Software for a New Modified Cholesky Factorization*

Robert B. Schnabel and Elizabeth Eskow

CU-CS-443-89 August 1989

q ‘
LEjngniversity of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

* This research was supported by ARO grant DAAL-03-88-0086, NSF grant CCR-8702403, and NSF cooperative agreement DCR-8420944.

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

Abstract

This paper describes the software for a new modified Cholesky factorization recently proposed by the
authors. Given a symmetric but not necessarily positive definite matrix A4, the modified Cholesky factor-
ization computes a Cholesky factorization of A+ E, where E = 0 if A is safely positive definite, and E is
a diagonal matrix chosen to make A + E positive definite otherwise. The modified Cholesky factorization
was introduced by Gill and Murray and refined by Gill, Murray and Wright, and is commonly used in
optimization algorithms. Our version, which is based upon new techniques, has a considerably smaller
a priori upper bound on the size of E than the Gill, Murray and Wright factorization, and appears to
generally produce a smaller E, and a well-conditioned A4 + E, in practice. Its cost, like the Gill, Murray
and Wright version, is only a small multiple of n? operations greater than the standard Cholesky factor-
ization. Thus it may be useful in optimization algorithms. We summarize our algorithm and describe

the code and its use.

1 Introduction

This paper describes the software for a new modified Cholesky factorization algorithm presented in
Schnabel and Eskow [1988]. The modified Cholesky factorization is intended for matrices that are sym-
metric but not necessarily positive definite. Given a matrix A € R**"_ the modified Cholesky factoriza-
tion 'computes

PT(A+ E)P = LLT (or LDLT),

where P is a permutation matrix, and E € R**" is 0 if A is safely positive definite, otherwise E is a
nonnegative diagonal matrix chosen such that A+ E is safely positive definite. This type of factorization
was introduced by Gill and Murray [1974] and subsequently refined by Gill, Murray, and Wright [1981].
It has become important in solving problems in optimization, and is used in many line search methods
for unconstrained and constrained optimization problems (Gill, Murray, and Wright [1981]) as well as in
some trust region methods (Dennis and Schnabel [1983]).

The modified Cholesky factorization of Schnabel and Eskow has superior theoretical properties
to the method of Gill, Murray, and Wright, and appears to have computational advantages as well. The
upper bound on || E|«, for Schnabel and Eskow’s method is at worst about 2na, where a = 12,?)5(nJAU |, as
opposed to roughly n?a for the method of Gill, Murray, and Wright. In addition, extensive computational
testing of the software described in this paper was performed by Schnabel and Eskow [1988], on a set
of randomly generated indefinite matrices with n = 25, 50 and 75. The norm of the matrix £ and
condition number of the (A + E) computed by this algorithm were compared to those produced by
the Gill, Murray, and Wright [1981] factorization. In almost all cases, ||E||e for the new algorithm
was significantly smaller, while both methods consistently produced acceptably conditioned matrices.In
addition, the || E||o produced by the Schnabel and Eskow algorithm almost always was within a factor of
2 of the magnitude of the most negative eigenvalue of 4, and often much closer. Another nice property
of the new factorization (Gould [1989]) is that in applications like multifrontal methods, where A is large
and sparse and no pivoting is performed, the matrix A may be generated and processed incrementally,
as the factorization proceeds, whereas the Gill, Murray, and Wright method requires the entire matrix
to be known, and processed, in its initialization stage. Thus, the new factorization may be useful in
optimization and other contexts.

In Section 2, we give a brief description of the algorithm. Section 3 demonstrates the use of the

algorithm on a small (4 x 4) example matrix and section 4 explains the parameters and organization of

the code. Appendices A and B provide a sample driver and its output, respectively, and Appendix C

contains the code for the modified Cholesky factorization.

2 The Modified Cholesky Factorization Algorithm

This section briefly describes the modified Cholesky factorization algorithm presented in Schnabel and
Eskow[1988]. Some detail concerning the techniques used to prevent an ill-conditioned result is included
because the user has the option of adjusting two tolerances related to this. The cost of the factorization
is also described. For a more detailed explanation of the entire algorithm, see the original paper.

The new modified Cholesky factorization uses a two phase approach to compute PT(A+E)P =
LLT, where A € R"*" is symmetric, E is a nonnegative diagonal matrix or 0, L is a lower triangular
matrix and P is a permutation matrix. Phase 1 computes the standard Cholesky factorization, and
ends when the next iteration of the standard factorization would cause some diagonal element in the
remaining submatrix to become non-positive. It performs diagonal pivoting based on the maximum
diagonal element of the submatrix remaining to be factored. Schnabel and Eskow show that at the end
of this phase, no element in the submatrix that remains to be factored is larger, in magnitude, than the
sum of the magnitudes of the largest diagonal and off-diagonal elements in that submatrix originally.

Phase 2 does a modified Cholesky factorization, meaning that at each iteration, an amount
Ejj 2 0 is added to the pivot A;j; before the elimination step. A diagonal pivoting strategy is also used,
but in this phase the pivot row is chosen to be the one with the maximum lower Gerschgorin bound
estimate (see below). The amount Ej; added to the pivot element at each iteration is determined from
the actual lower Gerschgorin bound of the pivot row. Schnabel and Eskow show that due to the choice
of Ejj, the Gerschgorin bounds of the next remaining submatrix (after elimination) do not grow. In
turn, this implies that ||E||e is bounded above by the magnitude of the most negative lower Gerschgorin
bound of the submatrix that remained to be factored at the start of phase 2. This, combined with the
growth bound for phase 1 leads to the theoretical result mentioned in Section 1.

The entire algorithm is outlined in Algorithm 2.1 below.

Algorithm 2.1 — Modified Cholesky Decomposition

Given A € R™*" symmetric and 7 and 7 (e.g. 1y =Ty = macheps’é'),
find factorization LLT of A+ E, E >0

= il ji=1
v 1‘;‘?;‘,,|A“I’ j

(* Phase One, A potentially positive definite *)
While j < n do
Pivot on maximum diagonal of remaining submatrix
. Al
Ifj+r1r151§3n{Aﬁ -2l <ny
then go to Phase Two .
else perform j'* iteration of standard Cholesky factorization
and increment j
(* Phase Two, A not positive definite *)
= j — 1 (* k = number of iterations performed in Phase One *)
Calculate lower Gerschgorin bounds of Ay
Forj:=k+1ton—-2do
Pivot on maximum lower Gerschgorin bound estimate
Calculate E;; and add Ej; to Ajj

n
(* Ejj = max{0, —Ajj + max{) |Aij|, 727}, Bj_1,-1})
i=j+1
update Gerschgorin bound estimates
perform j** iteration of Cholesky factorization
complete factorization of final 2 x 2 submatrix using its eigenvalues

In order to prevent A+ E from being singular or very ill-conditioned, the algorithm includes the
following details. Let v be the maximum diagonal element of A, and 7, and 7 be some small constants
(our default choiceis 7 = 7 = macheps%). The switch to phase 2 is made when some diagonal element
in the remaining submatrix would become less than 77, implying that only an indefinite matrix or a
positive definite matrix with condition number greater than ;1; may be perturbed. During phase 2, the
the amount Ej; to add to 4;; is

n
Ej; = max{0, =A;; + max{ > |Ai;|, 727}, Bj-1,-1}
i=j+1
where Ej_; ;-1 is the amount added to 4;_, ;-1 in the previous iteration. The 757 term in the above

computation allows the condition number of A+ E to be bounded above. The final place in the algorithm

where the conditioning of the resultant matrix is addressed is in the final ((n — 1)) iteration of the
factorization. Eigenvalues Aj, and Ap; of the remaining 2 x 2 submatrix are computed, which are then

used to calculate

1
1—r

En-l,n—l = En,n = ma‘x{oy En-?,n—-2; —Xio + 12 * max{

(Ani — Ao), 71}

This causes the Iy norm of the resultant final 2 x 2 submatrix to be no greater than Tl:, and in practice
usually results in E,,_; ,_1 having a smaller value than would otherwise be obtained using Gerschgorin
bounds. The analysis in Schnabel and Eskow [1988] includes these details. In practice, the condition
number of A+ E is usually no greater than 10/ min{r, 73}, although this bound does not hold in theory.

Phase 2 of the algorithm pivots on an estimate of the lower Gerschgorin bounds of the remaining
submatrix. Let G;,(j < i < n) denote the lower Gerschgorin bound estimates used during the ;'
iteration. The actual lower Gerschgorin Circle Theorem bounds are computed once at the start of phase

2, giving

i—1 n
Gi=Ai— Y |Aal— > |Aul, i=4,--,n,
k=j k=i4+1

where j is the iteration in which the algorithm switches to phase 2. Thereafter, at each iteration j the

bounds are estimated by

n
14i;] > 1431
G1:G1+]AtJl___—‘—jil———) izj:"'yny'
17

Since in the calculation of the estimates of the bounds, the sum Zn: |Aij| needs only to be computed
once at each iteration, the cost of computing the bound estima,t(:s:]1: la,t most n?/2 each additions and
multiplications over the entire algorithm, whereas it would be O(n3) if the actual Gerschgorin bounds
were used. The cost of the entire modified Cholesky factorization is at most 2n? additions and n2?/2

multiplications greater than the n®/6+0(n) each multiplications and additions for the standard Cholesky

factorization of positive definite matrices. If A is safely positive definite, there is no extra cost.

3 Example using the Modified Cholesky Factorization

The following discussion shows how the modified Cholesky factorization works on an example matrix of

size n = 4. Consider the matrix
0.3571 —0.1030 0.0274 —0.0459
—0.1030 0.2525 0.0736 —0.3845

0.0274 0.0736 0.2340 —0.2878

i —-0.0459 -0.3845 —0.2878 0.5549 |
The eigenvalues of this matrix are -.0767, .1442 , .4004, and .9307 and the maximum diagonal element,
v, is .5549. Let 7 = 7 = 6.0555¢ — 06, which is the value of macheps%. on a Sun 3/75, using double
precision. .

In the first iteration, A44 is the maximum diagonal element, therefore row and column 4 are
interchanged with row and column 1. In performing the test of whether or not the j+1}1<i{1<n{A,»,- - —2—%} <
717, the minimum occurs at Agy — ﬁ%, which is < 0, and consequently the algorithm—sv—vitches to phase
2.

The actual lower Gerschgorin bounds for the start of phase 2 are [-.1633, -.3086, -.1548, .1808)].
The maximum bound is the bound for row 4, hence row and column 1 are again interchanged with row
and column 4, and because this bound is greater than 0, E;; = 0.

Prior to the start of iteration 2, the updated lower Gerschgorin bound estimates become
[—.2564,—.1410, —.1401] for rows 2 through 4. The maximum of these is the estimate for row 4, re-
sulting in a diagonal pivot of rows and columns 2 and 4. The actual lower Gerschgorin bound for row 2
is -.1330, therefore Eqy = .1330.

In the final iteration, the eigenvalues of the remaining 2 x 2 submatrix are .156329 and -.052115,
or A;, and Ap;, respectively. The value —X, +1—_T_2T—3(/\;,,~ — Alp) 1s .052119, which is less than E39, therefore

the algorithm sets both E33 and F44 to the value added to Ass in the previous iteration, or .1330.

The Cholesky factors and pivot vector are

_ - - - .-
0.5976 0.0 1
—0.0769 0.8259 0.1330 — 4

L= , B = and P =
0.0458 —0.3442 0.4964 0.1330 3
—0.1724 —0.4816 —0.1697 0.3082 0.1330 2

where PTAP + E = LLT, and P is I permuted by the transformations recorded in P.

The ratio ||Elle/ — A1(A), where A{(A) is the most negative eigenvalue of A, is 1.73, and the
condition number of (A + E) is 21.8. In comparison, for the Gill, Murray, and Wright [1981] algorithm,
|Ellco/ = A1(A) is 6.48, and the condition number of (A4 + E) is 39.2.

4 Software for the Modified Cholesky Factorization

The code for the modified Cholesky factorization is a straightforward implementation of the algorithm
detailed in Appendix 1 of Schnabel and Eskow [1988]. It is organized into one main user-callable sub-
program containing three smaller subroutines, each of which are called only once. These three smaller
subroutines serve to initialize variables at the start of the algorithm, initialize the actual Gerschgorin
bounds at the start of phase 2, and compute the factorization of the final 2 x 2 submatrix in phase 2.
The remainder of the factorization is performed by the main subroutine. In particular, while the code
for pivoting in phase 1 and phase 2 is similar, it has been left in-line to prevent the necessity of having
O(n) function calls. Because the row and column pivoting must affect only the lower triangle of the input
matrix, this code is lengthy in comparison to the remainder of the algorithm. All non-integer variables
in the code are double precision.

The main subprogram is called by modcholesky(ndim,n, A, g,macheps,ti,72,pivot,E) . The input

parameters to this subroutine are:
e ndim is the dimension of matrix that contains A in the calling program.
e 7 is the dimension of the input matrix A.

e Alsan n x n symmetric matrix (only the lower triangular portion of A, including the diagonal, is

used, and it is overwritten by L).
e g¢is an n dimensional work vector.
¢ macheps is machine epsilon.

e 71 Is the reciprocal of the tolerance used for determining when to switch to phase 2, i.e. 1/7 is
the minimum condition number of a positive definite input matrix which may be perturbed by the

algorithm.

e 73 is the tolerance used for determining the maximum condition number of the final 2 x 2 submatrix

and in the equation for ;.

The output parameters are:
e L is stored in the matrix A (in the lower triangular portion, including the main diagonal).

e pivotis a record of how the rows and columns of the matrix were permuted during the factorization.
That is, each P, is initialized to 7, and at each iteration, if rows and columns ¢ and j are switched,

then P; and P; are swapped.

e Eis an n-vector, whose i'* element is the amount added to the diagonal of A at the it? iteration of

the factorization.

A simpler driver, called by modchol(ndim,n, A, G,macheps,pivot,E) is also available. This driver sets the
parameters 7; and 75 to macheps3, and the remaining input and output parameteré are identical to those
for modcholesky.

A sample driver program, choldriver.f, and its output are included with the code for the modified
Cholesky factorization. The driver calls a function macheps to compute machine epsilon for double
precision arithmetic. It can not be guaranteed that this function will return the correct value of macheps
on every computer, so the user may want to check this and, if necessary, replace the call to macheps
with a statement that assigns the actual value of machine epsilon for that computer to eps. The driver
program also calls a separate subprogram, mkmatriz.f, to generate random test matrices with eigenvalues
within a specified range. Calls to both modcholesky and modchol are demonstrated in the driver.

Appendices A and B contain the sample driver and sample output, respectively. Appendix C
contains the modified Cholesky factorization code.

Note that if one wishes to process a sparse matrix A incrementally as mentioned in Section 1,
the code must be simplified so that all pivoting is eliminated. In this case the calculation of Gerschgorin
bound estimates is also unnecessary so the code is quite simple. The diagonal elements must still be
known throughout the factorization, but the rest of the matrix can then be processed incrementally, with

only the part involved in the current elimination step needed at any given iteration.

References

[1] Dennis, J. E., and Schnabel, R. B. Numerical Methods for Unconstrained Optimization and Non-
linear Equations. Prentice-Hall, Englewood Cliffs, New Jersey, 1983.

(2] Gill, P. E. and Murray, W. Newton-type methods for unconstrained and linearly constrained opti-
mization. Mathematical Programming 28, (1974), 311-350.

[3] Gill, P. E., Murray, W. and Wright, M. H. Practical Optimization. Academic Press, London, 1981.
[4] Gould, N. Private communication, 1989.

(5] Schnabel, R. B. and Eskow, E. A New modified Cholesky factorization. University of Colorado
Department of Computer Science Technical Report Number CU-CS-415-88, (To appear in SIAM
J. Sci. Stat. Computing.)

A Sample driver

[T > T - I e T oY

aaQ

aaaoaaaaa

QG Q

Driver for new modified cholesky factorization algorithm.

integer n,ndim

double precision A(100,100)
double precision Atwo(100,100)
double precision g(100)
double precision maxadd 10
integer pivot(100)

double precision E(100)
double precision eps,taul,tau2
integer z

double precision high,low
ndim=100

macheps subroutine computes machine epsilon,
the following line may be replaced by assignment to eps 20
of correct machine epsilon constant for your machine

call macheps(eps)

Tolerances used by modcholesky subroutine,

taul is used in determining when to switch to phase 2 and

tau? is used in determining the amount to add to the diagonal

of the final 2X2 submatriz.

The default values for these tolerances can be used

by calling modchol subroutine instead of modcholesky. 30
The default values for taul and tau2 in modchol are : eps ** 1/3.

eps ** (1./3.)
eps ** (1./3.)

taul
tau?2

i

Initial seed for random number generator used to generate test
matrices
z = 1000

high and low are the ranges of the eigenvalues for the test matriz 40
to be generated.

high = 1.0
low = =1.0

The first test problem will have dimension n=4, so that the entire
problem can be printed out.

QaQ

25

26

50

75
76

n =4

print * "TEST PROBLEM #1"
print * ,"Test Matrix of size",n
print *,"with eigenvalues within the range of " low," to " high

call mkmatrix(ndim,n,z,A high,low,Atwo,g)

print *)un
print * "Original 4X4 matrix"

do 25 i=1n
print (26),(A(ij)Jj=1,n)
format (4f20.8)

call modchol(ndim,n,A,g,eps,pivot,E)

print *’nn
print *,"Matrix after factorization with 1 in the lower triangle"

do 50 i=1n
print (26),(A(i,j)j=1,n)

print *,“"
print *, "Iteration Pivot Amt added to Aii"
do 75 i=1n

print (76),i,pivot(i),e(i)
format (i2,10x,i2,10x,{12.8)

maxadd = E(n)

print *’un
print *"Maximum amount added to the diagonal is" maxadd

The next 3 test problems have sizes n=25,50,6 75,
with eigenvalue ranges [—1,1],[—1,10000], & [-10000,—1] respectively.

n =25

print *,""

print * "TEST PROBLEM #2"

print * "Test Matrix of size',n

print *,"with eigenvalues in the range of " low," to " high

call mkmatrix(ndim,n,z,A high,low,Atwo,g)

call modchol(ndim,n,A g,eps,pivot,E)

10

50

60

70

30

90

¢ FEFFAFK AN KKK TN FIHIIIRKTKII KT K KK RIIIKKKI IR A AAA TR KK T T FF AN TN F R AR R

C

CHHFIAHEHIIARIIEKKKFFRF KK REKKIRKFIKRK KRR I REFKEIF R FA KT FIIK KA R KRR

maxadd = E(n)

print *"Maximum amount added to the diagonal is",maxadd
high = 10000.0

low = —1.0

n = 50

call mkmatrix(ndim,n,z,A high,low,Atwo,g)

pl‘il’lt *’nu

print *"TEST PROBLEM #3"

print * "Test Matrix of size",n

print *,"with eigenvalues in the range of " low," to " high
call modcholesky(ndim,n,A g,eps,taul,tau2,pivot,E)

maxadd = E(n)

print * "Maximum amount added to the diagonal is",maxadd

high = —-1.0
low = —10000.0
n=75

print *’nu

print * "TEST PROBLEM #4"

print *"Test Matrix of size",n

print *,"with eigenvalues in the range of " low," to " high
call mkmatrix(ndim,n,z,A high,low,Atwo,g)

call modchol(ndim,n,A,g,eps,pivot,E)

maxadd = E(n)

print *,"Maximum amount added to the diagonal is",maxadd

stop
end

macheps

subroutine macheps(eps)

double precision eps

11

100

110

120

130

140

macheps

20

double precision temp

temp = 1.0

continue

temp = temp / 2.0

if ((1.0 + temp) .ne. 1.0) goto 20

eps = temp * 2.0

return
end

12

150

160

B Sample Driver Output

TEST PROBLEM #1
Test Matrix of size 4
with eigenvalues within the range of

Original 4X4 matrix

0.35711021 -0.10302945
~0.10302945 0.25254612
0.02737268 0.07358379
-0.04594879 -0.38451624
Matrix after factorization with 1 in the
0.59758699 -0.10302945
-0.07689054 0.82587804
0.04580534 -0.34424172
-0.17240912 -0.48163633
Iteration Pivot Amt added to Aii
1 1 0.00000000
2 4 0.13303961
3 3 0.13303961
4 2 0.13303961

Maximum amount added to the diagonal is
TEST PROBLEM #2

Test Matrix of size 25
with eigenvalues in the
Maximum amount added to

range of
the diagonal is

TEST PROBLEM #3

Test Matrix of size 50
with eigenvalues in the
Maximum amount added to

range of
the diagonal is

TEST PROBLEM #4

Test Matrix of size 75
with eigenvalues in the
Maximum amount added to

range of
the diagonal is

-1.0000000000000 to

—-1.0000000000000 to

-1.0000000000000 to

~10000.0000000000 to

1.0000000000000

0.02737268 -0.04594879
0.07358379 ~0.38451624
0.23396662 ~0.28782367
-0.28782367 0.55494709
lower triangle
0.02737268 -0.04594879
0.07358379 .—0.38451624
0.49639272 -0.28782367
-0.16986202 0.30827612

0.13303960618874

1.0000000000000
1.2576119845957

10000.0000000000
1.1271617927026

-1.0000000000000
11618.452621394

13

C Modified Cholesky Factorization Code

C**’k**#’*****

SESESESEGRO RN ReReNe o R Ro N HoNoNoNo NoNo NeNs HoNe HeNo o Ne HoNe Ho o Ho NoNoNeNeo No Ho o No No No No Ro Ko

subroutine name: modcholesky

authors :

date

purpose :

mput

oulput

Flizabeth Eskow and Robert B. Schnabel

: December, 1988

perform a modified cholesky factorization

of the form (Ptranspose)AP + E = L(Liranspose),

where L is stored in the lower triangle of the

original matriz A.

The factorization has 2 phases:

phase 1: Pivot on the marimum diagonal element.
Check that the normal cholesky update
would result in a positive diagonal
at the current iteration, and
if so, do the normal cholesky update,
otherwise switch to phase 2.
phase 2: Pivolt on the minimum of the negatives

of the lower gerschgorin bound
estimates.
Compute the amount {0 add to the
pivot element and add this
to the pivot element.
Do the cholesky update.
Update the estimates of the
gerschgorin bounds.

! ndim — largest dimension of matriz that will be used
n — dimension of matriz A
A ~ n*n symmetric matriz (only lower triangular

portion of A, including the main diagonal, is used)
g — n*1 work array

macheps — machine epsilon

taul — tolerance used for determining when to switch to
phase 2
tau2 — tolerance used for determining the mazimum

condition number of the final 2X2 submatriz.

oL — stored in the mairiz A (in lower triangular

14

170

130

190

200

210

portion of A, including the main diagonal)

pwot — a record of how the rows and columns
of the mairiz were permuted while
performing the decomposition

E — n*1 array, the ith element is the
amount added 1o the diagonal of A
at the ith iteration

aQaoaaoaoaaaaaaa

220
CFFHFRRAFFRETIAKRFKEFHIINIFEFFAFTRAAKEAAKKRI AR RIAAIIE R TR FEETIFRFFAFTH
subroutine modcholesky(ndim,n,A,g,macheps,taul,tau2,pivot,E) IIlOdChOlQSky
integer n,ndim
double precision A(ndim,n),g(n),macheps,taul,tau2
integer pivot(n)
double precision E(n)
c 230
C J — current iteration number
C iming — inder of the row with the min. of the
c neg. lower Gersch. bounds
c imazd — indez of the row with the mazimum diag.
C element
c i,itemp,jpl k — temporary integer variables
c delta - amount to add to Ajj at the jih iteration
C gamma — the mazimum diagonal element of the original
c matriz A.
C normyj — the 1 norm of A(colj), rows j+1 ——> n. 240
C ming — the minimum of the neg. lower Gersch. bounds
C mazd — the mazimum diagonal element
C taugamma — taul * gamma
C phasel — logical, true if in phasel, otherwise false
C deltal,temp, jdmin,tdmin — temporary double precision vars.
C
integer j,iming,i,imaxd,itemp jp1,k
double precision delta,gamma
double precision normj, ming,maxd 250
double precision deltal,temp,jdmin,tdmin,taugamma
logical phasel
call init(n, ndim, A, phasel, delta, pivot, g, E,
* ming,taul,gamma,taugamma)
do 10 j = 1, n—-1
o
C PHASE 1
o 260

15

QaaQ

QQQ QQ Qe QaaQ aQaaq

QaQQ .

QaaQa

if (phasel) then

find indez of mazimum diagonal element A(i,i) where i>=j

maxd = A(jy)
imaxd =
do 20 i = j+1, n
if (maxd .t. A(i,i)) then

maxd = A(i,i)
imaxd = 1
end if
continue

pivot to the top the row and column with the maz diag

if (imaxd .ne. j) then
swap row j with row of maz diag

do 30 i =1, j—1
temp = A(j,i)
A(j,i) = A(imaxd,i)
A(imaxd,i) = temp
continue

swap colj and row mazdiag belween j and mazdiag

do 35 1 = j+1,ijmaxd—1
temp = A(ij)
A(ij) = A(imaxd,i)
A(imaxd,i) = temp
continue

swap column j with column of maz diag

do 40 i = imaxd+1, n
temp = A(ij)
A(ij) = A(i,imaxd)
A(ijimaxd) = temp

continue

swap diag elements
temp = A(j.j)
A(j,j) = A(imaxd,imaxd)

A(imaxd,imaxd) = temp

swap elements of the pivot vector

16

270

2380

290

300

310

60

aaaQ

70

80
75

itemp = pivot(j)
pivot(j) = pivot(imaxd)
pivot(imaxd) = itemp

end if

Check to see whether the normal cholesky update for this
iteration would result in a positive diagonal,
and if not then switch to phase 2.

jpl = j+1
if (A(jj)-gt.0) then
do 60 i = jpl, n
temp = A(ij) * A(ij) / AGJ)
tdmin = A(i,i) — temp

if (i .ne. jpl) then
jdmin = min(jdmin, tdmin)

else
jdmin = tdmin
end if
continue
if (jdmin .It. taugamma) phasel = .false.
else
phasel = .false.
end if

if (phasel) then
do the normal cholesky update if still in phase 1

AGJ) = dsart(A())
do 701 = j+1, n
A(LS) = AGLS) / AGY)
continue
do 75 i=j+1n
do 80 k = j+1, i
A(ik) = AGLk) — (AGJ) * A(ky))
continue
continue

if (j .eq. n—1) A(n,n)=dsqrt(A(n,n))

else

17

320

330

340

350

360

aQaaa

Qaa

QQaQ

©
<o

aaa aaaaq

100

calculate the negatives of the lower gerschgorin

call calcgersch(ndim,n A j,g)

end 1if

end if

PHASE 2
if (.not. phasel) then
if (j .ne. n—1) then
find the minimum negative gershgorin bound
do 90 i = j,n

if (i .ne. j) then
if (ming .gt. g(i)) then

ming = g(i)
iming = i
end if
else
iming = j
ming = g(j)
end if
continue

pivot to the top the row and column with the
minimum negative gerschgorin bound

if (iming .ne. j) then

swap row j with row of min gersch bound

do 100 i = 1, j—1
temp = A(j,i)
A(ji) = A(iming,i)
A(iming,i) = temp

continue

swap colj with row iming from j to iming

do 105 1 = j+1,iming—1
temp = A(ij)
A(ij) = A(iming,i)

18

bounds

370

330

390

400

410

105

QaaQ

110

QaaQ QaaQ

QaaQ

Qaaaaaa

140

A(iming,i) = temp
continue

swap column j with column of min gersch bound

do 110 i = iming+1, n
temp = A(ij)
A(ij) = A(i,iming)
A, lmlng) temp

continue

swap diagonal elements
temp = A(j,)

A(4) = A(iming,iming)
A(iming,iming) = temp

swap elements of the pivot vector
itemp = pivot(j)

pivot(j) = pivot(iming)
pivot(iming) = itemp

swap elements of the negative gerschgorin bounds vector

tanp = g(J}

g(j) = g(iming)

g(iming) = temp
end if

Calculate delta and add to the diagonal.

delta=maz{0,—A(j,j) + maz{normj,taugamma},della prevzous}

where normj=sum of |A(1,j)|,for i=1,n,

delta_previous is the delta computed at the previous iteration,

and taugamma is taul *gamma.

normj = 0.0
do 140 i = j+1, n

normj = normj + dabs(A(i,j))

continue

temp = max(normj,taugamma)

deltal = temp — A(j,)
temp = 0.0
deltal = max(temp, deltal)
delta = max(deltal,delta)
E(j) = delta

AGJ) = AGd) + EQ)

19

420

430

440

450

460

update the gerschgorin bound estimates

QaaQ

if (A(jj) .ne. normj) then
temp = (normj/A(jj)) — 1.0

do 150 i = j+1, n
g(1) = g(i) + dabs(A(ij)) * temp

150 continue
end if

C

c do the cholesky update

C

AGJ) = dsart(AG)
do 160 i = j+1, n
AGL) = AGJ) / AGY)
160 continue
do 1651 = j+1, n
do 170 k = j+1, i
A(Lk) = A(Lk) - (A1) * A(k)))
170 continue
165 continue

else
call final2by2(ndim, n, A, E, j, tau2, delta,gamma)
end if
end if
10 continue

return
end
CXFFKFEKKEIIKKIRIRKRRFRE KT CKIRFKFKIKIKIE IR AR FRRRI AN T I KK FKKE KK

subroutine name : modchol

purpose : Simple driver for the modified cholesky algorithm,
with the tolerances set to the default values.
i.e. taul = tau? = macheps ** 1/3

input : n,ndim,A,g,macheps
output . pivot, F

(See subroutine modcholesky above for details on all parameters)
HAKERKAAKEERIAAEKEREFRFEERIAATFIAAARIRIAFFFAFEEERREERRFRFFFFERAA AN

Gaaaoaaaaaaaa

subroutine modchol(ndim,n,A,g,macheps,pivot,E)

20

470

480

490

500

modchol

511
integer ndim, n
double precision A(ndim,n),g(n),macheps
integer pivot(n)
double precision E(n)

double precision taul,tau?

taul = macheps ** (1./3.)

tau2 = taul

call modcholesky(ndim,n,A g,macheps,taul,tau2,pivot,E) 520

return

end
CHFRFEFHRAERKIATKIKRERERERRIKRIFIAIAKIERFRRKRRERRRFKETFERFEFEKIEA K RF IR FN

c subroutine name : init
C
o purpose : set up for start of cholesky factorization
C
c nput © n, ndim, A, taul
C 530
C output : phasel — boolean value set to true if in phase one,
C otherunse false.
C delta — amount to add to Ajj at iteration j
C pivot,g, B — described above in modcholesky
C ming — the minimum negative gerschgorin bound
C gamma — the mazimum diagonal element of A
C taugamma ~— taul * gamma
g*************************m**************m*w*w***w***w*************
subroutine init(n,ndim,A,phasel delta,pivot,g,E ming, 540
* taul,gamma,taugamma)
integer n,ndim
double precision A(ndim,n)
logical phasel
double precision delta,g(n),E(n)
integer pivot(n)
double precision ming,taul,gamma,taugamma
550
phasel = .true.
delta = 0.0
ming = 0.0
do 10 i=1n
pivot(i)=i
g(i)= 0
Ei) =0
10 continue
c 560

21

find the mazimum magnitude of the diagonal elements.
if any diagonal element is negative, then phasel is false.

gamma = dabs(A(1,1))

if (A(1,1) .It. 0) phasel = .false.

do 20 i=2,n
if (dabs(A(i,i)) .gt. gamma) gamma=A(i,i)
if (A(i,}) .It. 0) phasel = false.

20 continue
570
taugamma = taul * gamma
c
c if not in phasel, then calculate the initial gerschgorin bounds
c needed for the start of phase?.
c
if (.not.(phasel)) call calcgersch(ndim,n,A,1,g)
return
end 580
CHHAREFFFAHIIAEIIRAFRRRFF I KKK I RIAAT KRR FIAFTEEEERERERRAR AT RAA K
C
c subroutine name : calcgersch
C
c purpose : calculate the negative of the gerschgorin bounds
C called once at the start of phase II.
C
c tnput : ndim, n, A, j§
o
C oultput : g — an n vector containing the negatives of the 590
o Gerschgorin bounds.
C
CHFFREFFFFFRRIAFIRAARIRTFKEKEEEIFAAFFFRIIRRHIIIEF K ERERFREE KRR NI AR K
subroutine calcgersch(ndim, n, A, j, g) ’ calcgersch
integer ndim, n, j
double precision A(ndim,n), g(n)
integer i, k
double precision offrow 600
do10i=}jn
offrow = 0.0
do 20 k = j, i—1
20 offrow = offrow + dabs(A(i,k))
do 30 k = i+1, n
30 offrow = offrow + dabs(A(k,1))
g(i) = offrow — A(i,}i)
10 continue
610

22

return
end

CH KKK RIFFRIKKIKFHKKERKIIHK KKK K RIKKIKFTFKFFKIKITTF KT KA RN KRR KA KKK

Q

Qaaoaoaoaaoaoaaaaoaoaaoaaaaan

Qaaa

aaQaaaaaaaq

subroutine name : final2by2

purpose : Handles final 2X2 submatriz in Phase II.
Finds eigenvalues of final 2 by 2 submatriz,
calculates the amount to add to the diagonal,
adds to the final 2 diagonal elements,
and does the final update.

wmput : ndim, n, A, E, j, tau?,
delta — amount added to the diagonal in the
previous tteration

output : A — matriz with complete | factor in the lower trianle,
E — n*1 vector containing the amount added to the diagonal
at each iteration,
delta — amount added to diagonal elemenis n—1 and n.

KIFH KR RATIKKRFKKKFIKI KKK KK KRR KKERERFIIKKF KKK KKK RFK KKK KRR KKKR KK KRR

subroutine final2by2(ndim, n, A, E, j, tau2, delta,gamma)

integer ndim, n, j
double precision A(ndim,n), E(n), tau2, delta,gamma

double precision t1, t2, t3,Jambdal,Jambda2,lambdahi,lambdalo
double precision deltal, temp

find eigenvalues of final 2 by 2 submatriz

tl = A(n—1,n—1) + A(n,n)

t2 = A(n—1n-1) — A(n,n)

t3 = dsqrt(t2*t2 + 4.0¥A(n,n—1)*A(n,n—1))
lambdal = (t1 — t3)/2.

lambda2 = (t1 + t3)/2.

lambdahi = max(lambdal,Jambda2)
lambdalo = min(lambdal,Jambda2)

find delta such that:

1. the 12 condition number of the final

2X2 submatriz + delta*] <= tau2

2. delta >= previous delta,

3. lambdalo + della >= tau2 * gamma,

where lambdalo is the smallest eigenvalue of the final
2X2 submatriz

23

630

final2by2

640

650

QaQ

deltal=(lambdahi—~lambdalo)/(1.0—tau2)
deltal= max(deltal,gamma)

deltal= tau2 * deltal — lambdalo
temp = 0.0

delta = max(delta, temp)

delta = max(deltal, delta)

if (delta .gt. 0.0) then
A(n—1n-1) = A(n—1,n—1) + delta

A(n,n) = A(n,n) + delta 670
E(n—1) = delta
E(n) = delta

end if

final update

A(n—1n-1) = dsqrt(A(n—1,n—-1))

A(n,n—1) = A(n,n—1)/A(n—1,n—1)

A(n,n) = A(nn) — (A(n,n—1)*A(n,n-1))

A(nn) = dsqrt(A(n,n)) 680

return
end

24

