A Proof of Exponential
“Permutation Complexity”*

Roldon Pozo and Karl Winklmann

CU-CS-455-90 January 1990

%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

*Work supported in pert by NSF grant OCR-8702275

A proof of exponential

“permutation complexity”*

Roldan Pozo and Karl Winklmann'

January 4, 1990
Tech. Rep. CU-CS-455-90

Abstract

Some nonregular languages can be recognized by a finite-state machine if
we allow the machine to read not only the input string = but also a suitable
collection of permutations of . (For each input length n there is a set of
permutations ﬂ%”),wgn), . ..,71'5?71). The same ¢(n) permutations are applied to
each input string of length n.)

We show that for some languages the necessary number of permutations is
exponential in the size of the input. This “permutation complexity” is a version
of time complexity in a machine model consisting of finite-state machines with
permutation-generating preprocessors.

*Work supported in part by NSF grant CCR-8702275
TAuthors’ address: Department of Computer Science, University of Colorado at Boulder, Boulder,

Colorado 80309-0430

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

Pozo and Winklmann

1 Introduction

Exponential lower bounds on computational time complexity appear hard to
prove: it is widely conjectured that P # N P but no proof has been found. One
possible way out of such an impasse is to try to prove exponential lower bounds
in weak models of computation. The hope, of course, is ultimately to develop
proof techniques that work in standard models.

The model we consider amounts to finite-state machines augmented by pre-
processors that generate permutations of the input. We do not restrict the
computational power of these preprocessors — except that they have to be
“oblivious”: they may generate arbitrarily complex (even noncomputable) col-
lections of permutations of the input as a function of the input length but they
may not inspect the actual input characters. Thus the model can solve quite
complicated problems, even some that are unsolvable in standard models of
computation, but it still is weak in the sense that the finite-state machines may
need to look at many permutations of the input to detect properties that a
stronger model could detect much more quickly.

The result is about time complexity in such a model. The proof uses stan-
dard techniques from automata theory and combinatorial lemmas about strings.

2 Permutation complexity

2.1 Examples

The language Ly = {(ab)" : n > 0} is regular. The language Ly = {a™b" : n >
0} is not. However, if we presented the bits of an arbitrary string

T = 212903 Tpeglpn.1Ty € {a,b}* (1)
to a suitable finite-state machine in the order
T(T) = T1TpToTp—1T3Tp—2 * - * 2)

then the machine could decide whether or not the original string « was in Ls.
In this sense, L is only a permutation away from being regular. We say that
L, has a “permutation complexity” of 1. (Strictly speaking, = is not a single
permutation but rather a sequence of permutations 7(" : {a,5}" — {a,b}",n >
0. For simplicity we write 7(z) instead of 7(l)(z).)

As another example, consider the language Ly U Ly. Let m be the same
permutation as above. Then there is a finite-state machine M with

¢ € LiULy < {r(z),z}n L(M) # 0. (3)

A proof of exponential “permutation complexity”

We say that Ly U Ly has a “permutation complexity” of 2 or less. (In this
example, the second permutation is the identity.)

Other languages are more complex. Consider the language B = {z €
{a,b}* : x is balanced}, where a string z is called balanced if the number of
occurrences of the character a in z differs by at most one from the number of
occurrences of the character b. This language B has exponential permutation
complexity: for there to exist a finite-state machine M with

¢ € B <= {m(z): 1 <i< q(lz))}n L(M) # 0, (4)

an exponential number ¢ of permutations is necessary and sufficient. This is
the result of the present paper.

2.2 Definitions

We use standard terminology and notation from automata theory as found in
any of a number of textbooks, for example [HU79,DW83,L.P81]. In addition,
a permutation machine P =< M,II > is defined to consist of a finite-state
machine M and a collection II of permutations Wl(n) :{a,b}" — {a,b}",n >0
and 1 <7 < g(n). The function ¢ is the complezity of the machine P. A string
z € {a,b}* is accepted by P if

{(x"D(2) 11 <i < q(lz))} N L(M) £ 0. (5)

The language accepted by P is the set of all strings in {a, b}* that are accepted
by P.

3 An exponential lower and upper bound

Recall that a string @ € {a,b}* is balanced if the number of occurrences of the
character a in z differs by at most one from the number of occurrences of the
character b.

Theorem 1 The language B = {z € {a,b}* : is balanced} is accepted by a
permutation machine of complexity no more than ¢; + ¢3, for some constants
¢y and ca.

Proof We consider only strings of even length. Strings of odd length can be
handled very similarly.

Pozo and Winklmann

We define a suitable collection of permutations 7rz(2n) :{a, b} - {a,b}?",n >
0 and 1 <4 < ¢(2n), for which

zeB e {x"V@):1<i<q(z))}n Ly £, (6)

where L; = {(ab)" : n > 0}. We define (27?) permutations for each n > 0:

one permutation wf;?n) for each subset S C {1,...,2n} of size n. The per-
mutation Wan) is chosen to map S onto {1,3,5,...,2n — 1} (and hence maps
{1,...,2n}\ S onto {2,4,6,...,2n}). (We choose an arbitrary permutation
from among the many that satisfy this requirement.) Let z be an arbitrary
balanced string of length 2n. Then 7r(S2”)(a:) = (ab)" for § = {¢: 2; = a}, which
proves the implication from left to right in (6). The implication from right to
left is easily seen to be true because all 7rf§2n) are permutations and because Ly

contains only balanced strings. D

Theorem 2 Any permutation machine that accepts the language B = {z €
{a,b}* : & is balanced} is of complexity at least ¢y + ¢%, for some constants c;
and cg with ¢g > 1.

Proof Again we consider only strings of even length.
Let W§n) : {a,b}" = {a,b}",n > 0 and 1 < i < ¢(n), be a collection of
permutations and M a one-way finite-state machine such that

z€B = {n"(2):1<i<qle)}n L(M) £0, (7)

for all 2 € {a,b}*. Let k be the number of states of M. We may assume that
k is even.

A string y € {a,b}* is k-shuffled if in every substring of y, the number
of occurrences of the character a differs by at most k from the number of
occurrences of the character b.

Claim 1 If M accepts y then y is balanced and k-shuffled.

Proof 1. If y were not balanced then neither would be z = (W%‘yi)"l(y),
contradicting (7).

2. Assume that M accepts some balanced string y € {a,b}* that is not
k-shuffled. Without loss of generality we can assume that some substring w of
y has k£ + 1 more occurrences of the character ¢ than of the character b. Let
t;yt =1,...,k+1, the length of the shortest prefix of w that has exactly ¢ more

A proof of exponential “permutation complexity” 5

b b a a a b a a b -+ a

Figure 1: An example of a substring w of y in the proof of Claim 1.

occurrences of the character a than of the character b. Figure 1 illustrates this.
Since M has only k states it must be in the same state at two positions ¢; and
t;, for some i < j. By a standard pumping argument M will also accept a string
y’ which is obtained from y by inserting at position ¢; two more copies! of the
segment between ¢; and ¢;. Such a string y’ is not balanced: it has 2x(j—¢) > 1
more occurrences of the character a than of the character b.

m.o—1
Consider the string 2’ = (ﬂ'{ly |)) (y"). This string 2’ is unbalanced, because

my.—1 /
y' is and because (7r9y l)) is a permutation. But the string 3’ = 7r9:” D(:z:’) is
accepted by M, contradicting (7). D

Claim 2 For every balanced z, at least one of the strings W@(l:tl)@)} 1<i<
q(|z|), is k-shuffled.

Proof By (7), M accepts at least one string y among wflxl)(x), 1< i< g(lz]).
By Claim 1, such a string has to be k-shuffled. D

What remains to be shown is that there are relatively few k-shuffled bal-
anced strings of length 2n when compared to all balanced strings of length 2n.
In light of Claim 2, this then implies that many permutations are needed to
achieve the reduction in (7).

Claim 3 There are <2,,;7) balanced strings in {a,b}*".

Proof This is a basic fact about binomial coefficients. D

Claim 4 For each k > 1 there is a constant ¢, > 0 such that the number of
k-shuffled balanced strings in {a,b}?™ is bounded from above by (4 — ex)™.

MInserting just one copy would not do because it might result in a string of odd length in which
the number of occurrences of the character a differs by one from the number of occurrences of the
character b — still a balanced string by our definition.

Pozo and Winklmann

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
0 5 10 10 5
0 5 15 20 15 5
0 20 35 35 20
0 20 55 70 55 20
0 75 125 125 75
0 75 200 250 200 75
0 0
0 0

Figure 2: The 9-column version of Pascal’s triangle.

Proof The number of all balanced strings in {a,b}?" is (27%7’), which is the

middle entry in the (2n + 1)-st row of Pascal’s triangle. Similarly, the number
of k-shuffled balanced strings is the middle entry in the (2n + 1)-st row of a
“(2k + 1)—column version” of Pascal’s triangle: all entries outside the middle
2k 4+ 1 columns are set to zero and each entry in the middle 2k + 1 columns is
the sum of its two neighbors in the row above (with the topmost 1 being the
obvious exception). Figure 2 shows the 9-column version, for & = 4. We show
that the numbers in the middle column of this (2k + 1)-column triangle grow
by no more than a factor of 4 — ¢; from one such number to the next, for some
constant €, > 0. (This is in contrast to the full Pascal’s triangle, where this
growth factor approaches a limit of 4.)
Let

(8)

be the (k + 1)-st row of the (2k 4+ 1)-column triangle. (This is the last row on
which the (2k +1)-column triangle agrees with the full triangle. In the example
of Figure 2 it is the row containing 1 4 6 4 1. Since we assumed k to be even,
this row indeed does have form (8).) Choose €; > 0 small enough so that

ar Q-1 -+ a1 ago a1 ap—1 ag

A proof of exponential “permutation complexity”

ap < (4 = ;)" (9)

and
a; < agx (1 — e x2Y), (10)
for ¢ = 1,...,k. Such a constant ¢ exists because ag = (%f) < 4% for any

k > 1 and because ag is larger than any other entry in the row.
Let
b bp—1 o+ b1 bo b1 e bpoa bk (11)

be the numbers in the (k4 3)-rd row, i.e., two rows below. It is straightforward
to verify that

bo < ap X (4 —) (12)

and that _
b <ap X (4—¢€x) X (1—e x2, (13)
for i = 1,...,k. We may replace the actual value of by by its upper bound
bo' = ap X (4 — €) from (12) and recompute accordingly all the values in the

triangle that depend on it. This is valid because it can only make the values
larger for which we are proving upper bounds. Then condition (10) is satisfied

again, with by’ and b;, 7 = 1,...,k, in place of ag and a;, 1 = 1,...,k:
bi < bo' x (1 — ¢ x 2V, (14)
for ¢ = 1,..., k. Inductively, the entries in the middle column do not grow by

more than a factor of 4 — ¢ from row 2n 4 1 to row 2n + 3, for any n > k/2.
Combined with (9), this proves the Claim. []

By Claim 2, each of the < 2:) balanced strings in {a, b}*" must be mapped

into a k-shuffled balanced string by at least one of the permutations ﬂ'z@"),
i =1,...,¢(2n). Thus the number ¢(2n) of permutations has to be at least as
large as the number of balanced strings in {a,b}?" divided by the number of
k-shuffled balanced strings in {a,b}?™:

() a-or

4n
X (4—)" x (1+0(2))

q(2n)

v

Pozo and Winklmann

(The second inequality is justified by Stirling’s approximation for n!.) This
implies that ¢(2n) > ¢; + ¢, for all n > 0 and some constants ¢; and ¢, with
c > 1.

4 An open question

One way to strengthen our model is to let the finite-state machine look not
only at each permutation separately but to let it inspect a single string that
contains all the permutations, e.g., a string of the form

<><>7r£")(w)Oﬂgn)(w)Owan)(a:)O e Oﬂ(g?i)(w)OO (15)

where & is some special character. This immediately suggests a further strength-
ening of the model. Instead of insisting that the string presented to the finite-
state machine be of the form shown in (15), we can allow any sequence that
consists of repeated occurrences of input characters and special characters. Of
course, this kind of “repetition sequence” needs to be defined in an “oblivi-
ous” way, i.e., without knowledge of the actual input characters, just like the
permutations in our basic model were. Can our proof be adapted to this model?

References

[DW83] Martin D. Davis and Elaine J. Weyuker. Computability, Complexity,
and Languages. Academic Press, New York, 1983.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison Wesley, Reading, 1979.

[LP81] H. R. Lewis and C. H. Papadimitriou. FElements of the Theory of
Computation. Prentice Hall, Englewood Cliffs, 1981.

