Current Developments
in Parallel Computation

Oliver A. McBryan

CU-CS-433-89 April 1989

Department of Computer Science
Campus Box 430

University of Colorado

Boulder, Colorado 80309

Current Developments in Parallel Computation’

Oliver A. McBryan ™

Director,

Center for Applied Parallel Processing,
Dept. of Computer Science,
University of Colorado,
Boulder, CO 80309-0430.

ABSTRACT

Recently highly parallel machines have taken the lead as the fastest supercomputers, a trend that
is likely to accelerate in the future. We describe recent developments in parallel computers and in asso-
ciated system software. We describe some of these new computers in more detail, focusing on their
novel aspects. Finally we present comparisons of conventional supercomputer performance, as
exemplified by the CRAY-XMP, to that on a massively parallel computer, in areas as diverse as PDE
solution, oil reservoir simulation and atmospheric modeling.

+ To appear in GMD-Spiegel, April 1989.
+ Research supported in part by DOE contract DE-ACO2-76ER03077, by NSF grant DMS-
8619856 and by NSF Cooperative Agreement DCR-84200944.

1. INTRODUCTION

Supercomputers are the key to the simulation of a wide range of important physical problems.
Such simulations typically require large numbers of degrees of freedom to provide sufficient resolution,
particularly when engineering accuracy, rather than simple qualitative behavior, is required. In many
cases one is currently limited by available computer resources, rather than by an understanding of the
underlying physics.

A prime example of the needs for massive computer simulation is exhibited by the case of weather
and climate forecasting. Global weather models represent the atmosphere as a three dimensional grid
laid out along latitude, longitude and vertical directions on the sphere. The most detailed weather simu-
lations performed to date use about 200 grid points in each horizontal coordinate direction and perhaps
20 in the vertical. Such resolution is woefully inadequate. To place it in context, note that with such a
resolution the FRG would be represented by perhaps a single grid-point, allowing for no variation what-
ever in the temperature and pressure from Hamburg to Munich. Similarly the State of Colorado would
be represented by a single point, completely ignoring the presence of over seven hundred 4,000 meter
mountains within the state.

Even more challenging than the weather modeling problem is the prediction of flow in the ocean.
The importance of oceanographic simulation is borne out by the wide-spread disruption caused by the
return in 1986 of El Nino, a cyclical tropical current in the Pacific Ocean. El Nino is believed to have
dominated world weather conditions for close to two years before it finally decayed. The primary
difficulty with ocean modeling is caused by the enormous range of scales required to effectively simu-
late an ocean. Ocean eddies may range in scale from the diameter of oceans to centimeters or less.
While the solution undoubtedly lies in the direction of better turbulence models to describe the flow, the

use of massive supercomputer simulations may well be essential to discovering such better models.

As another example, it is very desirable to simulate accurately the flow of air over a plane.
Current aircraft design strategy involves the use of wind tunnels. However wind tunnel testing is lim-
ited with respect to aircraft size and Mach number, although extrapolations from smaller scale models
can overcome some of the limitations. Planned wind tunnel testing for the Boeing 7J7 was greatly
reduced thanks to advances in computational aerodynamics, substantially curtailing 7J7 development
time and, consequently, costs. But the computational techniques now in use do not simulate the com-
plete physics for the flow past the entire aircraft; they model various aspects of the flow that, when
combined, give guidance to the design, but not answers. The major limitation is that as more of the
plane is included in the simulation, the numerical grids become larger, requiring more processing power
and memory.

The same phenomenon is seen in oil reservoir simulation, in combustion studies, and wherever
quantitative computations in three dimensions are performed. A non-inclusive list of application areas
that would benefit substantially from increased computer power is given in table 1.

While there are no absolute standards for comparing computer performance, the concept of peak
floating point performance is one widely used criterion. This performance measure is generally
described by the number of floating point operations per second ("flops") that the computer can deliver.
For this purpose additions and multiplications are usually treated equally (as well as subtraction or divi-
sion), whereas operations such as copying floating point data, or initializing data are ignored. A rate of
one gigaflops (abbreviated Gflops) represents a processing power of one billion floating point operations
per second. We will also use the names megaflops (or Mflops) for a million operations per second, and
teraflops (or Tflops) for a trillion operations per second. Several current supercomputers have passed

Table 1: Major Supercomputer Applications

Weather Modeling

Global Change and the "Greenhouse Effect”
Aerodynamic Design

VLSI Design

Automobile Design

High Temperature Superconductivity
Pharmaceutical Industry

Molecular Modeling and "Designer Chemicals"
The Human Genome project

Computer Vision and Image Processing
Seismic Processing

Oil Reservoir Simulation

Stability of Large Structures

Quantum Chromo-Dynamics

Transport Phenomena

Linear and Non-linear Optimization

Cryptography

the one Gflops barrier. Major advances in many of the listed application areas are expected as soon as
computer power increases to about 100 Gflops, and especially if one can reach the Tflops range. This
would correspond to an increase of close to an order of magnitude in resolution in each of the coordi-
nate directions of typical fluid simulations, compared to current vector machine capabilities.

Conventional supercomputers with one or a few processors are limited by various factors, includ-
ing the need to dissipate energy in a small volume, effects of the finite speed of light, and bottlenecks
related to memory access. It is widely believed that parallel computers provide the only hope of reach-
ing this range of computer power in the near future. Furthermore, in most applications the cost per
megaflop is a relevant issue. Massively parallel computers provide economies of scale not available to
conventional computers larger than a personal computer. Parallel computers may in addition be built
from Iower cost technologies, because the individual processors need not be particularly powerful.

Because of these factors, parallel computers have been widely studied in recent years. Substantial
research has been accomplished related to these machines, including both theoretical advances, involving
algorithm design, and computational experiments. Hardware advances have reached the point where the
fastest available supercomputers are now highly parallel machines!, as we demonstrate in section 4.
Furthermore, the combined efforts of many researchers have demonstrated that parallel computing is
feasible.

The one great disadvantage of a parallel computer, is that it is much harder to program than a
serial machine. Each processor must be assigned a distinct component of the work to be performed, and
substantial synchronization of the processors is then required in order to ensure that the results from
individual processors are merged appropriately. The difficulties of programming parallel machines have
spawned a whole range of new research areas for computer science and are a primary reason why this
area has been so dynamic in recent years.

In section 2 we give an overview of the architectural and software approaches used by current

parallel computers. In section 3 we review in more detail some of the specific parallel architectures that
are currently available or are that under development. For further details on several of these

-4 -

architectures, and for examples of applications such as partial differential equation solution on these
machines, we refer to our papers!-’. In Section 4 we provide examples of the extraordinary perfor-
mance attainable with current parallel machines applied to both model problems such as PDE solution,
as well as to more complete physical simulations.

2. OVERVIEW OF PARALLEL SYSTEMS

2.1. Classification of Parallel Computers

Parallel computers may be broadly categorized in two types - SIMD or MIMD®. SIMD and
MIMD are acronyms for Single Instruction stream - Multiple Data stream, and Multiple Instruction
stream - Multiple Data stream respectively. In SIMD computers, every processor executes the same
instruction at every cycle, whereas in an MIMD machine, each processor executes instructions indepen-
dently of the others. The vector unit of a CRAY computer is an example of SIMD parallelism - the
same operation must be performed on all components of a vector. Most of the interesting new parallel
computers are of MIMD type which greatly increases the range of computations in which parallelism
may be effectively exploited using these machines. However, this occurs at the expense of program-
ming ease - MIMD computers are much more difficult to program than SIMD machines. Many current
designs incorporate both MIMD and SIMD aspects - typically each node of an MIMD system is itself a
Vector processor.

Another easy categorization is between machines with global or local memories. In local memory
machines, communication between processors is entirely handled by a communication network, whereas
in global memory machines a single high-speed memory is accessible to all processors. Beyond this, it
becomes difficult to categorize parallel machines. There is an enormous variety in the current designs,
particularly in the inter-connection networks. For a taxonomy of current designs, see the paper of
Schwartz?.

While many interesting parallel machines involve only a few processors, we will concentrate in
this paper on those machines which have moderate to large numbers of processors. Important classes of
machines such as the CRAY X-MP, CRAY-2 and ETA-10 are therefore omitted from the subsequent
discussions.

2.2. A Partial List of Multi-processors

There are at least 50 to 100 parallel computer projects underway at this time worldwide. While
some of these projects are unlikely to lead to practical machines, a substantial number will probably lead
to useful prototypes. In addition, several commercial parallel computers have been or are already in
production (e.g., ICL DAP, Denelcor HEP, Intel iPSC, NCUBE, FPS T-Series, Connection Machine,
Symult, Meiko, Parsatec) and more are under development. One should also remember that the latest
CRAY computers, (¢.g. CRAY X-MP and CRAY-2) involve multiple processors, and other vector com-
puter manufacturers such as ETA Systems, NEC, Fujitsu and Hitachi have similar strategies.

Table 2 lists a selection of the parallel computers under development. This is just a sample of the
projects mentioned above, but covers a wide range of different architectures chosen more or less at ran-
dom. Beyond the simple classification into SIMD or MIMD computers we recognize a vast array of
different approaches to the task of building a parallel architecture. We will now look at the reasons for

Table 2: Some Parallel Computer Projects

ICL DAP Caltech Hyper-Cube
Intel iPSC hypercube NCUBE hypercube
Denelcor HEP-1 NYU/IBM Ultra-computer/RP3

Connection Machine CM-2 FPS T-Series
CRAY X-MP and CRAY-2 ETA-10

IBM 3096 Multiflow

Goodyear MPP MIT Data-flow Machines
BBN Butterfly Wisconsin Database Machine
SUPRENUM-1 IBM GF-11 and TF1

Paralex Pegasus Symult 2010

Myrias SPS-2 Cedar Project

Meiko Parsetec

Evans & Sutherland ES-1 CMU iWarp

Flex Alliant FX-8

Sequent Balance Encore Multimax

CCI Navier-Stokes Machine TERA

this broad array by discussing some of the possibilities encountered for both node and communication
facilities.

2.3. Node Design

Node design tends to be far less variable than other aspects of parallel computers. The main rea-
son for this is that most architects have relied on off-the-shelf products for the node - standard
microprocessors, floating point accelerators and memory chips. The advantage is that startup time for a
project may be substantially reduced. Additionally there is a usually a substantial body of low-level
software available for such processors - software such as compilers, assemblers and debuggers. Thus
we find that an enormous number of the current parallel computer products are based on one or more of
the Intel 80386, Motorola 68020, INMOS T800 transputer and the Weitek floating point accelerators.
Typically one of these microprocessors will be combined on a board with a floating point co-processor
(e.g. 80387 or 68881), possibly a Weitek processor and several megabytes of memory. Memory con-
sumes substantial space, and current systems have in the range of 1 to 20 MBytes per node. Despite
these general comments, it should be mentioned that some manufacturers have developed custom pro-
cessors specifically for parallel computers. In the list above we would point to the DAP, NCUBE,
HEP-1, CM-2, ES-1, iWarp and Navier-Stokes machines as examples. The iWarp is of particular
interest here on account of the high level of integration used in the design of the custom processing ele-
ment.

2.4. Communication Features

The range of inter-processor communication facilities is what really characterizes the differences in
architecture among the various parallel machines. While we have previously distinguished the shared
memory and distributed memory classes, one should observe that this distinction should not be taken too

-6 -

seriously. A distributed memory computer can certainly simulate a global shared memory.

Communication pathways are typically built either from direct point-to-point connections, or from
busses. Busses have the advantage that many processors may be serviced by one communication path,
but have the disadvantage of slower bandwidth performance as the number of processors increases.
With point-to-point connections, processors that are directly connected will have very efficient communi-
cation, but indirectly connected processors will likely incur substantial extra overheads including
increased latency as well as lower bandwidth.

The most popular interconnection strategies involve simple symmetric arrangements including
rings, meshes, hypercubes, trees and complete connections or crossbars. The prevalence of hypercube
designs is explained by the fact that that architecture supplies substantial parallel bandwidth for many
standard algorithms, for example the Fast Fourier Transform, while at the same time incurring only rela-
tively modest fan-in and fan-out of connections which grow in number only logarithmically with the
processors. Table 3 compares several simple topologies as a function of processor number P from the
point of view of amount of wiring (difficulty of building), connectivity (ease of programming) and max-
imal path (efficiency of long-range communication).

Table 3: Properties of Interconnection Networks
Network Wires Connectivity | Max Path
Cross Bar P? P 1
1D Grid P 2 P
2D Grid 2P 4 2\P
Binary Tree P 1-3 2logP
Hypercube SPlogP logP logP

While cross bar switches are extremely difficult to build for large numbers of processors, they
have tremendous flexibility in terms of efficiency and ease of use. It is conceivable that a technological
breakthrough such as optical switching might allow cross bars to be built that would cormect thousands
of processors. For the time being, crossbars are restricted to small systems of at most 64 processors, or
to providing interconnects among the processors of sub-clusters within larger machines.

Bus based connection networks are attractive for moderate numbers of processors, for example 16
to 32. Beyond this point bandwidth begins to suffer intolerably. Architectures based on busses there-
fore tend to be hierarchial beyond that number of processors. As an example, the SUPRENUM-1 com-
puter uses a fast local bus to connect within a cluster of 16 processors. Clusters are arranged in a rec-
tangular grid and connected by row and column busses, which has the added attraction of providing
redundancy and double bandwidth. New configurations of processors continue to be proposed. Of par-
ticular interest are Giloi and Montenegro’s TICNET architecturel®, and Faber’s vertex-symmetric
minimal path networks!l,

One recent trend is the move towards "worm-hole" routing in distributed systems. The basic idea
here is to allow virtual circuits to be established between remote processors, and without the necessity
of interrupting any intermediate nodes. While there may be a small overhead for circuit creation, subse-
quently all data traverses the circuit without overheads such as multiple startup costs at intermediate
nodes. Once a circuit is established, communication proceeds essentially in bit-serial fashion.

-7 -

Frequently it suffices to create logical rather than physical connections. These allow messages to
proceed on virtual worm-hole channels, but with the possibility that physically the channels are multi-
plexed. This is particularly convenient as a means for preventing dead-locks and blocking of small mes-
sages by large ones. The resulting communication performance tends to be essentially independent of
distance. Worm-hole routing is utilized in the CM-2, the iPSC2, iWarp and the Symult among others.
In the case of the Symult, the designers were so confident of the advantages of worm-hole routing that
they abandoned a hypercube architecture from their first generation in favor of a simple two-dimensional
rectangular grid.

2.5. Software

Software for currently available parallel computers is extremely limited. In all cases manufacturers
provide Fortran and C compilers, which are frequently just a single-node processor compiler. These
compilers have no concept of parallelism or of communication capability. Typical examples are the sys-
tems supplied by Intel, Symult and NCUBE. In these systems, all communication and process control is
initiated explicitly by the user, resulting in substantial code modification as well as a loss of portability
of software. Typically libraries of low-level communication primitives are supplied with these systems
to allow the user to initiate communications operations. The resulting software is best described as
"programming in communication assembly language".

A few manufacturers have gone beyond this step by providing language extensions that capture
aspects of the parallel hardware. Thinking Machines provides a parallel Fortran for their Connection
Machine CM-2 computer. The compiler supports the Fortran 8X array extensions to Fortran 77, and the
convention is that objects declared as arrays are understood to be distributed across the parallel proces-
sors. Communication among processors is supported by the 8X shift operations, as well as the various
reduction operators such as vector sum. While the Connection Machine programming environment is
remarkably elegant and user-friendly, one should point out that the task is much simplified by the SIMD
nature of the hardware which maps extremely well onto array operations.

Myrias Corporation and Evans and Sutherland both support a virtual address space across proces-
sors. If a processor attempts to access a memory location not in its physical memory, then a page fault
occurs and the appropriate memory page is fetched from the processor who has it. Myrias in particular
have implemented a sophisticated mechanism for load balancing and rapid access to memory. The sys-
tem attempts to localize page table information and to provide access to it in a distributed fashion.

SUPRENUM supports extensions to Fortran for task control, and to assist in communication
operations. In addition SUPRENUM is unique in providing a sophisticated high-level interface to the
communication system. The library supports a range of grid-oriented operations that largely shield a
numerical user from dealing with the communication system directly. In addition to providing powerful
programming tools, such systems deliver the possibility of substantial program portability across archi-
tectures that support the common set of primitives.

One should also note the tendency to support virtual processes. This is an important aid to
software development as it allows an application to simulate a larger number of processors than are phy-
sically present. Virtual processing is supported by the majority of systems in one form or another.
Examples include iPSC, SUPRENUM, Symult and CM-2.

-8 -
3. SOME REPRESENTATIVE PARALLEL SYSTEMS

In this section we will look briefly at the characteristics of a number of these machines. The
machines currently under development have processor numbers ranging between 2 and 65,536. The
machines listed above vary greatly in local processing power, ranging from a few megaflops up to 20
Gflops.

Evans and Sutherland ES-1

The ES-1 is a new (1989) parallel architecture based on a hierarchial crossbar structure. The basic
"processor” is a complex package consisting of a cluster of 16 processing elements called computational
units, along with 256 Mbytes of shared memory. Each processor supports an I/O subsystem with a
bandwith of 160 Mbytes/sec over eight full duplex channels. Up to 8 processors and 8 I/O subsystems
are currently supported. As mentioned previously, the ES-1 supports a virtual memory address space of
32 bits, which greatly simplifies program development for the system.

The processors and I/O subsystems are connected together by a crossbar. Each node (computa-
tional unit) is a 20 MIPS 10 MFLOPS (64-bit precision) scalar processor with six pipelined functional
units. The 16 nodes in a processor are connected by a 1 Gbyte/sec interconnect crossbar. The memory
is 64-way interleaved and supports a bandwidth of 640 Mbytes/sec. The ES-1 operating system is a full
UNIX system and runs in every computational unit. Unlike most distributed processors, there is no
front end processor. Since each cluster delivers 160 Mflops double precision, the most powerful current
system delivers a peak rate of 1280 Mflops scalar and supports 2 Gbytes of memory.

CMU iWarp

The iWarp computer!? is a follow-on to the 100 Mflop Warp processor developed at Carnegie-
Mellon University. The key advance in the iWarp is the development of a single chip processor com-
bining the following functions: 20 Mflops computational power, 320 Mbyte/sec memory throughput and
a communication engine with a latency of only 150 nanoseconds. The processor has been implemented
as a 600,000 transistor custom VLSI chip fabricated by Intel Corporation, hence the i in the name
iWarp. Up to 64 Mbytes of memory is accessible per processor.

One important point is that the processor accomplishes 20 Mflops without pipelining. The adder
unit delivers 5 Mflops (64-bit) or 10 Mflops (32-bit), non-pipelined, as does the multiplier unit. In addi-
tion the integer/logical unit delivers 20 Mips. All three units may perform simultaneously.

The system has been designed for flexibility from the start, and can be used efficiently to represent
either general purpose distributed memory computers, or special purpose systolic arrays. The initial
iWarp is an 8x8 array of processors delivering 1.2 Gflops, and expected to be available in 1990, but
there are plans to extend this up to 1,024 processors.

One of the advances made in the iWarp project is the development of parallel program generators.
These are tied to specific application domains - for example there is one for domain-based scientific
computing, and another for image processing.

The communication facilities of iWarp are based on four input and output ports, each running at
40 Mbytes/sec. An input port of one iWarp processor may be connected directly to the output port of
another processor to form a point-to-point communication network. A natural arrangement is thus to
create one and two dimensional grids of processors. Because the communication processor performs
independently of the numeric processor, worm-hole routing can be supported. Logical channels are sup-
ported by multiplexing of the physical communication lines, allowing for deadlock to be broken, and for

-9

long messages to be interrupted in worm-hole routing.

Connection Machine

The Connection Machine CM-1 designed by Thinking Machines, Inc., of Cambridge, MA, has
65,536 1-bit processors, though this may be regarded as a prototype for a machine that might have
1,000,000 processors. While designed primarily for artificial intelligence work, this machine has
proved to have even greater potential applications to scientific computing applications!:>. The more
recent CM-2 computer adds 2,048 Weitek floating point processors and 512 Mbytes of memory, to pro-
vide a powerful computer for numerical as well as symbolic computing. The CM computers are SIMD
machines. Logic is supported by allowing individual processors to skip the execution of any instruction,
based on the setting of a flag in their local memory. The CM machines are based on a hypercube com-
munication network, with a total communication bandwidth of order 3 Gbytes/sec. Communication is
by worm-hole type routing. The system supports I/O to disks at up to 320 Mbyte/sec, and to frame
buffers at 40 Mbyte/sec.

Connection Machine software consists of parallel versions of Fortran, C and Lisp. In each case it
is possible to declare parallel variables, which are automatically allocated on the hypercube. Programs
execute on a front end machine, but when instructions are encountered involving parallel variables, they
are executed as parallel instructions on the hypercube. The system supports the concept of virtual pro-
cessors. A user can specify that he would like to compute with a million (or more) virtual processors,
and such processors are then similar to physical processors in all respects except speed and memory
size. A typical use is to assign one virtual processor per grid point in a discretization application. This
provides a very convenient programming model. Parallel global memory reference is supported using
both regular multi-dimensional grid notations (NEWS communication) and random access (hypercube)
modes.

Myrias

The Myrias SPS-2 computer, built by Myrias Research Corp. of Edmonton, Alberta, has up to
1024 processing elements. The architecture is a hierarchial bus design, utilizing 33 Mbytes/sec busses
to interconnect processors within clusters and clusters to each other. Each processor is a 32-bit
Motorola 68020 microprocessor with 4 Mbytes of local memory. The architecture is a three-level
hierarchial system. Processors are assembled in groups of four on a board connected among each other
by a bus, along with an I/O port controller. At the second level in the hierarchy is the card cage, con-
taining 16 processor boards and thus 64 processors, as well as one or two off-cage communication
boards. Each communication board supports four off-cage links which can be connected to other cages
or to the front end computer.

The SPS-2 supports a global 32-bit virtual address space. There is no concept of shared access to
memory locations. Simple extensions of Fortran support parallel do and a join operation. The Par Do
model used by Myrias is somewhat unusual in that there are no possibilities for sharing data. A Par Do
is executed by specifying a code segment to be executed and the number of child tasks to be run. Each
thread of execution performs completely independently in its own address space, starting with a copy of
the parents memory. Execution of a child proceeds in normal sequential mode, except that Par Do’s
may be nested recursively. On completion of all children, the memory states of the children are merged
to form the new memory state of the parent. Thus a child can never affect the memory of another child,
but can affect the memory state of its parent, but only after all children merge.

-10 -

The rules for merging of child memories on completion are:

° If no child stored a value at the address, the location in the parent memory retains its original
value.

. If exactly one child changed a value at the address, the location in the parent receives the last
value from the child.

® If more than one child stores a value at the address the result is unpredicatable unless all values
stored are the same. Efficiency is maintained throughout the process by using a copy-on-write
approach which ensures that most of the global address space is never really replicated.

The programming approach to the system is thus functional in nature and is based on parallel recursion.
As an example, we describe an implementation of a global vector sum, assuming the vector is initially
of length N. The parent creates 2 tasks, each intended to sum half of the elements, storing the results in
variables left and right. Each child task similarly spawns two more children, storing results into 2 local
variables of the principal child, and so on. On completion of a pair of child tasks, its parent has the two
partial sums in separate variables, and therefore it proceeds to add these, providing its value to the next
parent above. In this way the result is obtained at the global parent in time Jog (N)without ever sharing
memory. All assignment of work to processors is handled automatically.

SUPRENUM

The German SUPRENUM-1 project involves coupling up to 16 processor clusters with a network
of 200 Mbyte busses. The busses are arranged as a rectangular grid with 4 horizontal and 4 vertical
busses. Each cluster consists of 16 processors connected by a fast bus, along with I/O devices for com-
munication to the global bus grid and to disk and host computers. There is a dedicated disk for each
cluster. Individual processors can deliver up to 16 Mflops of computing power and support 8 Mbytes of
memory. The very high speed of the bus network makes this an interesting machine for a wide range of
applications, including those requiring long-range communication. No more than three communication
steps are ever required between remote nodes. A prototype cluster containing 16 nodes is already in
operation, and a full machine with up to 16 clusters will be available in late 1989.

SUPRENUM is characterized by the best support for scientific applications to be found among the
various vendors. The effort invested in development of libraries of high-level grid and communication
primitives will greatly ease the effort of moving applications to the computer, and also provides substan-
tial high-level portability to other systems, since the communication library can be implemented in terms
of low level primitives on any distributed system.

Intel iPSC

The Intel iPSC was the first commercial hypercube computer, and has been the most widely avail-
able highly parallel computer in recent years. Built from 128 Intel 80286 processors, peak computer
power was under 10 Mflops, yet the iPSC was the basis for a large number of useful experiments in
parallel computing. The recently developed iPSC/2 computer is a second generation machine that pro-
vides greatly increased processing power and communication throughput. Each node contains an 80386
microprocessor with up to 8§ Mbytes of memory (extendible to 16Mbytes with 64 processors). There are
three available numeric co-processors: an Intel 80387 co-processor (300 Kflops), a Weitek 1167 scalar
processor (900 Kflops) and a VX vector board (6 Mflops double precision, maximum of 64 nodes).
Thus the top-rated system has 64 nodes capable of 424 Miflops double precision and 1280 Miflops single
precision. Special communication processors allow message circuits to be established between remote
processors without intervention from intermediate processors. Thus the iPSC now implements worm-

- 11 -

hole routing rather than the store and forward protocol of previous generations.

Symult

The Symult 2010 is a new commercial machine based on a grid architecture. Individual nodes
consist of a Motorola 68020 (25 MHz) with a 68881 co-processor (150 Kflops). An optional upgrade to
the 68882 processor (215 Kflops) is possible. A further option provides for a vector processing board
based on Weitek chips, with a 20 Mflops performance. Peak performance of a 1024 node system may
be as high as 20 Gflops. Memory per node ranges from 2 to 10 Mbytes. Maximum node memory is §
Mbytes, with a further 10 Mbytes of memory on the vector board. The most interesting feature of the
machine is the message routing system which establishes point-to-point communications between remote
nodes. Each node has a routing device that can support simultaneous transmission on four links at
20Mbytes each, without interruption of intermediate computational processors. Communication is by
"worm-hole" connectivity rather than the usual store-and-forward, resulting in far greater performance
for long-range communication. In this communication mode, a connection circuit is first established
between remote nodes, incurring a small startup cost, after which the message is transferred in bit-serial
fashion in a single operation. Worm-hole communication provides extremely fast long-distance com-
munication, whereas a standard store and forward model would incur large overheads due to the long
path-lengths on a grid.

AMT DAP

The DAP was the first massively parallel single-bit computer, and has been widely used for a
range of scientific applications. Its current incarnation as the AMT 510 attached processor, provides the
capability to attach a 1024 processor DAP array to any VAX or SUN computer. The 510 is a 32x32
array of processors, arranged as a two-dimensional grid and is implemented in VLSI on 16 chips.
Additional busses connect all processors on each row and column and are used for broadcasts and other
non-local operations. Up to 1 Mbit of memory may be installed per processor, for a combined total of
128 Mbytes. The computer is SIMD, and can execute at up to 60 Mflops, although boolean operations
perform at up to 10 Gips.

Paralex Gemini and Pegasus

Paralex Research Inc. is developing a line of highly parallel local memory systems in the super-
computer class. The initial Gemini product supports up to 1000 nodes with peak performance up to
about 2 Gips and 500 Mflops. The Gemini uses a hypercube to provide connectivity, and also features
a high performance UNIX front end. The second generation Pegasus machine, due in 1989, will sup-
port 512 nodes with 8 Gbytes of memory and will provide 25 Gips and 15 Gflops peak rate. This sys-
tem will be based on the new SPARC technology being licensed by SUN Microsystems. The follow-on
Genesis system, planned for 1990, will provide up to 2 Tflops (teraflops) of performance.

GF-11 and TF1

The GF-11 is an IBM parallel computer, designed to perform very specific scientific computations
at Gflop rates. The GF-11 has 576 processors (including 64 backup processors), coupled through a
three stage Benes network which can be reconfigured at every cycle in 1024 different ways by an IBM
3084 control processor. Peak processing power of 11 Gflops will allow previously uncharted computa-
tional regimes to be explored. The machine has been designed primarily for solving quantum field
theory programs and is not a general purpose computer; in particular, very little software is available. It
is an SIMD architecture but with some flexibility in that the settings of local registers may be used to

-12 -

control the behavior of individual processors.

CCI Navier-Stokes Machine

The NASA sponsored Navier-Stokes Machine being built at Princeton University involves an
experiment with reconfigurable pipelines as well as parallelism. Up to 64 processors are supported with
hypercube connections. Each node consists of a CPU, 32 arithmetic processing units and 2 Gbytes of
memory. Each of the arithmetic units may be specified to be an adder, multiplier, etc., and connections
can then be specified between them in order to represent efficiently a pipeline to evaluate an expression.
Reconfiguring the connections takes only 50 nano-seconds. Since each arithmetic unit has a peak pro-
cessing power of 20 Mflops, the combined processing power per node is 640 Mflops. CCI Corporation
plans to market a commercial version of the Navier-Stokes Machine.

HEP and TERA

The Denelcor HEP was the first commercial parallel computer. The HEP featured a shared
memory, with special access bits 1o provide for memory locking on every word. The processors were
pipelined units, each capable of executing a large number of separate instruction streams simultaneously.
Each processor was rated at 10 Mips. The new TERA computer, designed by HEP creator Burton
Smith, will support 256 processors, each similar in many respects to the HEP, and will provide up to
256 Gflops of computational power in a shared memory, scalar processing environment.

Other Approaches

A variety of other important architectures are also under development. These include various
dataflow machines (with bus, tree and grid structures), examples include the MIT Tagged Token
machine, the NTT Dataflow grid machine and the Manchester Dataflow Machine. Another important
class are the tree-structured machines (binary trees, trees with sibling or perfect shuffle connections),
examples of which are the Columbia University DADO machine and the CMU Tree Machine. Because
of the simplicity of the connections, nearest neighbor machines, such as the MPP, and ring architectures,
such as the University of Maryland’s ZMOB (256 processors on a ring), are also popular designs.

4. PARALLEL PERFORMANCE ON SCIENTIFIC APPLICATIONS

In the previous sections we have given an overview of capabilities of some of the currently avail-
able parallel systems. In this section we turn to the question of what kind of performance one can
expect from these systems. In order to maintain coherence we will discuss performance on a single
parallel computer, the Connection Machine CM-2, and compare where appropriate with the CRAY-XMP
or CRAY-2 computers. The CM-2 is the computer with the highest peak processing power (20 Gflops),
and consistently delivers in the range of 1 to 3 Gflops on applications. Thus it sets a performance stan-
dard against which other potential supercomputers may be compared.

- 13 -

4.1. Solution of Elliptic Partial Differential Equations
Discretization of elliptic partial differential equations such as the equation

VE@Vu =@ ,

by finite element or finite difference methods, leads to systems of linear equations of the form Ax =y
with sparse coefficient matrices. The fill-in of the matrix tends to follow diagonals and the bandwidth is
about dN'? or dN? 3, for two or three dimensional space respectively, where N is the dimension of the
matrix and 4 is the degree of the finite elements used for the discretization. Furthermore, typically only
O (1) diagonals have nonzero elements. We have developed a parallel preconditioned conjugate gradient
algorithm!3-15 on the Connection Machine to solve systems of equations with such coefficient matrix
structures. A preconditioning operator can be effective in improving substantially the convergence rate
of the algorithm16.

We parallelize the algorithm by exploiting parallelism in every operation of the iteration. All of
the vectors in the algorithm are allocated as CM parallel variables (pvars). For our Poisson-like test
problem with a 5-point discretization on a rectangle, the operation x — Ax is easily written using the
NEWS grid addressing modes of the CM. For simplicity we have chosen the pre-conditioning operator
B to be the diagonal of the operator A. The other communication intensive operations in the conjugate
gradient algorithm are the several inner products of vectors which are required. These inner products
perform at very high speeds on the CM by taking advantage of the hypercube structure to evaluate the
global sum. For full details on the implementation, we refer to our paper.

The performance of this algorithm for a two-dimensional PDE discretized with a five-point formula
on a 65,536 processor CM-2 is presented in Table 4 where we have given results for solution of equa-
tions on grids up to size 4096x4096. These measurements were made with a simple diagonal scaling
pre-conditioner. As can be seen, the highest performance is attained with the largest grid size, which
corresponds to the highest virtual processor ratio.

Table 4: Performance of Conjugate Gradient on CM-2
Grid Size Mflops
512x512 1412
1024x1024 2357
2048x2048 3123
4096x4096 3812

We have also developed a fast-solver for the Poisson equation which uses an FFT algorithm developed
by Thinking Machines Corporation and supplied in the CM-2 mathematics library. The fast solver runs
at 1.1 Gflops, and has been used as a preconditioner for the conjugate gradient solver described above.
This results in far fewer iterations on fine grids, although the overall performance of the code in terms
of Mflops is then only 1.2 Gflops. However these are substantially more "useful" flops than in the diag-
onally preconditioned case.

-14 -

4.2. An example from Qil Reservoir Simulation

We have ported substantial segments of an oil reservoir simulator to the Connection Machine. In
particular the slowest part, the solver for a set of non-symmetric linear equations, is currently running at
7 times its performance on a CRAY-XMP. Remarkably higher speedups over a CRAY are found in
other parts of the code, and we illustrate this with the following example of a code fragment from the
simulator:

do 100 j = 1,nc
do 970 kz = 1,nz
do 971 jy = 1,ny
do 972 ix = 1,nx
tden(ix,jy.kz,j) = avmw(ix,jy.kz,j)/gvolph(ix,jy.kz,j)
dumr(ix,jy.kz) = grk(ix,jy.kz.j)/

& gvis(ix,jy.kz,j)/gvolph(ix,jy.kz,j)
972 continue
971 continue

970 continue

In the table below we present the performance of this code on a CRAY 2 processor, and on the CM-2.
The CRAY-2 performance is better than the CRAY-XMP performance the oil company in question was
attaining, and the grid sizes shown for the CRAY-2 represent the limits of the capability of the XMP to
handle the overall problem in memory.

Machine Processors nx ny nz nc¢c Performance

CRAY 2 1 16 16 32 2 18 Mflops
CM-2 65536 64 64 64 2 741 Mflops

4.3. Atmospheric/Oceanographic Simulation

As another example of the current capabilities of massively parallel architectures, we describe the
implementation of a standard two-dimensional atmospheric model - the Shallow Water Equations - on
the Connection Machine. These equations provide a primitive but useful model of the dynamics of the
atmosphere or of certain ocean systems. Because the model is simple, yet captures features typical of
more complex codes, the model is frequently used in the atmospheric sciences community to benchmark
computers!”. Furthermore, the model has been extensively analyzed mathematically and numeri-
cally!® 19 We" have recently implemented the shallow water equations model on the Connection
Machine, and compared the performance there with the CRAY-XMP We have used both explicit’ and

* Joint work with R. Sato and P. Swarztrauber of the National Center for Atmospheric Research.

- 15 -

spectral?? solution methods for the equations.
The shallow water equations, without a Coriolis force term, take the form

Ju oH
— - +— =0,
ot ox
dv oH
— -lu+—=0,
ot dy

oP OoPu OPv

where u and v are the velocity components in the x and y directions, P is pressure, { is the vorticity:
ov ou

= —a— - -a— and H, related to the height field, is given by: H =P + (u2 + vz)/z . It is required to
X Y

solve these equations in a rectangle a <x < b, ¢ <y < d. Periodic boundary conditions are imposed

on u, v, and P, each of which satisfies f (x+b,y) = f (x+a.y), f(x,y+d) = f (x,y+c).

We have discretized the above equations on a rectangular grid with periodic boundary conditions.
We time difference using the Leap-frog method. We then apply a time filter to avoid weak instabilities
inherent in the leap-frog scheme:

F(n) =f(n) + o (Jt‘(n’*'l)_zf(n)_‘_f(n—l)) ,

where o is a filtering parameter. The filtered values of the variables at the previous time-step are used
in computing new values at the next time-step. For a complete description of the discretization we refer
tol”,

In the case of the spectral version, the physical variables are Fourier transformed to frequency
space, and all spatial derivatives are computed in that space. An inverse Fourier transform is applied at
each time to recover the derivatives in grid space in order to compute the time derivatives and the pro-
pagation.

In table 5 we list the results of representative performance of both the explicit and spectral codes
on the CRAY-XMP and CM-2 computers. A four processor result for the XMP spectral code is not yet
available as some significant work is required to multi-task the specialized assembly language FFT rou-
tines used on the XMP.

Table 5: Performance of Shallow Water Equations
Machine Processors | Algorithm Grid Size Performance
CRAY-XMP 1 Explicit 256%x256 148 Mflops
CRAY-XMP 4 Explicit 512x512 560 Mflops
CM-2 65536 Explicit 2048x2048 1714 Mflops
CRAY-XMP 1 Spectral 500500 122 Mflops
CM-2 65536 Spectral 2048x2048 1167 Mflops

-16 -

In each case we have solved the largest grid size that would fit in memory. The CRAY spectral code
performed poorly on grids that were a multiple of 64 due to memory bank conflicts. The 500x500 per-
formance was the best observed from among a large range of power-of-two and other grids. The
Mflops being performed are essentially equivalent in "usefulness”. This was measured by computing
the actual processing time per grid-point, which is in fact a better measure of performance than Mflops.
This quantity behaved in the same way as the Mflops, apart from an expected logarithmic term due to
the inherent logarithmic time dependence of the FFT.

References

1. O. McBryan, ‘‘Solving PDE at 3.8 Gigaflops,”” University of Colorado CS Dept Preprint, Sept
1987.

2. O. McBryan and E. Van de Velde, ‘‘Parallel Algorithms for Elliptic Equations,”” Commun. Pure
and Appl. Math., vol. 38, pp. 769-795, 1985.

3. O. McBryan and E. Van de Velde, ‘“The Multigrid Method on Parallel Computers,”’ in Proceed-
ings of 2nd European Multigrid Conference, Cologne, Oct. 1985, ed. J. Linden, GMD Studie Nr.
110, GMD, July 1986.

4. O. McBryan and E. Van de Velde, Hypercube Algorithms and Implementations, SIAM J. Sci. Stat.
Comput., 8, pp. 227-287, 1987.

5. O. McBryan, ‘““The Connection Machine: PDE Solution on 65536 Processors,”’ Parallel Comput-
ing, vol. 9, pp. 1-24, North-Holland, 1988.

6. P. O. Frederickson and O. McBryan, ‘‘Parallel Superconvergent Multigrid,”” in Multigrid Methods:
Theory, Applications and Supercomputing, ed. S. McCormick, Math Applications Series, vol. 110,
pp. 195-210, Marcel-Dekker Inc., New York, 1988.

7. O. McBryan, ‘““New Architectures: Performance Highlights and New Algorithms,”’ Parallel Com-
puting, vol. 7, pp. 477-499, North-Holland, 1988.

8. M. J. Flynn, ‘‘Very high-speed computing,”’ Proc. IEEE, vol. 54, pp. 1901-1909, 1966.

9. J. Schwartz, ‘A Taxonomic Table of Parallel Computers, Based on 55 Designs,”” Ultracomputer
Note #69, Courant Institute, New York, 1983.

10. W.K. Giloi and S. Montenegro, ‘‘Super Interconnection Networks for Super Computers,”” GMD
Technical Report, Berlin, 1988.

11. V. Faber and J. Moore, ‘‘High-degree Low-diameter Interconnection Networks with Vertex Sym-
metry: The Directed Case,”” Los Alamos Technical Report LA-UR-88-1051, March 1988.

12. S. Borkar, R. Cohn, G. Cox, S. Gleason, T. Gross, H.T. Kung, M. Lam, B. Moore, C. Peterson, J.
Pieper, L. Rankin, P. Tseng, J. Sutton, J. Urbanski, and J. Webb, “‘iWarp: An Integrated Solution
to High Speed Parallel Computing,”” Proceedings of Supercomputing 88 Conference, pp. 330-339,
Orlando, Florida, Nov 1988.

13. C. Lanczos, ‘‘An Iteration Method for the Solution of the Eigenvalue Problem of Linear
Differential and Integral Operators,”” J. Res. Nat. Bur. Standards, vol. 45, pp. 255-282, 1950.

14. M. R. Hestenes and E. Stiefel, ‘‘Methods of conjugate gradients for solving linear systems,”” J.

Res. Nat. Bur. Standards, vol. 49, pp. 409-436, 1952.

15.

16.

17.

18.

19.

20.

-17 -

J. K. Reid, ‘‘On the method of Conjugate Gradients for the Solution of Large Sparse Systems of
Linear Equations,” in Large Sparse Sets of Linear Equations, ed. J. K. Reid, pp. 231-54,
Academic Press, New York, 1971.

M. Engeli, Th. Ginsburg, H. Rutishauser, and E. Stiefel, Refined Iterative Methods for Computa-
tion of the Solution and the Eigenvalues of Self-Adjoint Boundary Value Problems, Birkhauser
Verlag, Basel/Stuttgart, 1959.

G.-R. Hoffman, P.N. Swarztrauber, and R.A. Sweet, ‘‘Aspects of using multiprocessors for
meteorological modeling,”” in Multiprocessing in Meteorological Models, ed. D. Snelling, pp.
126-195, Springer-Verlag, Berlin, 1988.

R. Sadoumy, ‘‘The dynamics of finite difference models of the shallow water equations,’” JAS,
vol. 32, pp. 680-689, 1975.

G.L. Browning and H.-O. Kreiss, ‘‘Reduced systems for the shallow water equations,’” JAS, to
appear.

O. McBryan, ‘‘Connection Machine Application Performance,”” in Scientific Applications of the

Connection Machine, Proceedings of the NASA-Ames Conference on Massively Parallel Comput-
ing, ed. Horst Simon, 1989.

