where w (w') is in asleep
tree v (v'). Let P denote the path of matched edges from w' to the root of asleep tree v'. Then v
is in the same set as v’ only if every edge of P is a dead-end.

The data structure for My is initialized at W-time using time O(n). The data structure for T
is reinitialized in every swap operation, using time O(o). Since at most o swaps are done in each
contracted graph G, the latter amounts to time O(o?). Note that O(n + o2) also bounds the time
for all merges in the two set-merging data structures.

It remains only to discuss the operation c(e). It is convenient to define the operation of path
traversal. Consider a tree whose vertices are numbered in preorder. In addition the vertices are
partitioned into sets, so that if child v is in the same set as parent v’ then vv' is a dead-end. We

are given vertices vy and vy, and wish to traverse the edges that are not dead-ends in the tree path
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joining vy and v;. To do this first traverse the appropriate part of the path from vy to the root as
follows. Initialize  to vg. In general starting at vertex z, find the root y of the set containing z; if
y is not an ancestor of v; then traverse the edge yy', set z to 4’ and repeat; if y is an ancestor of
v1 then stop. When this traversal stops execute the same procedure for v;.

The operation ¢(e), for e = vovy, is executed as follows. Let v; be in asleep tree v;. Let «
denote the nearest common ancestor of vy and v in T. Let a; denote the first G-ancestor of v; in
a (in other words, traversing the path of matched edges from v; to the root of T, a; is the first
vertex in o). The algorithm returns edges of C(e) N F, first along the path from vy to ag, then the
path from v; to ay, and finally the path from aq to a;.

Here is the main idea to process the path from v; to a;. Visit successive W-nodes p in the
path from v; to a, using path traversal (in tree T'). To visit u, let the first ancestor of v; in p be z.
Let r be the root of . Traverse the path in p from z to r, using path traversal (in tree Mp). The
remaining details, such as doing merges for dead-ends in both 7" and My, and processing the path
from ag to a;, are left as a simple exercise.

It is easy to see that the time is O(1) for each edge returned by c(e). This concludes the

discussion of the cycle problem, and shows that the time is O(m + ¢?) for each contracted graph.

Theorem 5.2. On a planar graph, the graphic matroid cardinality intersection problem can be

solved in O(n%/?) time and O(n) space.

Proof. Using the above bound of O(m + o), the analysis in the proof of Theorem 5.1 shows the
time for all cycle problems in the entire intersection algorithm is O(y/nm).

Now recall from [GS] that for a planar graph G, the intersection algorithm need not solve the
cocycle problem, only the cycle problem: Let G* be the planar dual graph of G. A fundamental
cocycle in G corresponds to a fundamental cycle in G*. Thus the cocycle problem for G amounts

to the cycle problem for G*. 1
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Figure Captions.

Figure 1.

Heavy path representation.

Figure 2.
(a) Subtree T.
(b) Connecting tree C(Ao,T).

(c) Contracted connecting tree C( A, T).
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