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Abstract

Volcano is a nmew dataflow query processing system we have developed for database systems research and education.
The uniform interface between operators makes Volcano extensible by new operators. All operators are designed and coded as
if they were meant for a single-process system only. When attempting to parallelize Volcano, we had to choose between two
models of parallelization, called here the bracket and operator models. We describe the reasons for not choosing the bracket
model, introduce the novel operator model, and provide details of Volcano’s exchange operator that parallelizes all other opera-
tors. It allows intra-operator parallelism on partitioned datasets and both vertical and horizontal inter-operator parallelism. The
exchange operator encapsulates all parallelism issues and therefore makes implementation of parallel database algorithms signifi-

cantly easier and more robust

Included in this encapsulation is the translation between demand-driven dataflow within

processes and data-driven dataflow between processes. Since the interface between Volcano operators is similar to the one
used in "real,” commercial systems, the techniques described here can be used to parallelize other query processing engines.

1. Introduction

In order to provide a testbed for database systems
education and research, we decided to implement an extensi-
ble and modular query processing system. One important
goal was to achieve flexibility and extensibility without sac-
rificing efficiency. The result is a small system, consisting
of less than two dozen core modules with a total of about
15,000 lines of C code. These modules include a file sys-
tem, buffer management, sorting, top-down BY-trees, and
two algorithms each for natural join, semi-join, outer join,
anti-join, aggregation, duplicate elimination, division, union,
intersection, difference, anti-difference, and Cartesian pro-
duct. Moreover, a single module allows parallel processing
of all algorithms listed above.

The last module, called the exchange module, is the
focus of this paper. It was designed and implemented after
most of the other query processing modules. The design
goal was to parallelize all existing query processing algo-
rithms without modifying their implementations.
Equivalently, the goal was to allow parallelizing new algo-
rithms not yet invented without requiring that these algo-
rithms be implemented with concern for parallelism. This
goal was met almost entirely; the only change to the exist-
ing modules concerned device names and numbers to allow
horizontal partitioning over multiple disks, also called disk
striping [25].

Parallelizing a query evaluation engine using an
operator is a novel idea: earlier research projects used
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template processes that encompass specific operators. We
call the new method of parallelizing the operator model. In
this paper, we describe this new method and contrast it
with the method used in GAMMA and Bubba, which we
call the bracket model. Since we developed, implemented,
and tested the operator model within the framework of the
Volcano system, we will describe it as realized in Volcano.

Volcano was designed to be extensible; its design and
implementation follows many of the ideas outlined by
Batory et al. for the GENESIS design [5]. In this paper,
we do not focus on or substantiate the claim to extensibility
and instead refer the reader to [17]; suffice it to point out
that if new operators use and provide Volcano’s standard
interface between operators, they can easily be included in a
Volcano query evaluation plan and parallelized by the
exchange operator.

Volcano’s mechanism to synchronize multiple opera-
tors in complex query trees within a single process and to
exchange data items between operators are very similar to
many commercial database systems, e.g., Ingres and the
System R family of database systems. Therefore, it seems
fairly straightforward to apply the techniques developed for
Yolcano’s exchange operator and outlined in this paper to
parallelize the query processing engines of such systems.

This paper is organized as follows. In the following
section, we briefly review previous work that influenced our
design, and introduce the bracket model of parallelization,
In Section 3, we provide a more detailed description of
Volcano.  The operator model of parallelization and
Volcano’s exchange operator are described in Section 4.
We present experimental performance measurements in Scc-
tion 5 that show the exchange operator’s low overhead.
Section 6 contains a summary and our conclusions from this
effort.



2. Previous Work

Since so many different system have been developed
to process large dataset efficiently, we only survey the sys-
tems that have strongly influenced the design of Volcano.

At the start in 1987, we felt that some decisions in
WiSS [11] and GAMMA [12] were not optimal for perfor-
mance or generality. For instance, the decisions to protect
WiSS’s buffer space by copying a data record in or out for
each request and to re-request a buffer page for every

record during a scan seemed to inflict too much overhead!.
However, many of the design decisions in Volcano were
strongly influenced by experiences with WiSS and
GAMMA. The design of the data exchange mechanism
between operators, the focus of this paper, is one of the
few radical departures from GAMMA'’s design.

During the design of the EXODUS storage manager
[10], many of these issues were revisited. Lessons learned
and tradeoffs explored in these discussions certainly helped
form the ideas behind Volcano. The development of E [24]
influenced the strong emphasis on iterators for query pro-
cessing. The design of GENESIS [5] emphasized the
importance of a uniform iterator interface.

Finally, a number of conventional (relational) and
extensible systems have influenced our design. Without
further discussion, we mention Ingres [27], System R [3],
Bubba [2], Starburst [26], Postgres [28], and XPRS [29].
Furthermore, there has been a large amount of research and
development in the database machine area, such that there
is an international workshop on the topic. Almost all data-
base machine proposals and implementations utilize parallel-
ism in some form. We certainly have learned from this
work and tried to include its lessons in the design and
implementation of Volcano. In particular, we have strived
for simplicity in the design, mechanisms that can support a
multitude of policies, and efficiency in all details. We
believe that the query execution engine should provide
mechanisms, and that the query optimizer should incorporate
and decide on policies.

Independently of our work, Tandem Computers has
designed an operator called the parallel operator which is
very similar to Volcano’s exchange operator. It has proven
useful in Tandem’s query execution engine {14], but is not
yet documented in the open literature. We learned about
this operator through one of the referees. Furthermore, the
distributed database system R* used a technique similar to
ours to transfer data between nodes [31]. However, this
operation was used only to effect data transfer and did not
support data or intra-operator parallelism.

2.1. The Bracket Model of Parallelization

When attempting to parallelize existing single-process
Volcano software, we considered two paradigms or models
of parallelization. The first one, which we call the bracket
model, has been used in a number of systems, for example
GAMMA [12] and Bubba [2]. The second one, which we
call the operator model, is novel and is described in detail
in Section 4.

! This statement only pertains to the original version of
WiSS as described in [11]. Both decisions were reconsidered for
the version of WiS$ used in GAMMA.
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Figure 1. Bracket Model of Parallelization.

In the bracket model, there is a generic process tem-
plate that can receive and send data and can execute
exactly one operator at any point of time. A schematic
diagram of such a template process is shown in Figure 1
with two possible operators, join and aggregation. The
code that makes up the generic template invokes the opera-
tor which then controls execution; network IO on the
receiving and sending sides are performed as service to the
operator on request, implemented as procedures to be called
by the operator. The number of inputs that can be active
at any point of time is limited to two since there are only
unary and binary operators in most database systems. The
operator is surrounded by generic template code which
shields it from its environment, for example the operator(s)
that produce its input and consume its output.

One problem with the bracket model is that each
locus of control needs to be created. This is typically done
by a separate scheduler process, requiring software develop-
ment beyond the actual operators, both initially and for each
extension to the set of query processing algorithms. Thus,
the bracket model seems unsuitable for an extensible sys-
tem.

In a query processing system using the bracket
model, operators are coded in such a way that network I/O
is their only means of obtaining input and delivering output
(with the exception of scan and store operators). The rea-
son is that each operator is its own locus of control and
network flow control must be used to coordinate multiple



operators, e.g., to match two operators’ speed in a
producer-consumer relationship.  Unfortunately, this also
means that passing a data item from one operator to
another always involves expensive inter-process communica-
tion (IPC) system calls, even in the cases when an entire
query is evaluated on a single machine (and could therefore
be evaluated without IPC in a single process) or when data
do not need to be repartitioned among nodes in a network.
An example for the latter is the three-way join query
"joinCselAselB"” in the Wisconsin Benchmark [6,9] which
uses the same join attribute for both two-way joins. Thus,
in queries with multiple operators (meaning almost all
queries), IPC and its overhead are mandatory rather than
optional.

In most (single-process) query processing engines,
operators schedule each other much more efficiently by
means of procedure calls rather the system calls. The con-
cepts and methods needed for operators to schedule each
other using procedure calls are the subject of the next sec-
tion.

3. Volcano System Design

In this section, we provide an overview of the
modules in Volcano. Volcano’s file system is rather con-
ventional. It includes a modules to manage devices, buffer
pools, files, records, and B*-trees. For a detailed discus-
sion, we refer to [17].

The file system routines are used by the query pro-
cessing routines to evaluate complex query plans. Queries
are expressed as complex algebra expressions; the operators
of this algebra are query processing algorithms. All algebra
operators are implemented as iterators, i.e., they support a
simple open-next-close protocol similar to conventional file
scans.

Associated with each algorithm is a state record.
The arguments for the algorithms are kept in the state
record. All operations on records, e.g., comparisons and
hashing, are performed by support functions which are given
in the state records as arguments to the iterators. Thus, the
query processing modules could be implemented without
knowledge or constraint on the internal structure of data
objects.

In queries involving more than one operator (i.e.,
almost all queries), state records are linked together by
means of input pointers. The input pointers are also kept
in the state records. They are pointers to a QEP structure
that consists of four pointers to the entry points of the
three procedures implementing the operator (open, next, and
close) and a state record. All state information for an
iterator is kept in its state record; thus, an algorithm may
be used multiple times in a query by including more than
one state record in the query. An operator does not need
to know what kind of operator produces its input, and
whether its input comes from a complex query tree or from
a simple file scan. We call this concept anonymous inputs
or streams. Streams are a simple but powerful abstraction
that allows combining any number of operators to evaluate
a complex query. Together with the iterator control para-
digm, streams represent the most efficient execution model
in terms of time (overhead for synchronizing operators) and
space (number of records that must reside in memory at
any point of time) for single process query evaluation.

Calling open for the top-most operator results in
instantiations for the associated state record, e.g., allocation
of a hash table, and in open calls for all inputs. In this
way, all iterators in a query are initiated recursively. In
order to process the query, next for the top-most operator is
called repeatedly until it fails with an end-of-stream indica-
tor. Finally, the close call recursively "shuts down" all
iterators in the query. This model of query execution
matches very closely the one being included in the E pro-
gramming language design [24] and the algebraic query
evaluation system of the Starburst extensible relational data-
base system [22].

The tree-structured query evaluation plan is used to
execute queries by demand-driven dataflow. The return
value of next is, besides a status value, a structure called
NEXT RECORD that consists of a record identifier and a
record address in the buffer pool. This record is pinned
(fixed) in the buffer. The protocol about fixing and unfix-
ing records is as follows. Each record pinned in the buffer
is owned by exactly one operator at any point in time.
After receiving a record, the operator can hold on to it for
a while, e.g.,, in a hash mble, unfix it, e.g., when a predi-
cate fails, or pass it on to the next operator. Complex
operations like join that create mew records have to fix
them in the buffer before passing them on, and have to
unfix their input records.

For intermediate results, Volcano uses virtual devices.
Pages of such a device exist only in the buffer, and are
discarded when unfixed. Using this mechanism allows
assigning unique RID’s to intermediate result records, and
allows managing such records in all operators as if they
resided on a real (disk) device. The operators are not
affected by the use of virtual devices, and can be pro-
grammed as if all input comes from a disk-resident file and
output is written to a disk file.

4. The Operator Model of Parallelization

When porting Volcano to a multi-processor machine,
we felt it desirable to use the single-process query process-
ing code described above without any change. The result is
very clean, self-scheduling parallel processing. We call this
novel approach the operator model of parallelizing a query
evaluation engine. In this model, all issues of control are
localized in one operator that uses and provides the standard
iterator interface to the operators above and below in a
query tree,

The module responsible for parallel execution and
synchronization is called the exchange iterator in Volcano.
Notice that it is an iterator with open, next, and close pro-
cedures; therefore, it can be inserted at any one place or at
multiple places in a complex query tree. Figure 2 shows a
complex query execution plan that includes data processing
operators, e.g. file scan and join, and exchange operators.

This section describes how the exchange iterator
implements vertical and horizontal parallelism followed by a
detailed example and a discussion of alternative modes of
operation of Volcano’s exchange operator.

4.1. Vertical Parallelism

The first function of exchange is to provide vertical
parallelism or pipelining between processes. The open pro-
cedure creates a new process after creating a data structure
in shared memory called a port for synchronization and data
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Figure 2. Operator Model of Parallelization.

exchange. The child process, created using the UNIX fork
system call, is an exact duplicate of the parent process.
The exchange operator then takes different paths in the
parent and child processes.

The parent process serves as the consumer and the
child process as the producer in Volcano. The exchange
operator in the consumer process acls as a normal iterator,
the only difference from other iterators is that it receives its
input via inter-process communication rather than iterator
(procedure) calls.  After creating the child process,
open_exchange in the consumer is done. Next_exchange
waits for data to arrive via the port and returns them a
record at a time. Close_exchange informs the producer that
it can close, waits for an acknowledgement, and returns.

The exchange operator in the producer process
becomes the driver for the query tree below the exchange
operator using open, next, and close on its input. The out-
put of next is collected in packets, which are arrays of
NEXT RECORD structures. The packet size is an argument
in the exchange iterator’s state record, and can be set
between 1 and 32,000 records. When a packet is filled, it

is inserted into a linked list originating in the port and a
semaphore is used to inform the consumer about the new
packet. Records in packets are fixed in the shared buffer
and must be unfixed by a consuming operator.

When its input is exhausted, the exchange operator in
the producer process marks the last packet with an end-of-
Stream tag, passes it to the consumer, and waits until the
consumer allows closing all open files. This delay is
necessary in Volcano because files on virtual devices must
not be closed before all their records are unpinned in the
buffer. In other words, it is a peculiarity due to other
design decisions in Volcano rather than inherent in the
exchange iterator or the operator model of parallelization.

The alert reader has noticed that the exchange module
uses a different dataflow paradigm than all other operators.
While all other modules are based on demand-driven
dataflow (iterators, lazy evaluation), the producer-consumer
relationship of exchange uses data-driven dataflow (eager
evaluation). There are two reasons for this change in para-
digms. First, we intend to use the exchange operator also
for horizontal parallelism, to be described below, which is
easier to implement with data-driven dataflow. Second, this
scheme removes the need for request messages. Even
though a scheme with request messages, e.g., using a sema-
phore, would probably perform acceptably on a shared-
memory machine, we felt that it creates unnecessary control
overhead and delays. Since we believe that very high
degrees of parallelism and very high-performance query
evaluation require a closely tied network, e.g., a hypercube,
of shared-memory machines, we decided to use a paradigm
for data exchange that has has been proven to perform well
in a shared-nothing database machine [12, 13].

A run-time switch of exchange enables flow control
or back pressure using an additional semaphore. If the pro-
ducer is significantly faster than the consumer, the producer
may pin a significant portion of the buffer, thus impeding
overall system performance. If flow control is enabled,
after a producer has inserted a new packet into the port, it
must request the flow control semaphore. After a consumer
has removed a packet from the port, it releases the flow
control semaphore. The initial value of the flow control
semaphore, e.g., 4, determines how many packets the pro-
ducers may get ahead of the consumers.

Notice that flow control and demand-driven dataflow
are not the same. One significant difference is that flow
control allows some "slack" in the synchronization of pro-
ducer and consumer and therefore truly overlapped execu-
tion, while demand-driven dataflow is a rather rigid struc-
ture of request and delivery in which the consumer waits
while the producer works on its next output. The second
significant difference is that data-driven dataflow is easier to
combine efficiently with horizontal parallelism and partition-
ing.

4.2. Horizontal Parallelism

There are two forms of horizontal parallelism which
we call bushy parallelism and intra-operator parallelism. In
bushy parallelism, different CPU’s execute different subtrees
of a complex query tree. Bushy parallelism and vertical
parallelism are forms of inter-operator parallelism. Intra-
operator parallelism means that several CPU’s perform the
same operator on different subsets of a stored dataset or an



intermediate result?.

Bushy parallelism can easily be implemented by
inserting one or two exchange operators into a query tree.
For example, in order to sort two inputs into a merge-join
in parallel the first or both inputs are separated from the
merge-join by an exchange operation’. The parent process
turns to the second sort immediately after forking the child
process that will produce the first input in sorted order.
Thus, the two sort operations are working in parallel.

Intra-operator parallelism requires data partitioning.
Partitioning of stored datasets is achieved by using multiple
files, preferably on different devices. Partitioning of inter-
mediate results is implemented by including multiple queues
in a port. If there are multiple consumer processes, each
uses its own input queue. The producers use a support
function to decide into which of the queues (or actually,
into which of the packets being filled by the producer) an
output record must go. Using a support function allows
implementing round-robin-, key-range-, or hash-partitioning.

If an operator or an operator subtree is executed in
parallel by a group of processes, one of them is designated
the master. When a query tree is opened, only one process
is running, which is naturally the master. When a master
forks a child process in a producer-consumer relationship,
the child process becomes the master within its group. The
first action of the master producer is to determine how
many slaves are needed by calling an appropriate support
function. If the producer operation is to run in parallel, the
master producer forks the other producer processes.

Gerber pointed out that such a centralized scheme is
suboptimal for high degrees of parallelism [15]. When we
changed our initial implementation from forking all producer
processes by the master to using a propagation tree scheme,
we observed significant performance improvements. In such
a scheme, the master forks one slave, then both fork a new
slave each, then all four fork a new slave each, etc. This
scheme has been used very effectively for broadcast com-
munication and synchronization in binary hypercubes.

Even after optimizing the forking scheme, its over-
head is not negligible. We have considered using primed
processes, i.e., processes that are always present and wait
for work packets. Primed processes are used in many com-
mercial database systems. Since portable distribution of
compiled code (for support functions) is not frivial, we
delayed this change and plan on using primed processes

2 A fourth form of parallelism is inter-query parallelism,
ie., the ability of a database management system to work on
several queries concurrently. In the current version, Volcano
does not support inter-query parallelism. A fifth and sixth form
of parallelism that can be used for database operations involve
hardware vector processing [30] and pipelining in the instruction
execution. Since Volcano is a software architecture and follow-
ing the analysis in [8], we do not consider hardware parallelism
further.

3 In general, sorted streams can be piped directly into the
join, both in the single-process and the multi-process case.
Volcano’s sort operator includes a parameter "final merge fan-in"
that allows sharing the merge space by two sort operators per-
forming the final merge in an interleaved fashion as requested by
the merge join operator.

only when we move to an environment with multiple

shared-memory machines*. Others have also observed the

high cost of process creation and have provided alternatives,
in particular "light-weight" processes in various forms, e.g.,
in Mach [1].

After all producer processes are forked, they run
without further synchronization among themselves, with two
exceptions. First, when accessing a shared data structure,
e.g., the port to the consumers or a buffer table, short-term
locks must be acquired for the duration of one linked-list
insertion. Second, when a producer group is also a consu-
mer group, i.e., there are at least two exchange operators
and three process groups involved in a vertical pipeline, the
processes that are both consumers and producers synchronize
twice. During the (very short) interval between synchroni-
zations, the master of this group creates a port which serves
all processes in its group.

When a close request is propagated down the tree
and reaches the first exchange operator, the master
consumer’s close_exchange procedure informs all producer
processes that they are allowed to close down using the
semaphore mentioned above in the discussion on vertical
parallelism. If the producer processes are also consumers,
the master of the process group informs its producers, etc.
In this way, all operators are shut down in an orderly
fashion, and the entire query evaluation is self-scheduling.

4.3. An Example

Let us consider an example. Assume a query with
four operators, A, B, C, and D such that A calls B’s, B
calls C’s, and C calls D’s open, close, and next pro-
cedures. Now assume that this query plan is to be run in
three process groups, called A, BC, and D. This requires
an exchange operator between operators A and B, say X,
and one between C and D, say Y. B and C continue to
pass records via a simple procedure call to the C’s next
procedure without crossing process boundaries. Assume
further that A runs as a single process, Ao, while BC and
D run in parallel in processes BCy to BC, and Dy to D,
for a total of eight processes.

A calls X’s open, close, and next procedures instead
of B’s (Figure 2a), without knowledge that a process boun-
dary will be crossed, a consequence of anonymous inputs in
Yolcano. When X is opened, it creates a port with one
input queue for Ao and forks BCo (Figure 2b), which in
turn forks BCy and BC (Figure 2c). When the BC group
opens Y, BCy to BC, synchronize, and wait until the Y
operator in process BC, has initialized a port with three
input queues. BC, creates the port and stores its location
at an address known only to the BC processes. Then BC,
to BC» synchronize again, and BC, and BC, get the port
information from its location. Next, BCy forks D (Figure
2d) which in turn forks D; to D35 (Figure 2e).

When the D operators have exhausted their inputs in
Do to D3, they return an end-of-stream indicator to the
driver parts of Y. In each D process, Y flags its last
packets to each of the BC processes (i.e., a total of 3xd=12
flagged packets) with an end-of-stream tag and then waits
on a semaphore for permission to close. The copies of the

*In fact, this work is currently under way.
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Figure 3f-h. Closing all processes down.
Y operator in the BC processes count the number of tagged C to Y’s next procedure will return an end-of-stream indi-
packets; after four tags (the number of producers or D cator. In effect, the end-or-stream indicator has been pro-
processes), they have exhausted their inputs, and a call by pagated from the D operators to the C operators. In due



tum, C, B, and then the driver part of X will receive an
end-of-stream indicator. After receiving three tagged pack-
ets, X’s next procedure in Ao will indicate end-of-stream to
A.

When end-of-stream reaches the root operator of the
query, A, the query tree is closed. Closing the exchange
operator X includes releasing the semaphore that allows the
BC processes to shut down (Figure 3f). The X driver in
each BC process closes its input, operator B. B closes C,
and C closes Y. Closing ¥ in BC, and BC, is an empty
operation. When the process BC, closes the exchange
operator Y, Y permits the D processes to shut down by
releasing a semaphore. After the processes of the D group
have closed all files and deallocated all temporary data
structures, e.g., hash tables, they indicate the fact to Y in
BCqy using another semaphore, and Y's close procedure
returns to its caller, C’s close procedure, while the D
processes terminate (Figure 3g). When all BC processes
have closed down, X’s close procedure indicates the fact to
Ao and query evaluation terminates (Figure 3h).

4.4. Variants of the Exchange Operator

There are a number of situations for which the
exchange operator described so far required some modifica-
tions or extensions. In this section, we outline additional
capabilities implemented in Volcano’s exchange operator.

For some operations, it is desirable to replicate or
broadcast a stream to all consumers. For example, one of
the two partitioning methods for hash-division [19] requires
that the divisor be replicated and used with each partition
of the dividend. Another example is Baru’s parallel join
algorithm in which one of the two input relations is not
moved at all while the other relation is sent through all
processors [4]. To support these algorithms, the exchange
operator can be directed (by setting a switch in the state
record) to send all records to all consumers, after pinning
them appropriately multiple times in the buffer pool.
Notice that it is not necessary to copy the records since
they reside in a shared buffer pool; it is sufficient to pin
them such that each consumer can unpin them as if it were
the only process using them. After we implemented this
feature, parallelizing our hash-division programs using both
divisor partitioning and quotient partitioning {19] took only
about three hours and yielded not insignificant speedups.

When we implemented and benchmarked parallel sort-
ing [21], we found it useful to add two more features to
exchange. First, we wanted to implement a merge network
in which some processors produce sorted streams merge
concurrently by other processors. Volcano’s sort iterator
can be used to generate a sorted stream. A merge iterator
was easily derived from the sort module. It uses a single
level merge, instead of the cascaded merge of runs used in
sort. The input of a merge iterator is an exchange. Dif-
ferently from other operators, the merge iterator requires to
distinguish the input records by their producer. As an
example, for a join operation it does not matter where the
input records were created, and all inputs can be accumu-
lated in a single input stream. For a merge operation, it is
crucial to distinguish the input records by their producer in
order to merge multiple sorted streams correctly.

We modified the exchange module such that it can
keep the input records separated according to their produc-
ers, switched by setting an argument field in the state

record. A third argument to next_exchange is used to com-
municate the required producer from the merge to the
exchange iterator. Further modifications included increasing
the number of input buffers used by exchange, the number
of semaphores (including for flow control) used between
producer and consumer part of exchange, and the logic for
end-of-stream. All these modifications were implemented in
such a way that they support multi-level merge trees, e.g., a
parallel binary merge tree as used in [7]. The merging
paths are selected automatically such that the load is distri-
buted as evenly as possible in each level.

Second, we implemented a sort algorithm that sorts
data randomly partitioned over multiple disks into a range-
partitioned file with sorted partitions, i.e., a sorted file dis-
tributed over multiple disks. When using the same number
of processors and disks, we used two processes per CPU,
one to perform the file scan and partition the records and
another one to sort them. We realized that creating and
running more processes than processors inflicted a signifi-
cant cost, since these processes competed for the CPU’s and
therefore required operating system scheduling. While the
scheduling overhead may not be too significant, in our
environment with a central run queue allowing processes to
migrate freely and a large cache associated with each CPU,
the frequent cache migration adds a significant cost.

In order to make better use of the available process-
ing power, we decided to reduce the number of processes
by half, effectively moving to one process per disk. This
required modifications to the exchange operator. Untl then,
the exchange operator could "live" only at the top or the
bottom of the operator tree in a process. Since the modifi-
cation, the exchange operator can also be in the middle of
a process’ operator tree. When the exchange operator is
opened, it does not fork any processes but establishes a
communication port for data exchange. The next operation
requests records from its input tree, possibly sending them
off to other processes in the group, until a record for its
own partition is found.

This mode of operation’ also makes flow control
obsolete. A process runs a producer (and produces input
for the other processes) only if it does not have input for
the consumer. Therefore, if the producers are in danger of
overrunning the consumers, none of the producer operators
gets scheduled, and the consumers consume the available
records.

In summary, the operator model of parallel query
evaluation provides for self-scheduling parallel query evalua-
tion in an extensible database system. The most important
properties of this novel approach are that the new module
implements three forms of parallel processing within a sin-
gle module, that it makes parallel query processing entirely
self-scheduling, and that it did not require any changes in
the existing query processing modules, thus leveraging signi-
ficantly the time and effort spent on them and allowing
easy parallel implementation of new algorithms.

3 Whether exchange forks new producer processes (the ori-
ginal exchange design describe in Section 4.1) or uses the exist-
ing process group to execute the producer operations is a run-
time switch.



5. Overhead and Performance

From the beginning of the Volcano project, we were
very concerned about performance and overhead. In this
section, we report on experimental measurements of the
overhead induced by the exchange operator. This is not
meant to be an extensive or complete analysis of the
operator’s performance and overhead; the purpose of this
section is to demonstrate that the overhead can be kept in
acceptable limits.

We measured elapsed times of a program that creates
records, fills them with four random integers, passes the
records over three process boundaries, and then unfixes the
records in the buffer. The measurements are elapsed times
on a Sequent Symmetry with twelve Intel 16 MHz 80386
CPU’s. This is a shared-memory machine with a 64 KB
cache for each CPU. Each CPU delivers about 4 MIPS in
this machine. The times were measured using the hardware
microsecond clock available on such machines. Sequent’s
DYNIX operating system provides exactly the same inter-
face as Berkeley 4.2 BSD or System V UNIX and runs
(i.e., executes system calls) on all processors.

First, we measured the program without any exchange
operator. Creating 100,000 records and releasing them in
the buffer took 20.28 seconds. Next, we measured the pro-
gram with the exchange operator switched to the mode in
which it does not create new processes. In other words,
compared to the last experiment, we added the overhead of
three procedure calls for each record. For this run, we
measured 28.00 seconds. Thus, the three exchange opera-
tors in this mode added (28.00sec - 20.28sec) / 3 / 100,000
= 25.73pusec overhead per record and exchange operator.

When we switched the exchange operator to create
new processes, thus creating a pipeline of four processes,
we observed an elapsed time of 16.21 seconds with flow
control enabled, or 16.16 seconds with flow control dis-
abled. The fact that these times ars less than the time for
single-process program execution indicates that data transfer
using the exchange operator is very fast, and that pipelined
multi-process execution is warranted.

We were particularly concemned about the granularity
of data exchange between processes and its impact on
Volcano’s performance. In a separate experiment, we reran
the program multiple times varying the number of records
per exchange packet. Table 1 shows the performance for
transferring 100,000 records from a producer process group

through two intermediate process groups to a single
Packet Size  Elapsed Time
[Records] [Seconds]
1 176.4
2 97.6
5 45.27
10 27.67
20 20.15
50 15.71
100 13.76
200 12.87
250 12.73

Table 1. Exchange Performance.

consumer process. Each of these three groups included
three processes; thus, each of the producer processes created
33,333 records. All these experiments were conducted with
flow control enabled with three “slack" packets per
exchange. We used different partitioning (hash) functions
for each exchange iterator to ensure that records were pass-
ing along all possible data paths, not only along three
independent pipelines.

As can be seen in Table 3, the performance penalty
for very small packets was significant. The elapsed time
was almost cut in half when the packet size was increased
from 1 to 2 records, from 176 seconds to 98 seconds. As
the packet size was increased further, the elapsed time
shrank accordingly, to 15.71 seconds for 50 records per
packet and 12.73 seconds for 250 records per packet.

It seemed reasonable to speculate that for small pack-
ets, most of the elapsed time was spent on data exchange.
To wverify this hypothesis, we calculated regression and
correlation coefficients of the number of data packets
(100,000 divided over the packet size) and the elapsed
times. We found an intercept (base time) of 12.18 seconds,
a slope of 0.001654 seconds per packet, and a correlation
of more than 0.99. Considering that we exchanged data
over three process boundaries and that on two of those
boundaries there were three producers and three consumers,
we estimate that the overhead was 1654usec / 1.667 =
992usec per packet and process boundary,

Two conclusions can be drawn from these experi-
ments.  First, vertical parallelism can pay off even for very
simple query plans if the overhead of data transfer is small.
Second, since the packet size can be set to any value, the
overhead of Volcano’s exchange iterator is negligible.

6. Summary and Conclusions

We have described Volcano, a new query evaluation
system, and how parallel query evaluation is encapsulated in
a single module or operator. The system is operational on
both single- and multi-processor systems, and has been used
for a number in database query processing studies [19-
21,23].

Volcano utilizes dataflow techniques within processes
as well as between processes. Within a process, demand-
driven dataflow is implemented by means of iterators.
Between processes, data-driven dataflow is used to exchange
data between producers and consumers efficiently. If neces-
sary, Volcano’s data-driven dataflow can be augmented with
flow control or back pressure. Horizontal partitioning is
used both on stored and intermediate datasets to allow
intra-operator parallelism.  The design of the exchange
operator embodies the parallel execution mechanism for
vertical, bushy, and intra-operator parallelism, and it per-
forms the transitions from demand-driven to data-driven
dataflow and back.

Using an operator to encapsulate parallelism as
explored in the Volcano project has a number of advantages
over the bracket model. First, it hides the fact that paral-
lelism is used from all other operators. Thus, other opera-
tors can be implemented without consideration for parallel-
ism. Second, since the exchange operator uses the same
interface to its input and output, it can be placed anywhere
in a tree and combined with any other operators. Hence, it
can be used to parallelize new operators, and effectively



combines extensibility and parallelism. Third, it does not
require a separate scheduler process since scheduling
(including initialization, flow control, and final clean-up) is
part of the operator and therefore performed within the stan-
dard open-next-close iterator paradigm. This turns into an
advantage in two situations. When a new operator is
integrated into the system, the scheduler and the template
process would have to be modified, while the exchange
operator does not require any modifications. When the sys-
tem is ported to a new environment, only one module
requires modifications, the exchange iterator, not two
modules, the template process and the scheduler. Fourth, it
does not require that operators in a parallel query evaluation
system use IPC to exchange data. Thus, each process can
execute an arbitrary subtree of a complex query evaluation
plan.  Fifth, a single process can have any number of
inputs, not just one or two. Finally, the operator can be
(and has been) implemented in such a way that it can mul-
tiplex a single process between a producer and a consumer.
In some respects, it efficiently implements application-
specific co-routines or threads.

We plan on several extensions of the exchange opera-
tor. First, we plan on extending our design and implemen-
tation to support both shared and distributed memory
("shared-nothing architecture") and to allow combining these
concepts in a closely tied network of shared-memory multi-
computers while maintaining the encapsulation properties.
This might require using a pool of "primed" processes and
interpreting support functions. We believe that in the long
run, high-performance database machines, both for transac-
tion and query processing, will employ this architecture.
Second, we plan on devising a error and exception manage-
ment scheme that makes exception notification and handling
transparent across process and machine boundaries. Third,
we plan on using the exchange operator to parallelize query
processing in object-oriented database systems [16]. In our
model, a complex object is represented in memory by a
pointer to the root component (pinned in the buffer) with
pointers to the sub-components (also pinned) and passed
between operators by passing the root component [18].
While the current design already allows passing complex
objects in a shared-memory environment, more functionality
is needed in a diswributed-memory system where objects
need to be packaged for network transfer,

Volcano is the first implemented query evaluation
system that combines extensibility and parallelism. Encap-
sulating all parallelism issues into one module was essential
to making this combination possible. The encapsulation of
parallelism in Volcano allows for new query processing
algorithms to be coded for single-process execution but run
in a highly parallel environment without modifications. We
expect that this will speed parallel algorithm development
and evaluation significantly. Since the operator model of
parallel query processing and Volcano’s exchange operator
encapsulates parallelism and both uses and provides an itera-
tor interface similar to many existing database systems, the
concepts explored and outlined in this paper may very well
be useful in parallelizing other database query processing
software.
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