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Abstract

This paper proposes a model for the software configuration management process.
Viewed as a transaction, the process begins with a high level specification for a product
and terminates when the product is made available. The model describes this process
as a series of well-defined transformations to a graph. The two principle phases of the
model are configuration construction and configuration execution. The construction
phase builds up a complete configuration from the high level specification. The execu-
tion phase describes how the product is then made available from that configuration.
Finally, an outline for PhD research based upon this model is given. The principle
objectives proposed are to build a prototype of the model and to explore optimization
issues.
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1 Introduction

The purpose of this research is to formulate and validate a model for software configuration
management environments. Five high level goals guide the work:

e Capture relevant notions from a wide set of existing systems

e Describe a general architecture for future systems

Support system evolution
e Provide insight into the optimization process
e Define and exploit a transaction orientation

A model of software configuration management should be able to capture and explain
the relevant details of existing systems. Existing configuration management systems cover
a diverse and seemingly disparate spectrum of concerns and functionality. In fact, the
spectrum is so diverse that one could ask the question: What do they have in common?
That question started this research and it is the question that must be kept in mind
throughout the investigation. While it is not possible to explain every detail of every
existing system, the model is expected to capture and unify key concepts found in them.

The model should be sufficiently powerful and flexible to explore and research future
systems. The model should suggest a logical decomposition that can have many different
physical implementations. For small-scale projects one could envision implementations in
which several logical tasks are folded together. In very large systems it might make sense
to make each logical task into a separate server.

As a software system evolves and shifts focus it is important that the configuration
management environment maintaining that software be able to evolve as well. In the
evolution of many software systems the system model, a description of how the pieces fit
together, is a rapidly changing entity. In early stages of software development it may make
sense to pay the price for dynamic construction. Later on, when the software is sufficiently
stable, resources might be shifted more towards speeding up the build process.

The configuration management system should also be flexible enough to allow for vary-
ing degrees of analysis. At times it might make sense to devote resources to full semantic
analysis. At other times, especially when the system is known to be inconsistent, simple
analysis might be sufficient.

In order for configuration management systems of the future to cope with the demands
imposed on them by larger and more complex software, efficient ways of constructing and
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executing user requests must be explored. Optimizations need to be developed for all stages
in the construction and execution of a configuration request. One of the initial insights that
led to this research was that a configuration graph seemed quite similar to the data flow
graphs used in compiler optimization. This insight inspired the idea of creating a unifying
framework in which optimization research could be conducted.

Software configuration management is inherently transaction oriented: The user makes
a request to the system, the system processes the request and the request either succeeds
or fails. If one views the problem from a database perspective the request can be regarded
as a transaction. With this view in mind all of the issues of locking, journaling, commit,
and abort as found in the database domain apply. Moreover, if the environment on which
the transaction is taking place is distributed then all the relevant notions of distributed
transactions also apply. Of course there are differences. Exactly what these differences are
and how they perturb the database definitions need to be explored.

Defining a model of software configuration management is important. A model provides
a conceptual understanding of the task is being modeled. A model is an abstraction mech-
anism; it focuses on important issues, allows for the separation of concerns, and clarifying
potential interrelationships. The model of software configuration management proposed
below is intended to be such an abstraction mechanism.

1.1 Software Configuration Management

Software configuration management (SCM) is the discipline of software engineering con-
cerned with the efficient, automatic construction of software products. It is also responsible
for the maintenance and management of the entire collection of software ob jects needed to
produce those products.

Broadly defined, a software product is any software object that is the result of the
application of a sequence of manufacturing steps to a set of software objects. A software
product may be as simple as the object produced by applying a compiler to a source
program; it may be as complex as an executable binary image that is the result of applying
dozens of intermediate manufacturing steps to thousands of source modules.

Software Product Manufacture, sometimes termed software manufacture, is the process
of producing a software product. The process is largely automatic and may involve a
complex sequence of manufacturing steps, large tool sets, and large numbers of software
components. Software product manufacture establishes relationships between the primitive
software components that make up software products, the manufacturing steps needed
for construction, and the software products themselves[Bor86). These relationships are
important because they supply the foundation necessary for automating the manufacturing
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process.

The manufacture of software objects is complicated by several factors. Loosely speak-
ing these factors can be decomposed into two classes: those that revolve around a static
view of software product manufacture and those that stem from a temporal dimension
superimposed over that static view. Perhaps the best way to understand this distinction
is to visualize a software system with which you are familiar . Take a snapshot of that
system in time. Within that snapshot there is a whole class of factors that complicate the
manufacturing process: the size of the system, the number of components involved, the
manufacturing steps needed, and the relationships among the components, manufacturing
steps and products. These can all be viewed from within the context of software product
manufacture. Now think about that same system over the course of its lifetime. When
looking at the system from this perspective, one thing is certain: change. In any two snap-
shots of the system, any or all of the factors mentioned above may differ: the number of
components, the contents of the components, the introduction of new manufacturing steps,
and even the introduction of new products.

Supporting a static view of software product manufacture is a complex, time consuming
process. Some of the factors that contribute to this complexity are the size of today’s
software systems, the complexity of the relationships between the parts that constitute
these systems, the number of manufacturing steps needed to produce the desired product
and the tools that are needed to support the manufacturing process.

When discussing large systems it is presumed that:

1. Thousands, if not tens of thousands, of primitive components exist that comprise a
software product.

2. Relationships exist between these components that constrain the manufacturing pro-
cess.

3. These relationships are so complex that for most large systems it is impossible for a
product to be produced correctly without computer aid.

4. Manufacturing an entire system may take days or even weeks to complete.

5. Thousands of intermediate objects are produced in the process.

Change over time adds an entirely new dimension to the management of an already
complex problem. Change is inevitable. Requirements change, systems evolve, bugs need
to be fixed. Not only must a configuration manager be able to manufacture a current



product, it must be able to go back to a previous state (time) and manufacture a product
relative to that state. This implies that the configuration manager must track and manage
temporal relations among all of the objects involved.

1.2 The Software Configuration Management Process

A software configuration management transaction begins with a user’s request for some
product and ends when that product is available. The request is a high level specification
containing enough information to uniquely identify the desired product. Throughout the
process a knowledge base is consulted to supply information needed to complete the request.
This transaction can be viewed as a succession of tasks that are to be performed in order
to create the product. First, the high level request must be transformed into a complete
request. The complete request must then be optimized, scheduled and executed.

The first significant task in this process is to take the user’s request and add whatever
information is needed to complete the request. A user request must contain at least an
indication of the product desired and one or more primitive objects ! from which the product
can be derived. This information, in conjunction with facts found in the knowledge base,
is then used to infer:

1. The sequence of manufacturing steps needed to produce the desired product.
2. The complete set of primitive objects that will drive that manufacturing process.

3. All of the intermediate objects produced as the result of applying the manufacturing
sequence to the set of primitive objects.

As an example, imagine a request in which the user supplies two C programs as the
primitive objects from which an executable product is desired. The first step would be
to determine whether a manufacturing sequence exists. Using the knowledge base we can
infer that c-objects can be compiled into o-objects and that o-objects can be used to create
executable-objects. The second step would be to determine the complete set of required
primitive objects. Suppose that each of the c-objects depends on one h-object (header file).
The result of this dependency would be to add the h-objects to the initial set of primitive
objects. Finally, The third step would be to infer that two intermediate o-objects will be
produced.

The request may also contain attributes. Attributes serve to constrain or augment the
inference processes. So (for example) if the user wanted the executable product to contain

1'With respect to the manufacturing process.



debug information, an attribute “debug” would be made part of the initial request. (The

way in which attribute values are propagated is the subject for later discussion.)

Once it has been determined that the request is legal, and that sufficient information
has been obtained to complete it, the optimization task takes over. The complete request
describes everything necessary to construct the product. In many cases, based on the state
of the knowledge base, much of this information may already be available. For example,
some intermediate objects might exist in the knowledge base and need not be reconstructed.
In this case, parts of the complete request can be removed.

After the request has been pruned of all unnecessary manufacturing steps it must be
scheduled. Dependency information and the number and location of certain resources put
constraints on the order in which manufacturing steps can be executed.

Finally, the complete, optimized, scheduled request is ready to be executed. The manu-
facturing steps are applied, intermediate objects are produced and added to the knowledge
base, and the desired product is made available. At this point the transaction is complete
and the process is ready to begin once again.

2 General Architecture

Before discussing the architecture of the model it seems necessary and appropriate to
describe a few terms and concepts. Within the model, all specifications take the form of
attributed graphs consisting of nodes, edges, and attributes. The nodes represent software
objects, the edges represent relations between software objects and the attributes represent
characteristics of software objects.

Software objects are unique, typed, attributed objects. Software objects include concrete
objects such as a particular source file, as well as more abstract objects such as types and
configurations. Software objects may be very complex[Tic88,Cle88a). Some examples of
possible software objects are: class or type definitions, source code, binary code, sets of
regression tests, configuration descriptions, module interfaces and module bodies. Figure 1
represents a simple taxonomy of software objects. Three major software-object categories
of particular importance in the sections below are derived-objects, component-objects, and
type-objects:

e Derived-objects represent those objects that can be (re)constructed automatically
from other objects.

e Component-objects represent those objects for which no automatic construction pro-
cess exists (e.g., a “source”). In the literature these objects are sometimes referred
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to as being “non-re-derivable” or “primitive”. The creation of these objects involves
some form of human interaction.

o Type-objects define schematas for classes of objects.

Attributes associate values with objects. All objects of a particular type share a common
set of attributes. Attribute values are typically constrained to have a fixed domain and
perhaps a limited range (e.g., domain= integer, range=1:10). The attribute values can be
used to uniquely identify a software object. For example, the following objects are distinct
because they differ in at least one attribute value.

object(name=foo,type=c,attributes(system=“UNIX"))
object(name=foo,type=c,attributes(system="SYSTEM V"))

Edges represent relationships between objects. In general, these relationships are some
variation of the depends-on relation. For example: the output of a tool depends-on its
inputs and its parameters, or a module depends-on the functions it imports. One way
of decomposing the configuration management process into sub-processes is to partition
the depends-on relationship into sub-relationships. Of particular interest here are the sub-
relations is-component-of and derives.

The is-component-of relation represents the use of one component by another compo-
nent. Some concrete examples of this relation could be: includes, imports, calls, requires,
or uses. In general this relation holds over specific objects, not classes of objects. For
example, if module A uses (includes) header B, then B is-a-component of A (written is-
component-of (B,A) ?). Some systems define this relation statically using a structure such
as a system model[Leb84]. Others define it dynamically by looking into the body of a
module to determine which other modules are needed[Est85).

The derives relation represents the transformation of one object into another object.
The derives relation holds over type-objects. An example of this relationship can be found
between type-objects representing programs written in C (i.e., of type “.c” 2) and their
compiled counterparts (type “.0”). This might be written as derives(c,o).

A configuration is a formal specification of all the information needed to construct a
desired product. Figure 2 shows an complete example of a configuration. It includes
component-objects, derived-objects, tools and tool parameters, as well as version/variant
and dependency information. The definition of what a configuration actually is, is a hotly

>Throughout the paper relation(A,B) can be interpreted as: A relation B.
3We use the typical Unix convention of denoting the type by the file name extension.
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debated topic[Win88]. To some it is a description, to others it is an execution of a descrip-
tion. Others still suggest it is some combination of both. For the remainder of this paper
references to a “configuration” imply only the formal specification.

The Product Graph is an internal graphical representation of a configuration. It repre-
sents the “working” graph throughout an entire transaction. From the time the user makes
a request until the time the product is actually produced, this graph will be the focus for
a series of transformations. Throughout the model, names will be given to several of the
well-defined states of the product graph. The product graph, and its well-defined states, is
a key to understanding the model.

2.1 The Knowledge Base

Configuration managers must rely on some form of database to store the various software
products and configurations [N6386,BL85,DL86,Ber87,Wi686,Cle86,Pen79,KCS7,SCBSG,AH87,
Pen87,5787,MACKS86]. Due to the importance of this repository, it is essential that it be
represented in the configuration management model. The configuration management model
must be general and flexible enough to describe various configuration management systems.
Similarly, the model of the repository must also reflect these same characteristics.

For most operational systems, this database is the file system of the underlying operating
system. Software objects are stored as files, and additional files are used to record properties
about the software objects. Examples of these property files include Make’s Makefile, and
Odin’s ODIN directory. DSEE[Leb84] relies on a modified file systems for object support.
The Apollo file system directly supports difference files similar to those used by RCS
[Tic82]*. It also allows properties such as version numbers to be stored as part of the file
system. The Adele system supports an attributed object store in which objects can have
user defined attributes[Est85].

2.1.1 Knowledge Base Requirements

The database requirements for configuration management are similar to those needed for
the more general Software Engineering Environments (SEEs). As Nestor[Nes86] pointed
out, neither general purpose databases or file systems are appropriate for SEEs. Many
researchers have tried to define an appropriate set of requirements/DL86,Ber87,HS88,BL85,
MW87]. Unfortunately, the set of requirements defined by each of these researchers is
different. One reason for this is the different database philosophies of the authors: do they

“As a result all tools must be modified to deal with the specialized internal representation.
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advocate the E-R model, graphs, or an object orientation as their representation? Another
reason is that there is no clear definition of the configuration management process and
therefore no clear definition of the requirements for its database. Despite this, there does
seem to be a minimal set of requirements on which most people agree:

Supporting Flexible Data Types
Object Clustering

Attribute Support

Relation Support

Rule support

Version support

Consistency control

Multi-user support

Authorization and Access control
Transaction and Recovery Support

From this point forward the term “knowledge base” will be used to describe the per-
sistent repository. This distinction is made to indicate that both data and rules are being
stored. The inclusion of rules, support for triggers, and active attribute values allow for
the possibility of some of the functionality of the configuration management model to be
provided by the knowledge base. Whether the functions needed to support the above list
of requirements belong in the knowledge base or in the configuration management model
1s an open question.

2.1.2 Knowledge Base Structure

Conceptually, it is convenient to view the knowledge base as a collection of functionally-
distinct entities. This decomposition reflects inherent differences in the kind of information
found within the knowledge base as well as the way in which this information is used. Some
information is generic, some specific; some information can be recomputed and some can
not. The knowledge base is an important part of the model. Understanding its structure
will clarify the way in which the various entities it contains are used in the later sections
of the paper.

When trying to model configuration management systems, it is convenient to partition
the knowledge base by distinguishing between instance objects and type objects. Type
objects describe class-level information. Instance objects describe unique instances of type

10



objects. Type objects and instance objects are different: they are used at different times
and in different ways, as explained below.

The Type Graph (TG) (which is stored in the knowledge base) is composed of type-
objects, relations, and attributes. Attributes associated with type-objects are typically
tools needed to derive that object, and any possible parameters that effect those tools.

Type-objects are similar to “frames” in conventional frame based models[Cle88c,Narg8].
Some of the characteristics type-objects and frames have in common are:

Types describe common characteristics of their instances

Types form a hierarchy along the sub-type/super-type relation

A set of common attributes is defined for all instances of a type

A set of common operations may be defined for all instances of a type
Attributes have restricted domains

Attribute definitions are inherited along sub-type links.

One characteristic that distinguishes the Type Graph from frame based representations
is that the type-objects are connected to one another by edges of the derives relation and
form a forest of graphs. The edges describe possible type-to-type manufacturing sequences.
Because the derives edges form a graph it is possible for more than one manufacturing
sequence to exist between two types.

Figure 3 represents a simple Type Graph. Using the Type Graph one can determine
that it is possible to construct an o-object from either a c-object or a fortran-object. It is
not possible to construct an o-object from an aladin-object using this Type Graph because
no derives path exists between them.

The Instance Graph (IG) is also stored in the knowledge base. It contains instances of
type-objects found in the Type Graph. It also contains all attributes associated with, and
all the edges that form relations between those objects. All known object instances appear
in the instance graph. 3 Attributes associated with instances form (name,value) pairs. The
values of attributes may be simple values or complex functions. Relations between objects
are represented as edges in the knowledge base. These edges are represented as tuples in
the form: relation(object,object). For simplicity, all relations are binary and directed. Both
component-objects and derived-objects are found in the Instance Graph.

Although the Instance Graph and the Type Graph should be considered as separate
entities, links between them do exist. For every instance of a particular type there must

5This is not completely true. As described in a later section all valid objects will exist in this graph
only at commit points.
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exist an instance-of edge instance_of(instance-object,type-object) and its inverse relation
type-of. The instance_of relation is needed to locate all instances of a particular type. The
type-of relation allows for an instance-object to refer back to its type.

The knowledge base can also be functionally decomposed into a global view and possibly
many local ones. The global view represents the shared knowledge base common to all users.
The local views contain the same kind of information but only about the local objects each
particular user is working on. In this way information about a transaction in progress can
be insulated from all other user views until the local information is committed.

Most configuration management systems recognize the need for “checking out” ¢ com-
ponents, modifying them, testing them and checking them back in[Leb84,Tic82,M75]. For
example, a user checks out a version of “foo.c” from the global knowledge base, makes
changes to it, builds a product that depends on “foo.c” and then tests the product. Unless
the user is perfect it may take several cycles of the modify/build/test cycle to convince the
user that the changes are sound.

Until the user is ready to check the new instance of “foo.c” back into the global KB it is
inappropriate to clutter the global KB with numerous, possibly inconsistent, intermediate

6The term “check out” is borrowed from RCS. It does not mean that the object disappears from the
global KB view , rather that a copy is moved to the local KB view.
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results. Logically, it would be better if these changes were restricted to a local view. When
the user is ready to check in a new version of “foo.c” the appropriate information from the
local view will be committed to the global knowledge base.

Another partitioning, and one that has received very little public exposure, is parallel
structure for private information. This structure, or partition, is often referred to as a cache
7. One approach to optimizing the configuration management process has been to keep
side information about the previous configuration construction and execution processes.
In existing systems, what information is kept and how that information is used has been
completely up to the system’s architects. This is understandable; a mistake in the logic of
the cache manager could have profound effects on operations of the system.

In DSEE an object that describes the complete construction history (BCT) of each
derived object in the object pool is stored to optimize reconstruction. In Odin this is done
by a rather involved process which stores the derivation path, and thus the location of the
derived objects[Cle88b]. In Wagner’s work [P{r86] version maps and attributed systems
trees are kept in a database.

The determination of what information is to be cached should depend on the focus
of the users of that system. In early stages in the life of a product, when the product’s
structure is not fixed, it is logical to cache information about the dynamic construction
process. In later stages this information may no longer be useful it may be more logical to
devote most of the cache to manufacturing process information.

This model makes an important distinction between the knowledge base and the product
graph. Normally, the product graph is not considered part of the knowledge base. In theory,
we may construct the same product graph each time a product is required. In order to
optimize construction of the product, however, pieces of the product graph, or perhaps
even the complete product graph, may be introduced into the parallel caching knowledge
base. A reasonable mechanism for controlling such optimizations is a significant subject of
research and will be dealt with throughout this paper.

2.2 Basic Graph Transformation Mechanisms

Two kinds of basic transformation mechanisms are used in this model to augment the
product graph: extension and attribution. An extension transformation takes the product
graph and adds nodes and edges. The nodes represent software objects and the edges
represent a relation between these objects. Extension actually changes the shape of the

“In some systems the only information found in the cache is derived-objects, and therefore the cache is
sometimes called the “derived object pool”.

13



graph. An attribution transformation, on the other hand, decorates the product graph by
setting the attribute values of the nodes, but does not change the shape of the graph.

These basic transformations are important because they characterize the phases of
the model. The relationship being considered will be the term used when describing the
particular relation that will govern the transformation process. Extension and attribution
are always performed with respect to the relation being considered. For example, one
phase in the model (which produces the Component Product Graph) is characterized by
extension and attribution with respect to the is-component-of relation.

Where possible, attribution transformations will be described separately from extension
processes. In some cases the two may need to be intertwined, since complex extension
processes may require attribute information in order to decide what edges to add to the
product graph.

2.2.1 Extension

Extension is the process of adding nodes, and edges of the relation being considered to
the product graph. In its most basic form, it is little more than a specialized inferencing
mechanism. The inputs to the extension mechanism will be facts, rules and and inference
parameters. The facts and rules reside in the knowledge base.

There may be several extension transformations during the configuration management
process. In any one of these transformations, extension will only take place with respect
to the relation being considered. All other relations will be ignored during this particular
extension process. Each extension process is guided by a set of rules. Many extension rules
may be defined for any specific process. One major constraint on the extension process is
that every node in the graph will be visited once and only once.

In the simplest form of extension, specific information that describes the entire process
exists in the knowledge base. For example, assume the following facts are in the Instance

Graph:

derives(test.c,test.o)
derives(test.o,test.exe)

If we start with the node test.c in the product graph we can transitively determine that
test.exe can be derived from test.c. To get a better understanding of the basic mechanism
one could examine the process in detail and see its effects on the product graph. Using the
default extension process outlined in Figure 4, to satisfy step (1) R is set to the derives
relation and to satisfy step (2) current is set to the node test.c. Then, via step (3), it will be

14



(1) let R be the relation being considered
(2) Set current to the root of R.
(8) For all X in the KB such that R(current,X) is true
If X is not a node in the product graph then
Add X to the Graph
Add edge R(current,X) to the graph
(4) Using a breadth first left to right search sequence
visit each node, set current= new node and repeat (3)

Figure 4: The Default Extension Process

determined that the edge derives(test.o,test.c) satisfies the condition and therefore the node
test.o and the edge derives(test.o,test.c) will be added to the product graph. According
to step (4) we set current to test.o and repeat (3) adding the node test.eze and the edge
derives(test.eze,test,0). At this point, there are no other facts that will extend the graph.
The result of the extension process is an updated product graph in which all possible nodes
and derives edges have been added.

A more concrete example is shown in Figure 2. In this case the default extension
transformation, with respect to the is-component-of relation and starting with the node
system.config, will add the nodes main.c and memory.config, and their connecting edges.
It would then add get.c and put.c. Finally, mem.h would also be added to the graph.

The default process is potentially ambiguous since there may be many out ed ges that
originate at a given node. Ambiguity is resolved by forcing the extension to occur using a
breadth-first left-to-right consideration of the nodes, and stopping when no further traversal
is possible.

A slightly more complex extension process, as discussed in detail in later sections, is the
case where the derives information exists between type-objects. For this process derivation
relations between instance-objects must be inferred from type-object information.

One can imagine even more complex extension processes in which the result of one
extension dynamically controls the remaining extension process. For example, assume
that the system being modeled supports multiple versions of the tools to be used in the
construction process. Furthermore, assume that the inclusion of one tool excludes the
possibility of another. In this case the extension process will be controlled by the constraints
between the tools.
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2.2.2 Attribution

Attribution is the process of setting the values of attributes in the product graph. As
with the extension process, attribution is carried out with respect to the relation being
considered.

The sequence of attribute computations is determined by the dependencies between the
attributes. Some attribute values will be initially set; others will have to be computed. If
an attribute depends on no other attribute values then its value can be set at any time. If
the value of an attribute depends on one or more other attribute values then it can be set
any time after the values of the attributes on which it depends are set.

The basic attribution process is derived from two different notions of inheritance: struc-
tural inheritance and value inheritance. Structural inheritance describes what attributes
are inherited by an object. Structural inheritance closely resembles the notion of inheritance
found in the object-oriented domain. When an object is created it “inherits” attributes
from its type and all of it’s super-types. Structural inheritance is used to determine the
set of attributes associated with a particular object. It may also describe the domain and
range of possible attribute values and even possibly a default value. What it does not
describe is how the values of the attribute will be determined. For example, assume we
have the object classes software-object and component-object, as in the taxonomy found in
Figure 1. In this taxonomy software-object is the super-type of component-object. Asso-
ciated with any software-object are the attributes name and type. Associated with any
component-object are the attributes ct and version. In the process of creating an instance
of a component-object, structural inheritance will define the set of attributes associated
with this instance to be: name,type,ct,version.

Value inheritance describes how attribute values are set. The notion of value inheri-
tance is borrowed from the attribute grammar domain. It describes the various interde-
pendencies between the attributes in a declarative way. In the case where the value of an
attribute depends on no explicitly stated dependencies, there is an implicit rule of value
inheritance. The implicit rule states that the value of an attribute at a node is defined to
have the same value as its parent.

Figure 5 represents a simplified state of a product graph. In this graph the root (test)
has the initial value for its ct attribute to the rule given in Figure 6. Figure 7 is a description
of all the dependencies between the attributes in a compound-object. Note that there is
no mention of how the value of the ct attribute is set. In this case, the default attribution
process supplies a rule that states that the value of ct in a node is inherited from its
parent. As a result the attribute value “If name=STG then version=3 else version =4” is
propagated from the root to all of its descendants. Once the value of the “ct” attribute is
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version=

Figure 5: A simple incomplete Product Graph

rule2 = [f name = “stg”
then version = &5
else version = 4

Figure 6: Initial value of “ct” attribute

xC-0bj.version ::=
gen_version (xC-0bj.ct,xC-0bj .name)

Figure 7: Attribution rules
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set at a node, it is then possible to determine the value of the “version” attribute. This is
done by applying the gen_version function to the attribute values at that node.

In the above example, structural inheritance was used to determine what the attributes
of an object are and value inheritance was used to determine how the values are to be set.
Where no rules are supplied for setting the value of an attribute, the default attribution
mechanism states that the value is to be inherited from its parent. It is worth noting here
that the rules for setting attribute values, both implicit and explicit, are declarative in
nature. They describe how to set the values but not when. It is the job of the system, not
the user, to worry about the order in which attributes are set.

The characteristics of the attribution process of the various phases of the configuration
management process differ in the kinds of attributes being propagated. In some phases,
attributes will have few inter-dependencies and can be evaluated efficiently. In others, the
attribution may be very complex. Attributes may depend on other attributes in such a
way that the order in which their attributes are evaluated can not be determined a-priori.

In some cases the attribution and extension processes may have to be intertwined. For
example, if an extension process depends on attribute values, and attribute values depend
on the extension process, then alternating extension and attribution is needed.

3 The Model

The model described below captures the configuration management process that starts
with a user request and ends when the request is satisfied. Configuration management is
explained in terms of the product graph, the transformations it goes through, and finally
its execution. The process is decomposed into two major phases:

e Graph Construction: Starting with a very high level user specification, build up
a legal and consistent configuration.

e Graph Execution: Once constructed, the configuration graph is used to drive the
execution process. The manufacturing steps are executed, the derived-objects are
produced, and the product is made available.

The graph construction phase, through an ordered series of well defined transformations,
takes the initial request and builds up a complete configuration. Recall that a complete
configuration is comprised of all the objects and their attributes, dependency information,
and manufacturing steps needed to fully describe how to construct the desired object(s).
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Configuration execution is a complex, time consuming task. In order to efficiently
execute a configuration, optimization and scheduling techniques are introduced. In many
cases optimization, scheduling and execution might be heavily intertwined.

3.1 Graph Construction

The graph construction phase is characterized by the building up a configuration from the
initial request. This phase is further decomposed into the following distinct tasks:

e Transform initial request to product graph representation
e Augment product graph with manufacturing sequence

o Augment product graph with set of primitive objects needed to drive the manufac-
turing process

e Augment the product graph with the necessary intermediate derived-objects.

Four distinct states in the construction of a complete configuration are outlined in the
following sections. Each state is given a name based on what new information has been
added to the product graph since the previous state.

3.1.1 Partial Product Graph

The Partial Product Graph (PPG) represents an initial, very high level, specification of
the desired product. The configuration management process begins when a user makes a
request for a particular product to the system. The first step in transforming this specifi-
cation into a complete configuration is to create the Partial Product Graph. The creation
of this graph is a straightforward transformation of the user’s request into an internal
representation.

The important characteristics of the PPG are its relation roots and the set of initial
attributes. The two relations, as you may recall, are derives and is-component-of. The root
of the is-component relation describes the initial primitive object from which the product
is to be produced. All of the initial attributes are attached to it. The derives root describes
the type of product desired.

An example of a simple request could be:

from the specific object “system.config” produce the product of type “ezecutable”.
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In this example the component-object “system.config” defines the root of the is-component-
of relation. “Executable” in this request specifies a type-object. This type object defines
the root of the derives relation.

An example request for which there are initial attributes for the derives root could be:

from the specific object “system.config” produce the product of type “ezecutable”
in which all derived objects are built with the debug option.

In this case the initial attribute value for “tool parameter” would be set to “debug”.
An example of a request for which there are initial attributes for the is-component-of
root could be:

from the specific object “system.config” produce the product of type “executable”
in which all of the components that make up the system are from version 5.

In this case the initial value of the “version” attribute would be set to “5”.

Of course one can imagine much more complex forms of attribution then described
above. In this model, attribute values can take the form of simple values, a set of rules, or
even arbitrary functions. To produce the PPG, the initial values (no matter how complex)
are associated with the roots of the relations; nothing more.

3.1.2 Typed Product Graph

The Typed Product Graph (TPG) represents the addition of a legal construction (manufac-
turing) sequence between the roots of the partial product graph. The process that creates
the TPG addresses the question: Does a consistent sequence of manufacturing steps exist
to create the desired product from the initial object?

The TPG is produced from the Partial Product Graph by extension and attribution
transformations with respect to the derives relation. The result of the extension process
is the inclusion of type-objects and derives edges from the Type Graph into the product
graph. The edges are directed and represent an ordered manufacturing sequence that starts
with the type of the initial object and ends with the type of the product. The nodes (type-
objects) and edges do not describe all of the details of the manufacturing process. Rather,
they describe a template whose details will be filled in by later transformations.

The attribution process decorates the newly augmented product graph with attribute
values such as: names, tools, tool versions, and tool parameters. This process can be
viewed as further refining the generic type-object manufacturing specification above into a
more concrete one.
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In most cases the extension and attribution processes are simple. The default exten-
sion process described elsewhere is used to infer nodes and edges from the Type Graph.
The default attribution process is then used to propagate initial attributes from the is-
component-of root to all of the nodes. These initial attributes primarily come from the
user request. A typical example of initial attributes that are propagated here are tool
parameters.

In many systems the Type Graph will support the notion of tool-type equivalence.
Tool-Type equivalence states that a tool exists for, and is associated with, each type-
object. An elegant property of this notion is that discussions of tools are abstracted away:
by mentioning the type-object one can infer the appropriate tool. Odin’s derivation graph
and, to some extent, Make derivatives and DSEE make use of tool-type equivalence.

Complications arise when versions of tools are introduced. Adhering to the notion of
tool-type equivalence implies the introduction of a new type for every new version of a tool.
In a large, long lived environment with many tools, tool-type equivalence may become un-
manageable. Perhaps the best way to understand the implications of tool-type equivalence
is by example.

In the examples below two new versions of a compiler are introduced. In first example
the new compiler is decomposed into two tool fragments that share an intermediate repre-
sentation (produce an intermediate object). In the second example the new compiler is a
version of the old in which the output is incompatible with the original compiler’s output.

Figure 8 represents a Type Graph before either of the new compilers are introduced. It
supports tool-type equivalence and is shown here as a base reference point. Figure 9 and
Figurel0 are Type Graphs that represent two possible ways of describing the old compiler
and the two new compilers. In Figure 9 tool-type equivalence is maintained. Figure 10
attempts minimize the proliferation of types by introducing a more general notion of tool

types.

Example 1: In this example the new compiler is decomposed into two fragments
(P1 and P2) that share an intermediate object. The introduction of a new object presents
problems for both TGs. In Figure 9 new type-objects (and some edges) must be introduced
to represent the new tool fragments. Moreover is-a edges must be created to coerce the
binary of the old compiler and the binary of the phased compiler to a common type 8.

The introduction of the new phased compiler (type-objects) also has an impact on
manufacturing sequence selection process. Because of the intermediate object the length of
the new path to the desired product will be longer than the original one. Recall that the
default extension process uses breadth-first left-to-right search to find the path. Breadth-

8The Coercion is necessary if the two types are to share a common construction sequence fragment.
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Figure 8: Original Type Graph before new compilers

first search guarantees that the shortest path will always be selected. Three possible ways
to override the default mechanism are:

1. Introduce a global constraint that always selects the new compiler.
2. Provide a mechanism in the request language for selecting alternative paths.
3. Introduce a policy specification that locally constrains the extension process.

In Figure 10 the tool-type equivalence is broken. The type-objects in the Type Graph
are more general and refer to a general tool-object. By using this more general schema
the selection of the construction sequence from the Type Graph is simplified while the tool
selection process becomes more difficult.

Example 2: In this example a new version of the compiler is introduced that has the
same input/output semantics as the original compiler. The problem here is that the use
of the new compiler demands the use of the new binder and visa versa. It turns out that
the new compiler differs from the old in because the new binary objects contain additional
bind information. For this reason, it is necessary for the new binder to be used with the
new version of the compiler.
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If the new compiler is requested in a transaction, it is clear that the constructed manu-
facturing sequence must include the new binder, not the old. In order to guarantee that the
new binder is selected, it is essential that a constraint exist which guides the tool selection
process. In the tool-type equivalence scenario (Figure 9) the constraint is encoded in the
edge. In Figure 10 the constraint is described as a fact in the knowledge base.

Implicit constraints are not desirable. They overload the semantics of the edges and
promote type proliferation. Assume for a moment that a Type Graph such as Figure 9 exists
in which the constraint between the new compiler and new binder is implicitly encoded in
the edge. Imagine a scenario in which a very long manufacturing sequence which starts the
executable type and then the graph fans out again. If the reason for the fan out is because
of the new binder, for example, it may be that the entire common sequence may have to
be duplicated.

The concept of using types and typing is an integral component in the construction of
the manufacturing sequence described in Type Product Graph. The concept is not entirely
new and in part is borrowed from existing systems. The remainder of this section serves
as a summary of how and to what extent existing systems provide for the construction of
manufacturing sequences.

Make (or at least Make derivatives: see[Fel88]) have a limited capability for performing
this extension process. In Make the user is allowed to specify default rules[Fel79]. These
are class rules that describe generic transformations from type to type. The way in which
these rules are used is rather limited. Make systems in general perform a depth-first rather
than breadth-first search. This makes it impossible to find alternative paths. In some Make
systems the number of default rules that can be applied in an unbroken sequence may be
very limited®.

The Odin system has a well-defined type system[Cle88a] that supports the kind of
processing described above. In Odin it is possible for there to be more than one path
between the source and product types. It uses the default extension process described
earlier in which breadth first search causes the selection of the shortest path. To override
this it is possible for the user to specify articulation points[Cle88b] that force the extension
mechanism to select alternative paths.

In other systems, type rules either do not exist or are simply used as place holders.
In Adele (at least in the published documentation) there is no mention of type objects.
In DSEE type objects exist but are not used in the extension process; they are simply
attribute place holders.

®The original Make allowed only one default step in a sequence
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3.1.3 Component Product Graph

The Component Product Graph (CPG) represents the augmentation of the product graph
with the complete, fully attributed set of primitive components needed to build the de-
sired product. The Component Product Graph is produced by applying extension and
attribution transformations, with respect to the is-component-of relation, to the product
graph. ‘

The previous transformation determined the existence of a legal and consistent manu-
facturing sequence to build the desired product. The goal of the following transformations
is to determine if there exists a legal and consistent set of primitive components that will
drive that manufacturing process. For many systems the components are objects such as
source modules, include modules, etctera. Selecting the set of components involves finding
out the dependencies between objects, selecting the correct version/variant of those objects
and possibly performing some semantic analysis to determine whether the selected set of
objects are consistent with respect to one another.

The construction of the component set, or some similar structure, is a very active area
of research within the configuration management community[Est85,Per87, MK88, Wie88,
WE88]. In early CM systems the main emphasis in constructing this set of components was
centered on dependency issues[Fel79]. The next stage of evolution was to include pragmatic
constraints[Est85,Leb84,BLLV87] in which the user could define various constraints about
version/variant selection: e.g., [ want version 4 of a particular system. In more recent sys-
tems emphasis is being placed on semantic constraints[ WF88,Per87, MK88,Tic86, HKM87]:
e.g. Is there an export for every import.

In terms of this model, early CM systems dealt exclusively with the simple (static) ex-
tension processes. The next stage of evolution was to augment the simple extension process
with dynamic version/variant attribution. After a time certain system designers realized
that a more dynamic extension process was also needed: rather than apply version/variant
attribution to a statically defined structure, this attribution was used to dynamically de-
termine what other components were needed. Other systems investigated other orthagonol
forms of attribution, in particular semantic analysis.

In this model it is possible to define any of the above forms of attribution. In particular
it is possible to perform both version/variant selection and pragmatic analysis within the
same system. It is worth noting that the evolution in this particular aspect of configuration
management is towards supporting greater and greater complexity and dynamism within
the model. The hope here is that all this extra, automated, complexity will result in the
generation of more reliable software products.

As in the previous section the transformations that take place in this section are exten-

26



sion followed by attribution. The significant difference here is that these transformations
are done with respect to the is-component-of relation. The extension process will add
nodes and edges of the is-component-of relation to the product graph. The attribution
transformation in turn will set the attribute values for these newly added nodes.

In Make the Makefile statically defines the is-component-of relation. The extension
process is basically a transitive closure on the is-component-ofrelation; there is no built-in
mechanism for performing attribution.

In DSEE the extension process is even simpler than in Make. What DSEE does that
Make does not is to provide a version/variant attribution mechanism. The DSEE Con-
figuration Thread (CT) describes the attribution rules to be used in performing version
selection. These rules can take the form:

for 7* -when RESERVED -use_options -debug
for 7* REV9_BUGFIXES]] -when_exists
for 7% ]

The above three rules represent a complete CT. The rules are applied in sequential order at
every node until there is a match. The first rule states: if a file is checked out (RESERVED)
then use the current working copy and compile it with the debug option. The second rule
states: if the component exists as part of the REV9_BUGFIXES, use it. The third rule
states: use the most recent version from the version library.

In the Adele system the attribution transformation aides in driving the extension trans-
formation. In general the overall process in Adele can be thought of as: extending by one
node, attributing that node, and then using the results of that attribution for the next
extension. This cycle continues until there is no further node to add.

Systems such as Adele and DSEE address pragmatic consistency issues in the selection
of a set of source objects. They address questions such as:

Is the component set complete?
Does it satisfy the user’s request?
Does it violate any user’s constraints?

However they say nothing of semantic consistency. Many CM systems today are being
built around one language.!® For these systems the following issues need to be addressed
as well:

100r at least principally around one language.
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For every import is there an export?
For every import/export pair are the number and kind of parameters consistent?
Does a version of a module body satisfy a version of a module interface?

Tichy[Tic86], Kennedy[HKMS87], Perry[Per87] and Wagner|[Pfr86] have noted that the
use of semantic information aids in producing more precise products. They also suggest
that this information can be used at later phases in minimizing the (re-)computations
necessary to build the product.

It is important that the extension and attribution process in this and all other phases
be programmable. As we survey current configuration management systems we can see
an evolution towards allowing more and more programmability in the attribution process.
With the extension process though, only recently has there been any work done which
focuses on dynamic processing. Presently, there are no systems that allow for dynamic,
programmable extensions along the is-component-of relation.

3.1.4 Product Configuration Graph

The Product Configuration Graph (PCG) represents the inclusion of all the necessary de-
rived objects and their associated attributes into the product graph. The Product Con-
figuration Graph represents a complete configuration. It contains all the source objects,
derived objects and the tools (and possibly their parameters) involved in the construction
process. The Product Configuration graph is constructed by applying extension and attri-
bution over the derives relation. Most if not all of the information needed to construct this
graph is already contained in the graph itself. Whereas the derives information needed to
construct the Type Product Graph came from the Type Graph, the derives information
for this process comes from the Type Product Graph. Again, the extension process will
add nodes and edges, and the attribution process will propagate attribute values over the
extended graph.

The extension process used to create this graph may be complicated by compound or
aggregate objects. If a system supports sets of objects then that system must supply tools
that support sets. The Odin system supplies such a set of tools. One of the system tools
available in Odin is called “homomorphism”. The homomorphism tool allows the author
to apply the same derivation step to all the elements in the set.

Below is a fragment from an Odin specification. Of particular interest is the o_list class.
It takes as inputs a compound file of “c” source files and produces a list of “o” objects. It
also specifies how to build one from the other.
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olist(o) “list of o objects”
HOMOMORPHISM (:0)

: cmpd

cmpd(c) “List of C files “
COMPOUND

: ref

o “C object module”
USER c.to.o.cmd

. C

Perhaps the easiest way to describe the extension process is to to see an example in
pictorial format. Figure 11 is the product graph just after the completion of the CPG.
Contained within this graph is all the information needed to produce the product configu-
ration graph. The tool attribute of the cmpd derived object tells us that we must apply
the “o” derivation to all each of the elements of the ref object.

test.ref

test.c

mem.c

Figure 11: Product Graph before the addition of derived-objects

Figure 12 represents the expansion of the CPG to include the appropriate derived
objects. The application of the homomorphism with respect to the “o” derivation generates
for each element in the ref file an “o0” object.

Once the graph has been extended to include derived objects the appropriate attribute
values must be propagated. Of particular importance is the propagation of the attributes
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Figure 12: Product Graph after the addition of derived-objects

values for tool and tool parameters. The information used in the attribution transformation
is gleaned from two sources: the generic attributes found in the Type Product Graph and
the user request. From the TPG the tool attributes are extracted. This is true in Odin,
Make, and DSEE. From the user request information about the parameters for those tools
is extracted. At this point the construction process is finished and the result is a complete
configuration.

3.2 Configuration Execution

After introducing a simple execution model optimization and scheduling techniques are
discussed. The purpose of the optimizations is to eliminate any unnecessary or redundant
manufacturing steps. Scheduling determines the best possible order of execution, given
a fixed set of resources. It is worth noting that execution, optimization and scheduling
activities may be heavily intertwined.

If you recall, a configuration is a graph in which the nodes represent software objects,
attribute values parameterize the manufacturing steps, and the edges represent dependency
information that constrains the manufacturing order. Execution of a node in a configuration
can be interpreted as the application of a manufacturing step to a set of inputs. The
output(s) produced by this application constitute the value of the software object.

In this model a manufacturing step is described by attribute values associated with
the node to be executed. The tools, tool parameters and any other needed information
are expressed as attribute values. This seems a natural way in which to describe the
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Figure 13: An execution model example

manufacturing step because the information is exactly where it is needed for subsequent
recall: attached to the derived-object.

The set of inputs needed to drive the manufacturing step is defined to be the set of
objects whose derives edges terminate at the node to be executed. Unless there is an error
in the Type Graph, the set of incoming edges precisely describes the input set.

The output(s) resulting from the application of the manufacturing step is associated
with the software object. In simple cases where there is only one output, the value of the
software object is the output of the manufacturing step. In cases where there are multiple
outputs, the value of the software object is references to other software objects.

A general property of the graph is that no node can be executed until all of the nodes it
depends on have been executed. In effect, the dependency edges define a partial ordering
on the sequence in which nodes can be executed.

Figure 13 represents a small fragment of a complex manufacturing process used to
generate compilers in the Eli system [WHK88]. The manufacturing step describes the
application of a tool fragment from the GAG tool set[KHZ82] that transforms an optimized
attribute visit sequence into a visit sequence table.

The manufacturing step in this example is described by the tool-for and tool-parms
attributes. The “expand” tool parameter plus the “vsx.cmd” tool are used to manufacture
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the vsx object.

The set of input objects that drive this manufacturing step are: optim_vs, optim_sem
and scan_st. optim_vs represents an optimized attribute visit sequence, and optim_sem
an associated set of attribute dependencies. Both optim_vs and optim_sem are pro-
duced by by a previously executed optimization manufacturing step. scan_st represents
an identifier table produced by a lexical analysis tool.

The application of this manufacturing step produces two outputs: vsx_tab, a visit
sequence table and vsx_ctrl, the control function that is driven by the table. As you can
see in the figure, because there is more than one output, the two objects are represented
as separate entities and are associated with the vsx object.

Before the vsx manufacturing step can be executed all of the input objects it depends
on must exist and be “up-to-date”. Similarly, subsequent manufacturing steps that depend
on vsx._ctrl can not be executed until the vsx manufacturing step itself is successfully
completed.: o

Of course configuration execution is not that simple. It can be complicated by a number
of factors:

1. At the time of execution, some number of the objects will already exist in the database
and need not be re-derived.

2. Some objects exist but are “out-of-date” with respect to the components from which
they are constructed.

3. The execution may be terminated early if it can be determined that further execution
will result in no changes to the database.

4. Some objects can be derived in parallel with other objects.

In most existing systems, execution, scheduling and optimization are heavily inter-
twined. Some systems use optimization techniques in the construction process and never
create a complete configuration. Others may have complete configurations stored and com-
pletely bypass the construction phase. Another set of systems might perform scheduling,
then optimization, before execution; others may optimize then schedule. Even heavier in-
tertwining can be found in systems with dynamic optimization. In these systems the result
of each execution step is used as the input to subsequent optimization and scheduling. Be-
fore discussing optimization and scheduling in detail, four examples from existing systems
are given to suggest the flavor of what is possible.

In Make, a complete configuration, as defined in this model, is never constructed. Make
uses static optimization techniques during the construction process to produce a reduced
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configuration. Each time a make request is issued, the Makefile must be parsed and a
configuration is constructed.

In pmake, a parallel version of Make, the reduced configuration is constructed as in
make. pmake’s distinguishing characteristic is that it then schedules the configuration
before executing it. Again, for each make request the make file must be parsed, the reduced
configuration constructed and the schedule built before any execution.

In DSEE the system model and the configuration thread are “loaded”. The loading
of these two specifications is similar to constructing a complete in-memory configuration.
When a build request is issued the complete configuration, (being constructed and in mem-
ory), is simply executed. When a change is made to an object in the configuration and a
new build request is issued, the complete configuration is consulted and a reduced graph
is produced. In a newer parallel version of DSEE, before the first execution a schedule is
produced once from the complete configuration. All subsequent executions are determined
from that schedule.

In Odin optimizations take place during execution. After executing a manufacturing
step 1t is possible to determine whether the result is identical to a previous execution by
comparing it to back level instance of the object. If the results are identical all subsequent
manufacturing steps that depend on the newly created object are unnecessary and can be
eliminated.

3.2.1 Optimization

Execution of a node establishes a constraint between the supporting objects and the con-
structed object. This constraint says that the constructed object has the value that would
be obtained by applying the tool to the supporting objects. This constraint specifically
does not require that the tool actually be applied every time the output object is needed.
This is the key to optimizing the execution of the graph as a whole. If by some means
it can be determined that the application of the tool would not produce a result that is
different than the current value of an object, then the tool need not be applied at all.
Borison [Bor86] has formalized some aspects of this in her difference predicates.

A number of means exist for determining if the constraint may (or may not) have been
violated:

Timestamps: If the time of last modification of an output object is earlier than the times
of any of its supporting objects, then it may imply that the constraint is violated.

Value equivalence: Apply the tool and if the result is bit-for-bit identical with the existing
value, then it can be assumed (by construction) that the constraint was not violated.
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These tests are not of much use individually, but they are useful in conjunction with the
following rule:

Input equivalence: If none of the supporting objects has violated its constraint, then the
dependent object may be assumed to be in compliance with its constraint.

This rule is important because it allows execution to cease at any point if the constraint
is known to hold for all un-executed objects. As the graph is executed, various nodes may
be marked as executed even if no work is done; they need only satisfy the constraint. The
effect is that changes to source objects will propagate only to those objects that directly
are affected by those changes.

Imagine for a moment a long, complicated construction sequence that starts with a
compiler source object. In systems that do not support value-equivalence it is possible
that the entire construction process might have to be executed. If, on the other hand,
value-equivalence was in force and the result of the compilation was identical to that of the
previous compilation then the previous object could be used in its place. Assuming that
the entire construction sequence exists for the older copy of the input, the construction
process can be terminated at this point.

3.2.2 Scheduling

Graph scheduling is concerned primarily with resource allocation and execution order deter-
mination. Factors that are used to determine a schedule include: dependency information,
number and kind of resources, resource location, and possibly statistics about previous
executions.

With the advent of powerful workstations there has been a shift from central to dis-
tributed processing. In such environments there are many machines that sit idle for signif-
icant periods of time. Devising configuration management systems that take advantage of
these idle resources is desirable.

Distributed computations pose many problems for scheduling. For homogeneous envi-
ronments some problems are:

1. Certain resources exist only on specific machines.
2. Machines may have different computing power.

3. There must be a guarantee sufficiently compatible execution environments
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Configurations contain tool information. This information may place additional constraints
on the execution schedule. For example, in an environment in which there is only one
licensed Ada compiler, all Ada compilations must be scheduled for the machine that has
the license.

In cases where it is known that a manufacturing step is computationally expensive, and
there are many processors available, it is desirable to schedule that step’s execution on the
fastest available machine. Similarly, if several ready tasks have the same execution time
but one has more out edges, (objects which depend on it) it should also be scheduled on
the fastest available machine.

For a computation to be executed on a foreign machine, some guarantee must be made
that the environment in which the actual computation is performed is sufficiently similar
to that on the local machine. For example, the version and location of tools should be
identical. DSEE is able to do this by a using a facility contained in the operating system.
The Apollo operating system provides a facility to change file system root of a remote
process to that of it’s creating process. Of course there is an overhead cost associated
with this. The overhead for starting an execution is the limiting factor for single threaded
scheduling. In DSEE the degree of parallelism is roughly computed as: (the average of all
execution times)/execution startup. The overhead associated with remote process startup
in the Apollo operating system is on the order of seconds. The average execution time
for a manufacturing step is typically less then one minute. Because of this, DSEE systems
typically see a factor of 5 speed-up[LCS88]. There are several systems that perform parallel
builds over distributed networks. DSEE([Leb84], pmake[Baa88] and nmake[Fow85] are all
examples of existing systems.

Scheduling a set of independent tasks is NP-complete. Fortunately, heuristics have been
found to produce feasible schedules. Some of the known heuristics for the independent
task-scheduling problem are the list-scheduling algorithm, LPT (least processing time) and
MULTIFIT[GGJ78]. These three scheduling heuristics distinguished from one another by
the amount of information they have available to manipulate and how good schedule has
to be. In general the more information available the better the schedule. In order to use
MULTIFIT, additional information about the execution task time is needed. This implies
knowledge either about the tools to be used (their speed, and the size of the input) or
cached statistical information about previous executions.
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4 Related Work

The purpose of this section is to mention related work and specific papers which have
indirectly contributed to the proposal. These papers are not described in any detail. They
are placed here to suggest to the committee the focus and breadth of the background
research. If a member of the committee would like further information on any aspect of
this section it will be possible to discuss this during the oral presentation.

Configuration management addresses a subset of the issues associated with more general
Software Development Environments (SDEs). A primary difference between CMEs and
SDEs is that SDEs try to address the entire software life cycle, from initial requirements
to delivery and maintenance, in one integrated environment. Another significant difference
is that in CMEs everything can be automated. SDE research is still in its infancy. This is
obvious when one surveys the literature[Hen88]. One notable software environment project
is Arcadia[TO88]. Arcadia is based on the notion of process programming[Ost86]. A sub-
project under Arcadia is to define the process programming language APPL /A[HSO8T].

In the model, extension and attribution transformations play an important role. Attri-
bution as described in the model is based on attribute grammars[Rai80]. Attribute gram-
mars and tools based on attribute grammars are areas of active research[KHZ82,sKK86].

One of the issues to be addressed in the thesis is whether or not the attribute grammar
paradigm is sufficiently powerful to support the kind of attribution needed for configuration
management. In particular, it is unclear whether there is a convenient usable mechanism
for supporting tree/graph transforms. Supporting dynamic systems suggests the need for
the extension and attribution transformations to be intertwined. The problem is that
the result of an attribution process may be a new extended graph that then needs to be
attributed. While there has been some work to formalize the automatic tree transfor-
mation process[VSF89] the results are inconclusive. Other related work in the attribute
grammar domain focuses on incremental attribution[sKK86,RTD88]. There has also been
direct research into applying incremental attribution to the configuration management
process[P{r86, WF88].

The extension process is based on the notion of type inferencing. The problem is to
find the appropriate compromise between the expressive power of the type system and the
ability to infer legal phrases[CW85]. New work in type inferencing [Weg87] may aid in
finding that compromise.

Object management plays a significant role in the configuration management process.
It is hard to envision future systems in which there is no object manager. [t is important
to be aware of the state of the art in object management and if possible try to influence
its evolution by proposing requirements. Relational schemes, object oriented schemes,
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entity-relationship models, deductive databases have all been suggested. Key issues such
as distribution, version management|[Zdo86], caching[HK86], syntax and semantics are still
not fully understood. In one sense the evolution of configuration management in particular,
and SDEs in general, depend on real progress in object oriented databases. Conversely,
requirements defined though progress in environment research will drive (direct) progress
in the database domain.

Consistency constraints are an integral component of the model described above. Some
analysis into the complexity of maintaining a set of constraints is discussed in the SIO
system[GLLS8].

Another key related issue is the underlying operating system that provides support for
the configuration management process. With a trend towards more powerful workstations
the notion of distributed configuration management is becoming more and more important.
While one can argue that some of the issues concerning distribution can be pushed up to
higher levels, it seems that the more the operating system can support the less there is to
be coded into each application. Two systems that exemplify desirable qualities in future
operating systems are Mach([8 ] and CPR[CMS87]. Mach is an operating system developed
to support distributed processing via the notion of light-weight processes. CPR, a research
prototype, is a system which supports the notion of “database memory”. In CPR the
system supplies and supports physical locking and journaling for certain segments. The
application programmer writing a database system, for example, need only worry about
the semantics of the database (how to implement join, etc), not what and when to lock.

Configuration management relies on support from programming languages to provide
information to simplify the process. It also relies on the database community to provide a
mechanism for persistent, efficient storage of, and access to, this information. In some sys-
tems there is even builtin support for configuration management within the host operating
system[Leb84].

Languages, and language design play a significant role in configuration management.
Language design is evolving to meet the needs of programming-in-the-large. Modular lan-
guages, separation of interface from specification and polymorphism are some of the results
of this evolution. Languages such as Modula-2, ADA, and CLU are examples of languages
that provide some support for programming-in-the-large. Configuration management sys-
tems are using this extra information to help the CM process. For example, the separation
of interface from specification in Modula-2 has allowed for the creation of CM systems
that perform inter-module semantic analysis. In the future, it is quite possible that con-
figuration management systems will be based more and more on information provided by
compilers. Languages will either be modified or created in order to supply the appropriate
information.
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5

Future Work

The work outlined in this proposal represents a significant step towards the creation of a
comprehensive model. Most details for the process of configuration construction are well
understood and represented in the model. The details of configuration execution, on the
other hand, are outlined but not fully integrated.

The focus for the remaining work centers around building an executable prototype of
the model. Producing a prototype serves two important goals: it validates the model and
forces details currently not specified to be filled in. In the process of creating the prototype
the model will undergo changes. For the most part these changes will reflect refinements
and modifications influenced by the validation process. Some of the model’s details that
need refinement are discussed below:

Attribution: In the paper attribute grammar style attribution is proposed. One
of the goals of future research is to determine if the kind of attribution needed to
support configuration can be formulated entirely within this paradigm. The belief is
that for most cases attribute grammars should be sufficient.

Extension: The extension process proposed depends on type inferencing. Initially
the the type system will be quite strict, and the inferencing a simple form of transitive
closure. An area of research is to determine what impact a less strict type system
(including tool-types and versions of types) will have on the model.

Tree Transformations: One of the most difficult problems facing the model is an
efficient solution to the tree transformation problem. The model supports dynamic
attribution and extension. This implies the intertwining of attribution and extension
processes. While this can be programmed-out in a straight forward manner, the issue
is whether or not there is a formal mechanism capable of describing these transforma-
tions, that is consistent with the proposed attribution and extension transformations.

Homomorphisms: The exact details of the transformations involved in creating
the Product Configuration Graph from the Component Product Graph need to be
refined. In particular, the details of the is-component-of relationship between the
primitive objects and the derived-objects needs clarification.

Optimizations: How the optimizations integrate with the model is the significant
area of future research. It will be difficult to explore other optimization techniques
until the mechanisms for timestamps and value-equivalence are fully integrated and
operational.
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The model proto-type will be implemented in Prolog. Prolog is a suitable implemen-
tation language because it allows for rapid prototyping and provides a primitive deductive
knowledge base. As the implementation evolves it is expected that the model will evolve as
well. Difficulties in implementation may lead to modification of the model. Issues not yet
conceived may surface once ideas are explored using the model. Simplifications may even
be possible based on future insight. Roughly, the areas to be covered in order to satisfy
the thesis goals are:

e Refine the extension process in Product Configuration Graph phase.
o Clarify graph reduction and scheduling.
e Implement an executable prototype.

e Refine the model based on future work.
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