Data Dependence Analysis

For Supercompilers:
The X Test Revisited
Dirk Grunwald

CU-CS-452-89 November 1989

&

University of Colorado at Boulder

Technical Report CU-CS-452-89
Department of Computer Science
Campus Box 430
University of Colorado
Boulder, Colorado 80309

Data Dependence Analysis

For Supercompilers:

The X Test Revisited

Dirk Grunwald
November 1989

Abstract
In [LYZ89b, LYZ89a)], Li, Yew and Zhu describe the A-test for analysis of data depen-

dence between array references. Li et al measured the efficacy of the A-test, and found that it
determines non-dependence in many cases where another common test, the Wolfe-Banerjee
subscript-by-subscript test, indicated dependence. In this report, we show their algorithm
is a simple, yet effective, generalization of the subscript-by-subscript test. A simplified

implementation for the algorithm is given, and several examples are provided.

1 Introduction

In [LYZ89b, LYZ89a], Li, Yew and Zhu describe the A-test for analysis of data dependence be-
tween array references. Li et al measured the efficacy of the A-test, and found that it determines
non-dependence in many cases where another common test, the Banerjee-Wolfe subscript-by-
subscript test, indicated dependence. In sample scientific libraries, Li et al found the A-test

increased the average execution time for dependence analysis by approximately 50% to 70%.

At first reading, [LYZ89b, LYZ89a] does not clearly define the mechanics of an actual
implementation. In this report, we present their algorithm in a clearer framework. A simplified
implementation for the algorithm is given, and several examples are provided. These examples
show that the A-test is simple to understand and efficient to implement. Moreover, we show that
the A-test subsumes the Banerjee-Wolfe subscript-by-subscript test and subscript linearization.

We also illustrate the reason for the increased execution time reported by Li [LYZ89b, LYZ89a).

2 Problem Statement

We are concerned with potential data dependence between multiply subscripted array refer-
ences within multiple nested loops. In general, we’re concerned with arrays references with s

subscripts nested in [loops,
DO I; = L1,Uy, 0y
DO I, = L,U;,N2

DO I; = L;,U, N
S1: A(fl(IlsI2’ °"oIl)o f2(11’123 '-'911)9 veey fa(Il:I2: “'!Il))

52: A(gl(II»IZs ---»Il)9 g2(IlsI2n “-’Il): vy ga(IlsI29 ---aIl))
END
END
END

We assume each function, f; or g;, is a linear function of the iteration variables. We let 7 and
7 be vectors of particular instances of the iteration variables, I3, I, ..., I; for some execution

of the loops. Dependence between S1 and S2 can only exist when

7 st Vicwss Fo(@) = a().

In short, there must exist instances of the iteration variables such that S1 and S2 explicitly refer
to the same array location within the same iteration. If there exist any k such that fk(Z) # gk(f)
for all instances of the iteration variables ¢ and 7, we can dismiss any possibility of dependence

between S1 and S2, assuming that all array subscripts match the array dimensions.

We can restate our constraints as a series of s equalities in 2/ variables: array references S1

and S2 are dependent iff we can show that, for some 7, 7,

A@O-a(f) = 0
and f(7) — g2(7) = 0
: (1)
and f,(7) - g,(7) = o.

In other words, all subscripts must be equal for the iteration.
A coupled array reference involves multiple iteration variables in one or more array sub-
scripts. In an empirical study of array subscripts, Shen, Li and Yew [SLY89] showed that cou-
pled subscripts constitute 30% of two dimensional array references. Li et al [LYZ89b, LYZ89a]

show that the Banerjee-Wolfe subscript-by-subscript test can falsely indicate dependence in

array references involving coupled subscripts. For example, in the following program

REAL A4(100,100)

D0 I=1,100
D0 J=2,100
S1i: (I, J) = ...
S2: v = X(3, I
ENDDO
ENDDO

the Banerjee-Wolfe subscript-by-subscript [BCKT79, Wol82, Ban88, Wol89] test indicates de-
pendence with all direction vectors. By comparison the A-test demonstrates dependence with
specific direction vectors: 81 §(.) 52, S1 §—) S2, S1 6(>,<) 82. This allows the inner loop

to be parallelized, because we know there is no dependence with direction S1 b(<,=) 52.

3 The A-test As Originally Formulated

In the A-test, we solve a less exact problem: can we find multiplicative constants Ay, Az, ..., A,

such that a linear combination of our equalities are zero:

M(fi(3) = 01(3)) + Ae(f2(D) = 92(D) + - -+ Xe(£s(5) — 92(7)) = 0 (2)

We call any particular combination (A1, Az,...,A;) & A-tuple. In the special case of double
subscripted loops, or s = 2, we call (A1, Az) a A-pair.

Clearly, (2) is a less precise test than (1). There are instances where the individual terms of
(2) are non-zero, indicating independence, while their sum is zero, indicating dependence. The
choice of the A-tuple is arbitrary because (2) is an approximation (1). If all terms of (1) are
zero, indicating dependence, then any A-tuple will also produce zero, indicating dependence.

Thus, (2) is a conservative approximation of our actual goal.

Li et al [LYZ89b, LYZ89a] show that each linear equation of (1) defines a hyperplane = in
R?! space. The intersection of these hyperplanes, called S, corresponds to the common solutions
of the linear equations. Hyperplanes defining the possible iteration space delimit a bounded
convex set V in R¥. If § is empty, or if S does not intersect V, there can be no dependence

between the two array references.

¥, >0
¥, <0

Figure 1: Two Possible ¥-lines in R?

Li et al show that § and V' can be shown to intersect if there exists a hyperplane 7 corre-
sponding to a linear combination of inequalities in (1). Li rewrites (2) using a vector of iteration

variables, v

< Z A1, ’£7> + Z Aic; =0 (3)

1<i<s 1<i<s
where < 4, ¥ > denotes the inner product of vector u; and ¥, and w; is a vector of constants

particular to the function f; — ¢; in (1).

We can rewrite the equality using a A-tuple to define (3) as a hyperplane in ®2!, The A-tuple
can be any tuple in R°. For example, consider a double subscript array reference, where (3)

becomes

Ar(u1,1v1 + ug,2v2 + €1) + Ag(ug,1v1 + Uz v +¢1) = 0

vi(Arua,1 + Agug1) + va(Arus; 4+ Agusz) = —(Aer + Age)

The coefficients of v; and v, define so-called U-lines in R*; see Figure 1. Each ¥-line divides
R* into two sections, ¥; > 0 and ¥; < 0. The intersection of two U-lines defines a A-cone.
Within a A-cone, no function defining a ¥-line can change its sign. The A-test as defined by
Li et al defines vy and vp,q, for each A-cone; these vectors are substituted in (3) to produce
minimal and maximal values of (3) within the A-cone. When considering dependence direction
vectors, additional lines, called ®-lines, are used to subdivide R* into additional A-cones. The
definition of ¥-lines and ®-lines are somewhat involved, as is the computation of vy, and Vpmege.

The interested reader is referred to [LYZ89b, LYZ89a].

4 The A-test Revisited

We begin our explanation using (2). The A-test, like the Banerjee-Wolfe inequalities, computes
lower and upper bounds for the left hand side of (2). The equality is conservatively recast as
an inequality; dependence is assumed if the lower bound, LB, and upper bound, UB, bracket
zero. Both LB and UB are computed using the loop limits of individual loops, L; and U;, as
well as the loop increment, N;. We compute a unique LB and U B for each A-tuple chosen. Our
goal is to demonstrate independence between two array references or to determine dependence
with a particular dependence direction, ¥. We do so by selecting a A-tuple, computing UB and
LB and proclaiming dependence if

LB<LO0LUB.

In practice, we collect all constants in each term of (2) into a constant C, unique for each

A-tuple and then proclaim dependence if
LB'<C<LUPB,

where LB' and UB' are computed from (2) with the constants collected on the right hand
side. The lower and upper bounds are actually computed from lower and upper bounds for
each element of the iteration vector. Each bound, LB; or UB;, corresponds to the minimum or
maximum for the 5** element of the iteration vectors; for example, the i** lower bound is
LB; = Omini > MGk,
1<k<s
and the upper bound is similar. Thus, our basic test is that we declare dependence if, for a
particular A-tuple we can show
> LBi<—(3 Mep)< Y UB,
1<i<2l 1<p<s 1<i<l

where LB; and UB; are the lower and upper bounds for a particular A-tuple. Our task, then, is
to determine what A-tuples should be selected, and, given those A-tuples, what are appropriate

values for LB; and UB;.

Presented this way, we see the relationship between the A-test and subscript-by-subscript
tests using Banerjee-Wolfe inequalities [BCKT79, Wol82, Ban88, Wol89]. Consider the \-test
with the A-tuple (1,0,...,0). In effect, this causes the A-test to only examine the equations

involving the first subscript. With this A-tuple, manipulation of (2) shows that the A-test
subsumes the subscript-by-subscript test. The latter is a special case using a particular set of

A-tuples:

A = {(1,0,...,0,0), (0,1,...,0,0),

cevy (0,0,...,1,0), (0,0,...,0,1)}.
For example, in the following code fragment

REAL A(100,100)
DO I=1,100
D0 J=2,100
S1i: X(I, J) =...
$2: o= X(3, I)
ENDDO
ENDDO

the dependence equation (2) becomes
MI=-JTY+ X ~-I')=0,

where I' and J' refer to variables I and J in another iteration. If we select (A1, Az) = (1, 0), this
equality becomes I = J', while (A;, A2) = (0,1) produces J = I'. These are precisely the depen-
dence relations used in testing the first and second subscripts in the Banerjee-Wolfe subscript-
by-subscript test. The additional computation for the A-test reported by Li [LYZ89b, LYZ89a]
arises from a larger set A, and the concomitant examination of the additional inequalities. In
the subscript-by-subscript test, the set A has s elements, one for each subscript. As presented
in [LYZ89b, LYZ89a)], the A-test typically uses a set with 2s elements, or 3s elements when con-
sidering dependence direction vectors. The A-test need not always take longer, because early

detection of independence terminates the test.

A suitable A-tuple also shows that the A-test subsumes the linearized subscript test, another
common data dependence test. Recall that each); is associated with subscript . We can restate
(2) as

MAE) + Xfa@) + -+ Ao Fo(50) = Mg1(8) + Xaga(B) + - + g (3) (4)

Assume our array, A, has span S; in dimension 7 and that we are using a language such as

FORTRAN, with column major ordering. If we let A; = 1 and
Xi=][s«
1<k<i
for i > 1, each term in (4) refers to the linearized address of the array members identified by

the references, if arrays originate at zero. If, as in FORTRAN, arrays originate at one, the array

references can be shifted to zero. For example, consider the following code fragment:

REAL A(100,100)

DO I=1,100
DO J=2,100
S1: (1, J) =...
S2: .. = X(J, I)
ENDDO
ENDDO

Because the array has span 100, a linearized reference for A(I,J) is A(I + J*100 - 100),
and 4(J,1) is linearized as A(J+I*100 - 100). The A-pair (1, 100) yields the following equality
from (4).

L fu(6,)) #1005 f((i= 1), (G~ 1) = Lxga(d',5) + 100 % ga((= 1), (7' - 1))

i+100% (5 —1) 7'+ 100 (3" - 1)

i+ 1005 — 100 j'+ 1004 — 100

This is precisely the equality used in the linearized array test.

We have shown that the A-test subsumes two common inexact dependence tests. In the
remainder of this paper, we consider implementations for the case s = 2, or doubly subscripted

array references, and follow with the more general solution for arbitrary array references.

5 Double Subscripted Array References

For the case s = 2, or array references with double subscripts, our canonical example is

DO I; = L;,U1, N
DO I = Lg,Up,N,

DO I; = L;,Us, N
S1: ACE1(T1,I2, ovobIp), £2(11,Io, ...,I))

S2: A(g1(I1,Iz, eI, 82(11.3[2, e Ip)
END

END
END

Our test for dependence is thus

A@) -a(f) = 0
£(3) - g2(7)

Il
o

or, restated as a linear combination of the two equations,

A (£1(3) — 1() + X2(f2(5) — g2(7)) = 0 (5)

We define a vector,
¥ = (i19i2"")ilbjlajZ"",jl)

combining both 7 and j. We enumerate the terms of fi and ¢4

fi = avitavet...+autc)

91 = —Q1V41 + QU oo+ — QU — C;'+1 ’
where the vector of constants @ is determined from the subscript expressions in the program.
This allows us to recast the equality f1(7) — g1(7) = 0 as @7 + ¢; = 0 where ¢; = ¢} + ¢’ and

vT is the transpose of vector v. We define a similar constant vector b for the second equality,

and recast (5) as
/\1(c'ivT +e1) + Az(EvT +¢) = 0

/\16’0T + AgEvT = -(Alcl + AgCg)
(/\1(1‘+ Azl-)')’vT = --(}\161 + Ang) .

This equality is isomorphic to (3) for double-subscripted arrays; we have simply used a more
common notation for the dot-product. Later, we will discard explicit determination of v,,;,, and
Vmaz, but we initially follow the same goal as Li et al, and try to find constant vectors v, and

Vmaez Such that

Vo€ lLyolh]X[Laela] o [Lel] s (M8 + A2B)0D i < (M@ + Agb)oT < (M@ + AgB)ol,, .
We will assume a possible dependence exists if

(A1(_1:+ /\25)’03;.,;" S -—(}\101 + AzCz) S (A16+ Azg)vT (6)

max *

At first blush, it would not appear that we have reduced the complexity of our original problem;
instead of our original two equations in 2! variables, we now have one equation in 2/+ s variables.
However, we can select values of A; and A, that simplify the equation, and allow us to compute
Vmin 80d Vpmae. If we can show independence for any A-pair, we can show independence for the

original problem.

Consider the expanded version of (6):
(@1 + Ba2)oT = (e) + bidg)vs + (@2Xs + baAz)va + .o+ (@2 dar + bagAar)vyy (7

We can select arbitrary A-pairs. However, in the original A-test, Li et al select A-pairs such
that each pair reduces a single term in (7) to zero. In their terminology, this corresponds to
selecting a A-pair defining a ¥-line in R*. For example, the first term, (a3 A; + b1 Az)v; can be

zeroed when

(1,0) if a3 =0
(A1, A2) = (0,1) if b, =0

(b1, —a1) otherwise.

This reduces the problem to 2/ — 1 variables because the first term, Aja; + A2b;, becomes zero.
The specific value of v; can be ignored because the product (a;A; + b1Az)vy will always be
zero. Selection of A; and A, also determines the sign of each constant term, (a;\; + b;);).
This, coupled with bounds for ¥ allow us to determine v,;, and vye,. Figure 2 shows our
first algorithm for the double-subscripted version of the A-test; this algorithm will be refined

later. Determination of v, and vy, differs with the dependence direction vector. In the

DEPENDENCE? = True;
Li: For i = 1, 21 do
determine Ay, g
determine vmins Umaz
if (}\1&'-{- Azg)viin > —(}\101 + AgCg)
or (/\16‘ + Azg)vﬁam < -—(A161 +)\262)
then DEPENDENCE? = False;
Exit L1;

Figure 2: First Algorithm for A-test

next section, we motivate the solution using examples drawn from [LYZ89b]. Following that,
we consider the problem of dependence with a particular dependence direction. In that section,

we show that the explicit values of v, and v,,4, are not needed.

5.1 Arbitrary Dependence

In this section, we examine the question of arbitrary dependence, or dependence with direction

¥ = %, To determine if S1 6(*,*) S2, we must find appropriate v, and v,g, such that

(M@ + Agd)ul;, < (M@ + Ab)oT < (M@ + AB)oT

max

Because our function
(M1 — Agd)v

is linear, we need only find v; that minimize or maximize (a;A; — b;A2)v; for all v;.

We know L; < v; < U;, where L; and U; are determined by the loop limits. If (a;)\ +b;A2) >
0, v; = L; minimizes (a;A; + b;Az)v;, giving us the least positive value. If (a;A1 + bAz) < 0,
v; = U; minimizes (a;A; + b;A2)v;, giving us the most negative value. The maximum values
are the converse of this. If (a;A; + b;Az) > 0, v; = U; maximizes (a;\; + b;\;)v;, giving us the
most positive value. If (a;A; + b;A2) < 0, v; = L; minimizes (a;\; + b;\3)v;, giving us the least

negative value. Using the notation of Wolfe [Wol89], we can express this more succinctly as

Vming = (@1 + bid2)TL; + (a1 + biA2)~U; (8)
Vmazi = (@A1 + X)) TU; + (asdg + bidg) " L; (9)

10

where

0 r<0 r r<0
rt = P
r r2>20 0 »>0

Il

As mentioned, when (a;A; 4 b;A2) = 0, we do not care what value is chosen for v;, because the

product (a;A1 + b;A2)v; = 0 will be zero.

Example 1 : Consider S1 and S2:

DO I=1,50
D0 J=2,850
S1: X(2I + 33 + 50, 3T +J + 49) = ...
s2: vo.=X(I - J+B1, 2T - J + 48)
ENDDO
ENDDO

Examination yields the constants

(
b=(3,1,-2,1) cp=1.

Recall that @ corresponds to the constants in the first subscript and b to the constants in the

second subscript. From this, we derive four pairs of X constants:

A={(3,-2),(1,-3),(-2,1),(1,-1)}
In the terminology of Li et al, these constants would determine four ¥-lines in R*. We initiate

the test using the first pair, \; = 3, A, = —2. We compute the constant terms in our expression

with this A\; and A,

(M@ + Agd)oT (2% 3+ 3% —2)v; + (3%3+1%—2)v,

H(-1%3+ —2x% —2)vg 4+ (1 %3+ L x ~2)vy

I

(0,7,1,1)0%.
Using the signs of the constant terms, we apply (8) and (9) to get
Vmin = (@, L2,L3,L4)
= (=,2,1,2)
Vmae = (®,Us,Us,Uy)

= (,50,50,50)

11

where 2 represents a “don’t care” condition. We now apply our dependence test. There is a

possible dependence if:

M@+ XB)0l, < —(Mer+Agee) < (a4 Asb)ol .

(0,7,1,1)(2,2,1,2)T < —(3%-1+-2%1) <(0,7,1,1)(=,50,50,50)T

17 < 5 < 450

Because 17 > 5, there can be no dependence in this loop, and we need not check further.
By comparison, the Banerjee-Wolfe subscript-by-subscript test would indicate a dependence,

requiring further evaluation.

Example 2: Consider a slight modification to the previous example.

DO I=1,50
DO J=2,50
S1i: X(2I - 37 + 50)(3I - J + 49) = ...
52 oo = X(I + J + 51)(2I +J + 48)
ENDDO
ENDDO

The vectors of constants are

a=(2,-3,-1,-1) ¢ =-1

b=(3,-1,-2,-1) ¢c3=1

The A-pairs are thus
A={(, _2)’(“1’3)’(_2’1)3 (-1,1)}.

When we test with the first pair A; = 3,y = -2, we get

(Alfi + Agg)’vT

i

(2%34+3%—2)v; + (=3%3+ =1 % —2)v,
F(=1%34+ 2% —2)vg + (-1 %3+ —1 % —2)vy
(0,-7,1,-1)vT

It

12

Again, using the signs of the constant terms, we apply (8) and (9) to get

Umin = (‘B: U2a LS’ U4)
= (e,50,1,50)
Ymae = (wsL% U3, L4)
= (z,2,50,2)
Testing the inequality, we have
(0,-7,1,-1)(2,50,1,50)T < —(3% -1+ -2x1) < (0,-7,1,-1)(z,2,50,2)T

-399 < 5 < 34,

Thus, there is a possible dependence. Subsequent A-pairs give us the following bounds:

A A2) | (M@ + Xob) | (M@ + AbWI, | —(Aser + Asea) [(M@ + Ab)wZ,, | Dependence?
(3,-2) | (0,-7,1,-1) —399 5 34 Maybe
(-1,3) [(7,0, -5, —-2) —343 —4 341 Maybe
(-2,1) | (-1,5,0,1) —38 -3 299 Maybe
(-1,1) | (1,2,-1,0) —45 —2 149 Maybe

Because independence is not shown by any A-pair, we must assume a true dependence exists
for these array references. Using this example, we illustrate the mechanism for testing data

dependence for a particular dependence direction vector.

5.2 Dependence With Direction Vectors

Although there may be a possible data dependence between two statements, the combination
of the data dependence and execution direction vectors may indicate no actual dependence.
To check if this is the case, we generate the data dependence direction vector for the two
statements; this is done experimentally by testing for dependence in each of three dependence

directions.

Dependence direction vectors establish constraints on related instances of iteration variables.
For example, in the notation of the previous section, the dependence direction S1 b(<,=) 52 states
that execution of S1 must precede execution of S2 when v; < vz and v, = vy;. We translate

these constraints into modifications of the computation of v, and vpmee.

13

In [LYZ89b, LYZ89a], the corresponding dependence direction and the sign of the term
(a;A1 + b;Az) are used to compute vpipn; and Vmaa,i; 88 Was done in the previous section for
arbitrary dependence. This algorithm is involved, and contributes to the apparent complexity

of the A-test.

Can we improve on this method? Happily, the answer is ‘yes’. Rather than initially com-
puting individual terms of vm;n; and Ve, consider the actual goal of these computations. To

determine the lower bound for the dependence test, we want to compute

D7 (@it + bid2)Viming -
1<i<al

Dependence directions for loop ¢ involve terms ¢ and [+ ¢; rather than solving for v; and vj;

with a particular dependence relation and summing
(@id1 + bid2)Viming + (@igiA1 4 bipide)Vmin, 14 s

we can solve for both terms simultaneously to find a lower bound for the sum. For [nested

loops, we compute ! pairs of bounds, LB,,...,LB; and UB,,...,UB; where

LB; (@A + b2)Omin,i + (@14id1 + b1+iA2)Vmin, i+

UB; = (@M + bA2)Vmaz,i + (014iA1 + biiX2)Vmae i+

This transforms our dependence test (6) into

> LB; < —(A1e1 + Aaep) < > UB;.
1<i<i 1<t

Computing LB; and UB; is an established procedure; [Wol89] gives solutions to the inequalities
LB < (Ai-Bj)<UB

where A and B are constants and ¢ and j are instances of iteration variables subject to depen-
dence relations. These equations are shown in Table 1. Both ¢ and j refer to specific iteration
instances from the same loop; thus, both 7 and j have the same increment and upper and lower
limits,

L<Li,j<U.

14

Uisx : LB=(A,B)
UB=(A, B)

(A= =B¥)U-L)+(A- B)L
(At —=B-)U-L)+ (A- B)L

Tis <: LB<(4,B) = (A~ -B)"(U-L-N)+(4—B)L— BN

o

UB<(4,B) = (A*-B)*(U-L-N)+(A—-B)L-BN
Tis =: LB=(A,B) = (A-B)"(U-L)+(A-B)L
UB=(4,B) = (A-B)*(U-L)+(A-B)L

¥is >: LB”>(A,B)
UB> (A, B)

(A-B¥)"(U-=L-N)+(4d-B)L - AN
(A-B-)*(U—L-N)+(4-B)L - AN

I

Table 1: Banerjee-Wolfe Inequalities for Direction ¥
The Banerjee-Wolfe inequalities compute
LB<(Ai-Bj)<UB
while we are interested in

LB; < (a1 + bid2)vi + (a14id1 + baida)vigs < UB;.

Thus, to compute the lower and upper bounds for a given direction, we substitute the ap-
propriate quantities and negate the second term. For example, to compute bounds for the <

direction, we use

LBi< = LB< (@iA1 + bidg, —(ajA; + bi+iAz))

UB,-< UB<(ai/\1 + b A, —(aj/\l + b[+i/\2))

where LB< and UB< are given in Table 1. Expansion of these equations followed by case-by-
case comparison to the equations presented in [LYZ89b, LYZ89a] demonstrates the equivalence
of this method and the A-test. Because LB; and UB; determine bounds for both v; and v;,
we expect that our formulation of the A-test would be more efficient than that of Li et al.
Figure 3 generalizes the algorithm of Figure 2 to include direction vector constraints for double

subscripted loops.

The choice of A-pairs is, as previously stated, arbitrary. Li et al choose A-pairs that draw

(@ + EAg)’UT closer to zero, represented by ¥-lines in their formulation. Li et al also use

15

DEPENDENCE? = True;
Let dep[1..1] = dependence direction for loops
Let A be the set of trial Ay,)\, pairs
Li: For t = 1, |A| do
Let)\1,)\2 = A[t]
LB = 0; UB = 0;
For i=1, 1 do
LB = LB + LBPLil (g0, 4 b0y, —(aipids + bipids))
UB =UB + UB4ePLil (4,2, + b;),, —(@14i A1 + biid2))
End
Let target = —(A1c1 + Azep)
If LB > target or UB < target
then DEPENDENCE? = FALSE; Exit Li1;
End

Figure 3: Second Algorithm for \-test

A-pairs defined by ®-lines in cases involving dependence direction vectors. ®-lines correspond
to A-pairs that zero multiple terms under = dependence. Recall that loop ¢ involves the #** and

(4 + 1)*h iteration variables. For = dependence in loop i, we can zero two terms using
(A1, A2) = (b + biyis —(as + a144)) -

The selection of this A-pair is, as mentioned, arbitrary.

Example 3: We now have effective procedures for selecting A-pairs and computing lower and
upper bounds. We conclude this section by computing the dependence direction vectors for
51 and S2 of Example Two. We use the Burke-Cytron [BC86] dependence hierarchy, shown in
Figure 4, to limit the number of tests needed.

If independence can be shown for the root of a tree or subtree, all direction vectors in the
subtree are also independent. Example Two has shown that some form of dependence exists
between S1 and S2; therefore, we attempt to refine the direction for the outer loop, first in the

< direction, followed by = and >.
Recall that we had the vectors of constants
2,-3,—-1,-1) ¢ =-1

d':(
b=(3,-1,-2,-1) ¢y=1

16

(<,<)
— (<, %) (<, =)
(<,>)

—(=,<)
(%, %) ——(=:%) ——(=,=)
L“(:a >)

’—(>’ <)

~(>’*) _'""'(>’=)

"‘"(>a>)

Figure 4: Burke-Cytron Dependence Hierarchy

and had selected the following A-pairs:

()‘1”\2) = {(3’ _2)’ (1’3)’ (’“2’ 1)9(”‘1’1)} .

In cases where the dependence direction, ¥, is =, we may wish to test additional A-pairs. An

= dependence direction in the first loop implies that v; = vs, giving us
(@11 + b1Az)vr + (asA1 + bsAz)vs = ((a1 + as)Ar + (b1 + b3)A2)vy .

This suggests the A-pair (1, —1) for the = direction in the first loop, and by similar argument,
(—2,4) in the second loop. These A-pairs corresponds to the ®-lines of Li et al. We can eliminate
linear combinations of A-pairs, disposing of (1, —1), because it duplicates an existing entry in
A,
The first branch of the dependence hierarchy indicates a test for S1 6(<,*) S2. Our test is
then
LBf + LB < —(Are1 + Agc2) < UBL + UB3.

Enumerating the bounds for each A-pair gives us the following tests:

(A1, A2) | LBY + LB3 | —(A1e1 + Aacz) | UBS + UB? | Dependence?
(3,-2) 2 — 400 5 50 — 16 Maybe
(=1,3) | —243 — 100 —4 93 -4 Maybe
(=2,1) | —49+12 -3 —1+300 Maybe
(-1,1) —49 44 -2 -1+ 100 Maybe

17

Because we did not find a A-pair indicating independence, we assume dependence with

S1 6(<,s) S2. Similar computations determine that S1 §(< <) 52, S1 é(,—) S2 and S1 §(,5) 52

are possible dependence direction vectors.

Similarly, for = in the first loop, we find:

(A1, A2) | LBT + LB} | —(A1e1 + Azca) | UBT + UBS | Dependence?
(3,—2) | —400 + 50 5 50 — 16 Maybe
(-1,3) 4 — 500 -2 200 — 20 Maybe
(-2,1) | -50 + 12 -3 -1 + 300 Maybe
(-1,1) | 0+4 2 0 + 100 No
(-2,4) 2 -96 -6 100 + 96 Maybe

The A-pair (-1,1) indicates there is independence between S1 and $2 with an = direction
in the first loop; thus, we need not examine the subtree below (=,x). The same A-pair also
indicates there is no dependence in the > direction; thus, the final dependence direction vector

computed by the A-test is

Sl 6(<’_—_) SZ

By comparison, the Banerjee-Wolfe subscript-by-subscript test, or, equivalently, the A-test
with A = {(1,0),(0,1)}, shows the following dependencies

Sl 6(<’<) 82
S1 5(<,=) 52
S1 =) S2
S1 =) S2
S]. 6(=’>) s2
S]. 6(>’_—_ SZ
Sl 6(>,>) 82

In other words, the Banerjee-Wolfe test finds dependence in every direction in every loop.

6 Multiple Subscript Array References

With the notation presented in §5.2, we see that array references with multiple subscripts can

be treated in a similar manner. However, rather than selecting A-pairs, we select a A-tuple with

18

s members. As before, selection of the A-tuple is arbitrary because the \A-test is conservative.

Consider the example with [loops and s subscripts:

DO I; = L;,Uy,Hy
DO I = L9,Us, Ny

DO I; = L;,U, N
S1: A(f1(11,12. ---»Il)a f2(IlaI2: ---nIl)» reey fs(II:I2a --~aIl))

52: 5(81(11:12’ '”:Il); g2<I1:I2: ---’Il)s sesy gs(IlsIZ: ---:Il))
END
END
END

In general, the dependence test to be solved is

M(f1() = 91(7) + Xe(£2 (D) = 92(0)) + - - + Al £s(D) - 9u() = 0.

To treat the general case, we introduce new notation for the terms of each function, f; or g;.
We let u; be the vector of elements corresponding to the function pair multiplied by A;. That

is, we recast the previous equation as

0 = M(AE) - 0:1(7) + 2(HE) - 92D) + -+ + M(£:(5) - 0u())
0 = M(@oT +er) + Aa(@vT + e2) + .o + A(E0T +¢,)
0 = A1(ug,1v1 + w1209 + ... + Ug 202 + €1)

+A1(u2,1v1 + u2,2v2 + .o\ + Uz 21v91 + C2)

+...

+Aa(ua,lvl + U202 + oot Ug 210y + ca)
"'(Z)‘pcP) = Z Z /\num,n U -
1<p<s 1<m<2l \1<{n<s

Recall that our actual goal is to determine bounds on the sum —(Z1<p<s Ap¢p) based on loop
directions. Let D; be the I-vector of loop directions. The general form for our dependence test

is then

S LBY < (Y Mep)< Y UBPL

1<i<i 1<p<s 1<i<l

19

where

LB = LBY (> Meuig s —(Y /\kuz+i,k))

1<k<s 1<k<s

UBP: = UBP: (> Mg, —(Y)\,,u,+,¢,k))

1<k<s 1<k<s

This test is repeated for each A-tuple. Selection of the A-tuple is problematic; unlike the
case of s = 2, there is no simple method for selecting a A-tuple that matches the criteria
of [LYZ89b, LYZ89a], where a particular term is set to zero. As mentioned previously, the
Banerjee-Wolfe subscript-by-subscript test selects the A-tuples

A = {(1,0,...,0,0), (0,1,...,0,0),

vy (0,0,...,1,0), (0,0,...,0,1)}.

Obviously, additional A-tuples with single elements are pointless; they are linear variants of the
subscript-by-subscript test. We can compute pair-wise A-tuples that zero out specific terms;
for example a tuple (3,-2,0) would zero out a term such as (2v; + 3v; + 49v3). However,
it is not clear that the practice of zeroing terms leads to a more exact test. In the light of
this formulation of the A-test, the criteria for zeroing a term appears rather arbitrary. It may
simply be a hueristic to limit the number of A-tuples tested; further study on this aspect of the
A-test is needed. In a production compiler, we may simply wish to define an upper limit on the
number of trials or the time taken for dependence testing, and generate A-tuples until the limit

is reached.

Example 4

Again, we consider a slight variation on Example One.

DO I=1,50
DO J=2,50
D0 K=3,50,2
Si: X(2I + 37 + K + BO)(3I + J + 2K + 49)(K-1) = ...
S2: oo = X(I - J + 51)(2I - J -K + 48)(K+1)
ENDDO
ENDDO

20

We have the following constants:

@ = (2,3,1,-1,1,0)
@y = (3,1,2,-2,1,1)

@3 = (0,0,1,0,0,-1)

01250—-

62249—

5l = -1

48 =1

c3=-1-0=-2

We select an arbitrary set of A-tuples. Our set includes the tuples used in the subscript-by-

subscript test, as well as the set of tuples used in Example One with an additional zero term.

A =

{(1,0,0), (0,1,0), (0,0,1)

(3,-2,0), (1,3,0), (1,3,0)

(-2,1,0), (-1,1,0), (-2,4,0)}
(A1;A2,A3) | LB} + LB3 + LB} | —(M1e1 + Agcz + Asc3) | UB + UBS + UBS | Dependence?
(1,0,0) —48+8+3 1 99 1 200 + 50 Maybe
(0,1,0) —-97+4+9 -1 148 4+ 100 4 150 Maybe
(0,0,1) 040+ —47 1 0+ 0+ 47 Maybe
(3,-2,0) | 1+16+ —150 5 50 + 400 + —9 Maybe

(1,3,0) -339 4204 30 -2 543 4 500 + 500 Maybe
(=2,1,0) | —50+ —300 + 3 3 —1+ —12+ 50 Maybe
(-1,1,0) | -49+ 100+ 6 2 49+ —4 1 100 Maybe
(=2,4,0) | —292 + —96 + 30 -6 394 1 96 + 500 Maybe

Again, because no A-tuple shows independence, we must assume dependence. Refining the

Burke-Cytron dependence hierarchy, we eventually reach the test for (<, <, <) dependence.

(A1, Az, A3) I/Bl< + LB2< -+ LB; —-()\1c1 + Ang + A3C3) UB1< + U.Bz< + UBa< Dependence?
(1,0,0) —48+9+3 1 48 + 197 + 49 Maybe
(0,1,0) —97T+5+9 1 47 + 99 + 147 Maybe
(0,0,1) 040+ —47 2 040+ -1 No
(3,-2,0) 2+ 17+ —149 5 50 + 393 — 11 Maybe

(1,3,0) —399 + 24 + 33 —2 189 + 494 + 493 Maybe
(-2,1,0) —49 — 395 4 4 —3 —1+4 —13 + 50 Maybe
(-1,1,0) —49 - 98 + 7 -2 —-1-4+99 Maybe
(=2,4,0) —292+ 3 + 34 -6 92 + 96 + 494 Maybe

Note that independence is indicated by the A-tuples defined by the subscript-by-subscript

test. The remaining A-tuples are ineffective because they do not include the third subscript.

This indicates that the A-test is a not a panacea, and that proper selection of A-tuples is

important. A suitable algorithm is needed, and is the subject of further research.

21

7 Summary

We have shown that the A-test is a straight-forward, yet effective, extension of the classical
Banerjee-Wolfe subscript-by-subscript test, and that it also subsumes the linearized array test.
We have shown that the additional overhead attributed to the test arises from repeated ap-
plication of the Banerjee-Wolfe inequalities, and that recasting the test can produce a more

efficient implementation.

In light of our formulation of the A-test, an appropriate method of selecting of the A-tuples is
open to conjecture. While a particular method for selecting A-tuples, such as the one presented
in [LYZ89b, LYZ89a], may generate suitable combinations, further study is needed to determine
if this is an actual algorithm or simply a useful hueristic.

The computations for the Banerjee-Wolfe inequalities include many redundant terms. It will
be interesting to see if our formulation of the A-test leads to faster execution of the A-test in the
context of dependence analysis compilers such as Parafrase. Furthermore, it may be possible
to use the A-test in the presence of unknown quantities, as done for the subscript-by-subscript

test in [Wol89].

Acknowledgements: I gratefully acknowledge the technical and editorial comments of Michael
Wolfe, and the time and patience of the students of CSci7000.

References

[Ban88] Utpal Banerjee. Dependence Analysis for Supercomputing. Kluwar Academic Pub-
lishers, 1988.

[BC86] Michael Burke and Ron Cytron. Interprocedural dependence analysis and paral-

lelization. In Proc. of the SIGPLAN ’86 Symposium on Compiler Construction,
pages 162-175, June 1986.

[BCKTT79] Utpal Banerjee, Steve C. Chen, David J. Kuck, and R. A, Towle. Time and par-
allel processor bounds for fortran-like loops. IEEE Transactions on Computers,
C-28(9):660-670, September 1979.

[LYZ89a] Zhiyuan Li, Pen-Chung Yew, and Chuan-Qi Zhu. Data dependence analysis on
multi-dimensional array references. In Conference Proceedings of the 3rd Interna-
tional Conf. on Supercomputing, pages 215-224, June 1989.

22

[LYZ89b] Zhiyuan Li, Pen-Chung Yew, and Chuan-Qi Zhu. An efficient data dependence

[SLY89)

[Wol82]

[Wol89]

analaysis for parallelizing compilers, Technical Report 852, Center for Supercomput-
ing Research and Development, University of Illinois, 104 S. Wright Street, Urbana,
Ilinois 61801, May 1989.

Zhiyu Shen, Zhiyuan Li, and Pen-Chung Yew. An empricial study on array sub-
scripts and data dependence. Technical Report 842, Center for Supercomputing
Research and Development, University of Illinois, 104 S. Wright Street, Urbana,
Nlinois 61801, May 1989.

Michael Wolfe. Optimizing supercompilers for supercomputers. Technical Report
UIUCDCS-R-82-1105, University of Illinois at Urbana-Champaign, Department of
Computer Science, 1304 W. Springfield, Urbana, Il, October 1982.

Michael Wolfe. Optimizing Supercompilers for Supercomputers. Research Mono-
graphs in Parallel and Distributed Computing. The MIT Press, Cambridge, MA,
1989.

23

A An Implementation of the \-test

The following program is an implementation of A-test in the Scheme programming language.
Sample executions of the program, using the examples from the report, are also shown.

ooooo
R R
13992
[EEEE R
23239
R
3131383

.
)

The Lambda-Test Revisited -- A simple implementation of the lambda
implemented in Scheme.

;3 Definitions for the Banerjee-Wolfe Inequality Tests

.o
)3

(define (r+ x)
"Positive portion of a number"
(if (> x 0) x 0))

(define (r- x)
"Negative portion of a number"
(if (< x 0) x 0))

(+ (*
(define
(+ (*
(define
(+ (%
(define
(+ (*
(define
(- (+
(define
(- (+
(define
(+ (%
(define

(+ (»

.
L]

(LB* &
(- (x-
(UB* A
(- (r+
(LB= A
(r- (-
(UB= A
(r+ (-
(LB< &
(* (r-
(UB< A
(* (r+
(LB> &
(r- (-
(UB> A
(r+ (-

Banerjee-Wolfe bounds equations for

where L <= i,j <= U and loop stride is N.

;

3

4

H LB <= (Ai - Bj) <= UB

H

H

H Each name is followed by the dependence direction.

BULN

A) (x+B)) (U L)) (* (- AB)L)))

BULN)

A) (r-B)) (U L)) (» (- AB) L))

BULLY)

AB)) (-UL)) (* (- AB) L))

BULN)

AB)) (UL)) (* (- AB) L))

BULN)

(- (x-2)B)) (-ULN)) (* (- AB) L)) (*xBUN)))
BULN)

(- (x+ 4) B)) (-ULN)) (¥ (- AB) L)) (xBN)))
BULN)

A(r+B))) (-ULN) (% (- AB)L) (* 4 X)))
BULIN)

A(r-B))) (-ULDN)) (* (-A4B)L) (xAN))

;3 Helper functions

N
(define (null? x)
"Is a list null?"

(if x nil t))

(define (el index array)

24

"Reference an array element, indexed from 1"
(nth (- index 1) array))

2
;3 Actual computation functions..
)
(define (LambdaSum i Lvec ConstVecList)
"Compute Sum a_i lambda_1 + b_i lambda_2 + c_i lambda_3 +"
(if (null? Lvec)
0
(+
(* (el i (car ConstVecList)) (car Lvec))
(LambdaSum i (cdr Lvec) (cdr ConstVecList)))))

(define (LB op i j LambdaList ConstVecList U L N)
"Compute the lower bound based on the direction kind (single)"
(let (
(ai (LambdaSum i LambdaList ConstVecList))

(aj (- 0 (LambdaSum j LambdaList ConstVecList)))
(1i (el i L))
(ui (el i U))
(ni (el i N)))
(cond
((eq? op ’#) (LB* ai aj ui 1i ni))
((eq? op ’<) (LB< ai aj ui 1i ni))
((eq? op ’=) (LB= ai aj ui 1i ni))
((eq? op ’>) (LB> ai aj ui 1i ni))

(t (error "oops")))))

(define (UB op i j LambdaList ConstVecList U L N)
"Compute the upper bound based on the direction kind (single)"
(let (
(ai (LambdaSum i LambdaList ConstVecList))

(aj (- 0 (LambdaSum j LambdaList ConstVecList)))
(1i (el i L))
(ui (el i U))
(ni (el i N)))
(cond
((eq? op %) (UB* ai aj ui 1i ni))
((eq? op <) (UB< ai aj ui 1i ni))
((eq? op ’=) (UB= ai aj ui 1i ni))
((eq? op ?>) (UB> ai aj ui 1i ni))

(t (error "oops")))))

(define (dot-product A B)
"Compute A[1] * B[1] + A[2] * B[2] + ..
(if (null? 4) 0
(+ (% (car A) (car B))
(dot-product (cdr &) (cdr B)))))

..+ A[n] B[nl"

(define (bound-list op DirList i 1th LambdaList ConstVecList U L N)
"Build a list of the lower bound values for a single loop. Peel of the

25

test direction vector for this loop and identify elements to be
test (i and i+number-of-loops). "

(if (null? DirList) nil
(cons
(apply op
(list (car DirList) i (+ i 1th) LambdalList ConstVecList U L N))
(bound-1ist op (cdr DirList) (1+ i) 1th LambdaList ConstVecList U L N))))

(define (single-test DIR LambdaList ConstVecList TargetList U L N)
"Returns a results of a single test as a list.
First element is the lambda-tuple used.

Second element is a list of triples, Sum_LB C Sum_UB. Dependence is possible
if LB <= C <= UB.

The third element is a list of components used in calculating the lower bound.
The fourth element is a list of components used in calculating the upper bound.
1"t

(letrec
(
(1th (length DIR))
(1b-list (bound-list LB DIR 1 1th LambdalList ConstVecList U L N))
(1b (apply + lb-list))
(target (- 0 (dot-product TargetList LambdaList)))
(ub-list (bound-list UB DIR 1 1lth LambdalList ConstVecList U L X))
(ub (apply + ub-list))

(list (list
LambdaList
(if (or (< target 1b) (> target ub)) ’Independent ’Dependent)
1b target ub)
1b-list ub-list)))

(define (multiple-tests DirList LambdaListList ConstVecList TargetList U L N)
"Run tests with a single direction vector for multiple lambda-tuples"
(et ((1 nil))
(if (not (= (length DirList) (length (car LambdaListList))))
(print "You must specify a different direction vector"))
(vhile (not (null? LambdaListList))
(let
((LambdaList (car LambdaListList)))
(set! LambdaListList (cdr LambdaListList))
(set! 1 (append 1 (1list (single-test DirList Lambdalist
ConstVecList TargetList U L N))))))
1))

(define (print-first-level 1)

"Print a double level list with one line per inner term. Used
to display information about a dependence test"

(while (not (null? 1)) (print (car 1)) (set! 1 (ecdr 1)))

26

IR
3333 Examples from the report.
IR EE]

I)
; ;Example 1
HH
(define (example-1 DirList)
"First example™
(let
((ConstVecList
(list
(238 -11)
(31 -21)))
(TargetList °(-1 1))
(L°(1212))
(U »(50 50 50 50))
N°(1111))
(LambdaListList
(1ist 2(3 -2) *(1 -3) (-2 1) *(-1 -1) (1 0) (0 1))))
(print-first-level
(multiple-tests DirList LambdalistList ConstVecList TargetList U L N))))

(define (example-2 DirList)
(letrec
(
(ConstVecList
(list °(2 -3 -1 -1)
(3 -1-2-1)))

(TargetList
(list -1 1))

(L°(1212))
(U ’(50 50 50 50))
(N (1111))
(LambdaListList
(list
1(8 -2) 1(-13) *(-21) (-1 1)
1(-2 4) 2 (10) (0 1))
(print-first-level
(multiple~tests DirList LambdalistList ConstVecList TargetList U L N))))

(define (example-4 DirList)
(letrec

(
(ConstVecList

27

(list °(231 -1 1 0)
'(312-211)
(00100 -1))

(TargetList (list -1 1 -1))
(L°(123123))
(U °(50 50 50 50 50 50))
W°(111111))
(LambdaListList

(1list

’(100)°(011) °(001) °(111)
(3 -20) °(130) °(-210) °(-110) °(-2 4 0))))
(print-first-level
(multiple-tests DirList LambdaListList
ConstVecList TargetList U L N))))

28

The following is a sample execution of for specific dependence directions. Each test prints
a list. The first element is a list of the A-tuple used, dependence status, 21<i<i LBi and
21<i<i UBi. The two following lists contain individual elements of LB; and UB;.

fools? lisp 1.0 Wed Oct 18 12:51:45 MDT 1989

> (load ’lambda.scm)

#t

> (example-1 *(% *))

(((3 -2) Independent 17 5 450)
(1 16)
(50 400))

(((1 -3) Dependent -445 4 239)
(-345 -100)
(243 -4))

(((-2 1) Independent -350 -3 -13)
(-50 -300)
(-1 -12))

(((-1 -1) Dependent -547 0 133)
(-247 -300)
(145 -12))

(((1 0) Dependent -40 1 299)
(-48 8)
(99 200))

(((0 1) Dependent -93 -1 248)
(-97 4)
(148 100))

nil

> (example-2 *(* %))

(((3 -2) Dependent -399 5 34)
(1 -400)
(50 -18))

(((-1 3) Dependent -343 -4 341)
(-243 -100)
(345 -4))

(((-2 1) Dependent -38 -3 299)
(-50 12)
(-1 300))

(((-1 1) Dependent -45 -2 149)
(-49 4)
(49 100))

(((~2 4) Dependent -388 -6 490)
(-292 -96)
(394 96))

(((1 0) Dependent -248 1 91)
(-48 -200)
(99 -8))

(((0 1) Dependent -197 -1 144)
(-97 -100)
(148 -4))

nil

> (example-2 ’(< *))

(((3 -2) Dependent -398 5 34)

29

(2 -400)
(50 -186))

(((-1 3) Dependent -343 -4 89)
(-243 -100)
(93 -4))

(((-2 1) Dependent -37 -3 299)
(-49 12)
(-1 300))

(((-1 1) Dependent -45 -2 99)
(-49 4)
(-1 100))

(((-2 4) Dependent -388 -6 188)
(-292 -96)
(92 98))

(((1 0) Dependent -248 1 40)
(-48 -200)
(48 -8))

(((0 1) Dependent -197 -1 43)
(-97 -100)
(47 -4))

nil

> (example-2 (= %))

(((3 -2) Dependent -399 5 34)
(1 -400)
(50 -18))

(((-1 3) Dependent -98 -4 96)
(2 -100)
(100 -4))

(((-2 1) Dependent -38 -3 299)
(-50 12)
(-1 300))

(((~1 1) Independent 4 -2 100)
(0 4)
(0 100))

(((-2 4) Dependent -94 -6 196)
(2 -98)
(100 96))

(((1 0) Dependent -199 1 42)
(1 -200)
(50 -8))

(((0 1) Dependent -99 -1 46)
(1 -100)
(50 -4))

nil

> (example-4 ’(* * %))

(((1 0 0) Dependent -37 1 349)
(-48 8 3)
(99 200 50))

(((0 1 1) Dependent -84 0 398)
(-97 4 9)
(148 100 150))

(((0 0 1) Dependent -47 1 47)

30

(0 0 -47)
(0 0 47))

(((1 1 1) Dependent -121 1 747)
(-145 12 12)
(247 300 200))

(((3 -2 0) Dependent -133 5 441)
(1 16 -150)
(60 400 -9))

(((1 3 0) Dependent -289 -2 1543)
(-339 20 380)
(543 500 500))

(((-2 1 0) Dependent -347 -3 37)
(-50 -300 3)
(-1 -12 50))

(((-1 1 0) Dependent -143 -2 145)
(-49 -100 8)
(49 -4 100))

(((-2 4 0) Dependent -358 -6 990)
(-292 -96 30)
(394 96 500))

nil

> (example-4 (< < <))

(((1 0 0) Dependent -36 1 294)
(-48 9 3)
(48 197 49))

(((0 1 1) Dependent -83 0 293)
(-97 5 9)
(47 99 147))

(((0 0 1) Independent -47 1 -1)
(0 0 -47)
(00 -1))

(((1 1 1) Dependent -119 1 587)
(-145 14 12)
(95 296 196))

(((38 -2 0) Dependent -130 5 432)
(2 17 -149)
(60 393 -11))

(((1 3 0) Dependent -282 -2 1176)
(-339 24 33)
(189 494 493))

(((-2 1 0) Dependent -340 -3 36)
(-49 -295 4)
(-1 -13 50))

(((~1 1 0) Dependent -140 -2 94)
(-49 -98 7)
(-1 -4 99))

(((-2 4 0) Dependent -256 -6 682)
(-292 2 34)
(92 96 494))

nil

> (exit)

31

