Connection Machine
Application Performance

Oliver A. McBryan

CU-CS-434-89 April 1989

Department of Computer Science
Campus Box 430

University of Colorado

Boulder, Colorado 80309

CONNECTION MACHINE APPLICATION PERFORMANCE*

Oliver A. McBryan f

Dept. of Computer Science,
University of Colorado,
Boulder, CO 80309, USA.

ABSTRACT

The Connection Machine CM-2 computer represents the state of the art in supercomputer
performance at this time, with peak rates of over 20 Gflops in 32-bit precision. While theoreti-
cal peak rates are essentially never attained, remarkable performance is possible on real appli-
cations. We discuss a number of CM-2 applications including implicit and explicit PDE
solvers as well as spectral methods. We demonstrate delivered performance over a gigaflop in
each case, and ranging as high as 3.8 gigaflops in the case of conjugate gradient solution of
elliptic PDE.

We describe 2D and 3D Fast Helmholtz and Poisson Direct Solvers for the CM-2 and
provide performance data for them on grids with up to 4 million points and using 65,536 pro-
cessors. Performance of 1.1 Gflops is attained in 2D, and over 850 Mflops in 3D. The solu-
tion of the Helmholtz equation on a 2048x2048 grid takes under half a second, and on a
128x128x256 3D grid it requires .54 seconds. We have iteratively solved more general elliptic
PDE by conjugate gradient methods at 3.8 Gflops. The fast solver has been used to provide a
pre-conditioner for the conjugate gradient solver, which is then limited in performance to 1.3
Gflops, but results in far fewer iterations.

We also describe several partial and complete applications ranging from oil reservoir
simulation to oceanographic modeling. In the latter case we present the first results of spectral
models running on the CM-2. We emphasize the issues involved in attaining these levels of
performance and compare in most cases with CRAY-XMP performance for the same algo-
rithm. All results are for algorithms written in a high-level language, in this case *Lisp - no
assembly language (PARIS) programming was performed. Similar performance should there-
fore be attainable by Fortran programs once the CM-2 Fortran compiler is released.

Keywords: parallel, performance, pde, spectral, poisson

* To appear in Proceedings of the NASA-Ames Scientific Applications of the Connection Machine
Conference, Horst Simon ed., 1989. i

1 Research supported in part by DOE contract DE-ACO2-76ER03077, by NSF grant DMS-
8619856 and by NSF Cooperative Agreement DCR-84200944.

1. INTRODUCTION

The Connection Machine CM-2 computer consists of 65,536 bit-serial processors, 2048
Weitek floating point processors, and 512 Mbytes of memory. The processors are arranged 16
to a chip, and each pair of chips shares a Weitek unit. The chips are connected in a 12-
dimensional hypercube, while the processors on each chip are themselves fully connected.
Most logical and integer processing is performed within processors, but floating point opera-
tions require data to be communicated externally to the off-chip Weitek processors. The sys-
tem is an SIMD architecture - all processors receive the same instruction on each cycle,

The CM-2 computer has the highest peak floating point performance (24 Gflops) of any
supercomputer. It is essential to stress that this is a peak performance, almost never realized in
practice, although certain specialized operations such as polynomial evaluation may come close
to aftaining such rates. Such operations typically require no inter-processor communication,
and almost no communication between the processors and the Weitek floating point units. To
achieve the latter requirement one typically loads the Weitek vector registers, and then com-
putes entirely within the Weitek for a substantial time before returning the results to the pro-
Cessors.

Of far greater interest is the actual performance attainable on real applications. Real
applications are typified by substantial local (e.g. nearest-neighbor) or global (e.g. FFT or glo-
bal vector sum) communication patterns, as well as limited ability to stay resident in Weitek
processors. Many applications require significant amounts of non homogeneous computation,
for example in the case of irregular grids, adaptive refinements or treatment of boundary condi-
tions.

In this paper we describe the implementation of a number of applications on the CM-2
computer, with particular emphasis on attainable performance. In section 2 we describe a
highlight - the solution of Elliptic PDE at 3.8 Gflops using conjugate gradient methods, and we
indicate the nature of the internal optimization issues involved in achieving such performance.
In section 3 we describe the implementation of fast Poisson solvers for rectangular grids in two
and three dimensions, and we demonstrate performance of 1.1 Gflops and 860 Mflops respec-
tively for these cases. Section 4 presents an example illustrating that the CM-2 can outperform
a CRAY computer by a factor of 40 on a selected application segment - in this case part of an
oil reservoir simulator. Section 5 discusses a complete application - solution of the shallow
water equations - and presents implementations using both explicit and spectral methods. All
of these applications use essentially standard algorithms and are mapped in a straight forward
way to the CM-2.

Not all applications are well suited to the CM-2. In previous papers’2 we have shown
that standard Multigrid algorithms do not perform well on massively parallel architectures, due
to the inherent difficulty of keeping 65,536 processors busy at all times. However a resolution
was obtained by discovering a new class of intrinsically parallel multiscale algorithms®> which
utilize all processors while converging faster than standard multigrid. Undoubtedly further int-
rinsically parallel algorithms remain to be discovered for procedures that do not map well to
the CM-2.

Throughout the paper we quote performance in terms of megaflops, or computation time
per point which is a more useful quantity in general. Measurements in tables specify the
number of processors used - from 4K up to 64K. To allow relative comparison, the

-3 -

performance numbers have been scaled linearly to an "equivalent performance” on a 64K
machine. Such a scaling is not valid for some algorithms (e.g. FFT), but it does provide a uni-
form way to present the performance data. In the case of 64K results, the numbers are of
course the real measured values.

2. A PERFORMANCE HIGHLIGHT: 3.8 GFLOPS PDE SOLUTION

Discretization of elliptic partial differential equations such as the equation
VE@AVu =rm

by finite element or finite difference methods, leads to systems of equations with sparse
coefficient matrices. The fill-in of the matrix tends to follow diagonals and the bandwidth is
about dN"? or dN*?, for two or three dimensional space respectively, where N is the dimension
of the matrix and 4 is the degree of the finite elements used for the discretization. Further-
more, typically only O(1) diagonals have nonzero elements. We have developed a parallel
preconditioned conjugate gradient algorithm on the Connection Machine to solve systems of
equations with such coefficient matrix structures.

The Preconditioned Conjugate Gradient Method®-10 finds the solution of the system of
equations Ax = f, to a specified accuracy € by performing the following iteration on the vector
x, which has been appropriately initialized:

r = f - Ax

p = Br

loop
s = <rBr>/<p,Ap>
r =r—gsAp
X = X+385p

rbr = <r Br>
s = <r,Br>/old<r Br>
p = Br+syp

until converged

Here B is an approximate inverse of A , which is assumed to be positive definite sym-
metric, and <x,y> denotes the inner product of vectors x and y. The preconditioning operator
B can be effective in improving substantially the convergence rate of the algorithm!!,

We parallelize the algorithm by exploiting parallelism in every operation of the iteration.
All of the vectors in the algorithm are allocated as CM parallel variables (pvars). For our
Poisson-like test problem with a 5-point discretization on a rectangle, the operation x — Ax is
easily written using the NEws grid addressing modes of the CM. See the following sub-section
for details. For simplicity we have chosen the pre-conditioning operator B to be the diagonal
of the operator A. The other communication intensive operations in the conjugate gradient
algorithm are the several inner products of vectors which are required. These inner products
perform at very high speeds on the CM by taking advantage of the hypercube structure to

-4 -

evaluate the global sum. For full details on the implementation, we refer to our paper!.

The performance of this algorithm for a two-dimensional PDE discretized with a five-
point formula on a 65,536 processor CM-2 is presented in Table 1, where we have given
results for solution of equations on grids up to size 4096x4096. These measurements were
made with a simple diagonal scaling pre-conditioner. As can be seen, the highest performance
is attained with the largest grid size, which corresponds to the highest virtual processor ratio.

Table 1: Performance of Conjugate Gradient on CM-2
Grid Size Mflops
512x512 1412
1024x1024 2357
2048x2048 3123
4096x4096 3812

We have also developed a fast-solver for the Poisson equation which uses an FFT algorithm
developed by Thinking Machines Corporation and supplied in the CM-2 mathematics library.
The fast solver runs at 1.1 Gflops, and has been used as a preconditioner for the conjugate gra-
dient solver described above. This results in far fewer iterations on fine grids, although the
overall performance of the code in terms of Mflops is then only 1.3 Gflops. However these
are substantially more "useful" flops than in the diagonally preconditioned case. We describe
the fast Poisson solver in section 3.

2.1. Optimization Issues

The conjugate gradient solver described above was implemented in the *Lisp program-
ming language. *Lisp is a language at the level of Fortran, C or Lisp, far removed from the
details of hypercube communication or single-bit and Weitek processors. *Lisp is an extension
of Common Lisp, providing the possibility of declaring certain variables in a program to be
parallel, and providing parallel operators such as multiplication that operate on such parallel
variables. *Lisp is very analogous to the Fortran 8X array extensions to Fortran 77. A short
review of *Lisp for numerical programming is contained in a previous paperl‘

A *Lisp program is usually no longer than an equivalent serial Fortran program, and
indeed one can map each Fortran line one-to-one onto a *Lisp line. To attain the performance
described above, very substantial optimization is required, for example to overlap communica-
tion and computation. Fortunately the *Lisp compiler is an excellent optimizing compiler, and
we illustrate this with examples of actual code used in the conjugate gradient experiments.

For the simple case of a Poisson equation, the fundamental operation v = Au takes the
form (with r and s scalars):

— ok %
vij =8t +r (ui,j+1 FU g Ut ”m,j) .

The *LISP version of a function applya for v = Au is:

*Lisp uses !! to denote parallel objects or operations, and as a special case, !! s is a parallel

*Lisp Source for v = Au:

(defun *applya (u v)

(¥setv (-I! (*¥!1 (!! s) u)
(¥ (! r) (+! (news!! u -10) (news!! ul0)
(news!! u 0 -1) (news!! u 0 1)

)

replication of a scalar s. Here news!! u dx dy returns in each processor the value of parallel
variable u at the processor dx processors away horizontally and dy away vertically. Thus
u(i,j+1) in Fortran would be replaced by news!! 0 1.

The actual assembly language (PARIS) code generated by the *Lisp compiler has the
form (under version 4.3 of the CM-2 system) shown in the accompanying display.

Optimized PARIS Code:

(defun *applya (u v)

(let* ((slc::stack-index *stack-index™)
(-!!-index-2 (+ slc::stack-index 32))
(pvar-location-u-11 (pvar-location u))
(pvar-location-v-12 (pvar-location v)))

(cm:get-from-west-always -!l-index-2 pvar-location-u-11 32)
(cm:get-from-east-always *!!-constant-index4 pvar-location-u-11 32)
(cmi: f+always -!!-index-2 *!!-constant-index4 23 8)
(cmi::get-from-east-with-f-add-always -!!-index-2 pvar-location-u-11 23 8)

(cmi:f-multiply-constant-3-always pvar-location-v-12 pvar-location-u-11 5 23 8)
(cmi: f-subtract-multiply-constant-3-always pvar-location-v-12
pvar-location-v-12 -!!-index-2 r 23 8)

(cm:get-from-north-always -!!-index-2 pvar-location-u-11 32)
(cmi::f-always slc::stack-index -!!-index-2 23 8)
(cmi::get-from-north-with-f-subtract-always pvar-location-v-12 pvar-location-u-11 23 8)

(cm:get-from-south-always -!!-index-2 pvar-location-u-11 32)
(cmi:float-subtract pvar-location-v-12 slc::stack-index -!!-index-2 23 8)
(cmi:: get-from-south-with-f-subtract-always pvar-location-v-12 -!l-index-2 23 8)

)

Here the code has expanded to generate various low level instructions, with fairly recognizable
functionality, including several that overlap computation and communication such as:

-6 -

cmi :get —from—east—with—f —add —always . The development of an optimizing compiler of this
quality addressing communication instructions as well as computational instructions is a major
achievement of the CM-2 software system. Over a period of two years we have seen the same
*Lisp code improve in performance from 600 Mflops to 3.8 Gflops entirely due to compiler
advances.

We remark that we have recently tested the above *Lisp code on the CM-2 running the
new 5.0 Software system. Performance was dramatically lower, down by a factor of 2 in some
cases. On examining the generated PARIS code, the explanation appears to be that the more
complex optimizations above are no longer performed. Thinking Machines assures us that
these optimizations, along with others, will be restored in the 5.1 release of the system.

3. A FAST POISSON SOLVER

Many physical problems require the solution of the Helmholtz equation
-Au+cu=f, (N

on a rectangular domain in two or three dimensions. In the case where ¢ =0, the equation
reduces to Poisson’s equation. One can therefore obtain a good Poisson solver for periodic
data by taking ¢ very small but non-zero. As discussed in the previous section, even in the
case of more complex equations, availability of a fast Poisson solver as a pre-conditioner can
greatly reduce computation time when iterative methods such as conjugate gradient are utilized.

While there are several approaches to developing a fast Poisson solver, we have based
ours on the use of multi-dimensional Fast Fourier Transforms. While the basic ideas are sim-
ple, the technical issues related to the Connection Machine are non-trivial and are worth dis-
cussing.

3.1. 2D Discretization

We are required to solve (1) on a rectangular domain of size XLxYL. For simplicity, we
discretize the 2D equation on a rectangular mxxmy grid using finite differences and periodic
boundary conditions. This leads to the discrete form:

1 1

2 2
(—hx2 +—+ cu +) —hyz (Ui iy * Uiy jys) = Finiy

iy — 7 (g
hy x iy hxz 1,iy
where hx = XL/mx, hy =YL/my and OSix<mx, Osiy<my. The periodic boundary conditions

require that:

Uy = Uix0o Umwiy = Uoyy -

To solve this equation we apply the 2D discrete Fourier Transform defined by:
mx-1 my—1
ﬁkx,ky = (,nx .my)‘—l/Z Z Z e"IZ'ICkX'lx e"lZTCky'zy

x=0 iy=0

Uiy Ay (2)

where again 0gkx <mx, Osky<my. This results in the diagonalized form:

Hy by Bropy = By +0) iy = iy

-7 -

~ 2 2
By = — (- cos@mkx/mx)) + — (1 — cos(2nky/my)) ,
» hx?. hyz
from which we solve for 4, , by division by ﬁkx’ky. We then obtain u,, ;, by applying the
inverse Fourier transform, which differs from (2) only in the sign of the two exponents:
mx—-1 my-1)))
uix’[y - (mx'my)-lll Z Z@:Zﬂkxmx ez21tky~zy ﬁkx,ky) (3)
k=0 ky=0

3.2. 2D Implementation:

The Connection Machine Scientific Math Library (CMSML) includes a routine ¢fft that
implements a multi-dimensional discrete complex FFT as in (2) or (3). We have based our
Poisson solver on a beta-release of this subroutine. We refer 101213 for discussion of the
implementation of the FFT on hypercubes in general, and tol4 for details specific to the Con-
nection Machine.

The routine ¢fft is written in micro-code to provide high-efficiency, and as such is best
regarded as a black-box by the user. However it does provide some handles into the black box
in the form of input parameters that can be used to control the operation of the FFT. Since the
FFT accounts for almost all of the computation time of the solver, it is essential to optimize
the use of the FFT on the hardware. As we discuss below, this is far from trivial as the
hardware provides multiple approaches to the use of an FFT.

3.2.1. Real vs. Complex FFT

To use cfft, one configures the CM-2 as a rectangular grid of mxxmy virtual processors,
with processor ix,iy containing the complex variable u,, 4+ In practice one supplies the Uy sy AS
a parallel variable u. The ¢fft routine accepts the complex parallel variable u as input and
returns the complex variable @ as output, with 4, ., stored in processor kx ky.

Unfortunately only a complex FFT is supported, whereas for maximal efficiency one
would prefer to use a real FFT. Real FFT algorithms reduce to complex FFT’s of half-length,
and therefore are about twice as fast as applying a complex FFT to real data. In order to con-
vert a real FFT to a half-length complex FFT, it is necessary to perform operations in each
dimension of the form:

Wi = U + i, , OSix<mx/2 .)

On a distributed memory computer, we recognize such operations as involving substantial
Iong-range communication. Great care is needed in implementing such an operation, or it will
dominate the cost of the subsequent FFT. In particular, the operation needs to be micro-coded
on the CM-2, which means that it will have to be done by TMC internally as micro-code com-
pilers for the CM-2 are not distributed.

Because of the issue discussed in the preceding paragraph, we have implemented the
Helmholtz solver with the capability of solving either one or two equations simultaneously. In
many physical problems, one actually needs to solve more than one Helmholtz or Poisson
equation at a time, for example for different components of a field. With two right-hand sides
f and g, we form the complex variable 4 = f+ig and then solve the equation (~A+c)u =k,
using complex FFT of full length. In the single equation case we simply take g = 0. FEither
way, solution time is the same, with the double solution case essentially as efficient as using

-8 -

two real FFT algorithms. All of the times quoted below are times per solution in the double
solution case.

3.2.2. Hypercube Addresses and Grid Orderings

The CM-2 supports two addressing modes called NEws and send addressing. NEWwS
addressing provides an n-tuple of coordinates n,n,, - -+ describing the location of a virtual
processor in a rectangular grid. On the other hand send addresses describe the location of a
processor on the hypercube directly, and are composed of a physical part, describing the physi-
cal processor address, and a virtual part, which points to a location within that physical proces-
sor. The equations to be solved are grid-based, and thus the most natural addressing of CM-2
processors is the NEws grid addressing provided by CM-2 software.

There are however many ways to map a rectangular grid onto a hypercube, and the CM-2
software supports two distinct mappings or orderings from among these. The order of a grid
dimension describes how NEWS coordinates for that dimension are mapped onto physical pro-
cessors. In NEWs ordering, the embedding of a virtual grid onto the physical hardware is done
such that processors with adjacent NEws coordinates are also neighbors in the physical grid. In
send ordering, it is assured that if one processor has smaller NEws coordinates than another,
then its physical address will also be smaller than the other’s. Note that, despite the terminol-
ogy, these are simply different versions of News addressing. Generally NEws order is most
efficient for grid operations while send -order is more efficient for long-range communication.

Since the FFT algorithm involves substantial long-range communication, which can be
performed effectively using the underlying hypercube hardware of the CM-2 network, it is to
be expected that performance may be better with send ordering rather than NEWS ordering. We
have allowed a choice between NEws or send ordering in implementing our solver. As will be
seen, send ordering allows a substantial increase in performance over NEws ordering.

3.2.3. Bit-Reversal in the FFT

Standard FFT algorithms for hypercubes involve a "bit-reversal” in the output data. This
means that the basic algorithms provide the correct transformed quantities, but in an incorrect
order. Typically if v is the output of the FFT algorithm applied to u, a vector of length
m =2, then we recover the Fourier transform 2 of u from:

B = Vy(m iy)

where r(m k) is the integer obtained by regarding the integer k£ as a b-bit integer, and then rev-
ersing the order of the » bits. As an example, with m = 16 and k =7, we have b =4,
k = 0111, and therefore r(m k) = 1110 = 14.

In a multi-dimensional FFT such as (2), such a bit-reversal will occur in each of the
coordinate directions i.e. in kx and ky separately. It is of course a simple operation to reorder
the bit-reversed quantities according to this formula on a sequential computer. However, on a
massively parallel computer, an operation such as (5) involves substantial long-range communi-
cation. In fact it turns out that the reordering of the bit-reversed data can take substantially
longer than computing the FFT.

There is a simple approach that allows us to avoid the overhead of bit-reversal in the case
of our solver. Suppose that we were to leave the Fourier transform of u in bit-reversed form
v. We could then divide v by the bit—reversal BH of the coefficients H,, ,,:

-9.

= H e o), rimy by »

BH,,,,
which is properly "matched" to the bit-reversal in v. Applying the inverse FFT, introduces a
second bit-reversal, and thus the final transform u is obtained in normal order. The advantage
of this procedure is that the bit-reversal of the coefficients I;lkx &y Dheed be performed only once,
no matter how many equations are to be solved with those coefficients. In iterative procedures
such as conjugate gradient solution, or in time-stepping algorithms, the effect is to reduce bit-
reversal overhead to a negligible level. As with the address ordering issue, we have provided
our solver with an option to use bit-reversed transforms, or to re-order these to normal order-
ing.
To illustrate the substantial affect that bit-reversal and send ordering can have on final
performance, we have compiled in table 2 the effects of toggling each of these choices for a
512x1024 grid solution on an 8K CM-2.

Table 2: Effects of Bit-Reversal and Send Addressing
Machine Size | Grid Size | Bit-Reverse | Addresses | Mflops
8192 512x1024 reverse send 1062
8192 512x1024 normal send 625
8192 512x1024 reverse NEWS 465
8192 512x1024 normal NEWS 79

3.2.4. Physical Communication Channels

A final implementation issue is the question of exactly which communication "wires" or
channels are assigned to each coordinate direction in the CM-2. Connection Machine software
provides complete freedom of choice to the user in this respect.

The Poisson solver algorithm is running on a virtual machine configured as an mxxmy
grid of processors. Let bx and by be the number of bits required to represent mx and my.
Then the virtual machine is a b = bx+by dimensional hypercube, and each processor then has b
virtual channels connecting it to neighboring processors. Let P be the actual number of physi-
cal processors, and let b, . =log,P. Then b, - of the b virtual channels are actual physical
channels.

There are two different kinds of physical channel: on-chip and off-chip. An on-chip
channel connects to a neighboring processor on the same chip. An off-chip channel connects
to a processor on another chip. Since each CM-2 chip contains 16 processors, it follows that
there are exactly 4 on-chip physical channels, and b, —4 off-chip physical channels. The
remaining v = b-b,, . virtual channels are true virtual channels, and involve communication
only between virtual processors assigned to the same physical processor.

In configuring the CM-2 as a rectangular grid, the various channels described above are
separately assigned to the x and y directions. Thus in general we will have onx physical on-
bit channels in the x direction and omy physical on-bit channels in the y direction. Similarly
we will have offx physical off-chip channels in the x direction and offy off-chip channels in the
y direction. Finally there will be vx virtual channels in the x direction and vy virtual channels

- 10 -

in the y direction. Obviously these quantities are not all independent, but instead satisfy the
constraints:

onx +ony =4,

offx + offy =by,, —4,

onx + offx +vx =bx ,

ony + offy + vy =by .

The create —detailed —geometry CM-2 library routine allows the CM-2 user to specify the quanti-
ties onx, offx, ony and offy when configuring the CM-2 as a rectangular grid. The particular
choices made can have a major effect on the FFT performance as we will see below.

A few observations can be helpful in determining the best choice of channel assignments.
It is frequently advantageous to have all of the on-chip channels, and one off-chip channel, in
the x direction. This corresponds to the fact that 32 processors share a single Weitek proces-
sor with fast access to it. It is also advantageous to concentrate all virtual channels into one
direction, and to have the off-chip channels in a direction be a multiple of four. As will be
clear from Tables 3-5 below, these are guidelines and not rules.

3.2.5. The ¢fft Routine

Fortunately the CM-2 ¢fft routine allows the user full control over all of the features
described in previous sub-sections. The calling sequence is essentially:

cfft (u,v .geometry ,operations in_orders ,out_orders jin_address ,out_address ,scales)

Here u and v are the complex variable and its transform, and geometry is a data-structure that
summarizes the grid rank, dimensions, and the on-chip and off-chip assignments for each
dimension. Typically the geometry object will have been created previously by a call to
create —detailed —geometry. The geometry object also involves some pre-computed data struc-
tures to speed the FFT computation, but we will not dwell on this aspect. The operations
parameter is an array of operations to be performed, one for each dimension. Possible opera-
tions are fft, inverse_fft or no—operation. The in_orders parameter is an array specifying the
ordering status (normal or bit—-reversed) of the incoming data u in each of the coordinate direc-
tions. Similarly for out_order with respect to the output data v. The in_address array specifies
the addressing order - NEWS or send in use in each dimension for the incoming data, and simi-
larly for out_address. Finally scales is an array specifying a choice of scaling in each dimen-
sion - either full scaling, square-root scaling or no scaling.

3.2.6. 2D Results

In implementing the Poisson solver we have considered all possible choices of the vari-
ous parameters to ¢fft. For each grid size mxxmy and physical machine size P, we have per-
formed bitsweep operations in which we ran the solver with every possible assignment of the
on and off -chip bits. Essentially this amounts to providing different geometry arguments to
cfft.

We have also allowed the possibility of using either NEWS or send ordering modes for the
computation. We have provided a choice of using or omitting an explicit bit-reversal after
each FFT. It is obviously advantageous to scale once on the inverse transform, rather than
scale by the square root (as in (2) and (3)) in both directions. Performance depends heavily on

- 11 -

all of these choices.

By far the most significant issue is bit-reversal. Omitting the explicit bit-reversal speeds
the solver by a factor of three. Use of send ordering speeds the solver about a further 20%.
Finally by varying the choice of on and off bits, we can affect performance by about 30%.

In table 3 we present the optimal performance attained across a range of machine and
grid sizes. The optimal performance is defined as the maximum from varying all of the
appropriate parameters. Since in each case the optimum occurs with bit-reversal, and send ord-
ering, we have supplied only the on and off chip bit data in the table. We provide both the
megaflops rating and the more meaningful computation time per grid-point per solution.

To give a feeling for the potential variability as a function of physical channel assign-
ments, we provide in Table 4, all of the data used to determine the last line in Table 3 - the
case of a 2048x2048 grid on 64K processors.

3.3. 3D Discretization

We are required to solve (1) on a rectangular domain of size XL xYLxZL. For simplicity,
we discretize the 3D equation on a rectangular mxxmyxmz grid using finite differences and
periodic boundary conditions. This leads to the discrete form:

2 2 2 1
=+t +=—+c)u
nx® hy2 hz*

+ U,

ix iy iz 2 ix—1,iy iz ix+1,iy iz
hx

1
+ Uy ,iy+1,iz) - F (uix Ay iz
Z

1
- 2 (i i1z T Uy i) = ixdyiz
y

where hx = XL/mx, hy = YLimy, hz = ZL/mz and O<ix<mx, 0<iy<my, 0<iz<mz. The periodic
boundary conditions require that u satisfy:

um.x,iy,iz = uO,iy iz ? Uy my iz = uix,O,iz ’ uix,iy mz uix,iy RO

To solve this equation we apply the 3D discrete Fourier Transform defined by:
mx—=1 my-1 mz-1)) . . ‘
ﬁkx,ky,kz = (mx.my,mz)_UZ Z Z 2 e—tZTth-ax e—z21tky.,y e—221tkz‘zz y

ix=0 iy=0 iz=0

ix iy jz

where again Oskx<mx, 0<ky <my, Oskz<mz. This results in the diagonalized form:

~

Hedy e iepyer = D gy e +€) B gy o = Fiepy 1

2 2
— (1 — cos@rky/my)) + — 1 - cos(2rkz/mz)) ,
hz

N 2
“Dsyie = — (1 = cos@mkx/mx)) +
, e’ n
from which we solve for 4, , , by division by I?,a,ky &+ We then obtain u, ; . by applying
the inverse Fourier transform, which differs from (2) only in the sign of the three exponents:
mx—1 my-1 mz-1
= (n«lxmy .mz)—1/2 Z Z Z elZTCkX'tx ezZﬂky-;yetznkz.,z ﬁkx

kx=0 ky=0 kz=0

uix,iy,iz Ky kz v

The discussion now parallels exactly that for the 2D case. Again we are faced with the issues
of addressing order (NEWS or send), bit-reversal and choice of physical assignment channels.
The most efficient FFT procedure, as represented by the ¢fft library routine, is again obtained
when the output is bit-reversed in each coordinate direction relative to the input. Therefore we
choose to bit-reverse the coefficients H,, Jyae Once, and avoid thereby the need to perform two

explicit bit-reversals in the middle of each solution. After performing the FFT of f we divide

12 -

Table 3: Optimal Performance of 2D Helmholtz Solver
Machine Size | Grid Size | onx | offx | ony | offy | Mflops | Time per Point
4K 64x64 4 2 0 6 495 1.253e-07
4K 64x128 4 1 0 7 729 9.190e-08
4K 128x128 4 1 0 7 908 7.931e-08
4K 128x256 3 1 1 7 845 9.116e-08
4K 256256 0 8 4 0 898 9.129¢-08
4K 256x512 3 1 1 7 902 9.648e-08
4K 512x512 0 8 4 0 939 9.799¢-08
8K 64x128 1 5 3 4 517 1.296e-07
8K 128x128 2 5 2 4 612 1.177e-07
8K 128x256 4 1 0 8 1025 7.511e-08
8K 256%x256 4 1 0 8 1066 7.695¢-08
8K 256x512 3 1 1 8 994 8.749¢-08
8K 512x512 0 9 4 0 1020 9.023¢-08
8K 512x1024 0 9 4 0 1060 9.153e-08
16K 128x128 3 4 1 6 543 1.327e-07
16K 128%x256 2 5 2 5 613 1.256e-07
16K 256256 4 2 0 8 674 1.217e-07
16K 256x512 4 1 0 9 947 9.191e-08
16K 512%x512 4 1 0 9 998 9.220e-08
16K 512x1024 4 1 0 9 972 9.980e-08
16K | 1024x1024 0 10 4 0 1028 9.925e-08
32K 128%x256 4 3 0 8 579 1.330e-07
32K 256256 1 7 3 4 683 1.200e-07
32K 256x512 4 4 0 7 709 1.227e-07
32K 512x512 4 5 0 6 792 1.162e-07
32K 512x1024 4 5 0 6 868 1.118e-07
32K | 1024x1024 4 1 0 10 1015 1.005e-07
32K 1024x2048 3 1 1 10 1056 1.014e-07
64K 256X256 3 5 1 7 625 1.313e-07
64K 256Xx512 4 4 0 8 669 1.300e-07
64K 512x512 4 5 0 7 775 1.187e-07
64K 512x1024 4 5 0 7 821 1.181e-07
64K | 1024x1024 4 6 0 6 793 1.287e-07
64K | 1024x2048 4 1 0 11 1041 1.028e-07
64K | 2048x2048 4 1 0 11 1097 1.021e-07
it by BHy, ;,, ,,» Where

BHkx,ky,kz = Hr(m,kx),r(my,ky),r(mz,kz)’

and r(m k) is the integer bit-reversal function defined earlier.

-13 -

Table 4: Performance as a Function of Channel Assignments

Machine Size | Grid Size onx | offx | ony | offy | Mflops | Time/Point
64K | 2048x2048 6 597 1.877e-07
64K | 2048x2048 7 656 1.707¢-07
64K | 2048x2048 3 709 1.579¢-07
64K | 2048x2048 2 1 724 1.547¢-07
64K | 2048x2048 10 738 1.518e-07
64K | 2048x2048 6 769 1.456e-07
64K | 2048x2048 11 771 1.453e-07

64K | 2048x2048
64K | 2048x2048
64K | 2048x2048
64K | 2048x2048
64K | 2048x2048
64K | 2048x2048
64K | 2048x2048
64K | 2048x2048
64K | 2048x2048
64K | 2048x2048
64K | 2048x2048
64K | 2048%x2048
64K | 2048x2048
64K | 2048x2048
64K | 2048x2048
64K | 2048x2048
64K | 2048x2048
64K | 2048x2048
64K | 2048%x2048
64K | 2048x2048
64K | 2048x2048
64K | 2048x2048
64K | 2048x2048
64K | 2048x2048
64K | 2048x2048
64K | 2048x2048
64K | 2048x2048
64K | 2048%x2048

776 1.444e-07
776 1.444e-07
778 1.440e-07
779 1.438e-07
781 1.433e-07
782 1.432e-07
784 1.428e-07
790 1.417e-07
791 1.416e-07
791 1.416e-07
792 1.415e-07
793 1.412e-07
821 1.365e-07
835 1.341e-07
846 1.324e-07
853 1.313e-07
855 1.309¢e-07
856 1.309¢e-07
857 1.307e-07
861 1.302e-07
861 1.301e-07
862 1.300-07
863 1.298e-07
864 1.296e-07
865 1.295e-07
867 1.292e-07
868 1.290e-07
1097 1.021e-07

[y

AO ANV~ NOWFRRARONRFWRARWRWORNWODWWANON—=RARANOD

SCHAONWNRHEFRWOWRNWAROFWHRRARWNRFR AR ONDNWSND BROID
HAANPARAIITITWINWLWWRORRAARLANUNONNLCOORANODOUBNR

OO UNUMUNOUNUNOOPRREPRPONOCAITINDOJIWWD

fum—ry

3.3.1. 3D Performance

We have tested the performance of the 3D solver by making sweeps over all possible
physical channel bit assignments, choosing the optimal one found in each case. Results of
these optimization computations are shown in Table 5. Note that for example it was necessary
to solve 335 2048x2048 Helmholtz problems in order to construct just the last line of the table.
Because of the enormous effort involved, we were unable to complete sufficient runs to find
the optimal values for all grids and machine sizes. It would be very desirable if Thinking
Machines would provide a routine to correctly define the optimum in each case - perhaps by
table look-up from data generated by a range of experiments such as these.

-14 -

Table 5: Optimal Performance of 3D Helmholtz Solver

P Grid Size onx | offx | ony | offy | onz | offz | Mflops Time/Pt
8K 16x16x32 3 1 1 3 0 5 493 1.360e-07
8K 16x32x32 4 0 0 5 0 4 654 1.101e-07
8K 32x32x32 4 1 0 4 0 4 755 1.020e-07
8K 32x32x64 4 1 0 4 0 4 790 1.038e-07
8K 32x64x64 4 1 0 4 0 4 823 1.057e-07
8K 64x64x64 0 5 1 4 3 0 758 1.213e-07
8K 64x64x128 4 2 0 0 0 7 805 1.205e-07
16K 64x128x128 0 6 1 4 3 0 785 1.299e-07
32K | 128x128x128 0 7 0 4 4 0 812 1.318e-07
64K | 128x128x256 0 1 0 7 4 4 863 1.298e-07

-15 -

4. AN EXAMPLE FROM RESERVOIR SIMULATION

We have ported substantial segments of an oil reservoir simulator to the Connection
Machine. In particular the slowest part, the solver for a set of non-symmetric linear equations,
is currently running at 7 times its performance on a CRAY-XMP!5, Remarkably higher speed-
ups over a CRAY are found in other parts of the code, and we illustrate this with the following
example of a code fragment from a simulator;

do 100 j = I,nc
do 970 kz = 1,nz
do 971 jy = 1,ny
do 972 ix = I,nx
tden(ixjy,kz.j) = avmw(ix,jy.kzj)/gvolph(ix jy kz,j)
dumr(ix,jykz) = grk(ix,jy.kz,j)/
& gvis(ix,jy kz.j)gvolph(ix,jy kz,j)
972 continue
971 continue
970 continue

In table 6 below we present the performance of this code segment on a CRAY 2 processor,
and on the CM-2.

Table 6: Performance on Reservoir Simulator Fragment

Machine Processors nx ny nz nc¢ Performance

CRAY 2 1 16 | 16 | 32 | 2 18 Mflops
CM-2 65536 64 | 64 | 64 | 2 741 Mflops

The CRAY-2 performance is better than the CRAY-XMP performance and the grid sizes
shown for the CRAY-2 represent the limits of the capability of the XMP to handle the overall
problem in memory. Part of the CRAY problem is related to the compiler which does not
unroll loops of this complexity. As a result the CRAY is dealing with nested loops, each of
short vector length. However even with a manually unrolled loop, CRAY performance
remains over 10 times worse than the CM-2. In addition, the CRAY treats a division as four
floating point operations, although we have counted it as one in the table below. One should
of course observe that it is easy to create code fragments which behave well on a CRAY, but
poorly on a CM-2 - for example a piece of scalar code. What makes the example here
interesting is that the code in question is typical of code segments found in highly vectorized
algorithms.

- 16 -

5. ATMOSPHERIC/OCEANOGRAPHIC SIMULATION

As another example of the current capabilities of massively parallel architectures, we
describe the implementation of a standard two-dimensional atmospheric model - the Shallow
Water Equations - on the Connection Machine. These equations provide a primitive but useful
model of the dynamics of the atmosphere or of certain ocean systems. Because the model is
simple, yet captures features typical of more complex codes, the model is frequently used in
the atmospheric sciences community to benchmark computers!®. Furthermore, the model has
been extensively analyzed mathematically and numerically!”-18, We have recently imple-
mented the shallow water equations model on the Connection Machine, in collaboration with
R. Sato and P. Swarztrauber of the National Center for Atmospheric Research in Boulder, and
compared the performance on the CM-2 with the CRAY-XMP. We have used both explicit?
and spectral!® solution methods for the equations.

The shallow water equations, without a Coriolis force term, take the form

du oH
— —-fv+—=0,
t ox
0 oH
—V—§u+—=0,
t ay
oP oPu oPv
— 4+ — =0,
ot ox dy

where u and v are the velocity components in the x and y directions, P is pressure, { is the

v du

vorticity: { = Pl and H, related to the height field, is given by: H =P + u*> +v>2. It
X y

is required to solve these equations in a rectangle a <x <b,c <y <d. Periodic boundary

conditions are imposed on u, v, and P, each of which satisfies f(x+b,y)=f(x+a.y),
fxy+d)=f&xy+c)

A scaling of the equations results in a slightly simpler format. Introduce mass fluxes
U=Pu and V=Pv and the potential velocity Z={/P, in terms of which the equations reduce to:

ou oH

— -ZV +— =0,
ot ox

ov oH

— +ZU +— =0,
ot ay

oP U oV

—_— =
ot ox oy

5.1. Discretization - Explicit Case

We have discretized the above equations on a rectangular staggered grid with periodic
boundary conditions. The variables P and H have integer subscripts, Z has half-integer sub-
scripts, U has integer and half-integer subscripts, and V has half-integer and integer subscripts
respectively.

Initial conditions are chosen to satisfy V-¥ =0 at all times. We time difference using the
Leap-frog method. We then apply a time filter to avoid weak instabilities inherent in the leap-

-17 -

frog scheme:
F(") =f("') + o (f("+1)_2f(")+f(n“‘1)) s

where o is a filtering parameter. The filtered values of the variables at the previous time-step
are used in computing new values at the next time-step. For a complete description of the
discretization we refer tol®.

5.2. Discretization - Spectral Case

In the case of the spectral version, the physical variables », v, &, are discrete Fourier
transformed to frequency space at the start of each time-step, and all spatial derivatives are
computed in that space. An inverse Fourier transform is applied at each time-step to recover
the derivatives in grid space in order to compute the time derivatives and the propagation.

One significant issue arises in the spectral discretization. The arrays to be transformed
are all real arrays and for optimal efficiency a real FFT should be used instead of a complex
FFT. The real FFT is effectively a complex FFT of half the length and will therefore run over
twice as fast. Thinking Machines Corporation has developed a complex FFT, routine, but not
a real version. Furthermore the basic algorithms to convert a real FFT to a complex one of
half-length involve substantial long-range communication. An efficient version of this stage
would need to be micro-coded, otherwise it would likely dominate the FFT routine which is
already micro-coded. Rather than get involved with micro-code we used a different strategy.

The basic idea is to do more than one real FFT at a time. We have already encountered
this situation in discussing the fast Poisson Solver, section 3.2.1, and the treatment here will be
similar. A pair of real FFT’s may be done as a single complex FFT of the same length. For
example, we need to transform the real functions #, v in order to compute the derivatives
duldx, dv/dx, du/dy, and dv/dy. In frequency space, this amounts to multiplying the Fourier
transform of » and v by matrices dxk and dyl and then inverse transforming:

cu = fft(u)
cdxu = dxk*cu
dudx = inv_fft(cdxu)

cdyu = dyl*cu
dudy = inv_fft(cdyu)

cv = fft(v)
cdxv = dxk*cv
dvdx = inv_{fft(cdxv)

cdyv = dyl*cv
dvdy = inv_fft(cdyv)

The more efficient route is to perform the computations of du/dx and dv/dx simultancously as
follows:

- 18 -

cuv = fft(u + iv)
cdxuv = dxk*cuv
dudx + idvdx = inv_{fft(cdxuv)
cdyuv = dyl*cuy
dudy + idvdy = inv_fft(cdyuv)

The first version requires 6 real FFTs, while the second version uses 3 complex FFT of the
same length. Thus we obtain the speedup associated with real FFT but without incurring the
difficulties with long-range communication we alluded to earlier.

A variant can be used if only one function was involved:

cu = fft(u+i0)
cu = (dxk + idyl)*cu
dudx + idvdx = inv_fft(cu)

The first FFT is still a "real FFT", which will be performed inefficiently as a complex FFT, but
the second FFT is a full complex transform. Thus this trick allows us to do three real FFT’s
by using two complex ones instead. There is a potential further improvement of 33% that
could be achieved here by doing the first FFT as a real real FFT, but at least it is not a factor
of 2. In our case there are three functions and six derivatives to be computed. In the Connec-
tion Machine case we have accomplished this with 5 complex FFT, as against a slightly more
efficient 9 real FFT used in the CRAY-XMP algorithm. Note that Mflops rates are insensitive
to whether we use a real FFT or a full complex FFT. In the latter case the computation takes
twice as long, but does twice as much computation, so the Mflops appear to be the same.
However obviously the flops used in evaluating a real transform using a full complex transform
are not efficiently utilized, and are only half as valuable as equivalent flops used in a true real
FFT. A much better measure of useful work is the total computation time, or equivalently, the
computation time per grid-point per timestep. We present both measures in the result table.
While Mflops are not affected by the pairing of real transforms described above, the time per
grid-point is reduced by a factor of 9/5.

Other issues discussed in detail in section 3, also reoccur in implementing the spectral
model. These include the advantage of using send ordering rather than news ordering, the
importance of avoiding an explicit bit-reversal, and finally the essential importance of an
optimal choice of assignments to specific physical hypercube channels in each coordinate direc-
tion. The bit-reversal issue is best handled by storing and bit-reversing the coefficients of the
derivative matrices dxk and dyl during initialization. These bit-reversed matrices may then be
used at every timestep.

5.3. CRAY Fortran Code for Explicit Algorithm

It is interesting to compare the actual code for the CRAY and CM-2 implementations in
the explicit case. The Fortran code implementing the above explicit algorithm involves a 2D
rectangular grid with variables: u(,j), v(@.j), pG.j), z(.j), psi(i,j), h(i,j). There are three
main loops, two corresponding to the leap-frog time propagation of various quantities, and one
for the filtering step. A typical code sequence, used in the updating of the U, V and P vari-
ables, is:

- 19 -

do 200 j=1,n
do 200 i=1,m
unew(i+1,j) = uold(i+1 j)+
tdts8*(z(i+1 j+1)+2(i+1,j))*(cv(i+1 j+1)+cv(i j+1)+cv(i)
+ev(i+l j))-tdesdx*(h(i+1 j)-h(ij))
vaew(i,j+1) = vold(i,j+1)-tdes8*(z(i+1 j+1)+z(i,j+1))
*ew(i+1 j+1)+cu(ij+1)+cu(ij)+culi+l j))
-tdtsdy*(h(i j+1)-h(i,j))
pnew(ij) = pold(ij)-tdtsdx*(cu(i+1,j)-cu(ij))
-tdisdy*(cv(i j+1)-cv(i,j))
200 continue

Each such loop is followed by code to implement the periodic boundary conditions. Note
that there are loops for both the horizontal and vertical boundaries, and in addition some corner
values are copied as single items.

5.4. CM-2 Code for Explicit Algorithm

For the Connection Machine implementation, we specify that the the machine is to be
organized as a 2D rectangular grid of virtual processors, with one virtual processor (vp) per
grid point i,j. The grid variables u,v,p,z,h are then allocated as Pvars - parallel variables.
The connection machine software automatically stores them according to the specified grid for-
mat.

The Connection Machine code corresponding to the main double loop given previously in
Fortran, is actually simpler than on the CRAY. To begin with, the loops disappear from the
code. This is because all global do loops are replaced by parallel operations. A second
simplification is that relative, rather than absolute, addressing is provided for. Because of the
local nature of the discretization equations, such relative addressing is far more convenient.
The form of the CM code is then:

unew = uold + tdts8*(east(z) + z)*(east(cv) + south(east(cv)) + south(cv) + cv) - tdisdx*(h - south(h))
vnew = vold - tdis8*(north(z) + z)*(north(cu) + cu + west(cu) + north(west(cu))) - tdtsdy*(h - west(h))

pnew = pold - tdisdx*(north(cu) - cu) - tdisdy*(east(cv) - cv)

Here north, south, east and west are specific relative addressing modes understood by the CM
software when dealing with rectangular grids. Note that no explicit communication routines
are evident, such as one would usually see in corresponding code for other hypercube proces-
sors. We have implemented the shallow water equations in two CM languages - c" and
*LISP. The C" code is essentially exactly as above, whereas the *LISP version differs in
employing reverse polish notation in writing the expressions.

All boundary loops are replaced by parallel operations with processor selection. Basically
we create boolean grid variables which record which processors liec on each of the four boun-
daries of the rectangle. These operations will in fact be particularly slow, since they are
effectively gather-scatter operations - data must be fetched from points at the opposite side of

-20 -

the grid, and are conscquently remotely and irregularly located within the hypercube.

There is an essential simplification that occurs in the case that the grid dimensions are
both powers of two. On a hypercube, power-of-two grids are periodic. Thus in such cases
the code for boundary copying may simply be omitted, and in fact we modified the translated
program to detect such cases automatically. This is in fact the only change we made in
translating the original Fortran program to *LISP, apart from the introduction of parallel vari-
ables and operators, and the coding of loops using processor selection.

5.5. Performance Results: CRAY-XMP/48 vs. CM-2

We have tested both the explicit and spectral models on a CRAY-XMP" and on the CM-
2. In each case we have solved the largest grid size that would fit in memory.

The CRAY-XMP4/8 performed the explicit computations at 560 Mflops with 4 proces-
sors on a 512x512 grid. The corresponding performance on a single processor was 148 Mflops.

The CRAY spectral code performed poorly on grids that were a multiple of 64 due to
memory bank conflicts and consequently we tried various grid sizes. The 500x500 performance
of 122 Mflops was the best observed from among a large range of power-of-two and other
grids.

The CM-2 performed the explicit model at 1,714 Mflops with 65,536 processors on a
2048x2048 power of two grid. In addition to being over three times faster than the four-
processor CRAY, the CM-2 can clearly handle much larger problems in memory than can the
CRAY. Solving a 2048x2048 grid problem on the CRAY would necessitate recoding the whole
problem to use a solid state disk (SSD), and would result in lower performance.

The CM-2 has a severe disadvantage on the explicit code when processing a grid that is
not a power of two in each direction. For such grids, CM performance dropped by a factor of
2.4 due to boundary effects. The essential problem here is the non-local nature of the periodic
boundary condition, implying the need for long-range communication. The presence of Neu-
mann or Dirichlet boundary conditions on a non power of two grid would have much less seri-
ous results since only local communication is involved.

Maximum spectral performance for the CM-2 was 1,167 Mflops, again on a 2048x2048
grid. This was accomplished using send ordering of the NEws grid, no explicit bit-reversal of
output from FFT’s, and by performing a sweep of all possible physical channel assignments to
locate an optimal choice. We have covered the latter issue in great detail in section 3.

In table 7 we list the results of representative performance of both the explicit and spec-
tral codes on the CRAY-XMP and CM-2 computers. A four processor result for the XMP
spectral code is not yet available as some significant work is required to multi-task the special-
ized assembly language FFT routines used on the XMP.

A comment is in order about the use of Mflops in the comparison. The Mflops being
performed are essentially equivalent in "usefulness” between the CRAY and the CM-2, but not
between explicit and spectral methods. This was measured by computing the actual processing
time per grid-point, which is in fact a better measure of performance than Mflops. This quan-
tity behaved in the same way as the Mflops, apart from an expected logarithmic term due to
the inherent logarithmic time dependence of the FFT.

* All CRAY-XMP measurements were performed by R. Sato of NCAR.

221 -

Table 7: Performance of Shallow Water Equations

Machine Processors | Algorithm Grid Size Performance
CRAY-XMP 1 Explicit 256%x256 148 Mflops
CRAY-XMP 4 Explicit 512x512 560 Mflops
CM-2 65536 Explicit 2048%2048 1714 Mflops
CRAY-XMP 1 Spectral 500%500 122 Mflops
CM-2 65536 Spectral 2048%x2048 1167 Mflops

ACKNOWLEDGEMENTS

Most of the development work for the computations described here was performed on the

CM-2 computer at the Center for Applied Parallel Processing (CAPP), University of Colorado,
which was provided to CAPP by the Defense Advanced Research Projects Agency. All of the
large grid computations (over 500,000 points) were performed on the CM-2 computer at the
Los Alamos National Laboratory. We would also to thank Thinking Machines Corporation for
providing a beta release of their FFT software, and R. Krawitz of TMC for helpful discussions.

References

1. O. McBryan, ‘““The Connection Machine: PDE Solution on 65536 Processors,”’ Parallel
Computing, vol. 9, pp. 1-24, North-Holland, 1988.

2. O. McBryan, ‘“New Architectures: Performance Highlights and New Algorithms,”” Paral-
lel Computing, vol. 7, pp. 477-499, North-Holland, 1988.

3. P. O. Frederickson and O. McBryan, ‘‘Parallel Superconvergent Multigrid,”” in Multigrid
Methods: Theory, Applications and Supercomputing, ed. S. McCormick, Math Applica-
tions Series, vol. 110, pp. 195-210, Marcel-Dekker Inc., New York, 1988.

4. P. O. Frederickson and O. McBryan, ‘‘Superconvergent Multigrid Methods,”” Cornell
Theory Center Preprint, May 1987.

5. P. Frederickson, ‘‘Totally Parallel Multilevel Algorithms,”” RIACS Technical Report
88.34, Nov, 1988.

6. C. Lanczos, ‘‘An Iteration Method for the Solution of the Eigenvalue Problem of Linear
Differential and Integral Operators,”” J. Res. Nat. Bur. Standards, vol. 45, pp. 255-282,
1950.

7. M. R. Hestenes and E. Stiefel, ‘‘Methods of conjugate gradients for solving linear sys-
tems,”’ J. Res. Nat. Bur. Standards, vol. 49, pp. 409-436, 1952.

8. 1. K. Reid, “°On the method of Conjugate Gradients for the Solution of Large Sparse

Systems of Linear Equations,’” in Large Sparse Sets of Linear Equations, ed. J. K. Reid,
pp. 231-54, Academic Press, New York, 1971.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

-22 -

P. Concus, G. H. Golub, and D. P. O’Leary, ‘‘A Generalized Conjugate Gradient Method
for the Numerical Solution of of Elliptic Partial Differential Equations,’” in Sparse Matrix
Computations, ed. D. J. Rose, Academic Press, New York, 1976.

G. H. Golub and C. F. Van Loan, Matrix Computations, John Hopkins Press, Baltimore,
1984.

M. Engeli, Th. Ginsburg, H. Rutishauser, and E. Stiefel, Refined Iterative Methods for
Computation of the Solution and the Eigenvalues of Self-Adjoint Boundary Value Prob-
lems, Birkhauser Verlag, Basel/Stuttgart, 1959.

L. Johnsson, C.-T. Ho, Michel Jacquemin, and Alan Ruttenberg, ‘‘Computing Fast
Fourier Transforms on Boolean Cubes and Related Networks,”” Advanced Algorithms and
Architectures for Signal Processing II, vol. 826, pp. 223-231, Society of Photo-Optical
Instrumentation Engineers, 1987.

P. Swarztrauber and R. Sweet, ‘*Vector and Parallel Methods for the Direct Solution of
Poisson’s Equation,’’ J. Computational and Applied Mathematics, 1989, to appear.

L. Johnsson, R. Krawitz, and R. Frye, ‘‘Computing radix-2 FFT on the Connection
Machine,”” Technical Report, Thinking Machines Corp..

O. McBryan and L. Padmanabhan, ‘‘Conjugate Residuals on the Connection Machine -
Application to Oil Reservoir Simulation,”’ in Proceedings of Copper Mountain Multigrid
Conference, ed. S. McCormick, 1989, to appear. ‘

G.-R. Hoffman, P.N. Swarztrauber, and R.A. Sweet, ‘‘Aspects of using multiprocessors
for meteorological modeling,”” in Multiprocessing in Meteorological Models, ed. D. Snel-
ling, pp. 126-195, Springer-Verlag, Berlin, 1988.

R. Sadourny, ‘“The dynamics of finite difference models of the shallow water equations,”’
JAS, vol. 32, pp. 680-689, 1975.

G.L. Browning and H.-O. Kreiss, ‘‘Reduced systems for the shallow water equations,”’
JAS, 1o appear.

O. McBryan, ‘‘Connection Machine Application Performance,’” in Scientific Applications
of the Connection Machine, Proceedings of the NASA-Ames Conference on Massively
Parallel Computing, ed. Horst Simon, 1989.

