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ABSTRACT

Many techniques can enhance the production of software.
For example, mathematical verification techniques may help
improve software quality, and reusability may greatly reduce
the cost of software production. If a program’s proof of
correctness can be reused, higher quality may be achieved
with reasonable cost. Unfortunately, reusing proofs of pro-
gram correctness is difficult. In this paper we explore the
approach being taken towards this problem in the ENCOM-
PASS project. Specifically, we present examples of three
types of proof reuse: instantiating (reusing) a parameterized
component and it’s proof, reusing a development step with
it’s proof, and finally reusing a provably correct program
schema. We believe that while program verification will in
general remain expensive, the reuse of verified components
may become practical through the use of such methods.

1. Introduction

Traditional methods do not ensure the production
of correct software. It is unlikely that any one
language, method or tool will completely solve this
problem; however, many techniques may enhance the
process [4]. The software correctness problem can be
divided into validation, i.e. determining that the
customer’s desires have been correctly specified, and
verification, i.e. certifying that the system satisfies its
specification.

It has been suggested that rapid prototyping and
the use of executable specification languages can aid in
the validation process [1,24]. Prototypes can be used
to enhance communication between customers and
developers, in experiments performed to guide the
design process, or possibly even be installed for use on
a trial basis.

It has also been suggested that methods combin-
ing stepwise refinment with formal proof can help solve
the verification problem [5,8,11,12]. In these
methods, components are first described using using a
mathematical notation; these specifications are then
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incrementally refined into implementations. The
refinements are performed one at a time, and each is
verified before another is applied; therefore, the final
implementations satisfy the original specifications.
Since each refinement step is small, design and imple-
mentation errors can be detected and corrected sooner
and at lower cost.

Such methods have been used in industrial
environments to enhance the development process
(3,13]. In these environments, the methods are typi-
cally not applied in all their formality. Formal
specifications serve mostly as a tool for precise com-
munication, and the major impact on methodology is
that more time is spent on specification and design.
However, the methods do prove useful in practice.
Formal techniques could prove even more useful if
they were applied more rigorously and supported by
automated tools, Many feel the cost is justified, and
environments to support such methods are being con-
structed (2, 7, 23].

ENCOMPASS [16,18,20] is an environment to
support the incremental development of software using
a combination of stepwise refinement and formal proof
techniques. ENCOMPASS extends these methods with
the use of executable specifications and testing-based
verification. It provides tools to automate and support
these techniques and integrates them as smoothly as
possible into the traditional life-cycle.

Many feel that the reuse of components can
greatly reduce the cost of software production and
maintenance [6,10,25]. By reusing complex com-
ponents in different contexts, the work required to pro-
duce them need only be performed once. Many dif-
ferent types of components can be reused including
machine code, source code, specifications, and even
system designs. The more complex a component is, the
more effort is potentially saved by its reuse. The more
dependent a component is on other objects, the more
effort is potentially required for its reuse.

A program’s proof of correctness is an extremely
complex object which is highly dependent on the pro-
gram itself; therefore, both the savings and costs of



proof reuse are potentially great. If a program’s proof
of correctness can be reused, higher quality may be
achieved at a reasonable cost; however, reusing proofs
is a difficult problem. Very small changes to the text of
a program can render the original proof invalid. In the
worst case, both the original program and its proof
must be examined and understood in their entirety to
update the proof to the modified program. Fortunately,
this worst case need not always occur; in may cases
large parts of, or even entire, proofs of correctness can
be reused without examination.

In this paper, we explore the approach being
taken in the ENCOMPASS project towards reusing
proofs of program correctness and present examples of
three different types of proof reuse. In section two we
give a brief overview of ENCOMPASS. In section
three we describe the instantiation (reuse) of a
parameterized component along with its proof, the pri-
mary technique for reuse in ENCOMPASS. In section
four we show how a development step and its proof can
be reused, and in section five, we discuss the use of a
provably correct program schema. In section six, we
summarize and draw some conclusions from our
current experience.

2. ENCOMPASS

ENCOMPASS [16,18,20] is an environment to
support the incremental development of software using
a combination of executable specifications and step-
wise refinement with formal proof techniques.

In ENCOMPASS, software is specified using a
combination of natural language and the PLEASE
{15,191 family of wide-spectrum, executable
specification languages. The basic idea behind
PLEASE is to execute pre- and post-conditions using
logic programming techniques. For example, [15, 16]
describe an Ada based version of PLEASE in which
pre- and post-conditions are translated into pure Prolog
which is executed by a standard interpreter. [19]
describes a C++ based version of PLEASE which uses
a different execution mechanism. [15,16,21] give
examples of PLEASE specifications.

In ENCOMPASS, PLEASE specifications are
refined into implementations in conventional program-
ming languages. PLEASE specifications are both for-
mal and executable; therefore, refinements can be
verified using any combination of peer review, formal
proof or testing-based methods.

In ENCOMPASS, verification conditions are
generated during the formal proof of a refinement step.
Most of these VCs are certified using a number of sim-
ple (and inexpensive) proof tactics. Those not proved
in this manner may be submitted to a more powerful
(and expensive) general purpose theorem prover, be
certified by a peer review process, or be saved for

examination at a later time.

ENCOMPASS is an environment for the
rigorous development of programs. Although detailed
mechanical proofs are not required at every step, the
framework is present so that they can be constructed if
necessary. Proof techniques may be used that range
from a very detailed, completely formal proof using
mechanical theorem proving, to a development "anno-
tated" with unproven verification conditions. Parts of a
project may use detailed mechanical verification while
other, less critical parts may be handled using less
expensive techniques.

In ENCOMPASS, a knowledge-based assistant
[17] can also use the simple proof methods to perform
deductive synthesis on specifications: automatically
constructing simple fragments in the target program-
ming language.

The ENCOMPASS environment has been under
development since 1984. A prototype implementation
became operational in 1986; it is described most suc-
cinctly in [16,18,20]. It contains a number of
significant tools including ISLET [22], a prototype
program/proof editor. This ENCOMPASS prototype
has been used to develop about twenty programs,
including specification, prototyping, and mechanical
verification. At present, all the programs developed
have been less than one hundred lines in length, but
some have included more than one module, allowing
demonstrations of the ENCOMPASS configuration
control and project management systems.

ENCOMPASS has just completed the "proof of
concept” stage. Even at this point, we feel we have
shown that logic programming and conventional
languages can be combined into executable
specifications and that automated environments can
provide significant support for formal development
methods. Detailed conclusions on our technical
approach can be found in [18]. We believe that the use
of future environments similar to ENCOMPASS will
greatly enhance the specification, design and develop-
ment of software.

Our current experience has led us to believe that,
in general, program verification will remain expensive
for the foresecable future; however, we are hopeful that
the use of verified software can be made practical
through the reuse of verified modules. The principal
mechanism we are investigating towards this end is the
use of parameterized components.

3. Parameterized Components

A parameterized component is like a template
which must be instantiated with a number of arguments
to produce an actual software structure. In the simplest
case, instantiating a parameterized component is like
expanding a macro. Many software structures can be



usefully parameterized including packages [6], a
language construct which hides some structures and
makes others visible to the rest of the program.

For example, Figure 1 shows the specification of
a parameterized sort package. An instantiation of
sort_pkg takes three parameters: the type, T, of the ele-
ments to be considered; the type, ST, of the sequences
to be sorted; and the relation, <, on which they are to be
ordered. There are a number of constraints on the
parameters to sort_pkg. The type ST must be structur-
ally equivalent to seq(T), and the boolean function <
must satisfy the conditions necessary for a binary rela-
tion to be a reflexive total order: it must be transitive,
antisymmetric, total and reflexive. These constraints
must be checked whenever the package is instantiated.

The package provides three structures to the rest
of the program: a sort procedure as well as the predi-
cates perm and sorted. All three operate on variables
of type ST, or sequence of T. In our notation, the
empty sequence is denoted by (), and the elements of a

pack sort_pkg (

type T ;

type ST = seq(T) :

func <{(T,T) : boolean ;
where (Vx,y,z:T.

(x<y A y<z => x<z) A
(xSy A ySx => x=y) A
(x<y V y<x) A

xsx ) ;

pred sorted( var x : ST ) :
(Vi,k:int.0<9<k<| x| . x[§]1sx[k]) ;

pred perm( var x,y :
x=y=() V
(3£,b:ST.

y=£]lx (0] |Ib A

perm(x[1..],£f]lb)) ;

ST )

proec sort( B : ST ; var b : ST )
pre : true ;
post: perm(b,B) A sorted(b) ;

Figure 1. Specification of parameterized sort package

sequence b are denoted by b/0], b[1] ... b{n-1], where
n is the length of the sequence. The kth element of a
sequence is denoted by b[k], the kth through final ele-
ments are represented by b/k..], and the jth through kth
elements are represented by bfj:k]. The concatenation
of sequences b and ¢ is denoted by blic, and the length
of a sequence b is denoted by |b].

The specification is written in a notation which
emphasizes specification and design toncepts rather
than programming language syntax. In ENCOMPASS,
our present implementation efforts center on C++, and
we have done considerable work in Ada; however, our
methods are in general independent of particular pro-
gramming languages. We therefore present the
specifications and programs in this paper using a
guarded command style notation [5].

The sort procedure takes a possibly unordered
sequence (B) as input and produces a permutation
which is sorted as output (b). The procedure is
specified using a pre-condition that states the properties
required of valid inputs and a post-condition that
describes the relationship of inputs to outputs. Pre is
simply true: the parameter declarations specify all the
properties for valid input. Post states that the final
value of b must be a permutation of B and also be
sorted. Since B is not a var parameter, its value can not
be changed in the procedure. Pre and post use the
predicates perm and sorted, which are also defined by
sort_pkg.

In ENCOMPASS, a predicate is similar to a
boolean function in that it returns a truth value; how-
ever, it differs in that it can modify its arguments while
functions may not. Predicates are defined using logical
expressions which can be wanslated into definite
clauses and executed using logic programming tech-
niques. This allows the construction of prototypes
from pre- and post-condition pairs.

Although a predicate may modify its arguments,
it need not always do so. In ENCOMPASS, a pro-
cedure or predicate invocation must indicate which of
the actual parameters may be modified. The set of
arguments which can actually be modified by an invo-
cation is the intersection of the sets defined as var by
the definition and call. If a formal parameter is marked
as var in the definition, but the corresponding argument
in a call is not, then the system makes a copy of the
argument for use in the call. A predicate invocation
with none of the parameters marked as var is identical
to a boolean function invocation and may appear, for
example, in the condition of an if statement.

In ENCOMPASS, a predicate definition syntacti-
cally resembles a procedure or function and may con-
tain local type, constant, variable or predicate
definitions. For example, the predicate sorted states
that a sequence x is sorted if the relation < holds for



every pair of elements b/fj], bfk] in the sequence such
that j<k. Similarly, the predicate perm states that two
sequences x and y are permutations of each other if
they are both empty, or if the first element in x appears
somewhere in y and the remainders of x and y are per-
mutations of each other.

Sort_pkg can be instantiated to create a sort pro-
cedure for sequences of any element type. For exam-
ple, the following instantiation binds the formal param-
eters T, ST and < to the actual types int and Sint and the
<relation on integers respectively.

type Sint = seq(int) ;
<sort_pkg>(int, Sint,int::<(int)) ;

This instantiation produces a sort procedure as well as
perm and sorted predicates for the type Sint.

Sort_pkg may have a number of different imple-
mentations. The source code for each of theses imple-
mentations can be reused for each instantiation of the
package. The proofs of these implementations can use
no information about the type T except the fact that < is
a reflexive total order. Since this is specified as a con-
straint, and is checked when the package is instantiated,
each implementation’s proof of correctness can also be
reused for each instantiation.

While this level of proof resue is significant,
higher levels are possible as it is also possible to share
"proof parts" between the different implementations.
This is possible because the construction of different
implementations may involve some of the same
development steps.

4. Development Steps

Assume we are given the task of developing a
program from the specification given in Figure 1. First,
we notice that any sequence of length one or less is
both sorted and a permutation of itself; therefore, when
called with such a sequence as input the sort procedure
can simply return it as output. This insight allows us to
refine the original pre- and post-condition into the
incomplete procedure body shown in Figure 2.

This is an example of a development step: we
have gone from a pre- and post-condition pair to a
provably correct program fragment. The fragment may
not be a complete program; it may contain assertion
pairs without interveining code. When these "blanks”
are filled in with fragments which satisfy the
corresponding pre- and post-conditions, a program
which satisfies the original specification is produced.

The procedure body in Figure 2 contains a single
if command, the semantics of which differ from the if
statement in C, Pascal, or Ada [5,8]. In a guarded
command notion, an i can have any number of

proc bedy sort :

{Q: true}
if |B|<1 » Db:=B ;
0 IB|>1 - {Q;: |B|>1}
<8,>
{Ry: perm(b,B) A sorted(b)}
£fi
{R: perm(b,B) A sorted(b)}

Figure 2. First step of sort development

alternatives, each consisting of a command and its
associated guard. If none of the guards is true when the
if is executed then the the program aborts. If at least
one guard is valid then a non-deterministic choice is
made from the valid ones and the command associated
with the guard is executed.

For example, the if in Figure 2 conists of two
alternatives: the command b:=B, with guard |B|<I; and
the as yet unknown program fragment represented by
<S>, with guard |B|>1. When the if is executed either
B has no more than one element and its value is
assigned to b, or B has more than one clement and
<S;> is executed.

To prove the development step correct we must
show that if execution of the procedure begins in a state
which satisfies the pre-condition, then the if statement
will terminate normally in a state which satisfies the
post-condition. This proof consists of two parts. First,
we must show that at least one of the guards will
always be true, so that the if will not abort. Second, we
must show that if either guard is true then execution of
the corresponding command will result in a state which
satisfies the post-condition. The proof is independent
of any properties of the type T; it relies only on the pro-
perties of sequences and integers, plus the assumption
that S, satisfies its pre- and post-conditions.

We now must develop a fragment which satisfies
the pre- and post-conditions Q; and R, respectively.
Assume we decide to implement an insertion sort. We
will maintain b as a sorted permutation of a prefix of B.
We will take an element at a time from the part of B
not included in the prefix and insert it into the proper
place in b. The result of this development step is
shown in Figure 3.

The program fragment in Figure 3 consists of a
do loop and its initialization. As with the if, the



{Q:: [|B|>1}

const n:int := |B]| ;
k,b:=0, () ;
do

{inv P;: 0<n A 0<ks<n A
perm(b,B[0:k-1]) A sorted(b)}
{bnd t;: n-k}
k#n — {Q,: k#¥n A P,}
<Sz>
{Rz: (P1) iy}
k:=k+1
od
{R;: perm(b,B) A sorted(b)}

Figure 3. Second step of sort development

semantics of the do differ from the while in other pro-
gramming languages. Like the if, a do loop can have
any number of alternatives, each consisting of a com-
mand and its associated guard. When program execu-
tion reaches the do, a non-deterministic choice is made
from the valid guards and the associated command is
executed. This process is repeated until all the guards
are false.

For example, the do in Figure 3 conists of a sin-
gle alternative with guard k#n. The command associ-
ated with this guard is the unknown fragment <S,> fol-
lowed by the assignment k:=k+I. When the loop is
executed, <S,> and k.=k+] are repeatedly performed
until £ becomes equal to 7.

The loop has both an invariant (P,), which states
the properties that must be maintained by each execu-
tion of the loop body; and a bound function (t;), which
puts an upper limit on the number of iterations remain-
ing for the loop. Using this information, the proof of
the second development step consists of five parts [8].

First, we must show that the invariant is true at
the beginning of loop execution. Second, we must
show that the invariant is maintained by each execution
of the loop. Third, we must show that termination of
the loop with the invariant true will result in a state
which satisfies the post-condition. Fourth, we must
show that the bound is positive if the loop is running,
and finally we must show that each iteration of the loop
decreases the bound.

We must now develop a fragment which satisfies
the pre- and post-conditions Q, and R,, respectively.
One solution is to first place the new clement at the
beginning of b and then "bubble” it into place by

{Q,: 0<n A 0gk<n A
perm(b,B[0:k-1]) A sorted(b)}
J/b:=0,B{k] b ;
do
{inv P,: 0<n A 0<j<k<n A
perm(b,B[0:k]) A
sorted(b[0:3-1] |Ib[j+1..]) A
b{0:3-1]<b[3]}
{bnd t,: k-j}
j#k cand b[j+1]<b[j] —
{Qs: Pr A J#k A b[j+1]1<b[]]}
b{j],b[j+1]:=b[j+1],b[]] ;
{Ry: (P,) 3}
Je=3+1 ;
od
{Ry: 0<n A 0gk+1<n A
perm(b,B[0:k]) A sorted(b)}

Figure 4. Fourth step - completed inner loop

swapping; Figure 4 shows such an implementation.
Two steps are required to produce Figure 4 from Figure
3: the first produces a loop with a partially unknown
body, and the second implements the unknown with an
assignment statement.

The proof of the loop is similar to that discussed
previously. The proof of the assignment is simplified
because functions have no side effects, and all the
expressions on the right hand side are evaluated before
any of the values are stored. Therefore, the assignment
bljl.b(j+1]:=b(j+1],b[j] swaps the jth and j+Ist ele-
ments in the sequence b. To prove an assignment
correct we simply show that the pre-condition implies
the post-condition with the right hand side of the
assignment substituted for the left hand side [8].

The proofs of these development steps are
independent of the type T, but are highly dependent on
the properties of the relation <. Care must be taken to
produce a proof which uses only the properties of <
stated in the specification. For example, the loop con-
dition in Figure 4 might just as well be written as
blj]2b[j+1] or b[j]>b[j+1] rather than b[j+1]<b[j].
However, from the specification alone we do not know
the meaning of these expressions. Our intuition tells us
that < is the negation of >, but the specification only
states that < is a reflexive partial order.

Although the steps in the preceding development
follow one another in sequence, their proofs are
independent. The result, and proof, of a step can be
used to derive many alternative implementations. For



{0, 0<n A 0gk<n A
perm(b,B{0:k-1]) A sorted(b)}
j:=0;
do
{inv P,: 0<n A 0<j<k<n A
perm(b,B[0:k-1]) A sorted(b) A
b[0:3~1]1<B[k]}
{bnd t,: k-j}
j#k cand b[Jj]I<B[k] — j:=3j+1 ;
od
{P2 A (3=k cor —(b[j]sB[k])}
b:=b[0:3-1] |B[k] lIb[]j..1:
{Ry: 0<n A 0=k+1<n A
perm(b,B[0:k]) A sorted(b)}

Figure 5. Alternative implementation

example, another implementation of the inner loop
might scan b for the proper location, and then perform
the insertion with a single assignment. Figure 5 shows
such an implementation, which can be produced in two
development steps beginning with Figure 3.

The implementations in Figure 4 and Figure 5
share the first two steps in their developments, but also
have two unique steps of their own. The proofs of
these shared steps can be completely reused without
examination. Both programs implement an insertion
sort. This is an example of proof reuse within program
families. While this is significant, even greater degrees
of reuse can be achieved by combining a number of
design steps into a program schema.

5. Program Schemas

For  example, Figure 6 shows a
divide_and_conquer schema. In a divide and conquer
algorithm, the problem to be solved is first divided into
a number of sub-parts. These sub-problems are then
solved to produce a number of sub-solutions that are
combined to produce a solution to the original problem.

The schema in Figure 6 is written as a parameter-
ized fragment. In ENCOMPASS, a fragment is a
language level construct similar to a non-recursive pro-
cedure. However, unlike a procedure a fragment can
have no global references: all variables used in the
fragment must be declared within it or passed as argu-
ments. Also, while a procedure is invoked, a fragment
is instantiated: the arguments are first substituted for
the formal parameters and then the resulting code is
substituted in-line for the "call”,

frag divide_and conquer (

typé Tll TZI
ST, = seq(T;), ST, = seq(T;) ;

var input:T;, output:T,,
ip :ST,, op :ST, ;
pred valid (T, ),
divided ( T,, ST;),
conquered( T;, T, ),
combined ( ST,,T, ),
solved ( Ty, Tp )
where (Vx:T,,xp:ST,,y:T,,yp:ST,.
divided(x,xp) A
(Vk:int .0gk<|xp]|.
conquered (xp(k},yplk]))
A combined(yp,y) =>
solved(x,y)) ;
frag divide ( x:T,, var xp:ST; )
pre : valid(x) ;
post: divided(x,xp) :
conquer( x:T,, var y:T, ) :
pre : true ;
post: conquered(x,y) ;
combine ( xp:8T,, var x:T, )} :
pre : true ;
post: combined(xp,x) ;

frag

frag

pre : valid(input) ;

post: solved(input,output) ;
<divide> (input, ip) ;
var k:int := 0 ;
do
{inv P: 0<k<lipl A

divided (input, ip) A
(V3i:int.0<i<k.
conquered (ip[j],op[3j]))}

{bnd t: lip| -k}
k#|ip| — <conquer> (ip[k],op(k]) :
k:=k+1 ;

od
<combine> (op,output) ;

Figure 6. divide_and_conquer schema

In ENCOMPASS, a schema is not a language
level construct; rather, a schema is a fragment that
abstracts some important feature common to a class of
programs. The distinction between a schema and a



fragment is more one of intent than substance; for
example, the fragments in Figure 2 and Figure 3 can be
viewed as schemas. However, we do not feel that Fig-
ure 2 captures the essence of any important class of
programs. Figure 3 can be viewed as an insertion sort
schema.

The divide_and_conquer schema takes a number
of parameters. T, and T, are the types of the input and
output respectively, while input and output are the vari-
ables which hold these quantities. ST, and ST, are the
types of the sub-problems and sub-solutions respec-
tively, while ip and op are the variables used to store
them. The predicate valid defines the allowable inputs,
while the predicate divided describes the proper divi-
sion of the input into sub-parts. The predicate con-
quered specifies the correct solution of a sub-problem;
the predicate combined describes how the sub-solutions
are assembled to produce a global solution; and the
predicate solved defines the correct solutions to the
entire problem.

Divide_and_conquer also takes three program
fragments as parameters. The fragment divide parti-
tions the input into sub-parts. Divided takes two
parameters, the input sequence and the variable which
holds the sequence of sub-parts into which the input is
divided. The pre-condition for divide states that the
input is valid, while the post-condition states that the
input is correctly divided. The fragment conquer
solves a single sub-problem and stores the sub-solution,
while the fragment combine takes the sub-solutions and
assembles them into a solution to the entire problem.

The body of divide_and_conquer consists of sin-
gle do loop with both an initial and finalization. When
an instantiation of divide_and_conquer is invoked, the
fragment divide is first executed to divide inpur into
sub-parts that are stored in ip. The do loop is then exe-
cuted. This causes the fragment conquered to be exe-
cuted on each sub-part of the input, storing the com-
puted sub-solution in the appropriate element of op.
Finally, the fragment combine is executed to assemble
the sub-solutions in op to produce output.

An instantiation of divide_and_conquer is
correct with respect to its pre- and post-conditions as
long as the constraints on the parameters to the schema
are met: the types of all arguments must match and
satisfy the structural constraints; the actual fragments
divide, conquer and combine must satisfy the pre- and
post-conditions given in the schema; and the predicates
divided, conquered, combined and solved must satisfy
the stated constraint. The schema’s proof also makes
use of language level information such as the value or
var declarations of the fragment parameters.

The constraint on the predicates divided, con-
quered, combined and solved:

(Vx:T,,xp:ST,, y:T,,yp:ST,.
divided (x,xp) A
(Vk:int.0<k<|xp] .
conquered (xp(k],yp(k]}))
A combined(yp,y) =>
solved(x,y)) ;

is at the heart of the schema’s proof of correctness.
The antecedent states the properties we know are true
following execution of the fragment combine, while the
consequent is that the entire problem has been correctly
solved.

The proof of the schema is complicated by the
fact that it involves invariants for each fragment instan-
tiation. The proof rule for fragment instantiation used
in ENCOMPASS is similar to the rule for non-
recursive procedure calls [16]. To use the rule, one
needs to define an invariant for each instantiation. The
invariant states properties that are necessary for the
proof of the rest of the program, but are not effected by
execution of the fragment.

For example, the invariant for the conquer frag-
ment is the same as the invariant for the loop which
encloses it (labeled P in Figure 6). Intuitively, at the
beginning of a loop iteration we know a number of
sub-problems have been solved and that conguer will
solve another sub-problem when it is executed. For the
loop to be correct, we also must know that conquer will
not tamper with any of the sub-solutions previously
computed. The proof of this relies on language level
information such as the fact that passing a sequence
element by reference does not give access to the entire
sequence, and that predicates can contain no non-local
references.

Continuing our example, assume we want (o
implement a recursive quicksort algorithm. In quick-
sort, an input element is selected and the rest of the
input is divided into two sub-sequences such that all the
items in one are less than or equal to the element, and
all the items in the other are greater than or equal to the
element. Sort is then recursively called with these
sub-sequences and the results concatenated to form the
output. The quicksort algorithm can be seen as an
instantiation of divide_and_conquer with selection and
partitioning as divide, the recursive calls to sort as con-
quer, and the concatenation of the sorted sub-sequences
as combine

Beginning with the incomplete procedure body
shown in Figure 2, we can implement quicksort by
replacing  <S;> with the instantiation of
divide_and_conquer shown in Figure 7. The instantia-
tion defines SSint, or sequence of Sint, as the type of
the sub-problems and sub-solutions. In our notation, a
boolean function applied to a sequence is a syntactic
abbreviation for element-wise invocation. For



type SSint = seq(Sint) ;
var Bp, bp SSint H
pred valid ( var x:Sint ) Ixi{>1 ;
pred is part ( var in:Sint,
var ip:SSint )
perm(in,ip(0] lip(1]|lip[2])
A ip[0]<ip[l]<ip(2] ;
pred combined ( var op:SSint,
var out:Sint ) :
out=op (0] |lop(1l] JJop[2];
pred is_sorted( var x,y:Sint )

perm(x,y) A sorted(y) :

frag partition( in:Sint, wvar ip:SSint )
pre : valid(in) ;
post: is part(in,ip) ;

var Jj:int := 1 ;
ip[0],ip{1],ip[2]:=(), (in[0}), () ;

do
{inv: 0Zjig|in] A
is_part(in(0:j-1],1ip)}
{bnd: |in|-3j}
i#|lin] —
if in[j]<ip(l] —
ip[0] :=in[3] lip[0];
0 ip{ll€in[j] —»
ipl2):=in(j]llip(2];
£fi ;
Jer=3+1 ;
od

frag sortf( in:Sint, var out:Sint )
pra : true ;
post: is_ sorted(in,out) ;
sort (in, wvar out) ;

frag combine( op:SSint, var out:Sint )
pre : true ;
post: combined(op,out) ;
out := op[0] [lop(1l] flop[2] ;

<divide_and conquer>(
Sint,Sint,SSint,SSint,B,b,Bp,bp,
valid,is_part,is_sorted,combined,
is_sorted,partition, sortf, combine Yy

Figure 7. Instantiation of divide_and_conquer

example, the expression infjj<ip{1] is an abbreviation
for (Vk:int.0<k<l|ip[1]\in[j]<ip[1][k]).

The instantiation declares Bp and bp as the vari-
ables used to hold the sub-problems and sub-solutions
respectively. It also defines the predicates valid,
is_part, combined, and is_sorted, as well as the frag-
ments partition, sortf, and combine.

The fragment partition and predicate is_part are
central to the quicksort algorithm. Partition divides the
input into three parts. The first element of the input is
taken as the pivot and is stored in ip/1]. The remainder
of the input is then divided using this pivot. Is _part
describes the result of a successful partition: all the ele-
ments in ip[0] are less than or equal to the pivot, all the
elements in ip/2] are greater than or equal to it, and the
concatenation of ip[0:2] forms a permutation of the
input.

Figure 8 shows the implementation of quicksort
produced by the instantiation in Figure 7. In our nota-
tion, declarations can appear at any point in a program
and are viable from the point they appear until the end
of the structure in which they are contained. A declara-
tion can be over-ridden by one for an object of the
same name and type appearing later in the scope.

Most of the predicate and fragment declarations
in Figure 7 are only for the purpose of schema instan-
tiation. Since they are not necessary to the final pro-
gram, they do not appear in Figure 8. We have not
resolved how these temporary declarations can best be
handled in language-oriented tools that support such
development methods. One approach would be to have
a multi-window interface with a separate, temporary
window for each instantiation.

One problem remains. We have constructed a
recursive quicksort procedure; however, the proof of
divide_and_conquer does not take the possibility of a
recursive invocation into account. Therefore, we must
separately prove that the recursion will terminate. This
can be accomplished in a manner similar to that used to
prove termination of a loop. We define a bound func-
tion of the procedure parameters and show that it is
greater than zero for any procedure invocation and that
each recursive invocation decreases the bound. In Fig-
ure 8, this reduces to showing that each of the sub-parts
into which the input is divided is smaller than the origi-
nal sequence.

This completes the development and proof of
quicksort; the proof of divide_and_conquer has been
reused in its entirety. While the proof of the instantia-
tion is complex, it is considerably simpler than proving
the final program correct from scratch. We feel that
program schemas are a very powerful technique for
reuse. The instantiation of a schema can reuse a very
complicated structure in a context much different from
that in which it was created.

At this point, we may wonder how general this
technique is. For example, would it be possible to



proc sort( B : ST ; var b : ST )

{Q: true}
if [B|<1 - b:=B ;
0 iB|>1 —
type SSint ;
var Bp,bp : SSint ;

pred is part( var in:Sint,
var ip:8Sint )
perm(in,ip(0]{lip(1] lip(2])
A ip[0]<ip([l]<ip(2] ;

var J:int := 1 ;
Bp[0],Bp[l],Bp[2] := (), (B[O]), () ;
do
{inv: 0<j<|B| A
is_part (B[0:3j~1],Bp)}
{bnd: |B|-3j}
j#|B] — if B[3jl<Bp[l] —

Bp[0]:=B[j] ||Bp[O];
I Bp[llsB[j] —
Bp(2]:=B[]] ||Bp(2];
£i ;
Ji=3+1 ;
od
pred is_sorted( var x,y:S8int )
perm(x,y) A sorted(y) ;
var k:int := 0 ;
do
{inv P: 0<k<|Bp| A
is_part (B,Bp) A
(Vi:int.0<3<k.
is_sorted(Bp[jl,bpl(j]))}

{bnd t: |Bp| -k}
k#|Bp| — sort(Bpl[k],var bpl[k]) ;
k:=k+1 ;

od
bi=bp[0] [|bp(1] {Ibp[2] ;

{R: perm(b,B) A sorted(b)}

Figure 8. Implementation of quicksort algorithm

reuse the proof of the divide_and_conquer schema, or
the quicksort implementation already developed, in the
development of a procedure that performed an in-place
quicksort (in other words, using the same sequence as
both input and output)? While we have only limited
experience in this area, we feel a key to achieving such
reuse is program coordinate transformation.

A program coordinate transformation [5,9]
modifies the underlying state space on which a program
operates; for example, a coordinate transformation
could change both the names and types of the variables

in a program. This allows a schema written in terms of
abstract data elements to be transformed into many dif-
ferent programs that solve concrete problems. While
the coordinate transforms themselves have to be proved
correct, the schema’s proof can be reused in its
entirety.

For example, greedy algorithms can be used o
solve many problems in combinatorics. Any problem
which can be optimally solved using a greedy algo-
rithm can be written in terms of a matroid [14], a sub-
set system which satisfies certain axioms. We are now
working on transformational developments of a number
of greedy algorithms from a schema written in terms of
a matroid.

6. Summary and Conclusions

Mathematical verification techniques may help
improve software quality [5,8,11,12]; however, the
cost of such methods is high. One promising approach
to reducing the cost of software production and mainte-
nance is the reuse of components [6,10,25]. We
believe that while program verification will in general
remain expensive, the use of verified software may
become practical through the reuse of verified modules.

ENCOMPASS [16,18,20] is an environment t0
support the incremental development of software using
a combination of stepwise refinement and formal proof
techniques. ENCOMPASS extends these methods with
the use of executable specifications and testing-based
verification. It provides tools to automate and support
these techniques and integrates them as smoothly as
possible into the traditional life-cycle.

In ENCOMPASS, we are addressing the problem
of proof reuse through the mechanism of parameterized
components. A parameterized component is like a
template that must be instantiated with a number of
arguments to produce an actual software structure.
There are constraints on the parameters that define the
conditions necessary for reuse of the component’s
proof of correctness.

A component may simply specify a structure; for
example, a procedure or function. Such a component
may have many different implementations which form
a program family. The developments of different pro-
grams within the family may share intermediate steps,
the proofs of which can be reused. If the original com-
ponent is parameterized, then each program in the fam-
ily (and its proof) can also be reused for each instantia-
tion.

While these types of proof reuse are significant,
we feel the greatest potential lies in the use, and reuse,
or program schemas. A program schema is a fragment
which abstracts an important feature common to a class
of programs. For example, a schema might describe
the essential features of divide and conquer or greedy



algorithms. Instantiation of program schemas allows
the reuse of considerable structure in a large number of
different contexts.

A program schema typically takes fragments as
parameters; therefore, the proof of a schema instantia-
tion can be complex. However, such proofs should be
considerably simpler than proving the resulting pro-
gram correct from scratch. Program coordinate
transformations [5, 9] may further increase the utility of
such techniques.

In ENCOMPASS, we have implemented tools to
support the reuse of parameterized components and
development steps along with their proofs [16,22]. We
have also implemented somewhat limited support for
the reuse of program schemas and their proofs of
correctness [17]. Although these tools are still research
prototypes, we feel that their long term potential is
great. We believe that eventually the reuse of verified
components can greatly enhance the development of
high quality software.
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