Expressing Complex Parallel Algorithms in DINO
Matthew Rosing, Robert B. Schnabel, and Robert P. Weaver

CU-CS-430-88 March 1989

Department of Computer Science
Campus Box 430
University of Colorado,
Boulder, Colorado, 80309 USA

This research was supported by AFOSR grant AFOSR-85-0251, and NSF cooperative
agreement DCR-8420944.

To appear in Proceedings of the Fourth Conference on Hypercubes, Concurrent
Computers, and Applications, Monterey, CA, Mar. 1989.

Any opinions, findings, and conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily reflect the views of the
National Science Foundation.

EXPRESSING COMPLEX PARALLEL ALGORITHMS IN DINO

Matthew Rosing, Robert B. Schnabel, and Robert P, Weaver
University of Colorado at Boulder

Abstract. DINO is a language, consisting of additions to C, for expressing parallel numerical programs
on distributed memory multiprocessors. Its goal is to incorporate the high level features of parallel algo-
rithms, such as the mapping of data and procedures to processes, into the language, and have low level
operations such as interprocess communication and process control result implicitly. This paper
describes the use of DINO to program a moderately complex, multiple-phase parallel algorithm, the
parallel solution of block bordered systems of linear equations. This example illustrates the suitability of
DINO for such computations but also points to some potential improvements to DINO that could be
made.

L. Introduction. DINO (DIstributed Numerically Oriented language) is a language for writing numerical
programs for distributed memory multiprocessors. It consists primarily of standard C augmented by
several high-level parallel constructs. Its goal is to make the programming of structured, parallel numeri-
cal algorithms natural and easy, while avoiding the low -level details involved in managing processes and
interprocess communication. Descriptions of DINO can be found in [5, 6]. Related work can be found in
[3]14] and [2].

We believe that DINO gives the programmer who is trying to express parallel scientific computations a
relatively natural way to write such programs so that they are easily written and understood and execute
reasonably efficiently. But, it is not yet clear that DINO is as useful for large, complicated problems as
we have found it to be for smaller examples. For good reasons, much of the initial development work and
most of the explanation of a new language is done with small, manageable examples. In this paper, we
describe a considerably larger example than we have in the past, and discuss the strengths and weaknesses
of DINO that this example illustrates.

Section 2 of this paper gives a brief informal description of DINO. Section 3 presents a DINO program
for solving block-bordered systems of linear equations, and provides commentary on the features of
DINO that this example utilizes. Section 4 gives a brief critique of DINO’s effectiveness in expressing
this algorithm.

2. DINO Language Overview. When programming in DINO, the programmer first defines a virtual paral-
lel machine that best fits the major data structures and communication patterns of the algorithm. In
DINO, this arrangement of processors is called a structure of environments. Second, the programmer
specifies the way that data structures will be distributed among the virtual processors. This is called distri-
buted data. Last, the programmer provides algorithms that will run on each processor (cach environment
in the same structure of environments contains the same algorithm). In DINO, these are called com posite
procedures. Parallelism results from simultaneous execution of all the copies of an algorithm in a struc-
ture of environments. We now discuss each of these features briefly.

The programmer defined structure of environments is the underlying parallel model in DINO. Typically,
the structure is a single or multiple dimensional array, thus defining a virtual parallel machine with this
topology. Each environment in a given structure consists of (identical) data structures and procedures, and
is similar to a process. An environment may contain multiple procedures, but only one procedure in an
environment may be active at a time. As the example in Section 3 will illustrate, a DINO program may
contain more than one structure of environments.

The key to constructing a parallel DINO program is the mapping of data structures to the structure(s) of
environments. DINO encourages the programmer to think of data structures that are operaied on con-
currently as single data structures that are broken up, distributed to multiple processors for computation,
and then reassembled. The programmer does this by declaring a data structure as distributed data and
providing its mapping to the structure of environments. Individual data elements may be mapped to only
one environment, or they may be mapped to multiple environments. These mappings determine how the
environments will access and share the data. DINO provides an extensive library of standard mapping
functions, and the user can create additional mapping functions.

Distributed variables are the key to making interprocess communication in DINO natural and implicit.
One way this occurs is by using distributed variables as parameters to composite procedures; the parame-
ter is distributed to or collected from the appropriate environments according to its mapping function.
The second way is to use a distributed variable in an expression. A local access to a distributed variable,
which uses standard syntax, affects just the local copy and is the same as any standard reference to a vari-
able. A remote access, which uses a # following the variable name, is used to generate interprocess com-
munication. - A remote assignment to a distributed variable generates a message that is sent to other
environment(s) to which that variable has been distributed, while a remote read of a distributed variable
will receive such a message and update the variable’s value. In the default, synchronous mode, a remote
read overwrites the local copy of the distributed variable with the first value that has been received since
the last remote read; if no new value is present, it blocks until one is received. An asynchronous, non-
blocking variant also is provided but is not discussed in this paper.

A composite procedure is a set of identical procedures, one residing within each environment of a struc-
ture of environments, that are executed concurrently. The parameters of a composite procedure typically
include distributed variables. Composite procedures are called from the main, host environment that is
part of every DINO program. A composite procedure call causes an instance of the procedure to execute
in each environment of the structure, utilizing the portion of the distributed parameters that are mapped to
its environment. This results in a single program, multiple data form of parallelism. There is some sup-
port for functional parallelism in DINO, but this is not discussed in this paper.

3. Example. The example program we describe computes the solution to a set of linear equations
(Ax = f) where the System has a block bordered structure of the form

Ay By | x f1
Az Ba| | x2 f2

3.1
" A, B,| | x :
G Cy.. CZ P 1(711 f{;‘il

Here A; € R™*, B;e R™™, C; € R™", P e R™m x f; e R" (1<i<q), Xg+1fq+1 € R™. Block bordered
systems arise very commonly in parallel and sequential algorithms for solving problems in circuit design,
structural analysis, and other areas (see e.g. [1]).

The solution to (3.1) is computed from the equations
A x; +B,-xq+1 =f,' 1Si5q
and
Cixi + Pxgi1 = fon

Solving the first equation for x; and substituting this into the second gives
(P = 3 CiAT B n=f g1 = $:CAT

from which x4, can be derived, and put back into the first equation to find the x;’s.
The algorithm for finding the solution consists of five steps:

1) factor each 4;,
compute z; = A;~lf; , and
compute W; = A;1B; 1<i<q
2)formJ =P - 3 C; W; and

=

compute b =fq+1—f;C,- zZ;

3) decompose J into LU form
4) solve Jxg41=b
S5) compute x; = -W;xg~2z, 1<i<q

The parallelism in the first and last step is fairly straight forward and suggests a virtual machine consist-
ing of ¢ processors. In the second step the formation of each C;W; can be done in parallel and suggests
the same virtual machine. The solution of the smaller system in steps 3 and 4 can either be performed on
one machine or distributed across m processors, depending on its size. In our example we will distribute
the solution of the smaller system, using a second virtual machine with m processors.

A DINO program for the above algorithm is given in Section 5. In the remainder of this section we dis-
cuss this program, and use it to illustrate interesting aspects of the syntax and semantics of DINO. Our
discussion proceeds from the highest level of abstraction, the virtual machines, to the next level, the
definition of the composite procedures and distributed data structures that are mapped onto these virtual
machines, and finally to the lowest level, the statements which use these procedures and data structures.

The virtual machines for this algorithm are defined by the environment constructs on lines 5, 61 and 129.
Line 5 defines a virtual machine, or environment structure, consisting of M processors named solve [0] to
solve [M-1] each of which contains the data and procedures between lines 6 and 59. These environments
are used to implement steps 3 and 4 of the algorithm. A second set of environments, the node environ-
ments, are defined in a similar fashion arid are used to implement the parallel aspects of steps 1, 2, and 5
of the algorithm. Line 129 defines the host environment which is a single, controlling environment where
execution of the program begins. On a distributed memory multiprocessor, both the solve environments
and the node environments would be partitioned evenly among the processors (e.g. if M = O = the actual
number of processors, then each processor would contain one copy of each environment) and the host
environment would reside on the host processor (assuming such an arrangement, as exists on current
hypercubes).

The host environment includes the procedure main, which is the first procedure to be called. The first and
last statements in main initialize the data and print the results. They are executed (sequentially) on the
host processor since that is where these procedures are defined. The next five statements in main are com-
posite procedure calls (denoted by the '#” at the end of each), and implement the five parallel steps of the
algorithm discussed above. For each of these calls, a copy of the composite procedure is executed in
parallel on each of the environments where it is defined. For the composite procedures dist u and
dist_solve, M copies are executed in parallel on the M solve environments, and for the others Q copies
execute in parallel on the Q node environments.

As composite procedures are to be executed on remote nodes of the actual parallel machine, it is not pos-
sible to pass arrays as parameters in the normal C fashion (a pointer to the first element). Instead, DINO
supports passing entire arrays between functions both as parameters and, in the case of local procedures,
as results. The syntax for describing the entire length of an array along one axis is the '[]’ operator. The

description of the entire array is therefore a ’[]’ operator for each axis. Slices and subsections are also
possible and will be described later on.

The definitions of the composite procedures start on lines 6, 38, 88, 101 and 118. A composite procedure
is similar to a normal C procedure. An important difference, consistent with the style of passing arrays
discussed above, is that composite procedures can have value, result, and value-result parameters,
whereas parameters to normal C functions are always passed by value. For example, in the procedure
form_Jb the parameters C and fgp are passed by value, b is passed by result and P is passed by value-
result. These modifications seem necessary to support parameter passing in a distributed memory environ-
ment.

In order for composite procedures to operate on different sections of data, composite procedure parame-
ters and other data structures must be distributed over the environments on the virtual machines. This dis-
tribution is specified by the mapping function in distributed data declarations. For example, in line 89, 4,
the set ¢ of diagonal blocks A; --- A,, is defined as a three dimensional array which is distributed based
on the programmer defined slice (line 63) mapping function. This mapping function partitions an array
along its first axis only, thus placing the two dimensional array A; on environment node [i]. The mapping
is readily constructed by using the DINO-supplied block and compress mappings along the first, second
and third axes respectively. Similarly, the mapping of f on line 90 places N' consecutive elements of f on
each environment, and the mapping function byRow, defined in line 1, distributes a two dimensional array
row-wise over a vector of environments. A mapping function to distribute a matrix column-wise could be
defined using map byCol = [compress[block].

The place in the program where data is declared depends on where it is to be used, and follows standard
scoping conventions of block structured languages. For example the intermediate value z is declared
within the node environment (line 66) and its scope is this structure of environments. Since it is never
needed by the host environment it is neither stored there nor passed back and forth as a parameter. Its
contents are valid for the duration of the program. An interesting case is the last part of the x vector, xgp.
It too is an intermediate value but must be remapped between the fourth and fifth steps of the algorithm.
In the fourth phase, where it is calculated, it is partitioned among the solve environments (renamed x). In
the fifth phase, where it is required to compute each x;, it is replicated among the node environments. This
is indicated by the parameter definitions of x in dist_solve and xgp in compute_xi, and the use of xgp as an
out parameter in dist_solve and an in parameter in compute_xi.

Finally we comment on some of the executable statements within the procedures. The composite pro-
cedures factor_A and compute_xi have no interprocess communication, are similar to normal C functions,
and therefore will not be described here. In the procedure form Jb, however, interprocess communica-
tions is needed for the computation of the sum of C;W;, and the right hand side of the same sct of equa-
tions. The calculation of the first sum occurs in line 110. The global summation of a set of values is a Lyp-
ical reduction operation in which each process has a value, in this case C; W; returned from mat_mat_mult,
and the sum of these values is required. This is provided by the function gsum in line 110. This is one of
several reduction functions provided in the DINO language which takes a value from each of a set of
environments and applies an associative operator on them. The # indicates that a remote operation is
being done. The result of the gsum call, an M by M array, is assigned to the temporary matrix T and the
formation of J, stored in P, is than completed by subtracting T from P. The matrix P has more than one
row mapped to each processor and therefore the subtraction is done for each of the rows mapped onto the
current environment.

! A block mapping distributes 71 elements on P environments by placing 1/p elements on each environment.

The summation of C;z in line 113 is done in a similar fashion. Note that z corresponds to a range of
values out of the z array. In DINO the syntax for specifying a subsection is ’[<i,j>]’ indicating the
values from i to j inclusive.

The solution for x,+; is done in the composite procedures dist_lu and dist_solve. These take a matrix which
is distributed by row and find the solution of the system of equations using Gaussian elimination with par-
tial pivoting. Within dist_lu the pivot row is computed in line 16 using the reduction function gmaxdex
which returns the index (second parameter) of the maximum value. This operation is only executed over
values from node [diag] to the last node. This is indicated by specifying, within curly brackets, the
environments which will participate.? The next statement swaps the rows if a pivot is required. The
environment containing the pivot row first sends the row to the environment containing the diagonal row.
This is done by assigning row A [pivot1[] to row A [diag][]. The # indicates that a remote access is taking
place and therefore a message is sent to solve [diag], the environment where A [diag](] is mapped, contain-
ing the value of A [pivot][]. This message is tagged such that a corresponding remote read of A [diag][] will
receive this value and assign it to A [diag 1[]. The send is done in line 19 and the corresponding receive is
done in line 24. The pivot environment also sends the pivot row to the rest of the environments partici-
pating in the operation as the value prow which is than used for the reduction step. If no pivot is required
than just the pivot row is sent to the remaining participants. The next statement receives the reduction row
from the environment which contains it. Note that a remote read or write to the current environment is
equivalent to a local read or write.

4. Discussion. The example program illustrates that a non-trivial parallel algorithm can be rather easily
implemented in DINO. The high level constructs in DINO, namely the virtual parallel machines, distri-
buted data mappings, and composite procedures, allow the structure of the parallel program to correspond
quite naturally to the underlying high level view of the parallel algorithm. For example, the ability to
specify multiple virtual machines was quite helpful in making this example program easy and natural to
express. These high level constructs also enable the specification of process control and communication
for this program to be significantly simpler and more natural than it would be in many other currently
available systems. For example, communications is implicitly generated for composite procedure calls,
the remote access of distributed data, and reduction operations. These constructs also allow the compiler
to ensure that the communications is correct with respect to message type and content. The result is that
we find the DINO program relatively easy both to write and to understand.

This example also helps indicate several aspects of the language that could be improved upon. The first
item has to do with the level of parallelism or granularity. Often, it is most natural to express a parallel
algorithm at a fine grain level of parallelism. For example, dist_{u and dist_solve are wrilten assuming
there is one row per virtual processor; these procedures are considerably more cumbersome to write if
each process must handle a block of rows. However, the current implementation of DINO maps cach vir-
tual process (environment) to an actual process. If there are many more rows than processors then there
will be many processes on each processor, resulting in an inefficient program. The preferred solution to
this problem is to have the programmer continue to write at the natural, fine grain level, and to have the
compiler contract multiple environments into single processes when there are more processes than pro-
cessors. We believe the structure of DINO will allow us to do this efficiently in many cases.

The other major area we would like to address is improved support for complex, multi-phase computa-
tions. The example points out several ways in the current DINO facilities for this could be improved.

% Any remote operation has an implicit set of environments on which an operation takes place. This set can be explicily changed by speci-
fying, as in this example, the participating environments. In the case of a remote read or write the implicit set of environments is the environ-
ments on which the data is mapped. In the case of a reduction operator it is the set of environments within which the operation takes place. In the
case of a composite procedure call it is the set of environments in which the procedure is defined.

One is that the program requires the solution of several systems of linear equations, to find z;, W, and xgp .
In a serial program only one function would be written to handle this but in DINO we are required to
write both a serial and parallel version. This problem is related to the contraction problem mentioned ear-
lier.

A more pervasive need is to be able to nest composite procedure calls in a useful way. In the example
main consists of several consecutive calls to composite procedures. The code would be more readable and
more useful for later use if main consisted of a single composite procedure, say block_border , which could
call factor_A, form_Jb, and compute_xi. Currently this can not be done because the fork and join aspects
of a composite procedure call are tied to its being called from and returning to the host environment. A
solution to this would be to allow the processes in a composite procedure to collectively come together
and substitute themselves with another composite procedure. This facility would allow DINO programs
to become subprograms in larger DINO programs with little or no modification.

A related but more subtle problem arises when various phases of the algorithm are most naturally
expressed at different levels of parallelism. For instance, most of the example algorithm has @ fold paral-
lelism, which is reflected by having Q node environments. However, for the solution of xgp, the algo-
rithm has M fold parallelism which is reflected by using M solve environments. DINO currently handles
this problem by moving J (stored in P) from one set of environments to another between phases. This has
two disadvantages. First, it is inefficient because of the extra communication that is required and the over-
head of extra environments. Second, the solution to the smaller system of equations, implemented by cal-
ling dist_lu and dist_solve, is logically a sub part of the function form Jb and therefore should not be
invoked within main but should be invoked at the end of form_Jb. The substitution mechanism proposed
in the previous paragraph will also solve this problem as long as we allow the substitute composite pro-
cedure to use a different structure of environments.

A final problem concerning the different phases of an algorithm has to do with the remapping of data.
Note that xgp is distributed during dist_solve and is replicated for compute xi. In order to accomplish this
remapping it must be passed up to main and back down to compute xi. The ability to remap data without
passing it back to the host would be more useful.

The problems mentioned above are either instances where the ease of expression in DINO leads to sub-
optimal efficiency, or where its support for large scale program development seems sub-optimal.
Although we feel that it is still easier to write an efficient distributed parallel program using DINO than
using many other currently available systems, we would like to improve upon these problems. One of our
goals is to determine how well a compiler might be able to convert an inefficient but easy to understand
DINO program into an efficient one. A second is to explore the inclusion of a small number of additional
language features in DINO.

5. Sample program

map byRow = [block]{compress];
map byBlock = [block];
map byElement = [block];

environment solve[M:id] {
composite dist_lu(A)
double distributed AM][M] map byRow;
{
int diag, pivot, i;
double pval, mult;
double distributed prow[M] map all;

IR al=t-R-CIEN N N R SN US I SR

for (diag=0; diag<M; diag++)
if (diag <= id){

/*find pivot*/

pivot = gmaxdex(dabs(A[id][diag]), id)#{ solve[<diag,M-1>]};

if (pivot != diag){ /*pivot*/

if (id == pivot){ /*send pivot row to everyone who needs* it/

Aldiag][]# = prow[J#{solve[<diag+1,M-1>]} = A[pivot][];
Alpivot][] = A[pivot](1#{solve[diag]};
}

if (id == diag){ /*pivot*/
Alpivot](J# = A[diag][];
Aldiag][]1 = A[diag][J#{solve[pivot]};
)

}
else if (id==diag)

prow(]#{solve[<diag+1,M-1>]} = Alpivot][]; /* if not pivot¥/
prow[] = prow{]#{solve[pivot]}; /*get pivot row*/
if (diag < id){ /*eliminate*/

mult = A[id](diag] /= -prow[diag]; /*compute I*/

for (i=diag+1; i<M; i++) ’

A[id][i] += mult*prow]i];
)

)

composite dist_solve(in lu, out x, in b)

double distributed lu[M][M] map byRow;
double distributed x[M] map byElement;
double distributed b{M] map byElement;
{

double distributed y[M] map byElement;
int i;

[*solve ly = b*/
ylid] = b[id];
for (i=0; i<id; i++)

ylid] -= y[il# * lu[id](i];
ylid}#{node[<id+1,M>]} = y[id)/lu[id][id];

[*solve ux=y*/
x[id] = y[id];
for (i=M; i>id; i--)

x[id] -= x[i]# * lu[id](i];
x[id]#{node[<0,id-1>]} = x[id)/1u[id][id];

’

environment node[Q:id] {
map slice = [block][compress][compress];

double distributed W([Q][N][M] map slice; /* = A"-1 B*/
double distributed z[Q*N] map byBlock;

mat_vec_mult(W,v,x)[N] /*x <= Wv*/

double W[NI[M], v]M];
{5

sub_vec(v,x,l) /*v <= v - x, 1 is length of vectors*/
double v[1, x[J;
{h

double mat_mat_mult(A,B)[M][M] /*returns AB*/
double A[M][N], BIN][MI;

’

seq_lu(A) /*does lu decomposition on A*/
double A[N][N];
{h

seq_solve(ly, x, b) f*solves lu x = b*/
double lu[N][N], x[N], b[N};
{5

composite factor_A(in A, in f, in B)
double distributed A[Q][N][N] map slice;
double distributed ffQ*N] map byBlock;
double distributed B[Q][N][M] map slice;
{

int i;

seq_lu(Afid]); /*decompose each block*/

seq_solve(Afid], &z[id*N], &f[id*N]); /*z = A inv ¥/

for (i=0; i<M; i++) /W = A inv B*/
seq_solve(Alid], W{id][il, B(id][i]);

3

composite form_Jb(P, in C, in fgp, out b)
double distributed PM][M] map byRow;
double distributed C[Q][M][N] map slice;
double distributed fqp[M] map byBlock;
double distributed b[M] map byBlock;

{
double tz{N], TIM][M];
inti;

T0[] = gsum(mat_mat_mult(C[id], W[id]))#; /*C[id] <= C[id]*4-! [id]*B[id]*/

for (i=id*M/Q; i< id*M/Q + M/Q; i++)

sub_vec(Pli], T[]0, M); [*compute J (in P)*/
z[] = gsum(mat_vec_mult(C[i], z[<id*N, id*N+N-1>]))#; /* sum z*/

for (i=id*M/Q; i< id*M/Q + M/Q; i++)

bli] = fqp[i] - tz[i]; /*b = fqp - sum z*/

.
?

composite compute_xi(in xqp, out x)
double distributed xqp(M] map all;
double distributed x[Q*N] map byBlock;
{

mat_vec_mult(W{id], xqp, &x[id*N]);
neg_vec(&x[id*N]);
sub_vec(&x[id*N], &z[id*N], N);

’

129 environment host{

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

(1]

(2]

(3]

(4]

(5]

6]

init_data()
{5

print_results()

{5

double A[Q][N][N], B[Q][N](M], C[Q]IMI[N], P[M][M],
fqp[M], flQ*N1, xqp[M], x[Q*N], b[M];
main(){
init_data(); /*initialize A B C P and f*/
factor_AC A[J(1(1, 0, BOOM#;
form_Jb(P(1(1, C1010, fap(l, b(1)#;
dist_lu(P[1[1)#;
dist_solve(P(1(1, xqp[], b[1)#;
compute_xi(xqp[], x[D#;
print_results();

REFERENCES

R. H. Byrd, R. B. Schnabel and X. Zhang, ‘‘Solving Nonlinear Block Bordered Circuit
Equations on a Hypercube Multiprocessor’’, proceedings of the Fourth Conference on
Hypercube Concurrent Computers and Applications, 1989.

D. Gelemter, N. Carriero, S. Chandran and S. Chang, *‘Parallel Programming in Linda’’,
Proceedings of the 1985 International Conference on Parallel Processing, 1985, 255-263.

H. Jordan, *“The Force’, in The Characteristics of Parallel Algorithms, L. H. Jamieson, D.
B. Gannon and R. J. Douglass (editor), MIT Press, 1987.

J. R. Rose and G. L. S. Jr., “C* An Extended C Language for Data Parallel
Programming’’, PL87-5, Thinking Machines Corp., 1987.

M. Rosing and R. B. Schnabel, ‘‘An Overview of Dino -- a new language for numerical
computation on distributed memory multiprocessors’’, proceedings of the Third SIAM
Conference on Parallel Processing for Scientific Computing, 1987, 312-316.

M. Rosing, R. B. Schnabel and R. P. Weaver, *‘Dino : Summary and Examples’’,
proceedings of the Third Conference on Hypercube Concurrent Computers and
Applications, 1988, 472-481.

