Simulation of Parallel Computations

Lloyd D. Fosdick
&
Carolyn J. C. Schauble

CU-CS-438-89 May 1989

%University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

SIMULATION OF PARALLEL
COMPUTATIONS

Lloyd D. Fosdick
Carolyn J.C. Schauble

CU-CS-438-89 May 1989

Department of Computer Science
Campus Box 430

University of Colorado

Boulder, CO 80309-0430

ANY OPINIONS, FINDINGS, AND- CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE NATIONAL SCIENCE
FOUNDATION.

SIMULATION OF PARALLEL COMPUTATIONS*
Lloyd D. Fosdick
Carolyn J. C. Schauble

University of Colorado
24 May 1989

Simulation of computing systems has gained increasing
importance as the complexity of these systems has grown. It is done
for a variety of reasons: to predict performance of systems before
they are built, to validate logic at the gate level, to permit software
production and testing to proceed in parallel with the construction of
a new computer, to test algorithms on speculative systems, and so
forth. Our own concern with this topic is in predicting performance of
multiprocessor systems, especially in an environment where a
designer is interested in exploring the effect of design changes. In
this paper we will describe how a new general-purpose simulation
tool can be used for this purpose. The description will be illustrated
with results from simulations we have done on two-processor,
shared-memory systems with different numbers of memory
modules, with and without cacheing.

OLYMPUS

Olympus is a general-purpose modeling system, running on a
network of Sun workstations. The elements of this system that are
pertinent to our application are described here. Further details and
applications can be found in several Colorado technical reports (Nutt
1988, 1989; Demeure 1988).

Olympus supports a graph model description of the simulated
system. This graph is called a bilogic precedence graph (BPG) which
is similar to a petri net graph in its use and interpretation. The
simulation proceeds with tokens moving along the edges of the graph
from one node to the next; nodes "fire" according to certain rules
allowing tokens to advance. In the BPG a node is typically associated
with a task that is realized by a short computation, a procedure call,
that is activated when a token visits the node. In our application
tokens represent machine instructions for the simulated machine and
the graph represents the architecture of the machine: as the token
progresses through the graph the actions associated with the

*

This research has been supported by grants from NITS 60NANBSDOS838, and
NSF DCR-8420944.

Simulation of parallel computations.

execution of that instruction are simulated and elapsed times are
recorded.

There are three types of control nodes in the BPG: single-entry-
single-exit (SESE); AND; and OR. They are illustrated in Fig. 1. In this
figure, and in others we will use later, SESE nodes and OR nodes are

) -
-/

o o<

Figure 1: BPG primitives

represented by open circles, and the AND nodes are represented by
filled circles. Both AND and OR may have one or more input edges
and one or more output edges. The AND node is activated (fires)
when it has tokens on all of its input edges; firing implies that the
tokens then disappear from the input edges, the task associated with
the node is executed, and then tokens appear on all of its output
edges. Similarly, the OR node fires when it has a token on one input
edge; after firing only one output edge receives a token. (This can
occur probabilistically but in our application it is completely
determined). The SESE node simply fires when a token appears on
the input edge, the token is removed from the input edge and placed
on the output edge. The BPG allows another type of node, a data
node, but we do not use it. While Olympus takes care of advancing
tokens over the graph, it is the modeler's responsibility to supply the
procedures that are executed when a node fires.

An important feature of Olympus is that it supports a
convenient user interface. The BPG can be drawn on the bit-mapped
display of the workstation using a mouse and a palette of objects. An
illustration of the display is shown in Fig. 2. The palette appears in
the band at the top of the window. The figure shows an intermediate

Simulation of parallel computations.

stage in the drawing of a BPG, with the cursor appearing as a cross.
One weakness of the present version is that layering is not
supported. Thus it is not possible to hide a structure inside a node, so
at this time the screen can become rather full and difficult to read
even with fairly simple models. A new version that supports layering
will be finished soon.

Olympus Version 8.4 (July 31, 1888)

SORNAERCEER .

Fig 2: Drawing a BPG

Olympus can be run in step mode in which the user can step
through a simulation, one firing at a time, with the display being
updated for each step; animate mode, in which the display shows
every active token moving once a second; and simulate mode, in
which the display is updated every 10 or 15 seconds. In all cases the
location of the tokens on the graph is shown on the display. In Fig. 3
the menu for making these selections is illustrated with Animate
selected.

Olympus runs interpretively, thus it is slow. For our current
work this is not a problem, but it would be in any serious production
simulation. On the other hand the freedom to interrupt and make
changes in the middle of a simulation is an advantage. A compilable
version of this system is planned.

Simulation of parallel computations.

Dlympus Version 8.4 (July 31, 1988)

ol
B

Hark Node
Auto Mark Node
Step

o
///,//' \\\\\‘ Sinulate
Stop
Delete Marking
//////’ Instrument Node
Instrument Arc

O belete Instruments
Write Statistics
Clear Statistics

Set Time Ratio

Figure 3: Olympus menu

SOME SIMPLE ARCHITECTURAL MODELS

In this section we will illustrate the use of BPGs to represent
architectures of simple systems. We begin with a one-bank memory
module, then show a simple uniprocessor, and finally a two-bank
memory module. In the subsequent discussion we will see that two
kinds of tokens are used: data tokens and control tokens. The data
tokens represent instructions and carry on them the following
information fields: instruction type, memory address for fetch or
store, memory address of instruction itself, time. Control tokens are
used for synchronization and carry on them a time field only.

A Simple Memory Module

A memory bank can be modeled by the BPG in Fig. 4. This BPG
is initialized with a single control token whose time value is zero. An
incoming data token, representing a memory access request, enters
this graph on the edge marked enter. The AND nodes, U and Z, assure
that only one data token may be processed by the graph at a time.
Node U is a smart node: it compares the times on the control token
and the data token and puts the maximum of these on the data token
that emerges from U. When the data token finally causes Z to fire the
data token is replicated, the copy going along the edge directed to U

Simulation of parallel computations.

and acting as a control token, the original proceeding along the exit
edge.

Within the memory bank itself the data token will need to
fetch or store a value: the two possible paths are shown in the figure.
When V fires it will put the data token on the left branch or the right
branch according to whether the data token requires a fetch or store.
Both operations will take some time and the time on the data token
is updated accordingly when W or X fires.

enter

exit

Figure 4: BPG for one memory bank.

A memory request may come from any one of several points in
the BPG for a machine model. Thus in such a graph the memory
module illustrated in Fig. 4 acts like a subroutine for handling
references to a particular memory bank. In the next example we will
represent the memory module by the structure shown Fig. 5.

Simulation of parallel computations.

enter

bank

exit

Figure 5: Abstraction of memory module.

A Simple Machine Model

Our machine models are trace-driven. Thus the input to the
model is a file of tokens representing the complete sequence of
instructions that is to be executed. In a multiprocessor model the
input consists of traces for each processor. The implications of this
will be discussed later. Now we look at a single processor system.

The BPG in Fig. 6 represents a simple processor. It has two
basic parts: instruction prefetching and instruction execution. The
prefetch part is the subgraph consisting of nodes {A,B,C,D}.
Synchronization in each part is done with AND nodes and control
tokens, as in the memory module example.

Notice that a token cannot enter the prefetch part unless there
is a control token on edge (D,A). Similarly, one cannot enter the
execution part unless there is a control token on (P,C). The initial
state of the BPG is shown in the figure. After a data token passes
through the execution part and causes P to fire a token will appear
on (P,C) which allows the next token to enter the execution part and
another to enter the prefetch part.

The execution part allows for four kinds of instructions: those
which fetch data from memory; those which store data in memory;
those that do not access memory; and those that fetch and store. Each
of the four branches from E handles one of these cases. When the
data token passes through G, H, J, or L the time is updated with a
value appropriate to the instruction.

Simulation of parallel computations.

enter

memory
bank

exit

Figure 6: BPG for simple processor

Simulation of parallel computations.

enter

token ! U U token

even addr

exit

Figure 7: BPG for two memory banks

Two-bank Memory Module.

Here we illustrate the modeling of a two-bank memory in
which even addresses are attached to one bank and odd addresses to
the other. The BPG is shown in Fig. 7. The OR node, A, allows two
memory accesses to go on simultaneously, so long as each is
concerned with a different bank. When it fires it sends the data
token to the out-edge according to the address it sees on the token:
even addresses on edge (A,U), odd addresses on edge (A,U'). It should
be evident how an n-bank system can be modeled in this way.

Simulation of parallel computations.

TWO-PROCESSOR MODEL AND THE OLYMPUS DISPLAY

In this section we present an example illustrating the
appearance of the Olympus display for a model consisting of two
processors and four memory banks. In Fig. 8 a snapshot of the SUN
display for this model is shown.

.QJympus Version 8.4 (July 31, 1988)

I:roci rdl g‘tar rd2 l:roc2
« o O P @

: 4‘\\ .
. o Cé?f:l ‘}H/ é)D'FZ\/ i
M \ *
v ‘2521’_’/4 \\ (:Cy/' f
‘ o Tt
Y *

.
ﬁf tn
)

PN A O okt ikd
D

Figure 8: Two processors on Olympus display

The two processors are represented in the subgraphs on the
left and right sides. They contain nodes labeled opl, op2, ... and
should be fairly easy to recognize from our earlier discussion. The
four memory banks are in the center of the picture containing nodes
labeled fop and sop (for fetch operation and store operation), and
again they should be easy to recognize.

Simulation of parallel computations.

Execution of the model begins when a control token is placed at
the node labeled enter at the top-center of the graph. This will cause
init to send control tokens to a number of points on the graph in
order to initialize it. Also, the control tokens it sends out cause rdl
and rd2 to fire. When rdl fires it reads a data token from a file and
puts it on its out-edge. This token represents an instruction that is to
be executed by processor 1 in the model. The short loop containing
rdl thus provides the sequence of tokens that is to be executed by
processor 1. These tokens enter the processor portion of the graph at
Procl. Similarly, rd2 reads tokens that are to be executed by
processor 2.

When the simulation is executed the tokens can be seen
moving around this graph. In step mode each new state is displayed
under mouse control, providing a convenient tool for debugging.
Bottlenecks that affect performance become visible in animation
mode. However, without a layering feature the picture is rather
cluttered and so the effectiveness of the tool for these purposes is
now limited to rather simple systems.

ILLUSTRATION OF RESULTS

The simulation tool that we have described here can be used to
obtain useful information about the effect of varying design
parameters such as memory latency, number of memory banks, and
cache size. For example, it is possible to estimate execution times and
speedup as a result of such variations. We illustrate this for two very
simple computations, a SAXPY operation and an insertion sort.

The basic model that we have used in these illustrations is a 2-
processor, shared-memory machine, essentially like that shown in
Fig. 8. In examples with multiple memory banks the addresses are
interleaved in the usual way. The cache is direct mapped and shared
by the two processors. The traces are constructed from a sequence of
National Semiconductor 3200 instructions for the computation.

The SAXPY computation evaluates sxX + Y where s is a scalar
and X and Y are vectors. The computation is distributed over the
processors in round-robin fashion, and the vectors have length 20.
The simulation was run on a single SUN 3/60 processor and took
about 10 minutes.

The sort computation is done by giving each processor half of
the list to sort by insertion; after the two parts are sorted they are
merged by one of the processors. Because of some current limitations

10

Simulation of parallel computations.

of Olympus we were restricted to a list of nine elements. The
simulation was run on a single SUN 3/60 processor and took about
20 minutes.

In Figs. 9, 10, 11 we show a series of results for SAXPY, with
each figure corresponding to a different cache size. The abscissae in
these figures represent values of f which is the ratio of memory
latency (m) to the time (a) for an integer addition; the ordinates
represent total computation time in units of a: notice that the scale
on the ordinate axis varies. The trace for each processor consisted of
71 tokens. In Figs. 12, 13, 14 we show a corresponding series of
results for sort. The trace for the first processor consisted of 64
tokens, and for the second, where the merge was also done, was 238.

In Fig. 15 we show the speedup for the SAXPY computation on
two processors. To obtain this we simply ran the trace on one
processor and then split it across two processors as described above:
the ratio of the times is the speedup. Here all computations are done
with f = 1.0. The ordinate shows the speedup, the abscissa shows the
number of memory banks. We have not yet been able to explain the
anomolous speedup for a cache size of 64 and 4 memory banks.

With information like this gathered from an ensemble of
realistic problems and knowing costs (for increasing cache size,
memory banks, or f), we can see how it would help to make design
decisions. However, before this system can be used in this manner a
number of important things remain to be done. We comment on this
below.

11

Time

Time

Time

Simulation of parallel computations.

1200

SAXPY - 2 Procs -- No Shared Cache

SORT -- 2 Procs ~- No Shared Cache

1000}

600

g T 1800 v T r T v

1600+

1400}

12001

e Memoty Bank

e Memory Bank = 800]
. Memory Banks
wl - ':] 600 our Memory Banks |
. Two Memory Binks
..Fout Memory Banks 400 J
200 E
200 E
0 s N . . L 0 L . . N . .
0 05 1 1.5 2 25 3 35 4 [0.5 1 L5 2 2.5 3 35 4
f=mha f=m/a
Figure 9 Figure 12
SAXPY -- 2 Procs -- Shared Cache =32 SORT -- 2 Procs -- Shared Cache Size =32
450 T v T T 700 T v T v T T
400}
600
350+ p
5001
300
o
250} T g ao00f i
e Memory Bagk -~~~ c Memiory Bank
200+) Twé Memory Banks
300 Four Memory Banks]
1501 1
200 4
100} b
,r“""
50 . s . L . . L 100 . . L
0 0.5 1 15 2 2.5 3 35 4 0 0.5 1 15 2 25 3 15 4
f=m/a f=m/a
. .
Figure 10 Figure 13
SAXPY -- 2 Procs -- Shared Cache = 64 SORT -- 2 Procs -- Shared Cache Size = 64
400 T T T v v ' 500 T T T T T v
3500 i 450}
400
300+ g
350 1
250} -
- é 300+
= 2l
200 he Memory Bank i
s 201 Four Memory Banks]
150 T Memory Banks .
«*Four Memory Banks 200}]
1007 o 1 150} 1
,«""/
5(\ - L 1. L 2 1 n s 1% i s i L 1 i
0 0.5 1 L5 2 2.5 3 35 4 0 0.5 1 1.5 2 25 3 3.5 4
f=mha f=m/a
Figure 11 Figure 14

12

Simulation of parallel computations.

SAXPY: Two Processors over One -- f=1.0

cachesize=64
Ll L CARE R E YT I 1

cache size =0

Speedup

1 1.5 2 25 3 35 4

Number of Memory Banks

Figure 15
CONCLUSION

Our objective here has been to describe a tool we are working
on for the simulation of multiprocessor systems. It is based on a
discrete event simulation tool that provides a convenient user
interface and a great deal of flexibility making it easy to develop
different computer models quickly.

Our long-range goal is to further our understanding of how to
predict the performance of complex multiprocessor systems by
simulation. We are interested in practical tools that provide a user
with the capability for exploring the effect of altering designs and
design parameters with relative ease. The tool we have described
here shows some promise for meeting our objectives but there
remain a number of problems to be solved.

Any practical scheme must include an automatic scheme for
developing tokens for the model. Thus a tool for translating a parallel
program into an appropriate token stream must be developed. We
must also provide some facility for modeling alternate execution
traces that fairly represent the nondeterministic behavior of a
multiprocessor. This can be done by putting some nondeterminism in
the model or by using a monte carlo scheme to construct an
ensemble of execution traces for a deterministic model. We intend to
explore both of these avenues. We note that some experimenters
[Darema-Rogers, Pfister and Ko, 1987] have used the nondeterminism
of their host system and have relied on it to supply the
nondeterminism for the model. This seems to us like an approach
that may not be expected to provide very satisfactory results.

It is also evident that the slow speed of the current system is
far too restrictive for serious modeling. What needs to be done is to

13

Simulation of parallel computations.

estimate from the current system the kind of improvements that
would result from moving it on to a more powerful computer, at least
for the backend processing. Another avenue that needs to be
explored is simplification. In particular, we would like to see to what
extent the traces can be compressed without sacrificing too much
predictive power.

Finally, it is necessary to provide a mechanism for validation of
the models. Our first validation experiments will be done with a 20
processor Encore Multimax system. In a parallel research effort at
Colorado techniques for careful performance measurements are
being explored based on this machine. These techniques are based
entirely on software "probes" which are intended to be suitable for
application to a range of machines not too disimilar from each other.

REFERENCES

Darema-Rogers, F., G. F. Pfister, and K. So. 1987. Memory access
patterns of parallel scientific programs. Proceedings ACM Sigmetrics

Conference on Measurement and Modeling of Computer Systems. 46-
58.

Demeure, .M. 1989. A model (DCPG/PAM) and a graphic tool (VISA)
for distributed computations. Thesis proposal, Department of
Computer Science, University of Colorado, Boulder CO 803009.

Nutt, Gary J. 1988. Olympus: An extensible modeling and
programming system. Tech. Rept. CU-CS-412-88, Department of
Computer Science, University of Colorado, Boulder CO 80309.

Nutt, Gary J. 1989. A flexible distributed simulated system. Tech.

Rept., Department of Computer Science, University of Colorado,
Boulder CO 80309.

14

