Theonet:
A Connectionist Expert System
For Solar Flare Forecasting

Richard Fozzard

CU-CS-442-89 August 1989

%University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE




ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.






THEONET:

A CONNECTIONIST EXPERT SYSTEM
FOR SOLAR FLARE FORECASTING
by
RICHARD LANE FOZZARD
B.S., Stanford University, 1978
M.S., Stanford University, 1980

A thesis submitted to the
faculty of the Graduate School of the
University of Colorado in partial fulfillment
of the requirements for the degree of
Master of Science
Department of Computer Science
1989






This thesis for the Master of Science degree by
Richard Lane Fozzard
has been approved for the
Department of

Computer Science

by

Coe Loedile

7/ Clayton Lewis

G P 2
Michaef“Mozer

/)M q;)w’g(/mf/‘«;/'*

, Paul Smolens(?r

Date







Fozzard, Richard Lane (M.S., Computer Science)
A Connectionist Expert System For Solar Flare Forecasting

Thesis directed by Assistant Professor Gary Bradshaw

The Space Environment Laboratory in Boulder has collabo-
rated with the University of Colorado to construct a small expert
system that forecasts solar flares, called THEO. It performed as
well as a skilled human forecaster. I have constructed TheoNet, a
three-layer back-propagation connectionist network that learns to
forecast flares. TheoNet is trained using an on-line database of his-
torical flares which THEO also uses as its major source of informa-
tion. Tests can be performed by drawing additional data from the
database.

Performance was measured with signal detection tech-
niques used in forecasting, instead of the sum-squared error usually
associated with connectionist networks. The network's ability to
learn and generalize is studied as a function of the number of hid-
den units and compared with a method equivalent to traditional re-
gression analysis.

Performance was found to be relatively independent of the
phase of the solar cycle used for training, suggesting that predic-
tion techniques do not need to refer to the current phase of the
sun. It was also independent of many network parameters and
other ways of presenting data for training, indicating that a very ro-
bust solution was found to the prediction problem.

Since a two-layer network can also learn the task (though

with much more data and many more training iterations), it re-



mains to be shown whether any benefits arise from the use of
three-layer backpropagation networks on problems of this sort.
Overall prediction accuracy is very good, comparable to the
best human experts and the THEO system, as shown by signal de-
tection measures. TheoNet's success suggests that a connectionist
network can perform some part of knowledge engineering automat-

ically.
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CHAPTER 1
INTRODUCTION

Can neural network learning algorithms let us build
“expert systems” automatically, merely by presenting the network
with data from the problem domain? I tested. this possibility in the
domain of solar flare forecasting, where traditional analysis meth-
ods have failed, but an expert system has been developed that is at

least as good as the expert.

Background

Early work on predicting solar flares involved formal
methods using multi-variant discriminant analysis and logistic re-
gression. Less formal methods such as cluster analysis and the
maximum entropy method were also tried. These methods gen-
erally showed no improvement over human forecasters and were
often worse under some conditions [see survey in Sawyer 86 Ch. 4].

Knowledge-based expert systems attempt to capture the
knowledge in a restricted domain of a human expert into a com-
puter program and make this knowledge available to users with less
experience. Such systems could be valuable as assistants to fore-
casters or as training tools. In the past four years, the Space
Environment Laboratory (SEL) in Boulder has collaborated with the

Computer Science and Psychology Departments at the University of



Colorado to construct a small expert system for solar flare forecast-
ing incorporating the rules and strategies of Pat McIntosh, a senior
solar physicist at SEL. The project convincingly demonstrated the
possibilities of this type of computer assistance, which also proved
to be a useful tool for formally expressing a forecast procedure,
verifying its performance, and instructing novice forecasters. The
system, named THEO (an OPS-83 production system with about
700 rules), performed as well as a skilled human forecaster using
the same methods, and scored better than actual forecasts made at
SEL in the period covered by the test data [Lewis and Dennett
1986, Shaw 89].

In recent years connectionist (sometimes called “non-
symbolic” or “neural”) network approaches have been used with
varying degrees of success to simulate human behavior in such areas
as vision and speech learning and recognition [Hinton 1987, Lehky
and Sejnowski 1988, Sejnowski and Rosenberg 1986, Elman and
Zipser 1987]. Logic (or “symbolic”) approaches have been used to
simulate human (especially expert) reasoning [see Newell 1980 and
Davis 1982].

This has developed into a schism between symbolic and
connectionist areas of research within the artificial intelli-
gence/cognitive psychology community. The same problem has
rarely been attacked by both approaches, leaving a great deal of
uncertainty about the relationships between the two approaches. It
is hardly my intent to debate the relative merits of the two
paradigms. The intent of this project is to apply a connectionist

learning technique (multi-layer back-propagation) to the same



problem, even the very same database, used in an existing success-
ful rule-based expert system. There has been other work in con-
nectionist or hybrid connectionist-symbolic expert systems [Mozer
87, Gallant 88, Goodman 89], but at this time we know of no cur-
rent work where the connectionist system has been directly com-
pared to a pre-existing symbolic system in terms of the perfor-

mance measures in the problem domain.
Motivation

Forecasting (solar flare, weather, etc.), as described by
those who practice it, is a unique type of informal reasoning within
very soft constraints supplied by often incomplete and inaccurate
data. Current knowledge of solar physics is inadequate to provide
“perfect” forecasts, much as atmospheric physics has not been able
to remove the guesswork from terrestrial weather forecasts [Sawyer
84]. The problem is one with inherent uncertainty. Good forecast-
ers use a combination of knowledge, intuition, and rules of thumb
to generate predictions. This type of problem bears many similari-
ties to the methods doctors use to diagnose diseases and was the
justification behind rule-based approaches such as MYCIN
[Buchanan 84]. Thus it was felt that the expert system approach
could be used on solar flare forecasting, and THEO was the result.

Solar flares are explosions in the corona of the sun. These
explosions can sometimes be of tremendous proportions, releasing
the energy equivalent of ten million hydrogen bombs within an
hour. Flares are usually associated with active regions, or groups of

sunspots, that appear on the sun [Wentzel 89]. Observations of ac-



tive regions are imperfect and error-prone - not all of the charac-
teristics may be detectable or interpretable. Connectionist net-
works have been shown to exhibit a great deal of fault tolerance for
these sorts of input data [see Hinton 81 and Rumelhart 86 for sur-
veys]. It may also be that some of the reasoning involves pattern
matching and dimensionality reduction of the different categories
of data. This led to the hope that a connectionist network might be
able to learn the necessary internal representations to cope with
this sort of task.

The problem of flare forecasting, then, is seen to be one
apparently needing logical (symbol manipulation) techniques as
well as pattern recognition and a great degree of fault tolerance.
This is what makes the problem domain ideally (though hardly
uniquely) suited to examination by both approaches.

The goal of this work is to examine the practicality of
working with a connectionist system to attack the sorts of prob-
lems thought only to be approachable with knowledge-based tech-
niques. Must the knowledge embodied in the rules in an expert
system be explicitly coded? Or can the equivalent be learned by a
connectionist network? Can that network then actually generate
good predictions?

In this WO‘I‘k, I present a connectionist network with the
same categories of solar data used by the THEO expert system.
Pairing each presentation with actual flare occurrence data should
give the network the potential of learning internal representations
of the relationships between the data. Once this is done, the net-

work's ability to predict flares from the associations it has learned



will be tested using a measure in common use for evaluating fore-
casting performance. This can then be used to compare it against
other methods that have been used for flare forecasting at the SEL.

Of particular concern for the practical development of ex-
pert systems is how difficult good forecasting performance is to
achieve. What sort of dependencies for learning are there on the
distribution or types of data presented to TheoNet? The effects of
training with data from different phases of the solar cycle and
training with data clumped together in periods one or more weeks
long will be studied. Also, experiments will be presented that in-
vestigate how many days worth of data are needed to do the learn-
ing.

Even the simple connectionist network used here has a
number of possible variations on learning parameters and architec-
tures. Many problems solved by connectionist systems have been
critically dependent on these and there are as yet no well-accepted
formal methods for determining the optimal ones. Building suc-
“cessful connectionist networks can involve a great deal of trial and
error. I will look at how important the size of its hidden layer is to
TheoNet's performance and what this implies about the nature of

the solar flare forecasting problem.



CHAPTER II

TECHNICAL APPROACH

Network Description

The TheoNet network model has three layers of simple,
neuron-like processing elements called “units”. The layers are
connected with feedforward links (see Figure 1 for a diagram of
the implementation of the network used for most of the testing).
The large layer of 13 units at the bottom of the figure is the input
layer and is clamped to a pattern that is a distributed representa-
tion of the solar data for a given day. For the central (“hidden”)
and top (*output”) layers, each unit's output (called “activation”) is
the weighted sum of all inputs from the units in the layer below:

yj = _1 where: xj = Zyiw]‘i - 6 1

1+e% i
where y; is the activation of the ith unit in the layer below, wiji is the
weight on the connection from the ith to the jth unit, and 6; is the
threshold of the jth unit. The weights are chosen from a uniform
distribution in the range -1.0 to +1.0, but are allowed to vary be-
yond that range. Thus activation passes from bottom to the top of

the network as shown by the arrow on the left.



"D"=011 "A"=011 "O"=01 yes no
less than M1 small

w W Nyt Qo g o) ) N

-
p s 0
a g =,
= ® T
o - =3
o 2 S

3
A =1

ale|4 snoinaid
xa1dwio) Ajjesuolsiy
xajdwon Ajussey
Baly

INPUT: Solar data

1. Modified Zurich class (7 possible values:
A/B/C/D/E/F/H)

2. Largest spot size (6 values: X/R/S/A/H/K)

3. Spot distribution (4 values: X/0/1/C)

4. Previous flare activity (less than M1 / M1 / more
than M1)

5. Historically complex (yes/no)

6. Recently became complex on this pass (yes/no)

7. Area (small/large)

Figure 1. Five hidden unit implementation of TheoNet

A least mean square error learning procedure called back-
propagation is used to modify the weights incrementally for each
input data pattern presented to the network [Rumelhart 86]. This
compares the output unit activations with the “correct” (what ac-
tually happened) solar flare activity for that day. This gives the
weight update rule:



Awiji(t+1) = -eVE(t) + alAwj(t) ' (2

where VE(t) is the partial derivative of least mean square error, € is
a parameter called the learning rate that affects how quickly the
network attempts to converge on the appropriate weights (if pos-
sible), and o is called the momentum which affects the amount of
damping in the procedure. The learning rate and momentum pa-
rameters used were 0.2 and 0.9, respectively, but these values were
not critical; a wide range of values still resulted in good network
convergence as well as prediction performance. The values used in
the test reported here follow Hinton [1987], except that no weight
decay was used. Weights were updated after each presentation of
an input/output pattern.

The three output units at the top of Figure 1 code for each
of the three classes of solar flares to be forecasted. The three
classes C, M, and X represent flares of increasing intensity one
order of magnitude apart. Individual output activations correspond
to the relative likelihood of a flare occurrence of that class within
the next 24 hours (see the analysis below). The 13 input units at
the bottom provide a distributed coding of the seven categories of
input data that are currently fed into TheoNet; these are also given

to the “default” mode of the expert system THEO!. Three binary

1The expert system THEO has two modes of operation:
default and interactive. In default mode, it simply applies its rules
to the raw solar data in the database; in interactive mode, the user
can feed additional data into it. TheoNet did not use any of this
additional data.

THEO default mode uses seven categories that are not



(on/off) units code for the seven classes of sunspots, two units code
for spot distribution, and so on. The hidden units at the center
mediate the transfer of activation from the input to the output units
and provide the network with the potential of forming internal rep-
resentations. A backpropagation network may have any number of
hidden units. Most of the experiments described below used a

hidden layer of five units.

Simulation Details

The P3 connectionist network simulator from David Zipser
of University of California at San Diego's parallel distributed pro-
cessing (PDP) group [Zipser 86] was used to implement and test
TheoNet on Symbolics 36xx workstations. This simulator provides
an object-oriented environment that allows users to create net-
works of nodes and their interconnections. It provided an interac-
tive graphical interface (Figure 2) for working with the network
simulation and allowed the use of Lisp code to execute activation
and learning functions, compile statistics, etc.

A number of capabilities were added to allow for rapid
construction and performance testing of variations of the network
model and the data presented to it.

Multiple active sunspot regions may be present on any

input to TheoNet. This is for historical reasons; the original version
of TheoNet had ten categories of data available to it that were used
by an earlier version of THEO. Three of these are no longer used by
the current THEO, which now uses 14 categories of data (seven old
plus seven new).
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given day. Individual sunspot region predictions were combined
into whole-sun flare predictions since forecasters are mainly con-
cerned with whether flares will occur, regardless of which region
they come from. This was done by special-purpose units outside

the actual network architecture using the simple probability rule:
P(whole) =1 - I1 (1 - P(regiony) (3)

THEO used this combination rule, but also augmented the single
procedure with additional rules about how nearby regions could in-
teract to affect the overall whole-sun probability. TheoNet did not
attempt exploit interactions in deriving whole-sun predictions.
Results reported in this paper are drawn from the whole-sun pre-
dictions.

TheoNet directly reads the active region database files used
by the THEO expert system. These files also contain the region-by-
region and whole-sun predictions generated by THEO. This has
allowed testing to include data up to the current date. (However,
solar data and THEO's predictions have only been consistently avail-
able in computer-readable form since April 1987.)

Training or testing the model on any subset of the database
may be interactively chosen from the P3 interface. Learning pa-
rameters and the number of hidden units used are also interactively
variable.

The model provides the ROC a’ performance measure (see
the RESULTS section below) in “real-time” calculated after every
complete presentation of the data set (‘epoch”). The a’ perfor-

mance measure can be displayed continuously as the simulation is
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running. These values are available for both THEO and TheoNet
individual sunspot region and whole-sun predictions for direct

comparisons of the two systems.



CHAPTER III
RESULTS

The main thrust of this work is to answer some questions
about the practicality of using connectionist techniques to solve
“real-world” problems: is TheoNet a “Connectionist Expert
System” that actually works? And what did it take to get it to
work?

Consequently I will discuss hardware and software particu-
lars and the nature of the data the network was evaluated with, as
well as the different ways that data was presented to it for both
training and testing. Next I provide a justification and description
of the signal detection performance measure used. .TheoNet's pre-
diction performance is then compared to the expert system THEO
in both its default and interactive modes, a seven-day average pre-
diction model, and human forecasters from the Space Environment
Laboratory.

In determining how robust is TheoNet's ability to learn the
art of forecasting solar flares, I will examine the performance ef-
fects of different methods of training and testing. For the same
reason, I will look at how sensitive TheoNet's performance is to the
common learning parameters (learning rate, momentum, and num-

ber of hidden units) of back-propagation networks.
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Hardware and Software Issues

TheoNet is, at its core, a simple program. As previously
mentioned, it is described in an object-oriented fashion in a simula-
tor language. Ignoring the learning curve associated with the
Symbolics, the essential code was written in just a few weeks. No
“knowledge engineering” was done: there were no discussions
with experts2. The raw solar data was simply input to a generic
back-propagation network and good performance was obtained with
very minimal tweaking. Most of the coding effort (and compute
time!) was involved with providing interactive control and real-time
performance measures.

TheoNet was simulated using many different variations of
learning parameters, input data protocols, and number of hidden
units used. Using a Symbolics 3653, building a model would take
about 2-3 hours, and individual simulations (train-then-test cycles)
30-60 minutes. The bulk of this compute time was involved with
the calculation of performance measures; early versions without the
performance calculations would run in roughly one-fourth the time.
Time to make any individual prediction from an input data example
was less than 100 milliseconds. The database of solar data and
THEO predictions occupied about two megabytes. In all, several
hundred simulations were run in the process of developing and

testing the network.

2To this day, I know less about how to predict solar flares
than a novice forecaster - in fact, I don't even know what most of
the data categories even refer to.
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Data Presentation

The network was trained and tested using raw solar data
from the same database as used by the THEO expert system. An
excerpt from the database file is included in APPENDIX A. The
raw solar data and THEO predictions data are available from April
1987 through June 1989 - about 5000 patterns (input/output ex-
amples) by sunspot region. Another 4000 patterns, but not pre-
diction data, is intermittently available from 1969, '78, '80, '82, and
'86. The total number of days or julians3 in the database was 1625.
All the major phases of the solar cycle (onset, peak, and minimum)
were represented, though not contiguously or completely. Flare
occurrence by class (C, M, X) for these periods is shown in Figure
3 (the figure is compressed to omit the periods from the database
that were not available).

The data are often inconsistent and noisy. Many examples
have the same input pattern, and in many cases the same input
would result in different flare results in the following 24 hours.
These sorts of inconsistencies in the data make the job of predic-
tion difficult to systematize and the solution inherently error prone.
Thus the domain seems an ideal candidate for the soft-constraints
nature of connectionist systems.

To fairly determine the network's actual ability to predict

flares, it is important to test it on data not seen in training it - that

SSEL jargon for the sequential integers representing the
number of days since Jan 1, 1900
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Figure 3. Flare frequency across THEO database

is, how well does it generalize?. Since the database is finite, the
problem arises on how to divide this database into sets for training
and sets for testing - and how might this affect measures of predic-
tion performance?

Three basic methods were used in presenting data to the
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the network. Massed protocols allow training on all julians within
a certain range and testing on another. Spaced protocols divide
the data into odd (testing) and even (training) clusters of julians. I
coined a term to describe the size of these clusters: spacing-granu-
larity. For example, a spacing granularity of 14 would assign 2
week groups of data alternately to the testing and training sets; a
granularity of 1 would just assign data from odd-numbered julians to
testing and even-numbers to training. Distributed protocols are a
generated by choosing some number of julians in an evenly dis-

tributed fashion from the entire data set.

Techniques of Measuring Performance

Analyzing performance of an expert system is best done
using measures from the problem domain. Forecasting problems
are essentially probabilistic, requiring the detection of signal from
noisy data. Thus forecasting techniques and systems are often ana-
lyzed using signal detection theory [Spoehr and Lehmkuhle 1982].
If the claim is to be made that TheoNet is an “expert system”, it
needs to be evaluated using this technique.

An earlier simulation tracked a simple measure called
overall-prediction-error. This was the average difference over one
complete epoch of input patterns between the activation of an out-
put unit and the “correct” value it was supposed to have. This is
directly related to the sum-squared error used by the back-propa-
gation method and is the common way of measuring performance of
connectionist networks.

While the overall-prediction-error would drop quickly for
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all flare classes after a dozen epoches or so, individual weights
would take longer to stabilize. Oscillations were seen in weight val-
ues if a large learning rate was used. When this was reduced to 0.2
or lower (with a momentum of 0.9), the weights would converge
smoothly to their final values.

Overall-prediction-error however, is not a good measure of
performance. Since flares happen very rarely, a network that pre-
dicted no flare occurrence regardless of the state of the sun (a “just
say no” network) would have a very low error measure. Something
was needed to indicated whether the network was behaving differ-
ently when a flare was about to occur. This, in addition to the de-
sire to use a common domain performance measure, was the reason
for turning to signal detection measures.

The system was modified to calculate P(H), the probability
of a hit, and P(FA), the probability of a false alarm, over each epoch.
These parameters depend on the response bias, which determines
the activation level used as a threshold for a yes/no responset. A
graph of P(H) versus P(FA) gives the receiver operating characteristic
or ROC curve. The amount that this curve is bowed away from a 1:1
diagonal is the degree to which a signal is being detected against
background. A summary measure, which can be used to compare
different ROC curves, is given by the area under the curve. This
measure is known as a. Guessing or chance performance results in

an a’ of .50. Forecasting skill is evidenced by a’ values that exceed

4Even though both THEO and TheoNet have a continuous
output (probability of flare and activation), varying the response bias gives
a continuous evaluation of performance at any output level.
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.50. This was the method used for measuring the performance of

THEO [Lewis and Dennett 1986].
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Figure 4. ROC performance curves of TheoNet and THEO

The network was exposed to the test data before and after
training. The test data set was composed of data patterns that the
network had not seen during training. After training, the probabil-
ity of hits was consistently higher than that of false alarms in all
flare classes (Figure 4). Given the limited data and very low activa-
tions for X-class flares, it may or may not be reasonable to draw
conclusions about the network's ability to detect these - in the test
data sets there would be roughly only 20-30 X-flares. As can be
seen in later sections, the a’s for this class were much more vari-
able than C and M classes.

Actual region and whole-sun performance figures from

many of the different simulations are given in APPENDIX C.
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Comparisons with the Experts

How does the prediction performance described here

compare to the other methods in use for forecasting flares?

Forecasting performance figures are available for the domain ex-

pert, other SEL forecasters, the seven day average model, and the

interactive and default modes of the expert system THEO.

Both THEO and TheoNet generate flare probability predic-
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THEO/TheoNet comparison
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particular day. The simulation was modified to read in THEO's
predictions along with the raw solar data and calculate these a’s at
the same time and in the same fashion as for TheoNet's own pre-
dictions. Data for M-class whole-sun prediction for all methods is
available for the 1978 onset period [Gary Bradshaw, personal com-
munication], so it is this period used for the comparisons shown in
Figure 5.

The 1978 onset period was considered a challenging pe-
riod for flare prediction and all the methods performed compara-
bly, with the exception of the THEO interactive mode. The im-
provement for this mode has been attributed to the ability of the



21

user to change pieces of suspect data [Bradshaw, personal commu-
nication] as well as to consider additional data.

Considerably better performance is obtained when testing
on more recent data from the solar database (see Figure 6). Only
figures for the expert system THEO and TheoNet are available for
this comparison. The values shown are for testing over the period
from April 1987 through June 1989. TheoNet's performance was

comparable over all three flare classes to that of THEO.

Training and Testing Effects

Size of Training Set
Did TheoNet need the thousands of days worth of data in

the solar database to achieve good performance? To answer this I
used distributed protocols (described above under Data
Presentation) to present it with varying numbers of days worth of
solar data for training. The results are shown in Figure 7 below.
The values graphed are the average of several trials with different
initial connection weights and the arrows show the minimum and
maximum values obtained.

Performance is essentially the same from the maximum of
800 days (half the data set) down to about 100 days. Below this,
there is some noticeable drop off to a’s around .70. Measurements
of training sets of below 25 days are not useful, since it is at this
point that the probability of getting no X-class flares is nearly 50%.
Obviously, the network needs a few examples of a flare occurrence

to learn. Variance in obtained a’s also increased as the training set
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Training Set Size
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Figure 7. Effect of size of training set

size decreased.

Multiple-Day Chunks (Spacing Granularity)
Since the sun exhibits periodic behavior for 14-21 days at

a time, SEL scientists felt training and testing should be done on al-
ternating 14 or 21 day chunks (that is, a spacing granularity of 14-
21). This is to answer the objection that the network was being
tested on data possibly more similar to that on which it had been
trained than if the test data is from a different two- to three-week
period. However, this made no noticeable difference in the net-

work's ability to learn and generalize over a wide range of granular-



23

Spacing Granularity
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ities (see Figure 8).

Phase of Solar Cycle

Does a given type of sunspot behave differently in the dif-
ferent phases of the 11 year solar cycle? If so, then training the
network with data from only one phase might not lead to valid
predictions in another. The previous tests used data from the en-
tire database, covering most of the solar cycle, and so avoided this
problem.

Based on sunspot count (which is correlated with, but not
the same as, flare frequency), three main phases are recognized by

solar scientists. Minimum for the quiescent period between activ-
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ity peaks, Onset for the steeply rising phase, and Peak for the pe-
riod of steady high activity. (These can be seen in the flare fre-
quency diagrams of Figure 3.)

For this experiment, training sets consisted of massed pro-
tocols of 98 days from the 1980 peak (julian 29275-39372) 1986-
87 minimum (31425-31522), and the 1989 onset (32500-32597).
The protocols were limited to 98 days, since this was all the data
that was available from the 1980 peak phase. These were then
compared to a distributed protocol of 98 days from the entire cycle.

All the resulting networks were tested on the entire database

(Figure 9).
Training Set Phase
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Figure 9. Effect of phase of training set
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There were no apparent performance differences among
any of the protocols. An additional experiment was done with the
294 day combination of the minimum, onset, and peak periods
(M/O/P in Figure 6) as well as a distributed set of 294 days and
even this comparison made no difference. So just three months of
data is enough for TheoNet to learn flare prediction®.

Thus it seems reasonable to conclude that no careful (or
“knowledgeable”) selection of data was required to successfully
train TheoNet. Performance was good as long as enough different
data patterns were presented. Flare prediction using the charac-
teristics of a sunspot (from the database) thus is apparently inde-

pendent of the solar phase.

Parameter and Architecture Sensitivity

Connectionist networks using the back-propagation
learning algorithm have a number of different parameters that af-
fect the ability to reduce error and to generalize. These affect the
way the system searches for the minima of a multi-dimensional er-
ror surface. Different learning rates, momentums, and numbers of
units in the hidden layer(s) can cause the network to overshoot or
oscillate around local minima, or even miss them entirely. It is also
possible to have error surfaces with multiple local minima, and the
gradient descent procedure used by back-propagation can actually

trap the network away from the best solution or global minimum.

SOf course, quiescent periods where no flares occur do not
lead to useful predictions.
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For these reasons, many problems are difficult and sensi-
tive to the values of these parameters, or are even intractable.
During development of the network different values of learning
rates and momentums were tried. Barring ludicrous values outside
of anything reported in the connectionist literature, the system did
not seem sensitive at all to these parameters, except that a lower
learning rate would simply require more epoches for convergence.
For all the formal performance testing, the learning rate was 0.2

and the momentum was 0.9.
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The hidden units are where the crucial representations
are formed that perform the mapping from input data to output ac-
tivations (predictions for TheoNet). Networks with 1-10 hidden
units were constructed, then trained and tested using the simple
odd/even (spaced-granularity = 1) protocol across the entire
database. In addition a simple two-layer network with no hidden
units was built and tested in the same way. These are compared in
Figure 10.

The most surprising result here is that it did not matter
how many hidden units were used! A single hidden-unit network
performed as well as the standard five unit or a ten unit one. This
was only performed using the entire database, and leaves open
many questions about other possible differences.

Another obvious question is if anything can be concluded
from the weights in the simple single hidden-unit network. Figure
11 shows the weights obtained after a training run on the single
hidden-unit network. They are somewhat difficult to interpret due
to the arbitrary binary distributed representations. An informal
analysis showed that the Largest Spot McIntosh classification and
Previous Day categories are prominent and Recent is hardly used,
but it is apparent the network is paying significant attention to all
the categories of data. Any other interpretations from this result
remain unexplored.

The simple two layer (0 hidden units) network was also
able to learn the task, but required an order of magnitude (on the
order of hundreds of epoches instead of tens) more iterations be-

fore weights settled. In preliminary tests (see the data in
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Figure 11. Connection weights of a 1 hidden-unit network

APPENDIX C), it was also unable to learn X-class flare prediction
on smaller samples of the data set (massed or distributed proto-

cols). There is not, however, sufficient data here to draw further

conclusions.



CHAPTER IV

CONCLUSIONS

Summary of Results

The connectionist approach used by TheoNet was success-
ful in learning to predict solar flares. Its performance was compa-
rable to an expert system that outperforms forecasters at the Space
Environment Laboratory. It needed exposure to only about three
months of solar data taken from any part of the 11-year solar cycle
or distributed throughout it in different fashions. The prediction
performance generalized consistently well across the cycle. This
also seems to indicate that solar flare prediction from sunspot
characteristics is not dependent on the current phase of the solar
cycle; forecasting is learnable in just three months by TheoNet (or,
presumably, a novice forecaster!).

It did surprisingly did not matter for basic performance
(other effects have not yet been examined) how many units the
hidden layer contained, nor was the network sensitive to other
learning parameters. This would lead to the conclusion that the
problem has a relatively unconvoluted error surface in the space of
possible solutions. Its lack of input data dependencies and small
input data requirements reinforce the robustness of the solution it

found.
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It was possible for a two-layer network to solve the pre-
diction problem, given enough data and simulation time. Since this
is mathematically equivalent to a non-linear regression, this should
indicate that the problem is simple enough for regression analysis
to solve. Preliminary testing indicated that the two layer network
needed large amounts of data from across the solar cycle - this
could explain the failure of earlier attempts that may not have had
enough solar data.

TheoNet's ability to learn quickly on just 100 days worth of
data, to significantly outperform most human forecasters, and do as
well as the senior domain expert indicate that it is hardly solving a
trivial problem. Flare forecasting apparently requires a delicate

balancing of inputs that humans find very difficult.

Future Work

Many questions remain to be answered. We would like to
examine the internal representations using relevance measures
[Mozer in press] or something similar to see if there is any relation-
ship to the rules used in THEO. Without those interpretations,
connectionist networks cannot easily offer the help and explanation
facilities of traditional expert systems that are a fallout of the rule-
writing process. And how useful is the network regarding new
knowledge, maintenance, training, unusual cases, and explanation?
The particular representations formed, if they show a relationship
not noticed before, may be of interest to solar physicists in under-
standing the nature of flare production.

Since the network used the same categories of data input
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to THEO, these data were known to be significant. We need to ask
if the network can eliminate redundant or unnecessary categories.
This is an important issue for the practical development of expert
systems. Conversely, a “choking auto-encoder”® network that
forces a non-redundant encoding of the input data could be used to
determine the importance of any redundancy to the network's
predictive ability. These investigations may reveal further differ-
ences between the two and three-layer models.

Both THEO and human experts have rules for dealing with
interactions between sunspot regions to generate a whole-sun flare
prediction’. How might this be done with a connectionist archi-
tecture? The problem is especially challenging, since this involves
time and space dependent relationships and a variable number of
regions. Some interesting connectionist architectures may be
needed to do this.

Possibly most intriguing is the question of how the net-
work will respond to the use of newly available data. The SEL is
looking to obtain new categories of data about the magnetic and H-
alpha wavelength characteristics of active regions. Traditional rule-
based systems are a static codification of human knowledge at the

time when the expert is interviewed. Learning systems such as

6 A three-layer network with the output constrained to the
same values as the input, and the minimum number of hidden layer
units needed to achieve a very low error.

- 7 TheoNet's current whole-sun prediction is, as described
earlier, just a simple combination of region probabilities done
“outside” the network.
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TheoNet represent potentially more flexible and responsive solu-

tions when domain knowledge is dynamic.
Final Remarks

Two particularly intriguing prospects are raised by the re-
sults of this research. The first is that if a connectionist network
can perform the same task as a rule-based system, then a study of
the internal representations constructed by the network may give
insights to the “microstructure” of how knowledge can be repre-
sented in an implicit way. This is the same knowledge delineated at
a higher level of description by the rules in an expert system. Our
hope is that the two paradigms may eventually come to comple-
ment and support each other in cognitive science research.

The second prospect is more of an engineering nature and
is that of dramatically easing the knowledge engineering job.
Witness the current explosion of expert system technology in the
marketplace today. Yet for all their glamor, expert systems have
usually proved time consuming and expensive to implement. The
“knowledge-engineering” step of interviewing experts and trans-
ferring their knowledge explicitly to rules that work successfully
together has been the most difficult and expensive part, even with
advanced knowledge representation languages and expert system
shells.

TheoNet has shown that at least in this instance, a stan-
dard back-propagation network can quickly and automatically learn
those necessary representations and interactions (rules?) needed

to do the same sort of reasoning. Development of a functioning
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prototype of THEO (one of the quicker developments of a usable
expert system) required many man-months, while TheoNet needed
only about a week using a simple simulator. In addition, THEO re-
quires on the order of a minute to process a single prediction while
the network requires only a few milliseconds, thus promising bet-
ter performance under real-time conditions.

It is tempting to claim that connectionist networks repre-
sent the lazy man's way to expert systems. But we must look at the
sort of problem first - failing to do this has been the cause of many
disappointed expectations in expert systems and Al

What is it that characterizes a problem that makes it a
candidate for a connectionist solution? As with expert systems, it
should not be amenable to traditional methods (which are usually
cheaper and more efficient) and for which there is little or no for-
mal description. Connectionist networks also need to have the
conditions of the problem (input data) representable as a vector of
discrete or continuous numbers. Though work is being done to get
connectionist systems to do formal symbol manipulation, the most
successful and straightforward implementations have been where
there has been available large amounts of data in relatively few cate-
gories. Problems with soft constraints and approximate or proba-
bilistic answers are a strength of connectionist approaches. The
interesting problems will be the ones where the interrelationships
between data categories and the problem solution are not known or
poorly understood.

Solar flare prediction is a problem that represents the in-

tersection of the families of problems appropriate for expert sys-
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tems and for connectionist networks. This research has supported
the belief mentioned in the introduction that it would be a good
problem domain for examining the different approaches to problem
solving. Similar domains need to be examined to determine if the
ease and robustness of TheoNet's solution can be reproduced. And
to demonstrate the significance of connectionist approaches over
traditional methods (i.e. regression), a problem domain needs to be
found that requires a three-layer network.

Weather forecasting and other large multi-variate systems
may represent analogous problems where we may further investi-
gate the ability of connectionist methods to achieve that delicate
balancing of the conditions of a problem that characterize the peo-

ple we call “experts” and the programs we call “expert systems”.
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APPENDIX A
THEO DATABASE EXAMPLES

The following is a excerpt of the database file used by the
THEO expert system to generate flare predictions.

region same lat long extnt max area C H mag spots area large ¢ ml
m2 x class
ver
R regions record
region SESC region number

same region number previous solar rotation

lat solar latitude

long solar longitude

extnt extent in degrees

max maximum spot class (may be from previous rotation if same
> 0

area maximum area (may be from previous rotation if same > 0

C historically complex (derived quantity)

H y: thre region did NOT become class H during this rota-
tion

mag magnetic classification

spots spot count

area current area in millionths

large area of largest spot in the region

c count of C flares

ml count of M1 flares

m2 count of M2-9 flares

X count of X flares

class McIntosh classification
F flares

region SESC region number
pairs: Time in HHMM Flare classification
(times and subclass not known for 1969, constructed from
flare
count)

This file can have anything typed up here, but nothing in data area
below -

- also no blank lines.
region same lat long extnt max area C H mag spots area large c ml
m2 x class
ver

ddmmyy = 120269 julian = 25245

R 581 0 N13 w066 13 E 70 n y bet 11 70 10 0 O
0 O ESI

1 0
R 585 0 N17 EO013 2 A 2 -y ap 1 2 2 0 0
0 0 AXX

1 0

R 586 0 S11 E077 2 A 2 -yap 1 2 2 0 0



AXX

= 130269 julian = 25246

1000 C3.0
0 N12 W077 8 E 70y vy bet 4 50
cso
0 N17 E010 7 D 60 -y bet 17 60
DSO
0 S12 E066 6 C 20 -y bet 8 20
cso

= 140269 julian = 25247

0 N17 w012 8 D 170 - y bet 24 170
DSO

0 S13 E052 7 D 80 - y bet 19 80
DAO

0 NO9 w014 2 A 6 - y bet 3 6
AXX

0 NO2 EO053 1 A 1 -yap 1 1
AXX

150269 julian = 25248

0 N17 W026 8 D 170 - y bet 12 130
DAO

0 s13 E037 7 D 100 - y bet 11 100
DAO

0 NO9 EO030 1 2 6 -y ap 1 1
AXX

0 N27 E039 1 A 1-yap 1 1

AXX
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The following is an excerpt from the database of THEO's
generated predictions. Most use the simple default mode (though
there is no way to tell if the interactive mode was used), and most

do not have region interactions.

date time regl reg2 intr C M X

days hhmm

32203 2400 4956 0 0 2 0 0

32203 2400 4957 0 0 80 8 2

32203 2400 4958 0 0 80 8 2

32203 2400 4959 ~ 0 0 2 0 0

32203 2400 4960 0 0 30 0 0

32203 2400 4961 0 0 2 0 0

32203 2400 4956 4957 1 90 8 2 regions 4956 & 4957

are interacting

32203 2400 4961 4957 2 99 10 2 4961 and 4957, too

32203 2400 -2 -1 -1 99 10 2 interactions 1 & 2
share region 4957 and therefore interacting

32203 2400 0 0 0 99 17 4

Note that the whole sun forecast used only the compound interaction
(99 10 2) and regions 4958(80 8 2), 4959(~), and 4960(-)=(99 17 4)



APPENDIX B

SELECTED PERFORMANCE DATA

size C-reg M-reg X-reg C-wh M-wh X-wh
25 72 70 81 76 72 70

25 72 67 56
25 75 76 90 77 78 82
25 72 73 80 77 74 63
50 76 74 77 75 70 71
50 76 65 63
50 79 77 82 77 75 74

100 81 82 84 79 79 83
100 81 85 93 78 78 76
100 81 86 94 79 79 81
300 82 85 89 79 80 79
1625 82 85 84 81 81 85
1625 82 85 87 80 80 82
1625 80 84 88 82 79 84
1625 78 84 91 80 80 84
1625 82 84 92 82 82 86

layer/train C-reg M-reg X-reg C-wh M-wh X-wh

2/all 80 68 84 80 76 77
3/all 80 84 88 80 80 84
2/78 70 61 31 78 65 48
3/78 81 86 92 79 81 85
2/onset 80 70 28 79 76 46
3/onset 82 86 86 80 81 82
2/min 68 75 63 75 74 58
3/min 78 80 90 78 76 83

2/distrib 80 68 28 78 69 48
3/distrib 81 85 93 78 78 76

2/all 80 68 26 80 76 45
3/onset 81 86 Q4 78 80 82
3/78 82 86 94 80 82 85
2/78 81 65 27 76 62 32
2 /peak 72 70 22 79 76 48
2/all 80 67 45 80 77 44
3/peak 81 85 68 80 79 74
3/all 82 85 87 80 80 82
3/all 80 84 88 82 79 84
3/all 78 84 91 80 80 84

3/all 82 84 92 82 82 86



method

THEO default
TheoNet
TheoNet

7-day avg
domain expert
SESC

THEO BASS
2-layer Net

method
THEO whole
TheoNet whole

#hiddens

0 80
1 77
2 80
3 0

4

5 82
6

7 80
8

9

10 82

solar phase C-reg M-reg X-reg C-wh

Minimum 78
Onset 82
Peak 81
distributed 81
M/0/P 80
distr.*3 82
spacing

1 82
7 82
14 82
21 83
28 82

M-whole

67
68
67
66
72
65
84
65

C-wh M~-wh X-wh

80
81

68
83
87
0

85

84

84

80
86
85
82
86
85

85
85
85
85
86

85
81

C-reg M-reg X-reg

84
87
95
0

84

88

92

90
86
68
84
90
89

84
87
81
85
56

87
85

C-wh M-wh X-wh

80
81
80

81

82

82

78
80
80
79
79
79

C~-reg M-reg X-reg C-wh

81
80
80
86
80

76
80
81

81

79

82

M-wh
76
81
79
79
79
80

M-wh
81
80
79
83
80

77
77
83

85

84

86

X-wh
83
82
74
83
73
79

X~-wh
85
82
83
87
82






APPENDIX C
SOURCE CODE

The following are complete listings of the P3 simulator
model description and associated LISP functions used to create

TheoNet.






MUNCH:>fozzard>p3>theonet4.p3.2

;;: —-*- Syntax: Zetalisp:; Package: P3; Mode: Lisp; Base: 10; Lowercase: T; Default-character-style:
:roman :inormal); -*-—

IR R R R R R N R R R R R R A A A A A A

H Description:

P S

Mo Se N e oNa o Ne Spohe ve Ne i N e Y N

TheoNet: Backprop network to learn solar flare forecasting as done by
the automatic mode of THEQO expert system.

Theonet-whole has whole sun predictions in it.

Theonet?2 has been reorganized to read in all data at once,
and then allow interactive control of test/train range
and masked/spaced protocols. Also add p3 init to random
weights and fix some bugs in a-prime generation.

Theonet3 adds region performance checks of THEO’s corresponding
predictions. This adds more performance units
and changes to the pattern unit (and GETALLDATA) to read
these predictions from VERIFY.THEC

Theonet4 adds interactive disabling of hidden units

Gradient descent supervised learning algorithm for a

strictly layered network of semi-linear units

with a squashing function consisting of the tanh function offset and
scaled to lie between 0 and 1. In this version

every weight is assumed to be modifiable.

There 1s currently no weight decay.

NOTE: this is for the new expanded THEO database

Auxiliary files required:

the GETALLDATA function and the THEODATA.NEW database file
VERIFY.THEO holds THEO’s predictions by julian
theo.aux

;these are the data sets for the net. Comment out the ones not needed
; (PLAN CONSTANT data-pairs = ({cl-user::getalldata "munch:>fozzard>theodata.test"))

(PLAN CONSTANT data-pairs = (cl-user::getalldata "munch:>fozzard>thecdata.new"))

(PLAN CONSTANT layer-size-list =
(PLAN CONSTANT learn-rate = 0.2)
{(plan constant momentum-factor =

f(13. 10. 3.))

.9)

rrrrrrrrrerres

(PLAN CONSTANT nbr-patterns = (length data-pairs))
(PLAN CONSTANT nbr-layers = (length layer-size-list))
(PLAN CONSTANT nbr-units = (apply #'+ layer-size-list))
(PLAN CONSTANT nbr-input-units = (nth 0 layer-size-list))
(PLAN CONSTANT nbr-output-units = (nth (1- nbr-layers) layer-size-list))
(PLAN CONSTANT nbr-intermediate-units =
(- nbr-units nbr-input-units nbr-output-units))

(PLAN CONSTANT

(PLAN CONSTANT start-julian = (first (first (first data-pairs))))

(PLAN CONSTANT stop-julian = (first (first (nth (1- nbr-patterns) data-pairs))))

(PLAN CONSTANT theo-start = (loop for i from 0 below nbr-patterns do

(1f (>= (first (fourth (nth 1 data-pairs))) 0)
(return (first (first (nth i data-pairs))))
stop-julian)))

(PLAN CONSTANT theo-end = (let ((last~-julian theo-start))

{(loop for i from 0 below nbr-patterns do

{(let ((this-julian (first (first (nth i data-pairs)))))
(1f (and (> (first (fourth (nth i data-pairs)))

(>= this-julian theo-start))

(setg last~-julian this~julian) last-julian))

finally (return last-julian))))

(unit type last-error
PARAMETERS
last-error-at
learning~cycles
enabled
INPUTS
(student array output-units)

layer-boundary=-list = (make-layer-boundary=-list layer-size-list))

0)

7/16/89 10:10:24 Page 1
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(teacher array output-units)

(enable)
METHOD
(cond ({(minusp (read-unit-parameter enabled))
(loop with e = (read-unit-parameter learning-cycles)
for i from 0 below (input-dimension-n student 1)
do (cond {(and (2 (read-input (teacher 1)) .5)
(< (read-input (student 1)) .5))
(set-unit-parameter last-error-at e ))
{({and (£ (read-input (teacher 1))} .5)
(> (read-input {student 1)) .5))
(set-unit-parameter last-error—at e ))
)
E] (SET~OUTPUT (prediction-error i)
H (abs (- (READ-INPUT (teacher 1i))
A (READ-INPUT (student 1i)))))

)
(set-unit-parameter learning-cycles
(+ 1
{read-unit-~parameter
learning-cycles)))
))
(set~-unit-parameter enabled (read-input enable))

(UNIT TYPE control-unit
PARAMETERS

currently-enabled ; 0 ==> gen. pattern
: 1 ==> propagate act’n at
H layer i-1
; -1 ==> propagate deltas at
H layer i-1
learning-rate
{(do~test~run = 0) ;initially dont do a test run

OUTPUTS
(enable ARRAY i) -1 means propagate act’'n
>0 means learn using value
as rate
to tell pattern-generator
whether to
use training (nil) or testing
(t) patterns

(do-testing-run LINE PARAMETERS
(OUTPUT = nil))

No e Ne e e ve v

METHOD
(let* ((last-enabled (READ-UNIT-PARAMETER currently-enabled))
(top-layer (1- (OUTPUT~DIMENSION-N enable 1)))
(next-enabled (cond ((= last-enabled top-layer) (- top-layer))
{({= last—~enabled -2) 0)
{(t (1+ last-enabled))))
)
(SET-UNIT-PARAMETER currently-enabled next-enabled)
(SET-OUTPUT (enable (abs last-enabled)) O0)
(SET~-OUTPUT do-testing-run (not (zerop (READ-UNIT-PARAMETER do-test-run))))
(SET-QUTPUT (enable (abs next-enabled))
(1f (minusp next-enabled)
(READ-UNIT-PARAMETER learning-rate) =1))))

A A N N NN NN

(UNIT TYPE pattern-unit

PARAMETERS

whole-c-so~far ;#c~flares so far this julian

whole-m-so-far ;#m-flares so far this julian

whole-x-so-far ;#x~-flares so far this julian

(last-index = -1)

data-patterns-array theld in array to hide from p3 popup

number-of-patterns

{iterations-per-epoch ;for setting p3 blind iterations
= {(// (* 6 {1+ nbr-patterns)) 2)) ;//2 since spaced is t initially

(this-julian = 0)

(test-start = start-julian) ;<julian>

(test-end = stop-julian) ;<julian>

(train-start = start-julian) ;<julian>

(train-end = stop-julian) ;<julian>

H (spaced-test-train = t) ;<t,nil> whether to alternate

Page 2
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; odd/even in test/train sets
(spaced-granularity = 1) ;size in days of a chunk of
; spaced data O=masked

(theo-predictions-start = theo-start)
(theo-predictions-end = theo-end)
(last~julian-start = 0)
(last-start~index = -1)

theo-c-prediction
theo-m-prediction
theo-x-prediction
INPUTS ;all are from control unit
(enable) ;line 0: active iteration one
(do~testing~run) to tell pattern-generator
whether to
use training (nil)
or testing (t) patterns

OUTPUTS
(current-julian) ;to whole-sun units
(current-region) ;to whole-sun units
(pattern ARRAY i) ;to input units
(theo ARRAY i) ;to theo performance units
(teacher ARRAY i) ;to perf. & output units
{(last~index) ;to tell performance units
; when epochs are over
METHOD

{cond ({minusp (READ-INPUT enable))
(let* ((do-test (READ-INPUT do-testing=-run))
(current-index (READ-UNIT-PARAMETER last-index))
(data-patterns ;get from array
(aref (READ-UNIT-PARAMETER data-patterns-array) 0))
(num-of-patterns (READ~-UNIT-PARAMETER number-of-patterns))
{spaced-size (READ-UNIT-PARAMETER spaced-granularity))
(spaced (not (zerop spaced-size)))
(index
{let* {(temp—-index current-index)
(start (if do-test (READ~UNIT~PARAMETER test-start)
(READ~UNIT-PARAMETER train-start)))
(end (if do-test (READ-UNIT~-PARAMETER test-end)
(READ-UNIT-PARAMETER train-end)))
{low-index

{(if (= (READ-UNIT~PARAMETER last-julian-start) start)
(READ-UNIT-PARAMETER last-start-index) =-1)))
(if (= (READ-UNIT-PARAMETER theo-predictions-start) start)

(READ~UNIT-PARAMETER theo-predictions=~end) -1)))
(SET-UNIT-PARAMETER last-julian-start start)
(SET-UNIT-PARAMETER theo-predictions~start start)

(loop for n from 0 to num-of-patterns do
{let* (({next-index (mod (1+ temp-index) num-of-patterns))
(next-pattern (nth next-index data-patterns))
(next-julian (first {(nth 0 next-pattern))))
(setqg temp~index next-index)

(cond ((and (>= next-julian start) (<= next-julian end)) ;in range
(1f spaced ;1f spaced figure if in test set
(if (oddp (floor (// next-julian spaced-size)))
(if do-test (return next-index)) ;in test set
(1f (not do-test) (return next-index))) :;not in test
(return next-index))) ;1f masked
({> next-julian end) ;if past end, skip to low-index

(setqg temp-index low=-index))))

finally {return 0)))}) j;get here only if no julians in range
(this-pattern (nth index data-patterns))
(julian (first (nth 0 this-pattern))
(reglion (second (nth 0 this-pattern)))
(input-pattern (nth 1 this-pattern))
{output-pattern (nth 2 this-pattern))
(theo-pattern (nth 3 this-pattern))
(actual-c (nth 0 output-pattern))
(actual-m (nth 1 output-pattern))
(actual-x (nth 2 output-pattern))
(temp-whole-c~-so-far (READ-UNIT-PARAMETER whole-c-so-far))
(temp-whole~-m-so-far (READ-UNIT-PARAMETER whole-m-so~-far))
(temp-whole-x-so-far (READ-UNIT-PARAMETER whole-x-so-far))
(new-julian (not (equal julian (READ-UNIT-PARAMETER this-julian))))
(whole-c (if new-julian actual-c }1f new day, use this region

(1f (plusp actual=-c) actual-c ;else if new flare
temp-whole-c—-so-far))) ;else old
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(whole-m (if new-julian actual-m
(1f (plusp actual-m)

temp-whole-m-sc-far)))
new-julian actual-x

(whole-x (if

:1if new
actual-m

;if new

7/16/89 10:10:24 Paged

day, use this region
;else if new flare
;else old

day, use this region

(1f (plusp actual-x) actual-x ;else if new flare
temp-whole-x-so-far))) ;else old
(theo-c (let ((xx {(// (nth 0 theo-pattern) 100.0))) (if (< xx 0) -1 xx)))
(theo-m (let ((xx {(// (nth 1 theo-pattern) 100.0))) (if (< xx 0) -1 xx)))
(theo-x (let ((xx (// (nth 2 theo=-pattern) 100.0))) (if (< xx 0) -1 xx)))
) ;end of let*

(loop for i from 0 below

do (SET-QUTPUT (pattern 1)

(SET-OUTPUT (theo 0) theo-c)
(SET-OUTPUT (theo 1) theo-m)
(SET-OUTPUT (theo 2) theo-x)

(SET-UNIT-PARAMETER theo-c-prediction theo-c)
(SET~UNIT-PARAMETER theo-m-prediction theo-m)
(SET-UNIT-PARAMETER theo-x-prediction theo-x)
(SET~-UNIT-PARAMETER spaced-granularity theo-c)

~

(SET-OUTPUT (teacher 0) actual-c)
(SET-OQUTPUT (teacher 1) actual~m)
(SET-OUTPUT (teacher 2) actual-x)

(when new=-julian
{SET-OUTPUT
{SET-OUTPUT

(SET-QUTPUT (teacher 5)

(OUTPUT~DIMENSICN~N pattern 1)
(nth i input-pattern)))

;set previous Jjulian teacher values
(teacher 3) temp-whole-c-so-far)

(teacher 4) temp-whole-m-so-far)

temp-whole-x-so~-far))

;set theo performance-unit teacher values to -1 if no THEO prediction avail

(SET-QUTPUT (teacher 6) (if (= (first theo-pattern) -1) -1 actual-c))
(SET-QUTPUT {teacher 7) (if (= (second theo-pattern) -1) -1 actual-m))
(SET-OUTPUT (teacher 8) (if (= (third theo-pattern) -1) -1 actual-x})
(1f (> current-index index) rend of epoch
(let* ((patterns (1l+ (- current-index index)})
(iters (* 6 patterns)))
{SET-UNIT-PARAMETER
iterations-per-epoch (if spaced (// iters 2) iters))

(SET-UNIT-PARAMETER last-start-index
H (SET-UNIT-PARAMETER theo-predictions-end

»)
(SET-UNIT-PARAMETER last-index index)

{1- index))
(1- index))

{(if (= (READ-UNIT-PARAMETER last~start-index) =1) ;havent found one yet
(SET-UNIT-PARAMETER last-start-index (1- index))) ; found it!
H (if (= (READ~UNIT~PARAMETER theo-predictions—-end) -1) ;havent found one yet
H (SET-UNIT~-PARAMETER theo-predictions-end {(1- index))) ;s found it!

(SET-OUTPUT last-index index)

(SET-OUTPUT current-julian julian)
{SET-OUTPUT current-region region)
(SET-UNIT-PARAMETER whole~c-so-far whole-c)
(SET~UNIT-PARAMETER whole-m-so-far whole-m)
(SET-UNIT-PARAMETER whole-x-so-far whole-x)
(SET~UNIT-PARAMETER this-julian julian)
))))

(UNIT TYPE input-layer-unit
PARAMETERS
activation
INPUTS
(enable)
(pattern-input)
OUTPUTS
(activation-output)
METHOD
{(cond ((minusp (READ-INPUT enable)) H
(let ((activity (READ-INPUT pattern-input)))
(SET-UNIT-PARAMETER activation activity)
(SET-OUTPUT activation-output activity)
IR

propagate activation

LA A A A A A R A A A A A A A R R N N A A A ]

(UNIT TYPE intermediate-layer-unit
PARAMETERS



MUNCH:>fozzard>p3>theonet4.p3.2 7/16/89 10:10:24

(activation = 0)
delta
bias
momentum
(weights—-initialized = nil) ;allows random weights on p3 init
enabled ;flag to enable hidden unit (O=disabled)
INPUTS
(enable)
(do-testing-run) ; to tell unit whether to
; use training (nil) or testing (t) patterns
(activation-input
TERMINAL PARAMETERS
welght
terminal~index
last—-dw)
(delta~times-wt-input ARRAY 1)
OUTPUTS
{(activation-~output)
(delta-times~-wt~output ARRAY i)
METHOD
{(when (not (zerop (READ-UNIT-PARAMETER enabled)))
(let ({(rate (READ-INPUT enable)))
(without-floating-underflow-traps ;stupid kludge...
{(when (not (READ-UNIT~PARAMETER weights-initialized))
(SET-UNIT-PARAMETER bias (random-weights))
(FOR-TERMINALS j OF INPUT activation-input
(SET~TERMINAL-PARAMETER
(activation-input TERMINAL j) weight (random-weights)))
(SET-UNIT-PARAMETER weights—-initialized t))

{cond ((minusp rate) ; propagate activation
(let ((activity)
(net-input (READ-UNIT-PARAMETER bias)))
(FOR-TERMINALS i OF INPUT activation-input
{(incf net-input (* (READ-TERMINAL-PARAMETER
(activation—input TERMINAL i) weight)
(READ-INPUT
(activation=input TERMINAL 1i)))))
(setqg activity (squash net-input))
{SET-UNIT-PARAMETER activation activity)
(SET-OQUTPUT activation-output activity)))
((and (plusp rate) (not (READ-INPUT do-testing-run)))
; propagate delta & change weights
{let {{net-delta-times-wt 0.0)
{delta-value)
(a (read-unit-parameter momentum)))
(loop for i from 0 below
(INPUT~DIMENSION-N delta-times-wt-input 1)
do (incf net-delta-times-wt
(READ-INPUT (delta-times-wt-input i)))
finally
(setq delta-value
(* net-delta~times-wt
{squash~prime (READ-UNIT-PARAMETER activation)
) ))
(SET-UNIT~-PARAMETER delta delta-value)
(SET-UNIT~-PARAMETER bias (+ (READ~UNIT~PARAMETER bias)
(* rate delta-value)))
(FOR-TERMINALS i OF INPUT activation-input
{(let* ({index (READ-TERMINAL-PARAMETER
(activation-input TERMINAL i)
terminal-index))
(wt (READ-TERMINAL-PARAMETER
{(activation-input TERMINAL 1) weight))
{(ldwt (READ-TERMINAL-PARAMETER
{activation-input TERMINAL i) last-dw))
(pre-synaptic
(READ-INPUT (activation-input TERMINAL i)))
(dwt
(+ (* rate delta-value pre-synaptic) (* a ldwt))))
(SET-OUTPUT {(delta-times-wt-output index)
(* delta-value wt))
(SET-TERMINAL-PARAMETER (activation-input TERMINAL 1)
welght
(+ wt dwt))
(SET-TERMINAL~-PARAMETER (activation-input TERMINAL 1)

Page 5
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last—dﬁ
dwt))))))))))

(UNIT TYPE output-layer-unit
PARAMETERS
activation
delta
bias
momentum
(weights~initialized = nil) ;allows random weights on p3 init
INPUTS
{enable)
(do-testing-run) ; to tell unit whether to
; use training (nil) or testing (t) patterns
{activation-input
TERMINAL PARAMETERS
weight
terminal-index
last-dw)
(teacher)
QUTPUTS
{delta-times-wt-output ARRAY 1}
(activation—~output)

METHOD
(let ((rate (READ-INPUT enable)))
(without-flcating-underflow-traps ;stupid kludge...

(when (not (READ-UNIT-PARAMETER welights-initialized))
(SET-UNIT-PARAMETER bias (random-weights))
(FOR~TERMINALS j OF INPUT activation-input
(SET-TERMINAL-PARAMETER
(activation-input TERMINAL j) weight (random-weights)))
(SET~UNIT~PARAMETER weights-initialized t))

(cond ((minusp rate) ; propagate activation
(let (
(activity)
(net-input (READ-UNIT-PARAMETER bias))
)
(FOR-TERMINALS i OF INPUT activation-input
{incf net-input (* (READ-TERMINAL-PARAMETER
(activation-input TERMINAL i) weight)
{READ-INPUT
(activation-input TERMINAL i)))))
{(setqg activity {(squash net-input))
(SET-UNIT-PARAMETER activation activity)
{set-output activation-output activity)

))
iz ((zerop rate)

((and (plusp rate) (not (READ-INPUT do-~testing=-run)))
;propagate delta & change weights
(let ((activity (READ-UNIT-PARAMETER activation))
{desired (READ-INPUT teacher))
{delta-value)
(a (read-unit-parameter momentum)) )
(setqg delta-value (* (- desired activity)
(squash-prime activity)))
{SET-UNIT-PARAMETER delta delta-value)
(SET~UNIT-PARAMETER bias (+ (READ-UNIT-PARAMETER bias)
(* rate delta-value)))
(FOR-TERMINALS i OF INPUT activation-input
(let* {(index (READ-TERMINAL~-PARAMETER
(activation~input TERMINAL 1) terminal-index))
(wt (READ-TERMINAL-PARAMETER
(activation-input TERMINAL i) weight))
(ldwt (READ-TERMINAL~PARAMETER
(activation-input TERMINAL i) last-dw))
(pre—~synaptic
(READ-INPUT (activation~-input TERMINAL 1i)))
(dwt {(+ (* rate delta-value pre-synaptic) (* a ldwt))))

Page 6
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(SET-OUTPUT
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(delta-times-wt-output index)
(* delta-value wt))

(SET-TERMINAL-PARAMETER
(activation-input TERMINAL i) weight

(UNIT TYPE whole-sun-unit

PARAMETERS
{dummy=-activation =
(activation = 0.0)
{prediction = 0.0)

{(+ wt dwt ))
(SET-TERMINAL-PARAMETER (activation-input TERMINAL i)
last-dw
dwt)))))))))
RN S RN RN R N N R R R N N R R NN
0.0) ;!1@#$! p3 bug was zeroing this
;1@#$! p3 bug was zeroing this
;PI(l-region-pred[i]) so far

{product-so-far =
(this-julian = 0)
INPUTS
(enable)
(output-activation)
(current-julian)
(current-region)
OUTPUTS
(prediction)
METHOD
(if (plusp

(let™

(temp-pred

(new—-julian

0.0)

(READ-INPUT enable))
(without-floating-underflow-traps
{ (prod-so-far (READ-UNIT-PARAMETER product-so-far))

; same
;s from
;from
;from

as output units
output-units
pattern-unit
pattern-unit

;to performance-units

;1f ocutput-units passing delta
;stupid kludge...

(- 1.0 prod-so-far))
(julian (READ-INPUT current-julian))

(not ({equal julian (READ-UNIT-PARAMETER this-julian))))

(region-pred (READ-INPUT output-activation))

(preduct

)

(if new-julian (- 1.0 region-pred)

(* prod-so-far (- 1.0 region-pred))))

(SET-UNIT-PARAMETER this-julian julian)
(SET-UNIT-PARAMETER product-so~far product)

(when new-julian

;set prev julian prediction value

(SET-OUTPUT prediction temp-pred)
(SET-UNIT-PARAMETER prediction temp-pred))))))

(UNIT TYPE performance-unit

~e ve Ne S e e s

for evaluating the performance of each output unit
Unit’s activity is compared against what actually
occurred for different response bilases to generate
probabilities of hits & false alarms which in turn
are graphed against each other; an area under the
curve (a-prime) is calculated as a measure of the
"signal detection" performance of the network.
The last 3 units instantiated are for evaluating the
performance of the whole-sun units.

PARAMETERS
a~-prime
{(response-bias-initialized = nil)
(bias-initialized = nil)
(sum-flares = 0.0)
(sum~-no-flares = 0.0)
(desired-teacher = 0) ;from teacher input
{(previous—-index = 999999) ;for determining end of epoch
(flares-per-epoch = 0) ;max value of sum-flares
(no-flares-per-epoch = 0) ;max value of sum-no-flares

INPUTS
(enable)

(teacher)
(do-testing~run)

(last-index)
(activation-input)

;will run at same time that pattern unit

is running (so teacher is for last patterns)

;gives actual flare occurrence info

to tell unit whether to

use training (nil) or testing (t) patterns
;to tell units when epochs are over

;from corresponding output unit

’
’
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(dummy-response ARRAY i ;stupid kludge for LISP/P3 bug
TERMINAL PARAMETERS (bias = 0.0))

(response ARRAY i ;response biases
TERMINAL PARAMETERS (bias = 0.0))

(dummy=-sum—-hits ARRAY i ;stupid kludge for LISP/P3 bug
TERMINAL PARAMETERS (bias = 0.0))

(sum~-hits ARRAY i ;for each response bias
TERMINAL PARAMETERS (bias = 0.0})

(dummy-sum-false-alarms ARRAY i :;stupid kludge for LISP/P3 bug
TERMINAL PARAMETERS (bias = 0.0)

(sum~false-alarms ARRAY i ;for each response bias
TERMINAL PARAMETERS (bias = 0.0))

(dummy-p-hits ARRAY i sstupid kludge for LISP/P3 bug
TERMINAL PARAMETERS (bias = 0.0))

(p~hits ARRAY i ;for each response bias
TERMINAL PARAMETERS (bias = 0.0))

(dummy-p-false~alarms ARRAY i ;stupid kludge for LISP/P3 bug
TERMINAL PARAMETERS (bias = 0.0))

(p-false-alarms ARRAY i ;for each response bias

TERMINAL PARAMETERS (bias = 0.0))

OUTPUTS
METHOD
(let (
(loc-sum~flares (READ-UNIT-PARAMETER sum-flares))
(loc—sum-no-flares (READ-UNIT-PARAMETER sum-no-flares))
(response-init (READ-UNIT-PARAMETER bias-initialized))
(num-biases (INPUT-DIMENSION-N response 1))

(a~sum 0.0) ;for doing a-prime
(activity (READ-INPUT activation-input)) jget it’s activity
(actual (READ-INPUT teacher)) rget actual flare occurrence

(index (READ-INPUT last-index)))
(without-fleoating-underflow-traps ;stupid kludge...

;setup of the various response-biases to be used
(if (not response-init)
{let ((blas-step {(do-divide
1.0 (1- (INPUT-DIMENSION-N response 1)))))
{loop
with next-bias = 0.0
for j from 1 below num-blases do ;all inputs,
(SET-TERMINAL~PARAMETER (response j) bias
(incf next-bias bias-step))
finally
{SET~-TERMINAL-PARAMETER (response 0) bias 0.0)
(SET-TERMINAL~PARAMETER (response 100) bias 1.0)
(SET-UNIT-PARAMETER bias-initialized t)
{(SET~UNIT-PARAMETER previous-index 999999))))

;actual performance evaluation
(cond {{and response-init ;1f init done earlier,
(minusp (READ-INPUT enable))) ;1f starting patterns,
(SET-UNIT~-PARAMETER desired-teacher actual)
{cond ( (> (READ-UNIT-PARAMETER previous-index) ;at end of epoch
index) ; since index drops only at end
(loop for i from 0 below num-biases do
(SET-TERMINAL~-PARAMETER
(p~hits i) bias
{do-divide
(READ-TERMINAL-PARAMETER (sum-hits i) bias)
loc=-sum~flares))
(SET~-TERMINAL~-PARAMETER (sum-hits i) bias 0.0)
(SET-TERMINAL-PARAMETER
(p—-false—alarms 1) bias
(do-divide
(READ-TERMINAL-PARAMETER (sum-false-alarms 1) bilas)
loc-sum-no-flares))
(SET-TERMINAL~-PARAMETER (sum~-false-alarms i) bias 0.0)
) ;end loop
(loop for j from 1 below num-biases do
{setg a-sum
{(+ a-sum ;sum each vertical slice
;=rectangle+triangle
{(do-divide
(* (- (READ-TERMINAL~-PARAMETER
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{(p~false~alarms (1= 3j)) bias)
(READ~TERMINAL-PARAMETER
(p-false-alarms 3J) bias))
(+ (READ-TERMINAL-PARAMETER
(p-hits j) bias)
(READ-TERMINAL-PARAMETER
(p~hits (1- 3)) bias)))
2.0) ;div by 2 gives slice area
))
) send loop
(incf a=-sum sadd in from max p(FA) up to 1.0
(- 1.0 (READ-TERMINAL-PARAMETER (p-false-alarms 0) bias)))
(SET-UNIT~-PARAMETER flares-per-epoch loc-sum-flares)
(SET-UNIT-PARAMETER no~flares-per-epoch loc-sum-no-flares)
(SET~-UNIT-PARAMETER sum~flares 0.0)
(setqg loc-sum-flares 0.0)
(SET-UNIT-PARAMETER sum-no-flares 0.0)
(setqg loc-sum-no-flares 0.0)
(SET-UNIT-PARAMETER a-prime a-sum)

) ;end cond at start of epoch
;for all of epoch
{cond ((> actual 0) ;if we have a flare,
(SET-UNIT~-PARAMETER sum—-flares
(1l+ loc—-sum~-flares))
(loop for k from 0 below num-biases do
:for each bias,
;if activity > this response-bilas,
;increment corresponding sum~hits
(if (>= activity
(READ-TERMINAL-PARAMETER (response k) bias))
{SET-TERMINAL~PARAMETER
(sum~hits k) bilas
(1+ (READ-TERMINAL-PARAMETER
{sum~hits k) bias))))))
({= actual 0) jelse we dont have a flare
(SET-UNIT-PARAMETER sum-no-flares
(1+ loc—-sum-no-flares))
(loop for m from 0 below num-biases do
;for each bias,
;1f activity > this response~bias,
;increment corresponding
;sum-false-alarms
(if (>= activity
(READ-TERMINAL-PARAMETER (response m) bias))
(let ((sum~false-so-far (READ-TERMINAL-PARAMETER
(sum~false~alarms m) bias)))
(SET-TERMINAL-PARAMETER
(sum-false—-alarms m) bias
(l+ sum—-false-so-far)))

1)) ;end all of epoch
;note that if actual < 0, then ignore this prediction. This would
shappen when there is no THEO prediction (teacher 1) = -1.
{(SET-UNIT-PARAMETER previous-~index index)
) rend if doing patterns
¥ ;end performance unit

i
2 e
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(unit last-error

of type last-error

at (@ 2 -4 0)

inputs

(student array (typ 0 (1~ nbr-output-units)
lines at (@ typ 0 0))

(teacher array (typ 0 (l1- nbr-output-units))
lines at (@ typ 0 0))

)

(UNIT control
OF TYPE control-unit
AT (R 0 -2 0)
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(UNIT

(UNIT

(UNIT

(UNIT

{UNIT

(UNIT

INITIALIZE
(currently-enabled = 0)
(learning-rate = learn-~rate)
OQUTPUTS

(enable ARRAY (i 0 nbr-layers)
LINES INITIALIZE (OUTPUT = (if (zerop i) -1 0)))

pattern-generator
OF TYPE pattern-unit
AT (8 1 -2 0)
INITIALIZE
(data-patterns-array =
(cl-user::make—array 1 :initial-contents (list data-pairs)))
;this keeps p3 from trying to display the giant list in popup

(number-of-patterns = nbr-patterns)
{(theo-predictions-end = theo-end)
CUTPUTS

{pattern ARRAY (i 0 (1~ nbr-input-units)))
(theo ARRAY (i 0 (1- nbr-output-units)))
(teacher ARRAY (i 0 (l1- (* 3 nbr-output-units)))
LINES INITIALIZE (QUTPUT = 0))
)

input-unit

ARRAY (input-unit-index 0 (1- nbr-input-units))
CF TYPE input-layer-unit

AT (R input-unit-index 0 0)

)

intermediate-unit

ARRAY (int-unit-index 0 (1= nbr-intermediate-units))

OF TYPE intermediate-layer-unit

AT (@ (within-layer-index int-unit-index layer-boundary-list)
(layer-number int-unit-index layer-boundary-list) O0)

INITIALIZE

{(bias = (random-weights))

{momentum = momentum-factor)

(enabled = (if (< int-unit-index 5) 1 0)) ;turn on 1st 5 units
INPUTS

(delta-times-wt-input
ARRAY (i 0 (1- (nbr-in-next-higher-layer
int-unit-index layer-size-list
layer~boundary-list)})))
QUTPUTS
(delta~times~wt-output
ARRAY (i 0. (1- (nbr-in-next-lower-layer
int-unit-index layer-size-list
layer-boundary-list))))
)
output-unit
ARRAY (output-unit-index 0 (1- nbr-output-units))
OF TYPE output-layer-unit
AT (@ output-unit-index (1- nbr-layers) 0)

INITIALIZE
{(bias = {(random-weights))
{(momentum = momentum-factor)
OUTPUTS

(delta-times-wt-output
ARRAY (i 0 (1- (nth (- nbr-layers 2) layer-size-list))))

whole=-sun
ARRAY (whole-sun-index 0 (1- nbr-output-units))
OF TYPE whole-sun-unit
AT (@ (+ 3 whole-sun-index) nbr-layers 0) ;put above output units
INPUTS

{(output-activation)

(current-julian = 0)
)

performance

;one each for C, M, X, and whole-sun C, M, X; and THEO C, M, X

ARRAY (performance-unit-index 0 (1- (* 3 nbr-output-units)))
OF TYPE performance-unit
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AT (@ performance-unit-index (1+ nbr-layers) 0) ;put above whole-sun units
INITIALIZE

(a-prime = 0.5)
INPUTS

(dummy-response ARRAY (i 0 100))
(response ARRAY (i1 0 100))
(dummy-sum-hits ARRAY (i 0 100))
{(sum-hits ARRAY (i 0 100))
(dummy-sum-false-alarms ARRAY (i 0 100))
(sum-false-alarms ARRAY (i 0 100))
{dummy-p-hits ARRAY (i 0 100)}))

(p~hits ARRAY (i 0 100))
(dummy-p-false-alarms ARRAY (i 0 100}))
(p-false~alarms ARRAY (i 0 100))

A A R R A A A A N R RN NN

;last-error:
(CONNECT UNIT control OUTPUT enabkle nbr-layers

TO UNIT last-error INPUT enable)
;pattern-generator:

(CONNECT UNIT control OUTPUT enable 0
TO UNIT pattern-generator INPUT enable)

(CONNECT UNIT control OUTPUT do-testing-run
TO UNIT pattern-generator INPUT do-testing-run)
;input-unit:
(loop for i from 0 below nbr-input-units
do (CONNECT UNIT control OUTPUT enable 1
TO UNIT input-unit i INPUT enable))
(loop for i from 0 below nbr-input-units
do (CONNECT UNIT pattern-generator OUTPUT pattern i
TO UNIT input-unit 1 INPUT pattern~input))

;whole-sun unit:

(loop for i from O below nbr-output-units

do (CONNECT UNIT control OUTPUT enable nbr-layers ;run w/output passing delta

TO UNIT whole-sun i INPUT enable)

do (CONNECT UNIT pattern-generator OUTPUT current-julian
TO UNIT whole-sun i1 INPUT current-julian)

do (CONNECT UNIT pattern-generator OUTPUT current-region
TO UNIT whole-sun i1 INPUT current-region)

do (CONNECT UNIT output-unit i
OUTPUT activation-output
TO UNIT whole-sun 1
INPUT output-activation))

;performance:

(loop for i1 from 0 below (* 3 nbr-ocutput-units) ;to performance units

;connect enable to have
;these run at same time as
;the pattern units.
do (CONNECT UNIT control OUTPUT enable 0O
TO UNIT performance i INPUT enable)
do (CONNECT UNIT control OUTPUT do-testing-run
TO UNIT performance i INPUT do-testing-run)
do (CONNECT UNIT pattern—-generator OUTPUT teacher i
TO UNIT performance i INPUT teacher)
do (CONNECT UNIT pattern-generator OUTPUT last-index
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TO UNIT performance i INPUT last-index)
do (cond
((>= 1 (* 2 nbr-output=-units)) ; THEO performance units
(CONNECT UNIT pattern-generator OUTIPUT theo (- 1 6)
TO UNIT performance i INPUT activation-input))
((>= 1 nbr-output-units) ;whole~sun performance-units
(CONNECT UNIT whole=-sun (- i 3) OUTPUT prediction
TO UNIT performance i INPUT activation-input))
(t
{(CONNECT UNIT output-unit i
OUTPUT activation-output
TO UNIT performance 1
INPUT activation-input))))

;output-unit:

(loop for i from 0 below nbr-output-units

do {(CONNECT UNIT control OUTPUT enable nbr-layers
TO UNIT output-unit i INPUT enable)

do (CONNECT UNIT pattern~generator
OUTPUT teacher i
TO UNIT last-error
INPUT teacher 1)

do (CONNECT UNIT output-unit i
QUTPUT activation-output
TO UNIT last-error
INPUT student 1)

)

(loop for 1 from O below nbr-intermediate-units
do (CONNECT UNIT control OUTPUT do-testing=-run
TO UNIT intermediate-unit i INPUT do-testing-run)
do (CONNECT UNIT control OUTPUT enable
(1+ (layer-number i layer-boundary-list))
TO UNIT intermediate-unit i INPUT enable))

(loop for i from O below nbr-output-units
do (CONNECT UNIT control OUTPUT do-testing-run
TO UNIT output=-unit i INPUT do-testing-run)
do (CONNECT UNIT pattern-generator OUTPUT teacher i
TO UNIT output-unit i INPUT teacher)
)

(loop for i from O below nbr-input-units
do (loop for j from 0 below (nth 1 layer-boundary-list)
do (CONNECT UNIT input-unit i OUTPUT activation-output

TO UNIT intermediate-unit 3§ INPUT activation-input

INITIALIZE
(weight = (random-weights))
(terminal-index = 1)
)))
(loop for layer-of-ith from 1 below (- nbr-layers 2)

do (loop for i from (nth (1- layer-of-ith) layer-boundary-list)
below (nth layer-of-ith layer-boundary=-list)
for k from 0
do (loop for j from (nth layer-of-ith layer-boundary-list)
below (nth (1+ layer-of-ith) layer-boundary-list)
for 1 from O
do (CONNECT UNIT intermediate-unit i
OUTPUT activation=-output
TO UNIT intermediate-unit j
INPUT activation-input

INITIALIZE
(weight = (random-weights))
{terminal-index = k))

do (CONNECT UNIT intermediate-unit j
OUTPUT delta-times-wt-output k
TO UNIT intermediate-unit i
INPUT delta-times-wt-input 1)
1))

(loop for i from (nth (- nbr-layers 3) layer-boundary-list)
below (nth (- nbr-layers 2) layer-boundary-list)
for k from 0
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do (loop for j from 0 below nbr-output-units
do (CONNECT UNIT intermediate-unit i OUTPUT activation-output
TO UNIT output-unit J INPUT activation-input

INITIALIZE
(weight = (random-weights))
(terminal-index = k))

do (CONNECT UNIT output-unit j OUTPUT delta-times-wt-output k
TO UNIT intermediate-unit i
INPUT delta-times-wt-input j)

))
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;:: —*- Package: USER; Mode: Lisp; Base:10 ; Lowercase:Yes ; Syntax: Common-Lisp; Default-character-style
: (:fix :roman :normal); —*-—

R R R RN R R R R R N NN R RN
;:: Description: GETALLDATA.LISP

] define a P3 PLAN CONSTANT by getting the data from a THEO database file
H Richard Fozzard started 4/15/89

iis

HE 6/15/89 Train odd, test even

P 6/15/89 Train 14 day batch, test 14 day batch

HF 6/23 changed to GETALLDATA for new Theonet?2

] 6/27 added getting THEO predictions from verify.theo (assumes whole-sun
H predictions come at end of regions for a given julian)

i

(defun cl-user::getalldata (filename)

(with~open—file (predfile (if (equalp filename "munch:>fozzard>theodata.test™)

"munch:>fozzard>verify.test” "munch:>fozzard>verify.theo"))
{let* (
{found-data-start nil) ;found start of training set
{today ‘(0)) ;list of today’s regions
(yesterday ' (0)) ;list of yesterday’s regions
(data-pairs ’ ()) ;data to be returned
(pred-list (parse-pred-line (read-line predfile nil "eof™)))
)
(with-open~file (datafile filename) ;open THEO solar data file
(terpri) (write-line "Looking for start of data...™)
{(loop do
(let ((line (read-line datafile nil "eof"™)))
(cond ((equal "eof"™ line)
(write—-line "Data has been input to model!"™) (return data-pairs))
({string-equal "ddmmyy"” line :end2 6) ;look for date line
(let
((julian ;get the julian number

(with-input-from=-string (line-str line)
(loop for i from 1 below 6 do
{read line-str nil "eol"™)
finally
{return (read line-~str nil "eol"™))))))
{setq found-data-start t)
(1f {equal {(car today) (1- julian)}
(setq yesterday today) (setqg yesterday ‘' (0)))
(setg today (list julian))
(prinl julian)
))
(t
{(when found~-data-start ;time to read in data
(let* ((julian (car today))
(first-letter (with-input-from-string (line-str line)
{read line-str nil "eol™)))
(region (with-input-from=-string (line=-str line)

(read line-str nil "eol™) (read line-str nil "eol™)))
(pred-list-not=-avail (list julian -1 -1 -1 -1 -1 =1 =1))
(matching~-pred-list

(loop do
(let {({pred-julian (first pred-list))

(pred-regl (third pred-list))

{pred~-reg2 (fourth pred-list))

(this-pred-list pred-list))

{cond ((string-equal "F" first-letter) ;a flare line
{(write-char #\F) (return pred-list-not-avail))
( (not (numberp pred—julian)) ;end of THEO file

(write-line "No more THEO."™)
(return pred-list-not-avail))
((> pred-julian julian) ;not yet to THEO data
(return pred-list-not-avail))
({< pred-julian julian) ;not yet to current
(setq pred-list (parse-pred-line ;get new line
(read~line predfile nil "eof™))))
((and (= pred-julian julian) ;same Jjulian
(> pred-regl region)) ;but past current
(return pred-list-not-avail))

e



MUNCH:>fozzard>p3>getalldata.lisp.1

(when

6/30/89 01:27:50 Page 2

((and (= pred-julian julian)
(< pred-regl region))
(setqg pred-list

;same julian
;not yet to current
(parse-pred-line ;get new line
(read-line predfile nil "eof™))))
((and (= pred-julian julian) ; same Jjulian
(= pred~regl region) ; same region
(/= pred-reg2 0)) ;but not simple region
{setq pred~list (parse-pred-line ;get new line
(read-line predfile nil "eof™))))
(= pred=-julian julian) :same julian
(= pred-regl region) ; same region
(= pred-reg2 0)) :;simple region pred.
(setq pred-list (parse-pred-line ;get new line
(read-line predfile nil "eof")))
{return this~-pred-list))})))) ;got a matching one!

{ (and

(data-pair (parse-line line matching-pred-list yesterday today)))

(not (null data-pair))

(setqg data-pairs

)

(append data-pairs
(list data-pair))))

1)

(defun parse-pred-line

(pred-

line)

(with-input-from~string (pred-str pred-line)

(let ((julian
(time
(regl
(reg2
{(intr
{Tc (read pred-str
(Tm (read pred-str
(Tx (read pred-str

(list julian time regl

(defun parse-line

(with-input~from-string

(read pred-
{read pred-str
(read pred-str
(read pred-str
(read pred-str

(line pred-

str nil "eol™))

nil "eol™))

nil "eol™))

nil "eol™))

nil "eol™))

"eol"))

nil "eol™))

nil "eol"™)))

reg2 intr Tc Tm Tx))))

nil

list yesterday today) ;return an encoded input pattern
;list of the form:
; {{(julian region) (inputs) (c m
;region=0 if whole sun, -1 if
;Te...=-1 if Theo predictions
salso appends current line to
;of today’s lines

%x) (Tc Tm Tx))
whole sun NA
Not Avail.
list

(line-str line)

{(let {((*package* (find-package "cl-user"))) ;to allow this to run in p3:
(when (equal 'R (read line-~str nil "eol™)) ;skip "F™
H (terpri) (write-line line)
(write—char #\.) ;indicate a region example
(let* ((julian (car today))
(region (read line-str nil "eol"))
(same (read line-str nil "eol™)) ;not used
(lat (read line-str nil "eol"™)) ;not used
(long (read line-str nil "eol™)) ;not used
(extnt (read line-str nil "eol™)) ;not used
(max {(read line-str nil "eol™)) ;not used
(maxarea {(read line-str nil "eol™)) ;not used
(C (1f (equal 'y (read line-str nil "eol"))
1 0)) ;1 1f vy
(H (if (equal 'y (read line-str nil “eol"™))
c 1)) ;0 1f "y™
(mag (read line-str nil "eol™)) ;not used
(spots (read line-str nil "eol")) snot used
(area (if (> (read line-str nil "eol"™) 700)
1 0)) ;1 1f >700
{large (read line-str nil "eol"})) ;not used
(c-class (read line-str nil "eol®))
(ml-class (read line-str nil "eol"))
(m2-class (read line-str nil "eol"))
(x-class (read line-str nil "eol™))
(class (string (read line-str nil "eol")))

{(zurich (case

{char class Q) ;Zurich letter
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(#\A
(#\B
(#\C
(#\D
(#\E
{(#\F
(#\H
(t

r (0
' (0
‘(0

0 0))
0
1
(01
0
0
1

1))
0))
1))
0))
1))
0))

(1
(1
(1

(terpri)
(char class 1)
‘(0 0))
‘(0 1))
' (0 0))
‘(0 1))
(1 0))
(1 1))

(size (case
(#\X
(#\R
(#\s
(#\A
(#\H
(#\K
(t

oo i e e

(terpri)

(case (char class 2)
(#\X 7 (0 0))
(#\0 " (0 1))
(#\I * (1 0))
(#\C “ (1 1))

(t

(dist

(terpri)
(Tc (sixth pred-list))
(Tm (seventh pred-list))
(Tx (eighth pred-list)))

(if (/= Tc -1)
(nconc today (list
(list
(list julian region)
(append zurich size dist

(list region

(cond ((null yesterday)

(t

(loop with 1 =
(incf 1)
(let*

(cond

(print "Bad zurich class ")
(0 0 0))))

(print "Bad size class ")
(0 0 0))))

(print "Bad dist class ™)
(0 0))))

(write-char #\,))

{ (prev-
(prev-
(prev-
(prev-
{prev-—
(prev-
((null prev-day)

6/30/89 01:27:50 Page 3

(prinl (char class 0))

;spot size

(prinl (char class 1))

;distribution

{prinl (char class 2))

;indicate THEO prediction available
c-class ml-class m2-class x-class)))

(0 0)) ;if no prev day data
;there is prev day data
0 do ;for all prev day regions

;get next reglon data
day {(nth i yesterday))
region (nth 0 prev-day))
¢ {(nth 1 prev-day))

ml (nth 2 prev-day))
m2 (nth 3 prev-day))
x (nth 4 prev-day)))
(return ‘{0 0)))

((equal region prev-region)

(cond ((> prev=-x 0) (return ‘(1 0)))
((> prev-m2 0) (return ' (1 0)))
((> prev-ml 1) {(return ‘(1 0)))
{(= prev-ml 1) (return ‘(0 1)))
({> prev-x 0) {return ' (0 0))))
1))
(list C H area))
(list (if (> c-class 0) 1 0) ;any c flare
(1f (> (+ ml-class m2-class) 0) 1 0) ;any m flare
(if (> x-class 0) 1 0)) ;any x flare

(list Te Tm Tx)
)1))))

; THEO predictions
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10 ; Lowercase:Yes ; —*-
A A R R R R R R R RN RN

:::; These are used to determine the size of certain unit arrays and input & ocutput
;; arrays. They are also used in connecting units according to their levels.

(defun make-layer-boundary-list (layer-size-list)
(loop for i from 1 below (length layer-size-list)
with bdry-list = {(make-list (length layer-size-list) :initial-value 0)
do (setf (nth i bdry-list) (+ (nth 1 layer-size-list) (nth (1- 1) bdry-list))})
finally ({(return bdry-list)
))

(defun layer-number (int-unit-index layer-boundary-list)
(loop for nbr~thru-ith in layer-boundary-list
for layer from O
until (> nbr-thru-ith int-unit-index)
finally (return layer)))

(defun within~layer-index (int-unit-index layer-boundary-list)
(- int-unit-index
(nth (1- (layer—-number int-unit-index layer-boundary-list)) layer-boundary-list)))

(defun nbr-in-next-higher-layer (int-unit-index layer-size-list layer-boundary-list)
{nth (1+ (layer-number int-unit-index layer-boundary-list)) layer-size-list))

(defun nbr-in-next-lower-layer (int-unit-index layer-size-list layer-boundary-list)
(nth (1- (layer-number int-unit-index layer-boundary-1list)) layer-size-list))

v rEririiiiiid

;e i ;
:7:; This function is used to init

(defun random-weights ()
(si:random-in-range =-1.0 1.0))

A N R R R R R A

; i Feiid
; These functions compute the squashing function and its derivative

~

(defun squash (net-input)
(// 1.0 (+ 1.0 (exp (- net-input)))))

(defun sguash-prime (output)

(* output (- 1.0 output)))
;: auxiliary lisp functions used by the pattern generator unit
;; NOTE: used only by older versions of theonet (theo.p3 and theonet-old.p3)

(defvar class=-alist *((A 0 0 0)

(B 00O 1)
(C 01 0)
(D O 1 1)
(E 1 0 0)
(F 1 0 1)
(H110)))
(defvar size-alist * ((X 0 O 0)
(R0 0 1)
(s 01 0)
(A 01 1)
(H1 0 0)
(K1 0 1)))

(defvar distribution-alist (X 00y (O01) (T210) (C1 )N
{defvar activity-alist ({1 0) (2 1)))

(defvar evolution—-alist “((1 0 0) (2 0 1) (3 1 0)))
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(defvar previous-day-alist ((1 0 0) (2 0 1) (3 1 0)))
(defvar complex-alist ‘((1 0) (2 1)))

(defvar complex-this-pass-alist ’((1 0) (2 1)))
(defvar spot-area-alist *{(1 0) (2 1)))

(defvar reglion-area-alist *((1 0) (2 1)))

{defun encode (value alist)
(append (cdr (assoc value alist))
nil))

(defun translate (pat)

(nconc (encode (first pat) class-alist)
(encode (second pat) size-alist)
(encode (third pat) distribution-alist)
(encode (fourth pat) activity-alist)
(encode (fifth pat) evolution-alist)
(encode (sixth pat) previous-day-alist)
(encode (seventh pat) complex-alist)
{(encode (nth 7 pat) complex-this-pass-alist)
(encode (nth 8 pat) reglon-area-alist)
(encode (nth 9 pat) spot-area-alist)))

(defun do-divide (argle bargle) ;kludge for bug in p3 (wont support / function in method)
(1f (= bargle 0) 0.0 (// argle bargle)))



