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Introduction.

My goal in preparing this report is to supplement the published output of the
project. Accordingly, I will not recap at length work that has been published, but will
instead aim to provide an account of those aspects of work not elsewhere reported
that may be of interest to fellow researchers in the area, and to outline work too
recent to have been reported more fully. I also attempt to provide an overview of

the overall scope of the project, too broad to be appropriate in reports of specific
findings, but perhaps of value to readers undertaking their own attack on issues
discussed here.

Background: Phenomena to be Explained, Basic Issues to be Dealt with, the Original
Hypothesis.

The EXPL project was planned to investigate two interrelated issues, one arising
from the study of learning to use computer systems, and one, more general, visible
as one of the enduring threads in studies of thinking and learning. Subjects in
studies of computer systems were observed to make up explanations of things they
saw. Why were they doing this? Did it have some utility? In general, psychologists at
least since Wertheimer have asked, what is the point of understanding something?
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We observe that understanding, intuitively identified, facilitates learning, but how
and why? Study of the particular outcropping of explanations in the
human-computer interaction domain seemed a promising way to address the more
general issue, and the EXPL project was chartered to do this.

The starting point for the work was the chapter "Understanding what's happening
in system interactions" (Lewis, 1986b) in Norman and Draper's User Centered

System Design volume. This chapter sketched an account of how particular episodes
for which Lewis and colleagues at IBM had collected protocols might be explained.
The notion of explanation that was invoked was not rigorously defined, but centered
on establishing connections between user actions and system responses associated
with them. It was suggested that such analyses of procedures could be produced by a
combination of bottom-up heuristics and top-down application of prior knowledge.
The first order of business for the EXPL project was to build a simulation model of
this process, to determine whether these ideas could be made operational, and to
elaborate specific hypotheses about how such analyses might be carried out by
human learners.

The EXPL model.

The original conception of the EXPL model was as a set of gradedconstraints on
explanations of sequences of events. For example, an explanation which accounted
for all aspects of an event was to be preferred to one leaving some unaccounted for.
The constraints would constitute a kind of axiomatic description of what made a
good explanation that was divorced from any particular implementation scheme. I
attempted to build a PROLOG program that would construct explanations directly
from statements of the contraints. I failed to produce a workable program along
these lines and changed approach to one in which I programmed in PROLOG
specific methods for building explanations satisfying the constraints given a
sequential presentation of a sequence of events. In hindsight I think the direct
constraint approach offers advantages justifying another attempt along the original
lines, but using an implementation medium more suited to this task than PROLOG.
I'return to this point in considering future work at the end of this report.

The basic EXPL model proved quite easy to implement, once the approach of
building the analysis sequentially was adopted. Descriptions of resulting model can
be found in Lewis (1986a, 1988a), Lewis, Casner, Schoenberg and Blake (1987); I
include a summary here.

In outline, EXPL consists of three sequential phases. The first phase, encoding, is
performed manually. Events in the sequence to be analyzed are represented as
simple sequences of almost arbitrary tokens. The only restrictions on the choice and
use of these tokens are that tokens intended to represent things which must be
present to be referred to, such as entries in menus displayed on the screen, must be
marked, and events which make such tokens present must be begin with the
reserved token SHOW.
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Encoded events are marked as representing user actions or system responses, and are
delivered to the analysis phase in chronological sequence. This phase applies a small
collection of heuristics which place causal links between user actions and particular
tokens in the representation of subsequent system responses. Such links might
indicate that a token representing a particular operation, say DELETE, was apparently
controlled by a particular user action, such as TYPE DELETE, or that a token
representing a particular object, such as SHOE, was specified by the user action CLICK
SHOE. Heuristics also place prerequisite links which trace what prior system

response made the referent of SHOE available to be acted on (so that user actions
which caused this action can be tied into any plan involving CLICK SHOE.)

The output of the analysis phase is passed to the generalization phase, whose task is
to produce plans for accomplishing novel goals on the basis of what was learned
from any examples that have been seen and analyzed. Originally EXPL used only one
generalization method, synthetic generalization, in which the links placed in

analysis are interpreted as describing preconditions and results for specific operators
seen as user actions in examples. The generalizer is just a simple planner which
attempts to accomplish a stated goal using this repertoire of operators. Later,
following the work of Anderson and Thompson (1986) a generalizer based on the
PUPS analogical generalizer was built and incorporated. This made it apparent that
the problem of analyzing examples can be separated from the problem of
generalizing them, and that many different generalization schemes could be
supported on a common base of analysis, a point developed in Lewis (1988a). Later
still Cathleen Wharton built a third generalizer that converted EXPL analyses into
productions in the form used in Polson and Kieras's Cognitive Complexity Theory
(1985)

Almost at once it became apparent that the small number of heuristics for analysis
building that the model incorporated were capable of analyzing surprisingly complex
event sequences, with essentially no knowledge of the semantics of the sequences.
This fact, coupled with difficulty in identifying pertinent background knowledge in
human subjects (discussed below) led to postponement of efforts to incorporate the
originally planned top-down processes in the EXPL model.

The original heuristics, identity, loose-ends, and previous action, were joined by
others during the course of work on the model. Obligatory previous action, which
requires that any system response have at least one link to the immediately previous
user action, was added first. A number of variants of identity were incorporated, to
handle cases in which components of events shared features without being strictly
identical. For example, all entries in a menu might be erased by an action whose
description refers to the menu but not to each entry on it. The "group identity"
heuristic allowed the encoding of the menu items to use a common "stem", also
used for the menu itself, which allowed EXPL to trace the relationship between the
menu and the items. Another variant of the identity heuristic, which might be
called the back-chaining heuristic, was proposed by Catherine Marshall. It allows
causal links to be drawn between system responses that share elements, rather than
just between system responses and user actions. Consider the following interaction,



an encoding of an interaction with a telephone system.

S: RINGSTYLE SMITH NORMAL
U:STARS

S: RINGSTYLE BROWN NORMAL
U:STAR 6

S: RINGCOUNT BROWN 3
U:STAR 1

S: RINGCOUNT BROWN 1

The problem here is to determine what user actions were responsible for specifying
BROWN, RINGCOUNT, and 1 in the final system response. The 1 can be dealt with
simply with the identity heuristic, but where do the other components come from?
The back-chaining heuristic looks for situations in which consecutive system
responses share components, and links them. Thus RINGCOUNT in the last
response is linked back to RINGCOUNT in the previous response, where it is tied to
the previous user action, STAR 6. BROWN is chained back through two previous
system responses to the second response, where it is tied to STAR 5. Thus the
analysis recovers the facts that STAR 5 determines the party, and STAR 6 the data
item to be dealt with for that party. More work is needed to determine just how
STAR 5 and STAR 6 would be used to select a particular party and data item, but this
is progress.

A complete analysis of this example remains beyond the scope of EXPL. The natural
representation to use in reasoning about it is a table whose rows are parties and
whose columns are data items. In this framework STAR 5 moves down the rows
and STAR 6 moves across the columns. EXPL has no way of devising such a
representation, or using it in its representation of actions and their outcomes. There
are two parts to this problem. First, the idea of using a particular data structure to
organize the interpretation of an interaction has to be proposed by some heuristic. It
is not clear on what basis such heuristics should act (and for that matter it is unclear
whether human learners can construct such hypotheses without specific hints to do
s0.) The heuristics would operate at the encoding phase, rather than in the analysis
phase, so that the system responses could be redescribed in terms of motion along
rows or columns. Second, the generalizer has to be able to devise procedures for
finding given rows or columns from examples. This should work out once the
system responses are cast in terms of operations on the underlying data structure.

Casner (Casner and Lewis 1987) built a somewhat similar extension to EXPL to cope
with interactions involving hidden events. These are interactions in which critical
events occur behind the scenes, and must be inferred from the system responses that
are explicitly signalled. A common example is the cut and paste interaction, in
which cut causes not only a visible deletion but and invisible copying of the deleted
material into a buffer, from which it is copied by the paste operation. Casner devised
a collection of recognition heuristics which identified certain possible classes of
hidden events based on their surface symptoms (such as changes in the system's
response to identical commands.) If one of these heuristics was found applicable
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then a revised encoding of the interaction, incorporating the proposed hidden event,
was constructed.

These are by no means simple extensions to EXPL, and highlight the limitations
imposed on the current EXPL system by its separation of encoding and analysis. The
success of analysis is severely constrained by the encoding it starts from. Further, it
seems very likely that the appropriate encoding of an interaction is influenced by the
analyses various possible encodings support. I report below some data supporting
this claim. This means that EXPL's simple serial staging of encoding and analysis is
fundamentally incorrect, and should be replaced by a scheme in which the
construction of encodings and corresponding analyses interact.

Another limitation of the original EXPL model that emerged in applying it to a wide
range of examples was the reliance on a single encoding for any given event. Later
versions incorporate a system of annotations, similar to those used in the
representational scheme of PUPS (Anderson and Thompson 1986), that permits a
given event to be encoded in many alternate ways. The need for this arises when the
same event may be connected to neighboring events in multiple ways. Consider the
system response of highlighting a particular spreadsheet cell, say B3. If this is
preceded by the user action of clicking on B3, the description of cell B3 as such is
obviously crucial in tying this even to its predecessor. But suppose the same event is
instead preceded by pressing RETURN when cell A3 is highlighted. Now the
encoding must bring out the fact that cell B3 is the one immediately below A3.
Similar cases can be constructed in which one encoding is needed to tie an event to
its predecessor and a different encoding is needed to tie the very same occurence of
the event to its successor, so that a scheme which simply allows alternative, but not
coexisting encodings, is inadequate. In the PUPS-like representation one encoding is
chosen, say B3 in the example, but annotations are added containing the
information that B3 is below A3 and above C3.

Another limitation of EXPL brought out by attempted applications, and never
satisfactorily dealt with, is its inability to segment long event sequences in a
principled way. The need to do this arises in connection with the loose ends
heuristic, which attempts to tie together unexplained user actions with unexplained
system responses. Some means of limiting the scope of the heuristic is needed, to
make sure that loose ends are tied up only within what can be considered to be a
coherent episode, and not reaching across indefinitely long intervening sequences of
events. The issue is not just that these long-distance loose-ends ties are usually
wrong, but that they prevent the usually correct previous action connections from
being formed. One heuristic criterion we explored was preventing loose-ends links
from crossing identity links, but this proved error-prone in breaking up some
sequences from real demonstrations.

A related unsolved problem is that of identifying the goal of a subsequence of
actions. If this can be done reliably then the segmentation problem above can also be
solved by blocking the connection of loose ends across intervening goals. But goal
indentification is problematic for EXPL's largely semantics-free methods. Consider
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the appearance of a menu. In the normal case this is only an intermediate goal of the
actions that lead to it, since the intent is to make some selection from the menu. So
tying together loose ends across the display of the menu is perfectly sensible (and
often necessary). But it can happen that the display of a menu is an end in itself, as
when the intent is to learn what is on the menu rather than to select from it.

Another connection between the correct operation of loose ends and the correct
identification of goals is that determining what are really loose ends depends on
determining where the major goals of actions are. Consider the effect of selecting an
item from a menu. Usually there are two: some action is selected, but also the menu
disappears. Correct analysis usually requires that the disappearance of the menu be
treated as an unimportant side effect of the selection, so that the selection remains
eligible as a loose-ends cause of some later system response. But what principled
basis is there for this determination? There are clearly cases in which the sole, and
central, effect of an action is to cause something to be deleted from the screen. How
can the disappearance of a menu be discriminated from the purposeful deletion of
some other item? Concretely, in viewing a Macintosh demonstration, how could
one discriminate selecting the go-away box on a window from selecting something
from a menu? As with other limitations of EXPL it seems that the semantic depth of
EXPL's knowledge must be increased to cope with such problems.

Empirical Studies.

Top-down analysis. The original conception of EXPL presumed that background
knowledge would play a significant role in analyzing examples, with top-down
fitting of expected patterns complementing the bottom-up action of the heuristics.
We attempted to gather thinking-aloud protocols in which this background
knowledge could be identified, as a first step toward filling in this aspect of the
model. While we were successful in collecting what seemed like appropriate
protocols we failed to find any evidence of the level of background knowledge in
which we were interested.

We devised a fictitious problem setting which would motivate subjects to generate a
description of how a system might work based only on a very general specification of
its function. Subjects were told that they were to brief an emergency team
responding to a disaster in a chemical plant. The team needed to control certain
valves in the system, but no specific documentation on the computer system which
operated the valves was available. Subjects were to do whatever they could to
prepare the emergency team for their task. We expected that subjects would provide
a decomposition of the required task into necessary specification steps, whose
general nature could be described but whose order and particular form would be
unknown, as in "You'll have to specify the valve in some way, and you'll have to
indicate what you want to do to it, like open or close."

No subject gave us this level of discussion. Instead subjects enumerated specific
schemes for the task based on systems they had used: "Well, if it is like UNIX you'd
have commands followed by options and then the name of a valve.” Even when we
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sought out subjects with very little computer experience we did not escape this very
concrete approach. One subject related the tasks to a video game he had played and
another remembered a program he had worked with in a science lab.

The failure to find evidence for general expectations about how tasks would be
performed, coupled with the unexpected success of EXPL's unaided bottom-up
heuristics, led us to defer incorporating top-down processes in EXPL. It is of course
possible that more abstract top-down schemata than those that appear in the
protocols are actually used. But it also is plausible that the protocols are pointing in
the right direction, and that top-down processing is guided mainly by resemblance to
very specific precedents. This is an area in need of further exploration.

Tests of heuristics. Lewis (1988a) reports experimental tests of whether the heuristics

in EXPL are used by people, but the testing did not include all the heuristics proposed
for EXPL. Reasonably strong evidence was found for the identity and loose-ends
heuristics, but no good test was devised for previous action or obligatory previous
action. As noted in that report testing of heuristics is complicated by the dependence
of the action of the heuristics on the details of the encoding of events. Further, at

that stage of the project we lacked any adequately rigorous definition of precisely
what these heuristics were, outside of the details of the implementation of the EXPL
model. With the definitional framework provided by the control notion (discussed
below) more informative empirical study of the heuristics would be possible.

Role of analysis in learning from real demonstrations. In parallel with the

development of the EXPL model we undertook to investigate the extent to which
ease of analysis of examples in EXPL corresponded with the ease of learning from
those examples in realistic learning settings. The reports by Schoenberg and Lewis,
and by Lewis, Hair, and Schoenberg prepared some time ago but issued with this
report, describe these efforts. The approach used was to ask subjects to view a video
recording of a demonstration of a real software system, and then undertake tasks
related to those demonstrated. The recorded demo was encoded and anlyzed by
EXPL, so that we could determine where the difficulties were as predicted by EXPL,
and could then compare these with problems encountered by the subjects. The
investigations were only partly successful. EXPL was able to detect a few problems in
the interfaces studied which did show up in subjects' performance. But we were
hampered by a number of problems. (1) Demonstrations are hard for subjects to
observe, especially when, as in the systems we studied, critical events may occur on
the screen or on the mouse (when a button is pressed.) We used split-screen
presentation and enhanced sound effects to try to counter this problem. (2) It seemed
to us subjects did not invest very much in really following the demonstration. We
manipulated instructions to try to influence them, but this probably indicates a real
limitation of the EXPL model: people are probably not as assiduous in extracting cues
from examples as EXPL is. (3) It was difficult to relate problems in performing tasks
with specific episodes in the demonstration. Many operations were demonstrated
more than once, and some operations could be performed in ways other than those
shown in the demonstration. As a result there was uncertainty about just where a
difficulty in analyzing the demo should show up in performance. (4) We did not
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create a control in which subjects attempted tasks without having seen the demo.
This should be remedied in further attempts.

Interaction of encoding and analysis. As noted above it seems unlikely that EXPL's
strict serial separation of encoding and analysis can be correct. We devised a
situation in which we expected the availability or unavailability of a good analysis,
determined by context, to influence how a given event is encoded. We exploited an
ambiguity in describing operations on objects in which an operation that is shown
acting on objects of a particular kind can be seen as applying only to objects of that
kind or on any objects. In EXPL this difference shows up in the encoding of the effect
of the operation, so we can look for influences of analysis on encoding by
introducing contextual variations that should affect analysis and looking for
differences in the interpretation of the operation.

Specifically, one group of items presented subjects with two consecutive screens, the
first containing two X's and the second blank. The operation intervening could be
thought of either as deleting X's or as clearing the screen. The intervening command
was either PX or PY. A subsequent probe item asked subjects to indicate what the
affect of applying this command to a screen containing an X and a Y would be. In
EXPL the command PX, encoded as P X, together with an encoding of the system
response as something like DELETE X, leads to a reasonable analysis, while the
command PY with the same encoding of the response does not. Conversely, PY fits
nicely into an analysis with encoding CLEAR, while P Y does not. Thus if the
encodings participants choose are influenced by the associated analyses we predict
that participants will expect the command PX to remove the X and not the Y, but
participants who saw the command PY in the same context will expect it to delete
both the X and the Y. That is, the encoding of the event of the two X's disappearing
will be influenced by the form of the command that is seen to cause it, something
not possible in EXPL's serial treatment.

This prediction was borne out for these items and for similar items in which a
doubling operation rather than a deletion operation was used. Significantly more
participants assigned a letter-specific interpretation to commands for which an
identity cue was available in analysis than commands for which no such cue was
offered.

This finding suggests that the encoding of events for analysis cannot be separated
from the analysis process itself. The multiple encoding scheme introduced in later
versions of EXPL would allow for this, so that an initial, analysis-independent
encoding could be modified to reflect the results of analysis. This has not yet been
undertaken.

Role of learning in shaping language structure.The debate between empiricists and
rationalists about the acquisition of language has been limited by the poverty of our
conceptions of learning. As long as Skinner could rely only on simple inductive
learning methods it was easy for Chomsky to attack the idea that language could be
effectively learned, and to argue that much linguistic structure could not be learned.



9

Anderson (1983, p.301) took up Skinner's argument in the context of a more
elaborate learning theory, proposing that linguistic structure reflects the scope of
effectiveness of a variety of learning mechanisms. But these mechanisms are still
essentially inductive in Anderson's scheme, with some specific a priori constraints
added. The advent of analysis-based , non-inductive learning methods such as those
embodied in EXPL offers the prospect of reframing this old argument. Learning
mechanisms that exploit causal analysis and analogy may have a better chance of
accounting for the observed structure of language than their predecessors.

We attempted to investigate the ability of learning mechanisms to shape linguistic
structure by adapting Bartlett's repeated transmission paradigm. We devised
random command languages (with some structure built in as described below) and
asked participants to study examples of command-outcome pairs and then generate
commands to produce new outcomes supplied by us. Thus each participant
produced a new corpus of examples, based on his or her efforts to extrapolate the
examples seen to cover new outcomes. These generated corpuses were presented to
new participants in the same manner as the original random languages, and these
second-generation participants were again asked to produce commands for outcomes
they had not seen, in this case the same outcomes as appeared in the original
random corpuses. Thus each original random corpus spawned a succession of
derived corpuses, each resulting from a participant's attempt to extrapolate the
examples seen to new outcomes.

While many kinds of structure might be introduced into the derived corpuses by
this extrapolation process we expected EXPL's robust identity heuristic to have an
easily detectable effect. We expected any identity relations that appeared between
commands and outcomes to be salient and well-recalled, and hence to be preserved
where possible in the extrapolated corpuses. To prime the pump we ensured that
each random corpus had a proportion of identity cases in it. Further, we expected
participants to introduce new identities as they attempted to generalize from
examples which contained identities. So we expected the number of identities in
successive corpuses to increase. Along with this we expected the success of
participants to extrapolate accurately, that is, to provide the same command that was
presented with a given outcome in the corpus just before the one they saw, to
increase.

Analysis of results focuses on the corpuses appearing at plies 0 (the original corpus),
2, and 4. Under the procedure used, all these corpuses have the same set of
outcomes, so the commands supplied by subjects can be directly compared. Increase
in accuracy can be gauged by the number of command tokens in plies 2 and 4 that
agree with the corresponding commands in ply 0 or 2. The median number of
correct tokens at ply 2 was 2.5, while at ply 4 it was 6.5. Of 22 sets of corpuses 15
showed an increase in accuracy and 5 a decrease, a preponderance significant at the
.05 level.

This increase in accuracy cannot, however, be attributed to identity cues. There was
no increase in the median number of identities across plies 0, 2, and 4; numbers of
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identities actually descreased, but not significantly. The Spearman correlation
between the increase in number of identities from ply 0 to ply 2 and increase in
accuracy from ply 2 to ply 4 was .22, not significant (n=22).

Other aspects of the corpuses did change in a way that seems to have contributed to
the increase in accuracy. Some output tokens appeared more than once; when
participants had to assign a command to these in the following ply their accuracy
was influenced by whether the multiple occurences were associated with a
consistent command token or with different tokens. Proportion correct for tokens
with multiple consistent commands was .50 at ply 2 and .86 at ply 4 (medians;
difference not significant), while those with inconsistent associated commands had
median proportion correct of .00 in each case. This difference of accuracy between
output tokens with inconsistent and consistent commands (significant at ply 2 but
not ply 4 by sign test) suggests that corpuses with greater consistency would be
reproduced better, so that increases in consistency during the repeated transmission
process would lead to improved accuracy. This is so: the median proportion of
output tokens with multiple occurences which were associated with consistent
commands increased from .00 to .45 to .66 across plies 0-4; the increase at each step is
significant by the sign test. The Spearman correlation between increase in
consistency from ply 0 to ply 2 and increase in accuracy from ply 2 to ply 4 was .40,
significant at .05 (one-tailed).

Increase in consistency cannot account for the entire increase in accuracy, however.
Some output tokens were not seen as outputs at all in the previous ply, and so could
not be reproduced without some form of extrapolation. Identity is one means of
doing this; even though there was no increase in identities some correct
reproductions did exploit identities (a mean of .32 tokens at ply 2 and .55 at ply 4
were correctly reproduced this way). Another means of reproducing the commands
for "orphan"” tokens, those which did not appear as outputs in the previous ply, is to
assume a reversible connection between command and output. If output O was not
seen as an output at the previous ply, but was seen as a command, with output O,
then use O' as the command to obtain output O at this ply. These "reversals"
accounted for a mean of .09 correct reproductions at ply 2 but .59 at ply 4; this increase
is significant at the .05 level by the sign test. This assumption of reversibility should
result in an increase of cases within a corpus in which a command-result pair O-O'
also occurs as a reversed pair O'-O. The mean number of such reversals did increase
across plies 0-4 from .09 to .90, the increase being significant at .05 by the sign test.
This increase in reversals did not correlate significantly with increased accuracy,
however, even though (as mentioned above) the reversals were responsible for a
small but growing number of correct reproductions.

In summary, the repeated transmission study did demonstrate increases in the
learnability of corpuses, but the identity heuristic appears to play only a minor role
in this, being used to produce some commands but not leading to an overall shift in
the structure of the corpuses. A tendency to assign consistent commands to output
tokens that occur more than once seems to have been more important: the degree to
which this change occurred in a sequence of corpuses proved to be correlated with
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increased accuracy. An increase in the number of reversible command-output pairs
also occurred and contributed to the increase in accuracy.

These results bear out the plausibility of Anderson's proposal that linguistic
structure could result from the action of learning and retransmission, though they
do not implicate the sort of learning mechanisms involved in EXPL. Increased
learnability did result, and was associated with structural change in the corpuses.

Analysis and recall. Just as we expected (and now have demonstrated) that analysis
could affect how events are encoded, we expected that analysis could shape how
sequences of events were recalled. Mack (1984) had observed that participants who
viewed demonstrations of text editor operations sometimes interpolated imaginary
events that made the sequence of events more sensible to them ("I guess I missed it
but there must have been a command to make it move that text over, " when no
such command was shown because the system was in insert mode.) In other
protocol studies we had observed that participants would produce significantly
distorted reviews of what they thought they had seen in attempting to explain what
was happening. The EXPL model makes specific predictions about what analyses of
human-computer interactions should be acceptable, and hence of what distortions
would be needed when recalling events to make them seem sensible.

To test these predictions we constructed two deliberately odd commands. One
command mentions two letters as arguments and deletes only one of them. The
other command mentions one letter but deletes two. We included these commands,
with their outcomes, in event sequences which we asked participants to study. After
a delay we showed them the screen state they had seen just before the odd
command, and the screen state shown just following, and asked them to recall what
command had intervened in the sequence they had studied. While most
participants recalled the command correctly, several participants "recalled" a
cleaned-up version of the odd command. The command name was recalled correctly
but the argument structure was adjusted to conform to the expected analysis. Of 54
participants 12 produced these specific predicted distortions; there were 2 other
distortions not predicted.

The implication of this finding is that systems that are difficult to analyze on EXPL
lines may be difficult to learn for two reasons. Not only may the difficulty of analysis
make generalization difficult, but hard-to-analyze sequences may simply be recalled
inaccurately.

Retention and generalization mode. Another possible linkage between recall and
generalization concerns the distinction between "superstitious" and "rationalistic"
generalization, as defined in Lewis (1988a). Superstitious generalization preserves
any features of examples which are not understood, while rationalistic
generalization preserves only those features which are understood. As Lewis (1988a)
argues, differing generalization mechanisms may naturally behave in one of these
manners or the other. Because of the dependence of superstitious generalization on
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retaining uninterpreted features of examples, one might expect that retention
demands should affect generalization mode: superstitious generalization should be
more difficult as retention becomes more difficult. The availability of semantic
interpretations for those features of examples needed for rationalistic generalization
might favor rationalistic generalization as retention becomes more difficult.

To test this idea we devised an example interaction with an unnecessary step, to
which we expected many participants would attach no interpretation. After seeing
this example some participants were asked to perform difficult multiplication
problems for either a short of long period, while other participants were given no
multiplication to do. All participants were then asked to write a procedure to
accomplish a related goal, and then to indicate what role (if any) the extra step in the
original example had. When participants assign no role to this step they can be
classified as superstitious or rational according to whether they retain the extra step
in their generated procedure.

The results did not support the prediction. The proportion of superstitious
responders was .17 (n=12) for no multiplication, .21 (n=14) for short multiplication,
and .09 (n=11) for long multiplication. The differences in proportion of superstitious
responders are not significant.

Dependence of generalization on domain. One of the questions raised by the EXPL

work is the extent to which analysis and generalization are processes conditioned by
knowledge or assumptions about a given domain, or should be seen as obeying
principles largely independent of domain. For example, as discussed in Lewis
(1988a), it could be that the identity heuristic is based on assumptions that are
plausible for analyzing the behavior or artifacts, but that would not be accepted for
natural systems. To address this question we presented isomorphic generalization
problems in settings taken from computer operating procedures, a vaguely-specified
industrial machine, a chemical reaction, and an animal breeding experiment. We
were interested in possible differences, or lack of differences, among the settings, that
might clarify the effect of domain.

The results obtained are confusing, and call for further investigation. For one of two
generalization problems the computer setting was the only one in which
participants produced the generalization expected by EXPL, while for a second the
computer setting was the only one for which participants did not give the expected
generalization. We suspect that these results may reflect item differences arising
from the rewording of the problems to suit the various settings; a further study
using a larger number of problems, with more than one rewording for each setting,
might clarify this.

A related issue concerns the assumptions underlying generalization, and whether
acceptance of these depends upon domain. As developed further in the discussion of
theoretical work below, and in the report by Lewis, Hair, and Schoenberg (1989)
which is included here, generalizations can only be justified by reference to some
assumptions of regularity in the domain being analyzed. We asked participants to



13

choose between explanations of situations according to which various candidate
assumptions were or were not violated, where different isomorphs of the situations
were worded to place them in the four domains just mentioned: computers,
machine, chemistry, breeding.

As with the generalization results just described, no clear pattern emerged. Some of
the assumptions, such as that any outcome of a process must be controlled by some
input, were treated differently in the artificial and natural domains: in this case the
assumption appeared to be accepted for natural domains but rejected for artificial
ones. A study in which the wording of situations is varied to dilute possible item
effects, and in which more than one situation is used to test acceptance of a given
assumption might help to clarify the picture. Protocol studies might also be useful in
suggesting the basis for any differences that may emerge.

Theoretical Efforts.

Along with the development of the EXPL model, and the collection of empirical data
bearing on it, the project has also tried to strengthen our theoretical grasp of analysis
and generalization processes. Lewis (1988a) presents some of the results: defining a
class of "analysis-based" generalization methods, including the so-called
"explanation-based" methods, analogical generalization, and synthetic
generalization, in which new procedures are produced by recombining elements of
example procedures; and differentiating "superstitious" and "rationalistic”
generalization processes.

More recent work has aimed to clarify the relationship between the kind of analysis
of examples performed by EXPL and causal attribution. While earlier presentations
of EXPL talked loosely about causal analysis, and commented on the apparent
connections between EXPL's heuristics and heuristics seen in causal attribution, it
proved unexpected difficult to pin down the relationship exactly.

One vexing issue served to bring this problem into focus, and drove our efforts to
find a resolution. EXPL's "loose ends" heuristic says roughly that an unexplained
cause can be linked to an unexplained effect. Mill's Method of Residues, a causal
attribution heuristic, says that when all effects of some causes have been deducted
from a situation, the remaining effects must be due to the remaining causes. Are
these the same heuristic or not?

Attempts to settle this question revealed the inadequacy of our formulations of the
analysis problem EXPL was trying to solve. In search of clarification we explored the
philosophical literature, concluding, as discussed in Lewis, Hair and Schoenberg
(1989), included with this report, that there is a serious mismatch between the
philosophical notion of cause and the idea of causal connection assumed in the
EXPL model, and needed to support the sort of generalizations it produces.
Philsophical analysis treats events as wholes, and causal connections connect events.
The relationships EXPL tries to discover and exploit instead link aspects of events.

To avoid confusion, Lewis, Hair, and Schoenberg replace the term "cause" by
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"control”, where control relationships connect aspects of events rather than events
as wholes.

The control framework clears up the relationship between loose-ends and Mill's
method of residues: they are closely related, but different. Whenever both heuristics
apply they give the same result, but they rest on different assumptions about
regularities in the domain being analyzed, and hence have different applicability
conditions.

Besides clarifying this specific question regarding EXPL's connection to causal
attribution the control framework made it possible to reframe Mill's analysis of
causation in terms of control. All of Mill's methods are recast as heuristics for
identifying control relationships, and could be used compatibly with EXPL's
heuristics whenever their applicability conditions are met.

A second area of theoretical work since Lewis (1988a) has been learnability analysis.
Traditional inductive learning methods have a large literature analyzing formally
classes of problems that can or cannot be solved within given performance
constraints. But the recently-emerged analysis-based methods lack such an analysis.
Thus we cannot characterize problems to which explanation-based generalization
(for example) can or cannot be successfully applied, nor do we understand what
issues determine this.

Lewis (1988b) attacks this problem for analogical generalization as performed by
Anderson and Thompson's (1986) PUPS system. The paper shows that while for
some simple forms of analogy there is a limited class of problems which have
appropriate analogical structure, and to which analogical generalization can
successfully be applied, for PUPS there is no such limited class: all problems can be
solved using analogical generalization, given appropriate background knowledge.
Thus (for example) no matter how seemingly inconsistent a computer command
language appears, it can always be given an analysis under which it can be
generalized completely using analogy.

This result is disappointing; it means that there is no way to distinguish analogical
strtucture from unanalogical structure intrinsically: such structure resides not in the
domain being analyzed but in the domain together with associated knowledge and
interpretation. Thus to design a command language that can be generalized by
analogy one cannot rely on any simple structural criterion for guidance, but instead
must worry about what users will know about the language, or what they can learn
about it. On the face of it this seems a much harder problem than characterizing
structural regularities.

Subsequent work has shown that this analysis can readily be extended to other
methods of analogical generalization. For example in structure mapping (Gentner
1983) "analogicalness" depends not on any structural property of a domain but rather
on the relationships attached to it. It remains an open question whether similar
results obtain for other analysis-based methods.
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Summary of Main Results and Open Areas.

Thus far the EXPL project has succeeded in clarifying the role of understanding in
learning, by demonstrating how analysis of examples supports generalization, which
is an essential element in non-trivial learning in the procedural domain.
Exploration of the relationship between the EXPL model and other generalization
techniques led to recognition of the class of analysis-based methods. Exploration of
the relationship between EXPL's analysis methods and causal attribution led to
development of a rigorous framework within which methods of causal analysis can
be defined and compared. EXPL's heuristics are seen to be new, though closely
related to already-noted heuristics. Some progress has been made towards
understanding the limits, or lack thereof, on what can be learned by analysis-based
methods.

Many important areas remain to be better understood. The basis for the identity
heuristic, the most robust of EXPL's heuristics, remains unclear. Is it based on
conventions of communication, or is it a reflection of a widespread regularity in the
world? Is identity itself the relevant cue, or is an identity simply a variety of
coincidence, any of which would trigger analysis? This is related to the question of
the domain dependence of generalization methods, discussed above as needing
further study.

Despite some efforts, the role of analysis-based methods in real learning remains in
doubt. Studies that compare learning with and without examples, as suggested
above, may shed light on this.

Learnability analysis for analysis-based methods is needed. The results obtained for
analogical reasoning need to be explored for other methods, and the issue of
limitations on the analysis process, as well as the generalization process, need to be
considered. This involves getting insight into the relationships between background
knowledge and analysis, and background knowledge and generalization, hardly
attacked in this project.

Finally, current work in human-computer interaction is building on Kintsch's
construction-integration model (Kintsch 1988, Mannes and Kintsch 1988), which
uses largely associative processes rather than the symbolic rule processes seen in
EXPL. There are interesting prospects of integrating EXPL's learning approach into
this associative framework, but the means of doing this are unclear as yet. It is
possible that Kintsch's associative model will permit a successful attack on one of
the original goals of the EXPL project: to model explanations as satisifying a
constellation of constraints, rather than as the result of discrete, orchestrated
heuristics.
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