COMPLETE PROOF RULES FOR
STRONG FAIRNESS AND STRONG EXTREME-FAIRNESSt

Michael G. Main

CU-CS-447-89 August 1989
Corrections added February 1990

+ This research has been supported in part by National Science Foundation grant CCR-8701946,

COMPLETE PROOF RULES FOR
STRONG FAIRNESS AND STRONG EXTREME-FAIRNESS+
August 1989
Corrections added February 1990

Michael G. Main
Department of Computer Science
University of Colorado
Boulder, CO 80309 USA

ABSTRACT

This paper demonstrates completeness of a termination-rule for iterative pro-
grams with strongly fair nondeterminism, even when there are countably infinite
options for the nondeterminism. This means that whenever a program is guaranteed
to terminate under the assumption of strong fairness, then this termination can be
proved via the strongly fair termination rule. A variant of the rule is also shown to be
complete for extremely-fair nondeterminism, as introduced by Pnueli [9] and
developed by Francez [6, Section 4.3].

't This research has been supported in part by National Science Foundation grant CCR-8701946,

1. Introduction

In this paper, we consider repetition statements of the following form, where

each b; is a Boolean expression (also called a guard), and each s; is an executable

command.

Repetition Statement Informal Meaning

*[1. If some expression b; is true, then
by — s4 select such an i and execute the
O corresponding command s;. Then
by = s7 repeat step 1.
O 2. Otherwise, stop.

]

A repetition statement is nondeterministic, because sometimes there are several true
guards, only one of which is selected for execution — and the selection mechanism is

unspecified.

This paper shows completeness of a proof rule for showing termination of this
kind of repetition statement, under various ‘‘fairness’’ assumptions about the non-
deterministic selection mechanism. This means that whenever a repetition statement
is guaranteed to terminate under the fairness assumptions, then this termination can
be proved via the proof rule. This completeness result is new because it includes
statements with countably infinite directions, and also applies to ‘‘extreme fairness’’

as introduced by Pnueli [9] and developed by Francez [6, Section 4.3].

The presentation in this paper assumes a familiarity with well-founded sets. The
other background for the results is contained in Section 2 of this paper, although a

knowledge of the first four chapters of Francez [6] would also be helpful.

2. Strongly Fair Termination and the SFT Proof Rule

2.1 Strong Fairness

When a repetition statement selects between several true guards, the selection is

completely arbitrary. For example, consider this repetition statement:

*[
x>0 - y=y+l
O
x>0 — x:=0

]
Suppose that x starts with a non-zero value. Then it is possible to always select the
first option, continually incrementing y and never terminating. However, a strongly
Jair execution path would not permit this: an execution path is strongly fair provided
that whenever a guard is true infinitely often, then the corresponding statement is
selected infinitely often. For the above example, there are no nonterminating
strongly-fair execution paths, since any strongly fair path must eventually select the

second option, causing termination.

As a second example, consider this repetition statement:

*
x>0 > yi=y+l
O
x>0 — x=x-1
1

There are nonterminating execution paths: those paths which choose the second
option fewer than n times, where n is the initial value of x. However, under the
assumption of strong fairness, termination is guaranteed — since any infinite
strongly-fair path must select the second option infinitely often, eventually making
x > 0 fail.

2.2 Countably Infinite Directions

Dijkstra [4] introduced the repetition statement as a convenient way of present-
ing nondeterministic alternatives, and the notation has since been used in other stu-
dies of nondeterminism, concurrency and fairness. But usually the notation is res-
tricted to finitely many options. The restriction is not an oversight, but rather a deci-
sion by Dijkstra to include a ‘‘Law of Continuity’” which fails for countably infinite

nondeterminism (see [5, Chapter 9]).

The Law of Continuity also fails when we restrict ourselves to strongly fair exe-
cution paths, and there seems no further harm in allowing countably many options in

a repetition statement. Informally, we might have a statement like this:

*[
x#0 — x:=abs(y)-0
O
x#0 = x:=abs(y)-1 (Note: abs(y) is the absolute value of y.)
O
x#0 = x =abs(y)-2
]

This statement has nonterminating execution paths — simply avoid the one option
that will cause x to be set to zero. But there are no infinite strongly-fair execution

paths, since any infinite strongly-fair path must eventually select that one option

which sets x to zero, causing termination.

Here’s another example of a statement which has no infinite strongly-fair execu-

tion paths:
*
x>0 — x:=x+1; y == maximum (x,y)
O
x>0 - x:=x-1
O
x>0andx =y — x:=0
O
x=1 - x:=0
O
x=2 — x:=0
I
x=3 — x:=0

1
An infinite path may only select from the first two options. Such a path has two pos-
sibilities: Either x remains below some fixed bound all the time, or there is no such
fixed bound. If there is no such fixed bound, then x =y will hold infinitely often, and
the path is not strongly fair, because the third option was never selected. On the other
hand, if there is such a bound, then there exists some k& below the bound such that
x =k is true infinitely often. Again, the path is not strongly fair, because the option
with guard x =k is never selected. This shows that there is no infinite strongly-fair

path.

The topic of this paper is a proof rule for showing this kind of termination result.

But first we need to formalize the notions of repetition statement and execution paths.

2.3 Repetition Statements and Execution Paths

Our formal definition of a repetition statement is with respect to a fixed set of
“‘computation states’’. Throughout the rest of the paper, £ will be this fixed set of
states. We use the term predicate for any Boolean-valued function on X, and we
write —p for the negation of a predicate p. For a set I' of predicates, we write VI
for the disjunction of all the predicates in I'. We use X, to denote the set U {] },

where | is a new element which represents nontermination of a process.

A nondeterministic program over X can be interpreted as a state-transition rela-
tion between X and %, . If s is a relation denoting such a program, and (x,y) € s, then
the corresponding program is capable of mapping an initial state x to a final state y.
If y =] then the program has a nonterminating execution path starting in state x.
Such a relation should also be total, so that for each d € T there exists at least one

ee ZJ_ such that d isrelated toe.

Now we can define a repetition statement:

Definition. (Repetition Statement) Let <bi, s>, <bj s,> .. be a countable
sequence of ordered pairs, where each b; is a predicate, and each s; is a total relation

from X to ¥, . Such a sequence is a repetition statement and usually written as:
*[
bl —> S1
O
bz — 52
O
]
If R is a repetition statement, then the directions of R are the natural numbers 1,2,...,
up to the number of pairs in the sequence (or unbounded if the sequence is infinite).

O

Issues of syntax and computability are intentionally vague in this definition.
These issues could be clarified, but that would complicate some proofs without
changing the results. In particular, we could require that each command s; is a
repetition statement or basic command of some sort — the results of the paper would
still hold, but most proofs would need an extra induction on the nesting level of the

program (which would need to be restricted to be finite).

We associate a set of execution paths with each repetition statement, as follows:

Definition. (Execution Path) Let R be a repetition statement with guards
bi,by, - -+ and executable statements 51, 5, * . A finite execution path for R is a
finite sequence x 1, dq, x2 da, * X, such that

a. Each x; is a state from % ;

b. Each d; is a direction for the statement R ;

c. For all i (with d; defined): b,, holds in state x;;

d. For all i (with d; defined): x; is related to x;,; by the relation sdi;s

e. Either x; = | , or none of the guards of R holds for x;.
An infinite execution path for R is a countably infinite sequence xy dq x5 do - -

meeting conditions (a)-(d). O

Intuitively, an execution path for R is a sequence of states and direction choices
which the statement R could pass through. Note that | can only appear as the last
state of a finite execution path. The intuition behind a | -ending path is that the last
executable statement did not terminate. As described above, some paths are strongly
fair. Here’s the formal definition of strongly fair, along with two other definitions

that we’ll use:

Definition. (Strongly Fair Execution Path) Let R be a repetition statement, as in the
previous definition. Letxy d; xq dy - - be a (possibly infinite) execution path for
R. The path is strongly fair provided that the following holds for every direction d
ofR:

If {i | bg holds for x; } is infinite, then direction d appears infinitely often in the

sequence.

Definition. (Total Correctness Notation) Let p and ¢ be predicates, and let s be a
total relation from X to %, . We say that s is totally correct with respect to precondi-
tion p and postcondition ¢ provided that whenever p holds for a state x and

(x,y)e s theny #| and g holds for state y. In this case, we write {p}s {¢}. O

Definition. (Strongly Fair Termination) For a repetition statement R and a predi-
cate p, we use the notation SFT(p,R) to denote the statement that R has no

strongly-fair execution path that starts in a state that satisfies p and is infinite or ends
with | . O

2.4 Proof Rule for Strongly Fair Termination

Our goal is to prove statements of the form SFT(p,R). In other words, if R is
executed in an environment that guarantees strong fairness, and it starts in a state that
satisfies p, then R is certain to terminate. Figure 1 shows one form of the established
proof rule for proving these statements. The rule is based on Francez [6, Page 40],
whose original source was research by Grumberg, Francez, Makowsky and deRoever

[7]. Similar methods were also proposed by others [1,2,3,8].

Let p be a predicate, and let R be a repetition statement:

*[
bl -> 51
O
b2 —> S92
|

]

To prove SFT(p,R): Choose a well-founded, partially-ordered set (W, <), a
predicate pi(w) for each w € W, and a direction d,, for each non-minimal

w e W, all satisfying:

1. (INIT) p implies there exists w such that pi (w).
2. (TERM) For all minimal w € W': pi (w) implies none of R ’s guards hold.
3. (DEQC) For all non-minimal w € W:
{pi(w)and by, } s4, {There exists v such that v <w and pi (v)}.
4. (NOINC) For all non-minimal w € W and all directions i :
{pi(w)and b;} s; {There exists v such that v <w and pi (v)}.
5. (IOE) For all non-minimal w € W, SFT(pi(w),R) can be proved by an

application of this rule, where R is the following repetition statement:
*
(=bg)and by — 54
O
(= bdw) and b2 — S92
O

Figure 1. SFT Rule

The names INIT, TERM, etc. (see Figure 1) are from Francez’s text, and stand
for “‘initialization’’, ‘‘termination’’, ‘‘decrement’’, ‘‘no increase’’, and “infinitely
often enabled’’. The predicate pi (w) is called the ‘‘parameterized invariant for w”’,
and the direction d,, is called the “‘helpful direction for w . This SFT rule is slightly
simpler than Francez’s rule, since Francez’s rule forbids termination when piw)
holds for a non-minimal w. Also, the rule in Figure 1 has only one helpful direction
for each w (instead of a set of helpful directions). But the rule remains sound (as

shown below) and complete (as shown in the Section 5).

We write |- SFT(p,R) when it is possible to prove SFT(p ,R) with the SFT rule

of Figure 1. The next definition shows precisely what is meant by ‘“provable’’.

Definition. Here is a recursive definition of when SFT(p,R) is provable for a repeti-

tion statement R and a predicate p

(1) There are some instances of SFT(p,R) which can be proved with the SFT
rule and no recursive applications needed by the IOE condition. These are
the cases where W has only minimal elements. Whenever this is the case,
then SFT(p ,R) is provable.

(2 Let K be any set of provable statements of the form SFT(g,S), and suppose
SFT(p,R) follows from the SFT rule, where each termination statement
needed by IOE occurs in K. Then SFT(p,R) is provable.

(3) The statement SFT(p,R) is not provable unless this is required by rule 1 or
rule 2. (Note that rule 1 is actually a special case of rule 2, where K is
empty.)

Whenever SFT(p, R) is provable, we write - SFT(p,R). [J

In other words, the set of provable statements is the smallest set of statements
which is consistent with the proof rule. To demonstrate that the SFT rule is sound
and complete, we must show that for any predicate p and repetition statement R,
FSFT(p,R) if and only if SFT(p,R). One direction of this (soundness) is pretty easy

and the usual soundness proof for SFT (e.g., [6, page 44]) works even with countably

10

infinite directions. That proof is given here:

Theorem: (Soundness of SFT) For a repetition statement R and a predicate p :
if FSFT(p,R), then SFT(p,R).

Proof: The proof is an induction on the recursive definition of |-SFT(p,R). To set
up the induction, assume that }—SFT(p ,R) holds, so that there is a set K of provable
statements of the form SFT(g,S), and suppose SFT(p, R) follows from the SFT rule,
where each termination statement needed by IOE occurs in K (which might be
empty). For the induction hypothesis, we assume that whenever SFT(g, S) is in K,
then SFT(q,S) is actually valid. We must show that SFT(p,R) is also valid. First
we note that R has no finite execution path that starts in a state that satisfies p and
ends with | . (This follows from INIT and NOINC). Next, consider some path
T=Xx1,d1,X2 dy -+, which is infinite execution path of R, such that p holds for
state x ;. We must show that w is not strongly fair. By INIT and NOINGC, there exists
a sequence of elements of W, wy 2wy 2 w3 - - -, such that for every j, pi (w;) holds
for state x;. By well-foundedness, we may choose the w; so that there is never some
v <wj; where pi(v) holds for x;. Also from well-foundedness, there exists some
k>0, such that wy =wpy1 = ---. But this implies that none of the directions dj,
di+1, -+ are dy, (since DEC indicates that after a d,,, direction is taken, there will
be some v < wy such that pi(v) holds). However, by IOE (and the induction
hypothesis), the guard for direction d,,, is infinitely-often true in the states xy, Xg.1,
-+ . Since direction d,,, is never taken from these states, the path & is not strongly
fair. OJ

11

3. Examples and Properties of the Strongly Fair Termination Rule

Francez [6] provides many examples of applications of the SFT rule. Here are a

few more.

Example. Consider the repetition statement, which we will call R in this para-
graph:
*[
x>0 — y:=y+1
O
x>0 - x =x-1

]
In order to show [—SFT(true,R), we can take the well-founded set W to be the
natural numbers, with the usual ordering. For any natural number n, we define the
parameterized invariant pi (n) to be the predicate x<n. And for any n >0, we choose
the helpful direction d,, to be the second direction. It is not difficult to show that the
conditions of the SFT rule are valid for these choices. Note that for each n >0, IOE
requires another application of the SFT rule to show SFT{(x >#,R), where R is the
same as R, except the guards are now [(—(x > 0)) and (x > 0)]. Since all these

guards are equivalent to ‘‘false’’, this is an easy application of the SFT-rule (see

Lemma 3.1, below).

12

Example. Consider the repetition statement, which we will call R in this para-
graph:
[

x>0 — x:=0

O
x>0 - x:=1
O
x>0 - x:=2
O

x>0 — x:=3

]
In order to show |-SFT(true , R), we can take the well-founded set W to be the two
element set {top , bottom } with top > bottom . We also define these:
pi(top)=x >0,
pi(bottom) =x <0,
diop = ‘‘the first direction”’.
It’s easy to see that the conditions INIT, TERM, NOINC and DEC are all satisfied.
For IOE we need to show |- SFT(x > 0, R), where R is obtained by adding — (x > 0)
to each guard of R. But this makes all the guards equivalent to ‘‘false’’, so this is

another easy application of the SFT-rule (see Lemma 3.1, below).

Example. Let m be a constant natural number, and consider this repetition
statement, which we call R, :

*
: x2y-mandx #y andx >0 — x:=x+1; y := maximum (x.y)
)Ejzy——m andx #y andx >0 — x =x-1
EZy—m andx #zyandx =1 — x:=0
EZy-m andx #y andx =2 — x =0
J[c]Zy—m andx #y andx =3 — x:=0

Let m and »n be natural numbers with m <n. We can show

FSFT(y-m <x <y =n,R,,), by induction on the value of m. For the base case

13

(when m =0), the condition y-m <x <y =n is equivalent to ‘‘false’’, and
|- SFT(false, Ry,,) is immediate from Lemma 3.1 (below). For the induction step,
assume that | SFT(y—k <x <y =n, Ry) holds for some value k. From this assump-
tion, we need to show that | SFT(y—(k+1) <x <y =n, Ry,1) also holds. To do this,
we define a well-founded set W to contain two elements {top,bottom} with
top > bottom . We also define these:

pi(top)=y—(k+1)<x <y =n,

pi(bottom) =x <y—(k+1) or x =y,
and dy,, = the direction whose guardis - -+ andx =y—k"".

It’s easy to see that the conditions INIT, TERM, NOINC and DEC are all satisfied.
For IOE we need to show |-SFT(y—(k+1)<x <y =n,R), where R is obtained by
adding —dy,, to each guard of Ry,;. But, adding —dyy, 10 each guard of Ry, gives
the statement R, so we need only show:

FSFT(y—(k+1)<x <y =n,Ry).
And this follows from the induction hypothesis (|-SFT(y—k <x <y =n, Ry)) and
Lemma 3.6 (which is given below and allows us to strengthen the precondition from
y—k <x toy—(k+1) <x).

Exercise. Show |-SFT(irue ,R), where R is this repetition statement, from Sec-
tion 2.2:
*

x>0 — x:=x+1; y :=maximum (x,y)

O

x>0 - x:=x-1

O

x>0andx =y — x:=0
O

x=1 - x:=0

O

x=2 - x:=0

O

x=3 — x:=0

]

The previous example will be useful in the recursive applications of SFT that are
required by IOE.

14

It is useful to have some general results that indicate when }—SFT(p ,R) holds.
These are given in the rest of this section. Throughout these results, R is a repetition

statement, with guards by, by, - - - and executable statements s, 55, * - - .

Lemma 3.1. Let p be a predicate such that p implies — b for each guard » of R.
Then |- SFT(p,R).

Proof: Let the well-founded set W be the one-point set, with p as the parameterized

invariant at this one point. [

Lemma 3.2. Letp be a predicate such that}- SFT(p,R), and let R be the same as R,
but with stronger guards — so that each guard in R is implied by the corresponding
stronger guard in R". Then |-SFT(p,R").

Proof: We can use the same well-founded set for R’ as for R, with the same

parameterized invariants and the same helpful directions. [

Lemma 3.3 Let I" be a set of predicates such that for every p € I': |-SFT(p,R).
Then |-SFT(VT,R).

Proof: Create the well-founded set for SFT(VI,R) as the disjoint union of the well-
founded sets for all of the individual p € I". This new well-founded set inherits its
parameterized invariants and helpful directions from the original well-founded sets

for the individual p e . O

Lemma 3.4 Letp and g be predicates such that |-SFT(g, R) and for every direction
i of R:

{p and b;} s; {g ornone of R ’s guards hold} .
Then |- SFT(,R).

Proof: Start with the well-founded set for proving SFT(¢,R). For each direction i

add one new element w; at the top (so that w; >v for every v in the original well-

15

founded set). We also add a new element w which is not related to any other ele-
ment, and we define:
Foralli, pi(w;)=p and b;,
Foralli,d,, =i,
pi(w)=p and none of R ’s guards hold.
It’s not difficult to show that the conditions of the SFT rule are still valid for this
well-founded set. [J

Lemma 3.5 Let p be a predicate and I" be a set of predicates such that for every
direction i there exists some ¢ € I" such that |- SFT(g,R) and

{p and b;} s; {q ornone of R’s guards hold }.
Then |-SFT(p,R).

Proof: The result follows from the previous two lemmas. [

Lemma 3.6 Let p and g be predicates such that |- SFT(¢,R) and p implies g. Then
|- SFT(p,R).

Proof: We can use the same well-founded set for p as for ¢, with the same

parameterized invariants and the same helpful directions. [

4. Completeness of the Strongly Fair Termination Rule

Throughout this section, p is a predicate and R is a repetition statement such
that SFT(p,R). As usual, R has guards by, by, --- and executable statements
1,89, <.

The main result of this section is that the SFT rule is always adequate for prov-

ing strongly fair termination. Thus, we will show that our assumption of SFT(p,R)

implies |- SFT(p,R). Here’s an outline of the proof technique:

(1) Fromp and R, we construct a well-founded set G. Each element g € G has

a statement SFT(invariant (g), R,) associated with it.

16

(2> We use well-founded induction on G to prove that |- SFT(invariant (g) Ry)
holds for every g € G. For an arbitrary g € G, this well-founded induction
assumes (as the induction hypothesis) that |- SFT(invariant (w), R,, y holds for
any w<g. From this induction hypothesis, we directly show
I SFT(invariant (g)R,), by constructing a well-founded set W (together with
a parameterized invariant and helpful directions). The well-founded set
meets the requirements of the SFT rule — in particular, it meets the requir-
ments of IOE, which have the form |-SFT(- - -). This demonstration of IOE
uses the induction hypothesis. In some instances, the statement |- SFT(- - -)
which is needed for IOE may be no simpler than | SFT(invariant (g), R g) —
in fact it may even be identical! This just means that a statement similar (or
even identical) to | SFT(invariant (g), R ¢) was proved at a lower point in the
well-founded set G. From the induction hypothesis we can make use of that

similar (or identical) statement.

(3) After we have shown | SFT(invariant (g), R,) holds for all g € G, we show
that this implies |- SFT(p,R).

This proof technique is not as straight-forward as the completeness proof for a finite

number of directions. In the finite case each recursive application of SFT is simpler

than the previous one — because one direction of the repetition statement has been

removed. In the infinite-directions case, the only thing getting simpler in the recur-

sive applications is that such an application occurs lower in the well-founded set G .

The proof of |-SFT(p,R) uses some definitions, which are given in the next

three paragraphs.

Definition 4.1. Let eg,ey,e5, - - - be some fixed infinite sequence of directions from

the repetition statement R , such that every direction of R appears infintely often. [J

Definition 4.2. Let x € X be a state and ¢ be a predicate. Then reachable (x,q) is
the set of states that can be reached (in an execution of R) starting at x and never

passing through a state where ¢ holds. Thus, y € reachable (x,q) if and only if:

17

For some k and some execution pathxy dy -+, dpg xg, - :
Xx=x1, and
y=x;, and
q fails for all of the states xq, - * -, X.

Note: If ¢ holds in state x, then reachable (x, q) is empty. If g fails in state x, then

reachable (x, q) always contains at least x. [J

Definition 4.3. Let j be some direction of R, and let ¢ be a predicate. Then
step (j, q) is the set of states which can be reached by executing s ; from a state where
q and b; hold. Formally, it is the set

{y € Z | There exists x € X such that ¢ (x) and b;(x) and (x,y) e s;}
|

The next definition gives a partially-ordered set (G, <), where each element
g € G is labeled by two predicates (called invariant (g) and forbidden (g)) and one
state (called state (g)) and one integer (called level (g)).

Some intuition might help in understanding the definition: Consider the possibil-
ity of an infinite strongly-fair execution path © of R which begins in some state x
which satisfies p. G will be constructed so that there is some g € G with
level (g)=0 and state (g)=x. For this g, invariant (g) will be the set of states that

can be reached from x along some execution path, and forbidden (g) will be empty.

Now, consider direction e (ffom the sequence in Definition 4.1). Since the path

T is strongly-fair, there are two possibilities:

(1) Direction e is choosen somewhere in the path. In this case, there will be
some h € G where level (h)=1 and state (h) is the state of the path after tak-
ing direction e(. The set forbidden (h) will still be empty, and invariant (h)
will be the set of states that can be reached from state (h) along some execu-

tion path.

(2) Eventually there is some point in the path where the guard b,, is never again

satisfied. Direction e is never taken in the path. Since the path is strongly-

18

fair, there must be some point in the path where the guard b,, is never again
satisfied. In this case, there will be some h € G where level(h)=1 and
state (h) is the state of the path after reaching this point. The set
forbidden (h) now includes any state that satisfies b, — so intuitively, these
states have been ‘‘forbidden’’ to occur on the path in the future. The set
invariant (h) will include all states that can be reached from state (h) without

passing through one of the forbidden states.

As an execution path proceeds, we will be able to follow it through higher and higher
levels of G. When the computation proceeds from level i to level i+1, the choice of

the element of G depends on whether direction ¢; is ever taken again.

One more bit of intuition before the actual definition of G: From the fact that
there are no infinite strongly-fair execution paths, we will show that G is well-

founded. And from the well-foundedness of G we will show !— SFT(p,R).

Definition 4.4. The elements of G depend on R, p, and the sequence eg,eq, €5, * - - .

They are recursively defined as follows:

(a) For each state x such that p holds, there is an element g of G such that:
forbidden (g) = false,
invariant (g) = reachable (x , false),
state (g) =x, and
level (g)=0.

Note that invariant (g) contains at least x .

(b) Let ge G, let i =level(g), let j be a direction and let x be a state in
step (j,invariant (g)). Then there is an element 2 € G with & < g such that:
Jorbidden (h) = forbidden (g) or b,,,
invariant (h) = reachable (x , forbidden (h)),
state (h) =x, and
level (h) =i+1.

(¢) Letge G,leti =level(g), and let x € step (e;,invariant (g)). Then there is an
element 4 € G with & < g such that:

19

forbidden (h) = forbidden (g),
invariant (h) = reachable (x , forbidden (h)),
state (h) =x, and
level (h) =i+1.
There are no elements or relations in G, except those required by the above three

rules. [

Eventually we will use G to prove |-SFT(p,R). The first step toward this is to
show that G is well-founded:

Lemma 4.5. The partially-ordered set (G, <) is well-founded.

Proof: For the sake of reaching a contradiction, assume there is an infinite sequence
80>81>g82 - of elements in G. This sequence can be extended before g to a
level 0 element of G, so without loss of generality, we can assume that g is at level
0, and that each gx (k 20) is at level k. From the definition of G, it is straight-
forward to construct an infinite strongly-fair execution path that starts in g ¢, and con-
tinues passing through states g1, g2, . , in such a way that for all £, none of the
states at or after state (gy) satisfies forbidden (g;). This contradicts SFT(p,R), and
by this contradiction, (G, <) is well-founded. (End of proof of Lemma 4.5.) [J

Since (G, <) is well-founded, we can provide an induction proof of the next

lemma:

Lemma 4.6. For each g € G: |-SFT(invariant (g),R;), where R, is the repetition

statement:
*[
(= forbidden(g))and by — s
O
(= forbidden(g)) and by — s9
O

]

Proof: We use a well-founded induction on G. For the induction hypothesis we

assume that for every h < g: |-SFT(invariant (h),R),). From this assumption, we

20

must prove |— SFT(invariant (g),Rg). To show this, we must find a well-founded set
W, a parameterized invariant pi, and a helpful direction d,, for each non-minimal

w € W, such that the conditions of the SFT rule are valid.

Here is most of the set W:
{we G |w<g,and forbidden(w) = forbidden (g)},
with the order for W inherited from G. For each weW define
pi(w) = invariant (w) and d,, = ejeve1 (). We also add one more element o to W with
pi(e) = forbidden (g), and e below every element in W. We now need to prove the

five conditions of the rule.

IOE Case 1: Prove IOE for a non-e element w € W, with w #g. Since w #g it fol-
lows that w <g and the induction hypothesis implies: |- SFT(invariant (w),R,,).
Since invariant(w)=pi(w), and forbidden(w) = forbidden(g), this implies
FSET(i (w),R,). Let R be the repetition statement, obtained from R, by

strengthening its guards in this way:

*
(= by,) and (= forbidden(g))and by — 51
O
(= bg,) and (= forbidden(g))and by — s9
|

]

Since R was obtained by strengthening the guards in R,, Lemma 3.2 implies
I SFT(pi (w), R), which is precisely what’s needed for IOE to hold for w.

IOE Case 2: Prove IOE for w = g¢. That is, we must show |-SFT(pi(g),R), where
pi(g) =invariant(g) and R is obtained from R, by strengthening it’s guards (as in
the previous case). Let child, (g) be the set of elements in G which are required by
rule (b) of Definition 4.4 as immediate descendants of g, and let
I'={invariant (w) | w € child, (g)}. This definition of " meets the requirements of
Lemma 3.5 (taking p in that lemma to be pi (g), and taking R in that lemma to be R).
Therefore Lemma 3.5 implies the required condition of IOE: |- SFT(pi (g), R).

21

INIT: Note that invariant(g)=pi(g), and g is an element of W. Therefore,

invariant (g) implies that there exists some w € W such that pi (w).

NOINC: Let w be a non-e element of W and let i be a direction. We must prove:
{pi(w)and b;} s; {There exists v such thatv <w and pi (v)}.
Suppose x € X is a state that satisfies the precondition of this assertion, and consider
some y € X, such that (x,y)e s;. The state y cannot be | (since then it is possible
to construct a finite computation path of R which starts in a state satisfying p and
ends with - -+ ,x,i, | , and this contradicts SFT(p,R)). If y satisfies forbidden (w),
then the postcondition is satisfied by taking v =e. And if y doesn’t satisfy
forbidden (w), then the postcondition is satisfied by taking v = w, since
invariant (w) = reachable (s, forbidden (w)).

In both cases we have shown that y satisfies the postcondition.

DEC: Let w be a non-e element of W, and let i =level(w) and recall that

dyw = €level(w) = €;. We must prove:
{pi(w)and by, } s4, {There exists v such thatv <w and pi (v)}.
Suppose x € Z is a state that satisfies the precondition of this assertion and consider
some y € ¥, such that (x,y)e s4,. The state y cannot be | (for the same reason as
the previous paragraph). If y satisfies forbidden(w), then the postcondition is
satisfied by taking v =e. And if y doesn’t satisfy forbidden (w), then consider rule
(¢) (in the construction of G). Since x satisfies the precondition of the assertion, it
follows that x is also in step (d,, , pi (w)) which is the same as step (e;, invariant (w)).
Thus, rule (c) states that there is an element v € G with v <w such that
invariant (v) = reachable (y, forbidden (v))
and
forbidden (v) = forbidden (w).

This v isin W and pi (v) holds for y, so once again y satisfies the postcondition.

22

TERM: For each minimal element w of W we must show that

pi (w) implies (—b) or forbidden (g).
(Recall that b is the disjunction of all of R ’s guards.) The only minimal element of
W is e, and pi () = forbidden (g), and
forbidden(g) implies (—b) or forbidden(g).

This completes the proof of Lemma 4.6. [J

We now have enough to prove |- SFT(p,R):

Lemma 4.7. |- SFT(p,R).

Proof: Take I' = {invariant (g) | g € G and level (g)=0}. As aresult of Lemma 4.6,
this definition of I" meets the conditions of Lemma 3.3, therefore: |—SFT(V ILR).

Moreover, VI" = p, hence we have the required result. [J

In this section, we assumed that SFT(p,R), and from this concluded

- SFT(p,R) (Lemma 4.7). This is summarized as the following theorem:

Theorem: (Completeness of SFT) For a repetition statement R and a predicate p :
if SFT(p,R), then |-SFT(p,R).
O

5. Extreme Fairness

Pnueli [9] introduced extreme fairness as a method for reasoning about certain
kinds of probabilistic nondeterminism, within the fairness paradigm. The typical

example is a repetition statement like this:

*
x>0 - x =2
O
x>0 -5 x=x-1

23

There is an infinite strongly-fair execution path: the path alternates between the first
and second directions. But consider a probabilistic selection mechanism which
selects the first direction with some probability p (0 <p < 1) and the second direction
with probability 1 —p. Such a selection mechanism is guaranteed (with probability
1) to terminate, since with probability 1 any infinite execution path will have some
selection of the first direction, followed by two consecutive selections of the second

direction.

The reason that this statement has infinite strongly-fair paths is simple enough:
although a strongly fair path must choose the second direction infinitely often, it need
never choose the second direction when x =1 holds. This is the motivation for the

definition of extremely-fair execution paths and extremely-fair termination:

Definition. (Extremely-Fair Execution Path) Let R be a repetition statement with
guards b1, by, - -+ and executable statements s1, 59, - - -. Let I” be a countable set
of predicates. Let x1, dq,x2 dy, -+ be a (possibly infinite) execution path for R.
The path is strongly T-extremely-fair provided that the following holds for every
direction d of R and every predicate ye I':
If {i | by and v hold for x; } is infinite, then direction d is selected infinitely
often from states where b; and 7y both hold.
O

Definition. (Extremely-Fair Termination) For a repetition statement R, a count-
able set of predicates I, and a predicate p, we use the notation I'-SFT(p,R) to
denote the statement that R has no strongly I'-extremely fair execution path that

starts in a state that satisfies p and is infinite or ends with | . [

For I' = {true ,x =1}, the repetition statement given above contains no infinite
strongly I'-extremely-fair execution paths. Here’s why: such a path must eventually
select the first direction, after which the value of x may only be 1 or 2. Also, after

this point the second direction will be selected infinitely often, and since the path is

24

infinite, this may only occur when x =2. But, after executing the second direction,
the value of x will be 1, and this will occur infinitely often. Therefore, the second
direction must eventually be selected when x =1 holds, and after this the execution

terminates.

Pnueli took the set I" as the set of first-order definable predicates over . He
showed that for a finite number of directions, and this T, strongly I'extremely fair
termination implies termination (with probability 1) for any probabilistic selection

mechanism (independent of the actual probabilities).

The extension to arbitrary countable I was proposed by Francez [6, Section

4.3], who also showed the soundness of a rule similar to ’'-SFT, shown in Figure 2.

25

Let I" be a countable set of predicates, let p be a predicate, and let R be a repetition
statement:

*[
b1 — 5
O
b2 —> S92
O

]

To prove I'-SFT(p,R): Choose a well-founded, partially-ordered set (W ,<), a predi-
cate pi(w) for each w e W, a direction d,, and a predicate v,, € I" for each non-

minimal w € W, all satisfying:

1. (ANIT) p implies there exists w such that pi (w).
2. (TERM) For all minimal w € W': pi (w) implies none of R ’s guards hold.
3. (DEC) For all non-minimal w € W:
{pi(w)and by, and vy, } s4, {There exists v such thatv <w and pi (v)}.
4. (NOINC) For all non-minimal w € W and all directions i :
{pi(w) and b;} s; {There exists v such thatv <w and pi (v)}.
5. (IOE) For all non-minimal w € W, I'-SFT(pi (w), R) can be proved by an applica-

tion of this rule, where R is the following repetition statement:

*
(= by, ory,)and by — sq
O
(=g, orv,)and by — s,
O

]

Figure 2. T-SFT Rule

26

We will write FT=SFT(p,R) to denote that -SFT(p,R) can be proved with
the I'-SFT rule of Figure 2. The question of completeness of this rule was left open
by Francez [6, Page 126]. But making use of the soundness and completeness of SFT

for countably infinite directions, the soundness and completeness of I'-SFT is easy:

Theorem: (Soundness and Completeness of I'-SFT) For a countable set of predi-
cates I, a repetition statement R and a predicate p :
I'-SFT(p,R) iff FT'-SFT(p,R).

Proof: First, create a new repetition statement R such that for each direction
“b —s” in R and each yeT, the repetition statement R has a direction
““b and Y—> s . Note that R has only countably many directions, and that:
I'-SFT(p,R) iff SFT(p,R)
and
FSFT(,R) iff |T-SFT(p,R)

Since the SFT rule is sound and complete, we also know SFT(p,R) if and only if
-SFT(p,R). Combining this with the above two equivalences yields the needed
result. [J

6. Conclusion

The primary result of this paper is that the usual rule for proving strongly fair
termination remains sound and complete, even when the nondeterminism has count-
ably infinite directions. As a consequence, a slight variation of this rule is sound and

complete for strongly I'-extremely fair termination.

27

Acknowledgement

I wish to thank Nissim Francez for a careful reading of the first draft of this
paper. He made a number of critical corrections, including the definition of

SFT(p,R), and made suggestions about how to formulate |- SFT(p, R).

4y

@

©)

@

(6))

©)

)

®

©)

28

References

K.R. Apt and E.-R. Olderog. Proof rules and transformations dealing with
fairness, Science of Computer Programming 3 (1983), 65-100.

K.R. Apt, A. Pnueli and J. Stavi. Fair termination revisited - with delay,
Theoretical Computer Science 33 (1984), 65-84.

H.J. Boom. A weaker precondition for loops, ACM TOPLAS 4 (1982), 668-
677.

E.W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs, CACM 18 (1975), 453-457.

E.W. Dijkstra. A Discipline of Programming, (Prentice-Hall, 1976).
N. Francez. Fairness, Springer-Verlag, New York, 1986.

O. Grumberg, N. Francez, J.A. Makowsky and W.P. deRoever. A proof rule
for fair termination of guarded commands, Information and Control 66
(1985), 83-102.

D. Park. A predicate transformer for weak fair iteration. Proc. 6th IBM
Symp. on Math. Foundation of Computer Science (1981).

A. Pnueli. On the extremely fair treatment of probabilistic algorithms, in:
Proceedings of the 15th Annual ACM Symposium on Theory of Computing,
(1983), 278-290.

