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Abstract

Software process programming is the codification of software development processes
in a formal programming language. The premise of software process programming is
that software processes are themselves software. Its goal is to enable software processes
to be programmed using the methods, tools, and techniques that have been developed
for conventional software.

APPL/A is a prototype process programming language that explores issues in soft-
ware object management. Important issues in software object management include persis-
tent data, concurrency control, complex relationships among objects, associative access,
and consistency management, among others.

APPL/A is an extension to Ada. Ada provides general programming-language capa-
bilities. APPL/A extensions include three new program units: relations, predicates, and
triggers. Relations provide abstract persistent storage with programmable implementa-
tions. Relation attributes may be composite and derived. Triggers react to operations
on relations. Predicates specify the consistency of relations and can be optionally en-
forced like constraints. Other APPL/A extensions include five compound transaction-like
statements that support consistency management. :

The APPL/A extensions to Ada provide capabilities in several areas that are essen-
tial to software object management. These include persistence data and programmable
implementations for persistent storage, representation of relationships among objects,
derived data, queries, activity and inferencing, transactions, and a flexible model of con-
sistency. APPL/A has been used in several prototype process programs, and earlier
versions of the language have been refined based on this experience.

*Department of Information and Computer Science, University of California, Irvine, CA
92717






1 Introduction

Software process i:)rogramming is the codification of software development processes in a formal programming
language [20]. A process program can in principle represent and implement the structure of software products
and the processes by which they are constructed. Software process programming is based on the premise
that software processes are themselves software.

The advantages of the formalization of software processes and products are potentially the same as those
for the formalization of software in general: software process programs should enable software processes to be
automatically executed, tested, analyzed, debugged, revised, maintained, reused, and communicated more
effectively. Additionally, development methodologies that have been devised for conventional software should
be applicable to software process programs. For example, process programs can be coded in accordance with
a design that is developed to address specified requirements for the processes.

Realizing these potential advantages requires suitable software process programming languages (PPLs).
PPLs should include constructs and capabilities that are appropriate for the domain of software processes,
but the detailed requirements for such languages are difficult to determine a priori. Software processes in
general are not as well understood as conventional application domains, and experience in programming
software processes is comparatively very limited. It seems reasonable to assume that PPLs must subsume
the capabilities of conventional programming languages. Thus we would expect PPLs to include such things
as variables, subroutines, and abstract data types. However, it is expected that PPLs must also include
extensions and specializations that reflect the distinctive aspects of software processes and products.

Unfortunately, the present state of process programming research involves a circular dependency. Knowl-
edge of software processes will increase when they can be programmed effectively, but the effective pro-
gramming of software processes depends on the availability of appropriate PPLs, and the requirements for
PPLs cannot be confidently specified until we have more knowledge of software processes. Breaking this

cycle requires the design and implementation of prototype PPLs and the use of these languages to develop



prototype process programs. In turn, knowledge gained from these prototypes can be used to refine the next
generation of languages and programs, and the prototyping exercise can be reiterated.

In this paper we present APPL/A [34], a prototype PPL based on Ada [1]. APPL/A is designed to
explore a particular aspect of process programming, namely the problems of object management in software
processes. Object management is an important area of requirements for PPLs [16,23,22,35,9]. Recognized

problems in software object management include

The need to manage many kinds of persistent objects, including environment components (e.g. tools)

and development products (e.g. requirements, design, and code).

e The need to support concurrent processes which require shared access to objects.

The need to maintain a wide variety of relationships among objects, including derivation and other

dependencies.

The need for associative access to support ad hoc queries about process and product state.

The need accommodate changing standards of consistency during long and complicated processes.

The APPL/A design is intended to explore these and related issues.

APPL/A research is one part of the process programming research that is taking place in the Arcadia
project [36]. Other research in Arcadia encompasses additional aspects of software processes (such as data
modeling and process orgar;ization) and includes the development of prototype process programs.

This paper is organized as follows. Section 2 presents our approach to prototyping a process programming
language. Section 3 describes our design of the prototype PPL APPL/A. Section 4 provides an overview of
APPL/A [34], including some examples of APPL/A constructs. The paper concludes with a summary of

our experience and the status of work (Section 5).



2 Prototyping Approach

Software object management is the management of the software artifacts comprising software environments
and products. These include such things as tools, libraries of reusable components, product requirements
and designs, code of various kinds, test programs, data, and results, and project management data. Software
object management is itself a complicated multi-faceted problem involving issues ranging from high-level
data abstractions to low-level implementation mechanisms. For example, software objects must be stored
persistently, i.e. between program executions, and access to shared objects by concurrent processes must be
controlled. Some objects will be created manually, while others will be derived automatically. Derivation
dependencies among objects must be kept up-to-date as needed, and objects in general must be kept con-
sistent with constraints imposed by process and product requirements. Consistency must be managed in an
environment in which processes are prone to failure and restart and in which concurrent processes may have
conflicting assumptions and goals.

Our premise is that a multi-faceted problem like software object management requires a multi-faceted
solution. It must be addressed in terms of a broad range of features and capabilities. We identified the

following areas for support in our prototype PPL:

¢ Persistence and abstraction: Software processes involve the creation, use, and management of
persistent objects, i.e. objects that outlive the processes in which they are used. These objects include
environment components and intermediate and final development products. In recent years several
“persistent programming languages” have been developed to facilitate the development of applications
that involve persistent data. These languages provide integrated support for persistent data: persistent
data are represented in the same type system as transient data, and operational boundaries between
persistent and transient data are reduced. Applications are simplified to the extent that persistent and
transient data can be treated similarly. Examples of persistent programming languages include PS-

Algol [4,14], Adaplex [29], Owl [28,27] (the language of the Trellis environment), E [25] (the database



implementation language of EXODUS [11]), and COP [3] (the data-manipulation language of the VBase
environment). The motivation for persistent programming languages in general is presented in more
detail in [4]. Issues in the design of persistent programming languages are discussed in [19,33,6,5].
Because software processes necessarily deal with persistent objects we believe that software process

programming languages should be persistent programming languages.

A limitation of many persistent programming languages (e.g. Adaplex and PS-Algol) is that they rely
on a fixed persistent object management system (OMS) for storage of persistent objects. No single
OMS is likely to best meet all of the needs of large-scale software projects. Such projects often involve
persistent data stored in a variety of systems, a given OMS may evolve over time, and the OMS itself
may be a research or development product. A related issue is that a fixed OMS may imply fixed
strategies for the computation and caching of derived objects. An example is the Odin OMS [12,13],
which uses a “lazy” evaluation strategy with caching of derived objects. These strategies work well in
many situatior;s, but other strategies (e.g. “eager” or opportunistic derivations, no caching of derived
objects) may be most appropriate in others. In light of the limitations imposed by a fixed OMS, we
believe that the implementation of persistent storage and related capabilities should be programmable.
The programmer should be able to specify how persistent storage is implemented and how derived

objects are computed and cached.

Relations and derived data: An important aspect of software object management is the variety
of relationships among objects that must be represented and maintained [35]. Prominent among
these are derivation relationships in which derived objects are computed by some software tool or
process from given objects (which may themselves be derived). A typical example is the derivation
relationship between object code and the source code from which it is compiled. Many other kinds of
relationships also occur among software objects. For example, source code is related to configurations,

designs are related to requirements, test cases are related to acceptance criteria, programmers are



related to projects, and so on. Some generic structures are needed to represent the relationships
among individual objects and to group these representations where they are associated. Moreover, the
abstract representation of relationships should be tied to implementation mechanisms that ensure that

the relationships are maintained as needed in a consistent and up-to-date state.

Queries: Software process management and control depend on the state of the environment and the
products in it. The efficient execution of these tasks depends on efficient access to information about the
state. It is inadequate to obtain needed information by exhaustive traversal of data structures. Instead,
some means are needed to allow information to be obtained associatively, i.e. by values associated with
the objects or data sought. For example, it should be possible to retrieve the source code modules
associated with project “X” by asking for the source code modules associated with project “X” rather
than by iterating through all source code modules in the environment. In other words, what is needed

is support for queries on data.

Activity and triggering: One of the goals of software process programming is increased automation
of development processes. To the extent that processes can be automated the problems associated with
the manual execution of processes are reduced. The benefits should be increased consistency, correct-
ness, and efficiency. The kinds of proce;ses that may be automatable include the creation of objects,
the propagation of changes to update outdated dependency relationships, and the repair of consistency
violations (among others) [35]. The semantics of these processes are all application dependent, but
a PPL should provide mechanisms that enable them to be conveniently programmed. These mecha-
nisms should include concurrency and both pro-active and re-active processes. The latter correspond
to daemons or triggers which respond to state changes or operations in the environment (for example,
AP5 [15] includes trigger rules that initiate actions in response to state changes, while VBase [3] sup-

ports triggers that react to operations on objects). These mechanisms should be composable in various

ways to allow the chaining of processes necessary to support various kinds of inferencing.



e Transactions: Software processes can involve substantial concurrency. If concurrent processes share
objects then some transaction-like mechanism must be provided for concurrency control to prevent

conflicting access. Some of issues involved in concurrency control for software processes are discussed

in [22].

e Flexible model of consistency: Consistency in software processes is relative and evolving. Con-
straints that must characterize a final software product may not all be known in advance, and known
final constraints may not be relevant during all phases of development. Moreover, different software
processes may have different preconditions or goals, and these may conflict. Consequently, incon-
sistency in software products is virtually inevitable. Inconsistency may arise as new constraints are
introduced or as one process updates objects in a way that conflicts with the preconditions or goals of
another. Inconsistency may also arise because of failures in development processes. Failure is relatively
common in software processes compared to transactions in conventional databases. Software processes
are long and compiicated, subject to frequent interruptions, and often nondeterministic and tentative.
Their effects on objects are thus relatively likely to be inconsistent, incorrect, or incomplete. A software
process programming language should provide a flexible model of consistency for software objects that

accommodates these conditions.

This list could be extended, for example, it addresses data modeling in a limited way and it does not
address security at all. Nevertheless, we felt that it would be a sufficient challenge to design of a language
with support in just the areas listed. Additionally, we believe that integrated support in these areas can
significantly enhance software object management. Thus features and capabilities comprise the requirements

for the design of our prototype PPL.



3 Language Design

Our overall goal in developing APPL/A is to explore issues in the design and integration of language features
to support software object management. APPL/A is defined as an extension to Ada [1]. We chose an existing
language as the basis of our prototype for two reasons. First it would allow us to focus our attention on
features of real concern to us. Second, it would enable us to take advantage of existing language technology.

Our choice of Ada was motivated by both technical and pragmatic considerations. Ada provides con-
structs, for example packages and tasks, which have served as models for our extensions. Packages support
abstraction and information hiding, which is advantageous in the desigr; of persistent objects with pro-
grammable implementations. Tasks support concurrency, which is essential to our requirements for activity
and triggering. We have also found these and other aspects of Ada (e.g. the composition of programs from
separately compilable program units) useful in the formulation of prototype process programs. Additionally,
our work is intended to draw on and support Ada-related work in the Arcadia project [36].

It should be admitted that the choice of Ada is open to question in that Ada lacks certain features and
capabilities that might be useful. We have in fact found Ada limiting in several respects, including the lack
of subprogram and package variables, lack of finalization code for packages, and inflexibility in the exception-
handling mechanism. Nevertheless, Ada has provided an effective basis on which to build our prototype and
explore the object-management and language design issues in which we are interested.

The focus of our extensions to Ada are relation units, which are effectively abstract, persistent, and
active multisets of tuples. Tuples are types like records. Relations are comparable to a combination of
packages and tasks. They define and group information like packages, and they represent concurrent threads
of control like tasks. Like both packages and tasks relations have separate specifications and bodies. The
specifications stipulate the semantics of the relations. The semantics include the tuple type stored in the

relation, automatically derived (i.e. computed) attributes, dependency specifications (which indicate how

derived attributes are to be computed). Relation specifications also indicate the operations available on the



relation, which may include the insertion, deletion, update, and retrieval of tuples; these are represented as
entries. The deletion, update, and retrieval of tuples are all selective (i.e. associative) operations, thus they
support an important form of query. Relation bodies provide a context in which the implementation of those
semantics can be programmed. Relation bodies must provide persistent storage for tuples, compute derived
attributes as specified and keep them up-to-date, and implement the relation operations. Relations thus
integrate several required capabilities: representation of relationships among objects, derived data, queries,
persistence, programmable implementations, and activity.

The other principal extensions to Ada are centered around relations. APPL/A includes two other new
program units: predicates and triggers. Predicates are boolean expressions over relations; predicates can be
tested like functions and (optionally) enforced like constraints. Triggers are concurrent but reactive threads
of control that respond automatically to signals generated by operations on relations. APPL/A also includes
several new control constructs. Chief among these are several block-like statements that provide capabilities
such as concurrency control and atomicity which are ordinarily associated with transactions in conventional
databases. These additional units and constructs address requirements in the areas of activity and triggering
and a flexible approach to consistency management.

We have chosen to focus on relations because they provide an effective integrating mechanism for the
broad range of features and capabilities that we feel are essential to software object management. Our
prototyping effort is simplified to the extent that we don’t have to provide these capabilities for all types in
a language (e.g. predicates over arbitrary types). At the same time, having brought so many features and
capabilities to bear on relations, we are still able to investigate their combinations and interactions, and this
is a principal goal of the prototyping exercise. Moreover, relations (as we have defined them) are a powerful
and generic construct which should be widely useful in process programs, especially in conjunction with the
related capabilities such as predicates and triggers. Thus we believe that the focus on relations should not

be a severe restriction for application programming,



A detailed discussion of the APPL/A relational model, our rationale for the use of relations, and a
comparison with other data models is found in [35]. Some other recent projects in which relations are used
include the advanced data-management system Postgres [26,30] and AP5, which extends Common Lisp with

relations [15].

4 Overview of APPL/A

This section presents some of the details of the APPL/A extensions to Ada and shows some examples of
APPL/A constructs. A thorough presentation of APPL/A is beyond the scope of this paper. Relations
and triggers are emphasized here. A brief introduction to predicates and related consistency-management

constructs is also presented.

4.1 Relations

Relations are a special kind of program unit that provides for the persistent storage of data in the form
of tuples. An APPL/A relation is syntactically similar to a combination of Ada packages and tasks. Each
relation has a specification and a body. A typical specification, for relation Word_Count, is shown in Figure 1.
This relation represents the derivation relationship between the input and output of a “word-count” tool
which computes the numbers of lines, words, and characters in a given text object. The features of APPL/A
relations are explained below in terms of this example.

Each relation has a defining tuple type that determines the names and types of attributes for the relation.
A tuple type is similar to a record type, but the attributes have modes like Ada parameters. The attribute

modes indicate the way in which attributes may take on values:
e Attributes of mode in must be given values directly by the user.

o Attributes of mode out must take on computed values and cannot take on values given by the user.
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with WC; - separately defined word-count tool
with text.def; use text_def;

Relation Word_Count is
type wc_tuple is tuple
text: in text_type;
lines, words, characters: out natural;
end tuple;
entries
entry insert(text: in text_type);
entry delete(t: in we_tuple);
entry find(iterator: in out integer => 0;
first: in boolean => true;
found: out boolean => false;
t: out wc_tuple;
select_text: boolean => false; text: text.type;
select_lines: boolean => false; lines: natural;
select_words: boolean => false; words: natural;
select_characters: boolean => false; characters: natural);
dependencies
determine lines, words, characters

by wec(text, lines, words, characters);
End Word._Count;

Figure 1: Specification for Relation Word_Count
e Attributes of mode in out may take on given and computed values in turn.

Thus, attributes of modes in out and out represent derived data. Attributes may also have composite
values (i.e. they are not restricted to atomic values like conventional relations). In Word Count the value
of the attribute text must be given, while the values of the attributes lines, words, and characters are
computed automatically.

The operations on a relation are represented by entries analogous to task entries. The entries for a
relation must be some non-empty subset of insert, update, delete, and find. For example, Word_Count
includes entries insert, delete, and find, but not update.

The insert entry takes parameters for attributes of mode in and in out and implements the insertion

of a tuple with those parameters into the relation. The update entry enables a given tuple in the relation to
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be assigned new values for attributes of mode in and in out. The delete entry deletes a given tuple from
the relation. The find entry returns one tuple selected by a list of given attribute values. The find entry
is also used to automatically construct iterators for the relations and to automatically implement predefined
functions tuple and member (which respectively retrieve selected tuples from a relation and test given tuples
for membership in a relation).

The specification of any relation with derived attributes may also contain a dependency specification,
which indicates how the derived attributes are to be computed. In Word _Count the dependency specification
stipulates that for each tuple the attributes lines, words, and characters are to be computed by a call
to the predefined procedure WC given the corresponding value of attribute text as input. In this way
Word_Count represents the derivation relationship established by the WC tool between text objects and the
counts of lines, words, and characters computed by this tool. It is the responsibility of the body of the
relation to automatically carry out the computations necessary to assign values to derived attributes. If a
relation has a dependency specification then the computation of attributes must be carried out according to
that specification. Computed attribute values are required to be kept up-to-date with respect to the values
of other attributes from which they are derived. In particular, the values of derived attributes in each tuple
returned by a call to £ind must be computed subsequent to the most recent insert or update operation on
that tuple.

Another example, the specification for relation Source_to_Object, is shown in Figure 2. This relation
represents the derivation relationship between source code and the object code compiled from it.

It is the responsibility of the body of a relation to implement the semantics of that relation. This means

that the relation body must
e provide persistent storage;

e implement the relation entries;
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with compile; — separately defined compiler
with Code_Types; use Code_Types;

Relation Source_to_Object is
type src_to_obj_tuple is tuple
sre: in source.code;
obj: out object_code;
end tuple;
entries
entry insert ( src: in source_code);
entry update (t: in src_to_obj-tuple;
update_src: in boolean => false;
src: in source-code);
entry delete (t: in src_to_obj_tuple);
entry find (iterator: in out integer => 0;
first: in boolean => true;
found: out boolean => false;
t: out src_to_obj-tuple;
select_src: in boolean => false;
src: in source_code);
dependencies
determine obj by compile(sre, obj);
end Source_to_Object;

Figure 2: Specification for Relation Source_to_Object
e compute and assign values for derived attributes.

However, the implementation of a relation can be left up to the programmer of the relation (although a
default implementation mechanism will be available). In this respect APPL/A relations are programmable.
Apart from the requirements listed above, the implementation of a relation is not constrained with respect

to

e the persistent storage system;

e the derivation strategy for computed attributes (e.g. eager, opportunistic, or lazy);

e the caching strategy for computed attributes (e.g. cached when computed or recomputed when needed);
The implementor of a relation can program the body in any appropriate way that satisfies the required

13



semantics, and the implementation can change over time without affecting users of the relation (who rely
on the specification). In this way APPL/A allows relation implementations to be customized for particular
projects and installations. The ability to program implementations also enables foreign tools and data to be

imported and encapsulated behind a standardized relational interface.

4.2 Triggers

Triggers are like tasks in that they represent concurrent threads of control. However, triggers differ from
tasks in that triggers lack entries. Instead, triggers react automatically to operations on relations.

Triggers have only one part, i.e. they do not have separate specifications and bodies. Triggers lack a
separate specification part because they do not declare anything that can be referenced by other program
units. (Because triggers are strictly reactive they do not have an operational interface, and their intended
role does not require them to make declarations of any other kind.) Syntactically a trigger comprises a
loop over a selective trigger statement. A selective trigger statement is analogous to an Ada selective wait
statement, except that it has upon alternatives instead of accept alternatives. Each upon alternative consists
of an upon statement followed by a (possibly empty) sequence of statements. The upon statements identify
the relation operations to which a response is to be made. The statements within and following the upon
statement encode the trigger’s response to the relation operation.

The trigger Maintain Source WC is shown in Figure 3. The goal of the trigger is to automatically collect
and maintain up-to-date word-count data for source-code modules. This trigger responds to operations
on relation Source.to.Object (Figure 2). The trigger propagates changes in Source_to.Object to the
relation Word_Count. For example, when a new source-code object is inserted into Source_to_Object, the
trigger automatically inserts that object into Word_Count; the trigger makes analogous responses to update
and delete operations on Source_to_Object. (For simplicity, this example assumes that source modules of

interest are stored in Source_to_Object, so the trigger responds to operations on that relation. In a more
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realistic system source modules would probably be stored in a separate Source_Code relation, along with
additional information such as author, permissions, timestamps, etc. In that case a trigger could be defined

to respond to operations on the Source_Code relation.)

Trigger Maintain_Source WC includes three upon statements, one each for the insert, update, and delete
entries of Source_to_Object. Each of these upon statements is for a completion event, i.e. a response is to
be triggered only upon the successful completion of the corresponding entry call. (Upon statements can also
designate acceptance events, in which case a response would be triggered by the acceptance of the relation
entry call.) Each upon statement also includes a list of formal parameters. For an acceptance event these
comprise the in parameters for the relation entry call; for a completion event these comprise both the in
and out parameters for the call. Through these parameters the actual values given to and returned from
the relation entry call are made available to the trigger. Although it is not shown in the example, upon
statements may also be given priority values. When an event occurs (i.e. a relation entry call is accepted
or completed), a signal is sent to each trigger that designates that event in an upon statement. This signal
includes the identity of the event and the corresponding actual parameters. Event signals are queued at the
trigger in order of priority and responded to in turn.

Finally, it should be noted that a trigger can make both “synchronous” and “asynchronous” responses
to events. The body of an upon statement (within the do ... end block) is executed synchronously with
the event signal in the same sense that an accept statement is executed synchronously with an entry call.
While the upon statement is executing the execution of the corresponding relation is suspended at the point
at which the signal is generated (either acceptance or completion of the rendezvous for the relation entry).
However, the trigger does not execute a full rendezvous with the relation, and no parameters or exceptions
are returned from the trigger to the relation. Once the upon statement completes the synchronization with
the relation is released and the trigger and relation proceed in parallel. A sequence of statements immediately

following an upon statement thus executes asynchronously with the relation and can be used to provide an
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with Source_to_Object, Word_Count;
with Code_Types; use Code.Types;

trigger Maintain.Source.WC is
t1: src_to_obj_tuple;
begin
loop
select
upon Source_to_Object.insert
(src: in source_code) completion
do
Word_Count.insert(src);
end upon;
or
upon Source_to.Object.update
(t: in src.to.obj_tuple;
update_src: in boolean => false;
src: in source_code) completion
do
for t2 in Word_Count where
t2.text = t.src
loop
Word._Count.delete (t2);
Word.Count.insert (src);
end loop;
end upon;
or
upon Source.to.Object.delete
(t: in src_to_obj_tuple) completion
do
tl :=t;
end upon;
for t2 in Word_Count where
t2.text = t.src
loop
Word_Count.delete (£2);
end loop;
end select;
end loop;
end Maintain_Source.WC;

Figure 3: Trigger Maintain_Source. WC

16



with Source_to_Object, Word_Count;

predicate mandatory Source.Counted is
begin
return
every t1 in Source_to.Object satisfies
some t2 in Word_Count satisfies
tl.srec = t2.text
end some
end every;
end Source_Counted;

Figure 4: Predicate Source_.Counted

asynchronous response to relation operations. In Maintain Source WC the responses to Source_to_Object
insert and update are made synchronously while the response to Source_to._Object delete is made asyn-

chronously.

4.3 Predicates

Predicates are named boolean expressions over relations. Predicates, like functions, are program units. The
expression language includes existentially and universally quantified forms and conditional expressions. An
example predicate is shown in Figure 4.

The predicate states that for every tuple t1 in relation Source_to_Object there is some tuple 2 in
relation Word_Count such that the src attribute of t1 equals the text attribute of t2. In other words, there
is a Word_Count tuple with the word-count results for every source-code object in Source_to_Object.

The mandatory keyword in the predicate declaration means that the predicate is required in every
program that uses any of the relations to which the predicate refers. If the mandatory keyword is omitted,
the predicate is only included in a program if explicitly imported using an Ada with clause.

As noted above, predicates are optionally enforcible. If a predicate is enforced, then no operation by

a program on a relation designated by the predicate may leave the predicate violated. If the results of an
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operation would violate an enforced predicate then they are rolled back and the exception Constraint_Error
is raised. Each predicate has an associated boolean “attribute” (in the Ada sense) enforced. If this attribute
is true, then predicate is enforced by default; otherwise, it is not. This attribute is assignable; thus the
enforcement of a predicate can, in effect, be turned on and off. * (However, a mandatory predicate can also
be declared enforced in which case it is always enforced by default and cannot be turned off.)

Overall, APPL/A provides an unusual degree of control over when and where predicates are enforced.

Other aspects of predicates are described in [32].

4.4 Concurrency Control and Consistency Management

APPL/A includes five block-like statements that support concurrency control and consistency management
with respect to relations. These include the serial, atomic, suspend, enforce, and allow statements. All
excpet the enforce statement provide serializable access to a set of relations. The suspend, enforce, and
allow statements affect the enforcement of predicates in various ways (either suspending or requiring the
enforcement of designated predicates). The atomic and suspend statements may also entail rollback under
some conditions (such as exception propagation or constraint violation). Each of the statements is discussed
briefly below. An sketch of a program fragment showing the use of some of these statements is shown in
Figure 5; this example is contrived, but it illustrates the syntax of the statements.

The serial statement provides simple serializable read or write access to designated relations. The
serial statement has no special implications for predicate enforcement; predicates that are enforced in the
immediately surrounding scope are enforced immediately within it. Neither does the serial statement offer

rollback in the face of constraint violations or exceptions. Thus the serial statement is a unit of access to

11t is possible to make data inconsistent by turning on a predicate that was not previously enforced. However, consistency-
management constructs such as the suspend statement (Section 4.4) can then be used to operate on the data even though
they are inconsistent and to make them consistent if desired. In this way inconsistency is accommodated as a natural rather

than exceptional condition.
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serial read Word.Count;
begin
— read Word_Count here

serial write Source.to_Object;
begin
~ operate on Source.to.Object here

suspend Source_Counted;

begin
~ add new source code to Source_to_Object,
— temporarily violating Source.Counted;

atomic write Word_Count;

begin
— update Word_Count atomically to include
~ new source code

end atomic;
end suspend;
end serial;
end serial;

Figure 5: Sketch of Concurrency Control and Consistency Management Constructs

data but not a unit of completeness or consistency or work.

The atomic statement provides serializable and recoverable access to designated relations. Like the

serial statement it carries no special significance for predicate enforcement, and in this respect it is not
a unit of consistency. However, it imposes stronger requirements on completeness of work. If an atomic

is terminated by the propagation of an exception (from any cause) then any operations performed on the

designated relations are rolled back.

The suspend statement provides a unit of consistency with respect to predicate enforcement. It desig-

nates a list of predicates that are not to be enforced within its scope. This temporarily and locally overrides
the default enforcement of those predicates, whatever it may be (but it does not affect the enforcement of

those predicates in other processes or of other predicates in the same process). Serializable access is provided
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to the relations named in the predicates. Operations that violate the suspended predicates are allowed to
stand within the suspend. However, upon termination of the suspend, all predicates that are enforced in
the surrounding scope must be satisfied; otherwise the suspend is rolled back. In contrast to the atomic
statement, the suspend is not necessarily rolled back as a consequence of exception propagation; rollback
occurs only if a predicate to be enforced is left unsatisfied. A suspend statement can be nested within an
atomic statement to achieve the effects of a conventional transaction.

The enforce statement, unlike the suspend statement, requires rather than suspends the enforcement
of designated predicates. Like the suspend, it locally and temporarily determines the actual enforcement of
the designated predicates. There is no rollback associated with the enforce statement as a whole (although
operations which violate enforced predicates are individually rolled back). Consequently, the enforce state-
ment does not obtain serializable access to relations designated in the enforced predicates. (If serializable
access is desired, the enforce statement can be nested within a serial statement.) By analogy with the
suspend statement the enforce statement implies nothing about completeness of work, so there is similarly
no special significance to the propagation of an exception.

The suspend statement enables transitions from one consistent state to another. The enforce statement
enables transitions from an inconsistent to a consistent state. It seems inadvisable to offer a statement to
move from a consistent to an inconsistent state. However, it can be useful to move from one inconsistent
state to another, for example, to make a partial repair to a violated predicate. The allow statement offers
a way to do this, provided that no new predicate violations are introduced. The allow statement names
a set of predicates; if these are not satisfied upon entry to the allow then they need not be satisfied by
operations in the body of the allow or upon ezit from it. Within the allow operations that violate other
enforced predicates are rolled back individually, but there is no rollback for the allow as a whole.

These statements allow processes to operate on data that are more or less constrained than desired.

By providing serializable access they assure that interference by other processes can be precluded. By

20



enabling predicates to be locally enforced or suspended they allow a process to establish just the needed
enforcement regime. By supporting rollback they enable erroneously incomplete or inconsistent work to be
voided. These statements are more specialized in their effect than conventional database transactions, but
in various combinations they can represent conventional transactions, nested transactions [18], and other
capabilities for which there are not yet conventional names. This degree of flexibility in concurrency control

and consistency management is unique to APPL/A.

5 Experience and Status

APPL/A is defined as an extension to Ada. The APPL/A definition [34] includes a formal syntax and
English semantics with examples in a style similar to that of the Ada manual [1].

An earlier version of APPL/A [31] has been used to program several prototype process programs. One
of these is REBUS, an executable system which supports the specification of software requirements in a
functional hierarchy. REBUS maintains data about requirements in ten APPL/A relations; the relation
specifications and bodies comprise about 2700 lines of source code, exclusive of runtime support systems and
storage system interfaces. APPL/A was also used to extend REBUS to include features based on RSL/REVS
[2,8] (using several more relations) and to construct a design support system based on the Rational Design
Methodology of Parnas [21] and the IEEE design standard [7]. The experience gained with these process
programs contributed greatly to our understanding of PPL requirements. This in turn motivated the revision
of APPL/A to the definition described here. Another effort in the use of this earlier version of APPL/A is
a process program to integrate software testing techniques [24]. This program is being rewritten using the
version of APPL/A described here.

Work is presently underway on the design and implementation of an automatic translator for APPL/A.
The translator is being built using existing Arcadia [36] Ada language technology. It will translate APPL/A

programs into Ada. In addition, we are designing default implementations for APPL/A relations based
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on some existing database systems such as Cactis [17] and Exodus [10]. (Previously, executable APPL/A
programs have been generated by manual translation and implementation.)
Ongoing work is also aimed at developing prototype process programs in APPL/A to support the complete

software life cycle. From these we hope to learn still more about PPL requirements and design.
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