Efficient Theoretic and Practical Algorithms
for Linear Matrod Intersection Problems

Harold N. Gabow and Ying Xu

CU-CS-424-89 January 1989

Department of Computer Science
Campus Box 430

University of Colorado

Boulder, Colorado 80309

ANY OPINIONS, FINDINGS, AND- CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE NATIONAL SCIENCE
FOUNDATION.

Efficient Theoretic and Practical Algorithms

for Linear Matroid Intersection Problems

Harold N. Gabow!
Ying Xu
Department of Computer Science

University of Colorado at Boulder
Boulder, CO 80309

January 18, 1989

Abstract.

Efficient algorithms for the matroid intersection problem, both cardinality and weighted ver-
sions, are presented. The algorithm for weighted intersection works by scaling the weights. The
cardinality algorithm is a special case, but takes advantage of greater structure. Efficiency of the
algorithms is illustrated by several implementations on linear matroids. Consider a linear matroid
with m elements and rank n. Assume all element weights are integers of magnitude at most N.
Our fastest algorithms use time O(mn!""log(nN)) and O(mn'5?) for weighted and unweighted
intersection, respectively; this improves the previous best bounds, O(mn**) and O(mn?logn), re-
spectively. Corresponding improvements are given for several applications of matroid intersection

to numerical computation and dynamic systems.

! Research supported in part by NSF Grant Nos. MCS-8302648, DCR-851191.

1. Introduction.

The matroid intersection problem is interesting from a theoretic point of view and because of its
rich set of applications. Concerning theory, matroid intersection generalizes bipartite graph match-
ing; powerful duality results (e.g., the Konig-Egervary minimax theorem) generalize to matroids
(e.g., Edmonds’ matroid intersection theorem) [L]. Concerning applications, matroid intersection
can be used to analyze continuous systems arising in electrical networks, elastic structures and
chemical processing plants. The analysis is attractive because problems that might naturally be
solved by numerical computation, subject to rounding error and inaccuracies in the data, are re-
placed by discrete calculations, which are more efficient and relatively insensitive to these numerical
difficulties. Examples of such applications of matroid intersection include solvability and dynamic
degrees of freedom of an electrical network [I] and their generalization to arbitrary dynamic systems
governed by linear differential equaitons [M87a]. (For electrical networks the matroids tend to be
graphic; for general systems they are linear. Applications are discussed further in Section 5.)

This paper presents efficient algorithms for a number of matroid intersection problems. The
main algorithm is for weighted matroid intersection. It is based on cost scaling, generalizing
recent work in matching [GaT87] and network flow [GoT]. A special case is of this problem is
cardinality matroid intersection, and several improvements are given for this case. The efficiency
of our intersection algorithms is illustrated by implementations on linear matroids. This is the
broadest class of matroids with efficient representations. (Implementations of our general matroid
algorithm on other matroids are given in [GX].)

To state the specific results, assume that a linear matroid is given consisting of m elements
with dimension n. For weighted intersection assume that all weights are integers at most N in
magnitude. We distinguish two types of algorithms: those that use only naive procedures for
manipulating matrices (e.g., the simple O(n?) algorithm for matrix multiplication) and those that
take advantage of sophisticated procedures (e.g., the O(n?*) multiplication algorithm of [CW]).
Algorithms of the first type do not have as good an asymptotic time bound. However they can
be more practical than algorithms of the second type, which have large constants hidden in the
asymptotic bounds.

The main previous contribution for linear matroids is the cardinality intersection algorithm
of Cunningham [Cu]. It finds a maximum cardinality matching on a linear matroid in time
O(mn?*logn), using naive matrix manipulation. Our naive algorithm for cardinality intersection is

essentially the same as Cunningham’s. Using fast matrix multiplication our algorithm runs in time

O(mnl'62).

For the weighted problem, our naive algorithm finds a maximum weight perfect matching in
time O(mn? log nlog(nN)). This bound is just a factor log (nN) more than Cunningham’s bound
for the simpler problem without weights. Using fast matrix multiplication our algorithm runs in
time O(mn'"" log (nN)). The previous best bound for this problem is achieved by Frank’s algorithm
[F] (and a number of similar algorithms). This gives time O(mn®) using naive multiplication and
O(mn**) using fast multiplication. Frank’s algorithm has the theoretic advantage that the time
bound is strongly polynomial. (Advantages and disadvantages of strong polynomial algorithms
compared to scaling algorithms are discussed in [G, GoT].)

It is interesting to compare our results with recent scaling algorithms for minimum cost net-
work flow [GoT], the assigment problem [GaT87], minimum weight matching [GaT88] and others.
These papers present scaling algorithms with a time bound for the weighted problem that is es-
sentially within a factor log (nN) of the best-known bound for the (simpler) cardinality problem.
As mentioned, this is also the case for our weighted matroid intersection algorithm using naive
multiplication. However using fast multiplication there is much larger gap between our bounds for
weighted and cardinality problems, about n'!5. We leave open the problem of closing this gap, or
making other improvements to our algorithms.

The rest of this section gives some terminology and notation; then it sketches Frank’s algorithm
for weighted matroid intersection [F]. Our algorithm uses several ideas of this algorithm. Section 2
presents our algorithm for weighted matroid intersection, on general matroids. Section 3 gives the
algorithm for cardinality matching, plus other extensions of the weighted algorithm. Section 4 gives
implementations of the matching algorithms on linear matroids. Section 5 sketches the extensions
to related problems such as independent assignment and linking (definitions of these problems are in
Section 5). It concludes by giving a number of applications to problems in numerical computation
and dynamic systems.

If §'is a set and e an element, S+ e denotes SU{e} and S — e denotes § — {e}. The symmetric
difference of sets S and T is denoted S & T. We use interval notation for sets of integers: for
integers ¢ and j, [i..5] = {k|k is an integer, ¢ < k < j}, [i..§) = {k|k is an integer, i < k < j}, etc.
The log function denotes logarithm base two. We use the following convention to sum the values
of a function: If f is a real-valued function defined on elements and S is a set of elements, then
F(5) = 2{f(s)ls € S}

The algorithms for linear matroids do matrix multiplication. We could state the time bounds
in terms of M (n), the time to multiply two n X n matrices. Instead we use a slightly less precise

notation, that has the advantage of simplifying the algebra: We state the bounds in terms of w,

2

a real value satisfying M(n) = O(n**“). Hence 0 < w < 1. The simple algorithm for matrix
multiplication gives w = 1; w < 0.376 using the algorithm of [CW], although this algorithm is not
practical.

Strictly speaking our time estimates do not take into account the fact that the size of the
numbers can grow because of repeated matrix multiplications and inversions. Hence the bounds
either assume we are working over a finite field, or the bounds count the number of arithmetic
operations.

I denotes the identity matrix. The dimension of this matrix will be clear from context.

The reader is assumed familiar with the basic notions of matroids (see, e.g., [A, L, W]). Let M
be a matroid over a set of elements E. The span of a set of elements S is denoted sp(.S). Suppose
e is an element and B is a base. The notation C(e, B) denotes the fundamental circuit of e in B
if e ¢ B, or the fundamental cocircuit of e for B if e € B. (It will be clear from context whether
or not e € B.) On occasion we write C(e, B,M) if the matroid M is not clear. If S and T are
sets of elements then S/7" denotes the matroid restricted to S with T contracted. If M and N are
matroids, their direct sum is denoted M -+ N.

Let the element set E be partitioned into blocks of size two called pairs. Thus each element e
has a mate, denoted €, such that {e,€} is a pair. (We usually drop brackets and denote a pair as
e,€.) A matching M is an independent set of pairs, i.e., e € M if and only if € € M. A mazimum
cardinality matching has the greatest number of pairs possible. A matching is perfect if it is a base
of M. If w: E — R is a function that assigns a real-valued weight to each element, the weight of a
set S of elements is defined as w(9) = > {w(e)le € §}. A mazimum perfect matching is a perfect
matching that has the largest weight possible. Mazimum weight mazimum cardinality matching is
defined similarly. A mazimum weight matching is a matching with the largest weight possible.

The above problems generalize the problem of matching on graphs. This paper is concerned
with the “bipartite” versions of these matching problems. Specifically, throughout this paper the
M is a direct sum of matroids, M = Mg + M;, where M; is a matroid on elements E;, 7 = 0,1
(so £ = EgU Ey) and every pair contains one element from each matroid. The cardinality matroid
intersection problem is to find a maximum cardinality matching on such a matroid M. The weighted
matroid intersection problem is to find either a maximum perfect matching, maximum weight
maximum cardinality matching, or maximum weight matching, on M.

The following notation is useful in the context of intersection problems. For any set of elements
S and i € {0,1}, 5; denotes the set SN E;. The parameters m and n denote the number of elements

in £ and the rank of M respectively, unless stated otherwise.

3

1.1. Frank’s Algorithm.

This section sketches Frank’s matroid intersection algorithm [F], which contains several fun-
damental concepts used in Section 2. We modify Frank’s algorithm slightly to suit our purposes.
(The main modification is using “singleton” elements).

We take the basic problem to be finding a maximum perfect matching. Other variants of
matroid intersection easily reduce to perfect matching. For convenience assume the given matroid
has a perfect matching. (The algorithm is easily modified to detect a matroid that does not have
a perfect matching.)

It is convenient for the algorithm to always work with a base. To do this we introduce “sin-
gleton” elements. A singleton is an element parallel to an element of F; it does not have a mate.
S denotes the set of singletons; S is disjoint from the given elements E. If M is a matching, M
denotes the set M U S. The algorithm maintains a set of singletons S and a matching M so that
M is a base for M.

Frank’s algorithm is a primal-dual algorithm in the sense of linear programming [D]. There
is a dual function x : EU S — R; the dual value z(e) is sometimes called the weight of e. Note
that our notational convention for functions implies the following: If T' is a set of elements, z(T) =
> {z(e)le € T}. Thus for a pair e,e, z(e,e) = z(e) + 2(€). Similarly if M is a matching,
o(M) = 3 {z(e)le,e € M}.

The algorithm maintains the dual function to be feasible, i.e., for every pair e, €,
w(e,€) = z(e,e).

Obviously a perfect matching M is maximum if there is a feasible dual function z such that M is
a maximum weight base for M with respect to the weight function z. Recall that a base B has

maximum weight for weight function z if and only if it is dominating, i.e.,
z(e) < min{z(f)|f € C(e,B)} for e ¢ B.

The algorithm maintains z so it is feasible and M so it is dominating for z. Hence when § = §§, M
is the desired maximum perfect matching and the algorithm halts.

The algorithm repeatedly augments M to increase the number of matched pairs by one. This
is done as follows. A swap (for M) is an ordered pair of elements e, f such that M @ {e, f} is a base
and either e € Mo, f € Eg — M, or e € Ey — M, f € M;y; furthermore, z(e) = z(f). To execute
swap e,f means to change the current base M to M @ {e, f}. A weighted augmenting path (wap)

4

for M is a sequence of swaps

P =¢5fofoereififi ... fxfrertr-

More precisely P consists of pairs e;,& € M, 0 < i < k, singletons ,ezsq € M, and pairs
fisfi ¢ M, 0 < i< k, such that for 0 < i < k, &, f; and fi,eir1 are swaps for M; furthermore
M @ P is a base. Note this base M @ P has one more pair than M. The process of converting M
to M @ P is called augmenting the matching along P. This amounts to executing the swaps of P.

Frank’s algorithm as presented in [F] uses a slightly more restrictive definition of wap. It
requires that P has no “shortcuts”, i.e., no swaps €, f; or fi, ej+1 with j > 7. The no-shortcut
condition implies that M @ P is a base, but the condition is not necessary. All other algorithms
for matroid intersection (either weighted and cardinality intersection) that we know of use the
no-shortcut condition as part of the definition of augmenting path (e.g., [Cu,GS85,L], and for
matroid partitioning, [E,K,W]). The algorithm of this paper weakens the no-shortcut condition to
the condition that M @ P is a base. We could not achieve the desired level of efficiency using
augmenting paths that have no shortcuts.

Frank’s algorithm finds a wap by doing a Hungarian search (so-called because it generalizes
the Hungarian search of graph matching [L)). The input to the search is a dominating base M with
feasible dual function @. The output is a new feasible dual function for which M is still dominating
and there is a wap.

The Hungarian search works by growing a forest 7 whose nodes are elements of M. Recall
that by our notational convention, F; denotes the elements of F in E;. Call an element in F even
or odd, depending on its level. (A root of a search tree of F is on level zero and so is even). The
roots of F are the singletons of M. If e is an even element, each of its children f gives a swap e, f.
If € is an odd element that is not a singleton of M then e has one child, €. If e is an odd element
that is a singleton of My then J contains a wap (and the search is done).

The Hungarian search starts with a forest F consisting of roots, all the singletons of M. It
repeatedly does a “grow step” followed by a “dual adjustment step”, until F contains a wap. A

grow step adds elements to F until it is maximal. For an element e define
e(e) =if e € Fy then — 1 else 1.

A dual adjustment step calculates a positive quantity §, and then increases the duals of all elements

e € F by €(e)§. The dual adjustment quantity 8 is chosen as large as possible to keep M dominating.

5

This ensures that there is a new swap, allowing an element to be added to the forest in the following
grow step.

The Hungarian search stops when F contains a wap P. Then the algorithm does an augment
step, which changes the matching to M @ P and deletes the singletons of P from 5. Hence the new
set M = M U S is a base.

To summarize, the following algorithm finds a maximum perfect matching. The input is a
base of singletons S and a feasible dual function z, such that S is dominating for z. The algorithm
repeatedly does a Hungarian search to find a wap P, and then it augments the matching. The

algorithm halts when the matching is perfect.

2. Weighted Intersection Algorithm.
This section presents the algorithm for weighted intersection on general matroids, along with
its analysis.

We state our algorithm for the problem of maximum perfect matching. In addition we assume
that the matroid has a perfect matching. The other versions of weighted matroid intersection easily
reduce to this problem, with no loss in asymptotic efficiency. For instance, consider the problem of
finding a maximum weight matching on a matroid M. It reduces to maximum perfect matching on
a matroid N, constructed as follows. Start with M and also M’ a copy of M (with the same pairs).
In both M and M, create a copy of each element. Pair each new element of M with its copy (also
new) in M'. Each such pair has weight zero. If M is the direct sum Mg + M; then N is the direct
sum, (Mg + M) + (M1 + MJ), and each pair has one element in both summands. Further it is
easy to see that a matching of M corresponds to a perfect matching of N having twice the weight.
A similar reduction holds for maximum weight maximum cardinality matching, the only difference
being that in N pairs consisting of two copies of an element have weight —n N instead of zero (here
n is the sum of the ranks of M;.

A I-feasible matching consists of a matching M, with singleton set S giving base M = M U,
plus a dual function z : EU S — Z (Z denotes the integers), such that

z(e,€) > w(e,e) — 1, fore,e ¢ M; (la)
z(e,e) = w(e,€), for e,e € M, (1b)
z(e) <min{z(f)|f € Cle,M)}, fore¢ M. (le)

(Condition (1¢) is that M is dominating for z; we repeat the definition of dominance for conve-

nience). A I-optimal matching M is a 1-feasible perfect matching. We denote a 1-feasible matching

6

as M,z, or M if the dual function is understood.
This definition generalizes 1-optimality for the assignment problem as defined in [GaT87]. The

following fundamental property also generalizes [GaT87].

Lemma 2.1. If some integer £ > n divides each weight w(e, €) evenly, then any 1-optimal match-

ing is a maximum perfect matching.

Proof. Let M be a l-optimal matching and P any perfect matching. Dominance implies that M
is a maximum weight base for the weight function z. Hence w(M) = ¢(M) > z(P) > w(P) — n.
Since w(M) and w(P) are both multiples of k, this implies w(M) > w(P) as desired. §

This lemma is the basis for the main routine of the algorithm. It scales the weights. The
routine starts by computing a new weight (e, €) for each pair e, e, equal to n + 1 times the given
weight. Consider each w(e, €) to be a signed binary number £b1by ... by of k = |log(n+ 1)N| + 1
bits. The routine maintains a variable w(e,€) for each pair e,€, equal to its weight in the current
scale. The routine initializes each w(e,€) to 0, each dual z(e) to 0, and M to an arbitrary perfect

matching. Then it executes the following loop for index s going from 1 to k:

Double Step. For each element e € M, create a singleton e’ parallel to e, and set z(e') — z(e).
Let 5 be the set of all such singletons. For each pair e, €, set w(e,€) — 2w(e,€)+ (signed bit b, of
W(e,€)). For each element e € E U S, set z(e) « 2z(e) + 1.

Match Step. Call the match routine with the 1-feasible matching), z to find a 1-optimal matching
M,z for weights w. 1

The main routine is correct, since Lemma 2.1 implies that it halts with a maximum perfect
matching, assuming the match routine operates as described in the Match Step. Note that as
claimed, the empty matching with dual function z is 1-feasible. This follows from the Double Step.
(Also note that the match routine described below eventually deletes all of the singletons created
in the Double Step.)

Each iteration of the main routine is called a scale. There are O(log(nN)) scales.

Now we describe the match routine. It works by repeatedly finding and augmenting a wap. Its
efficiency stems from two closely related ideas which we now present.

The first idea is to use short augmenting paths. To achieve this we add one more requirement

to the definition of wap (as already given in Section 1.1). Define the weight-length of a pair e, e

7

with respect to a matching M to be
wl(e,€) = w(e,e) + (if e ¢ M then — 1 else 0).

A pair e, € is eligible if z(e,€) = wi(e,€). For instance any matched pair is eligible. We add to the
definition of wap the requirement that every pair is eligible. We shall see (Lemma 2.4) that this
produces short augmenting paths. (Further intuition for this definition can be found in [GaT87].)
The second idea is to find the augmenting paths in batches. By this we mean that as many
waps as possible are found and augmented, before doing a Hungarian search to create new waps.
The details of this idea are given below.
The following match routine is called with a set of singletons S and a dual function 2 such

that the empty matching is 1-feasible (see the Match Step of the main routine).

procedure match.

Initialize the matching M to {). Then repeat the following until the Search Step returns with the

desired matching:

Augment Step. Repeat the following until M does not have a wap: Find a wap P. For each
e€ (P NM)U(P,— M) (i.e., e is not a singleton and is the first element of a swap of P) increase
z(e) by €(e). Augment M along P. Delete the two singletons of P from 5.

Search Step. If M is perfect then return the 1-optimal matching M, 2. Otherwise do a Hungarian

search to adjust the duals, maintaining 1-feasibility, and find a wap. I

To analyze the match routine, first observe that it is correct, for the following reasons: The
Augment Step preserves 1-feasibility, as proved below in Lemma 2.6 (b). (Clearly the changes to
the duals maintain the 1-feasibility relations (1a) — (1b).) It will be obvious that the Hungarian
search preserves 1-feasibility. If M is not a perfect matching, the Hungarian search creates a wap.
Hence the algorithm eventually returns with a 1-optimal matching,.

Before giving the implementation of the two steps of match we derive some properties that
are useful for analyzing the running time. These properties are similar to [GaT87]. The properties
depend only on the details of match presented so far, and also the following basic properties that
we shall see:

The Hungarian search is essentially the same as in Frank’s algorithm (Section 1.1). The main

modification is that the search forest F only contains eligible edges. At any point in the algorithm

8

define

A = the sum of all dual adjustment quantities § in all Hungarian searches so far;
S = the current singleton set;
o = [Sol;

z = the current dual function.

We use a subscript of “minus” to refer to the time match begins, so z_ denotes the dual function
on entry to match, etc. For a singleton s € Sy, every dual adjustment of every Hungarian search

decreases z(s); for s € 51 no dual adjustment changes z(s). Hence for s € 5,
z(s) =x_(s)— (if s € 5y then A else 0). (2)

(Although the Augment Step changes duals, it does not change duals of singleton elements, so it
preserves (2).) Finally we will show that because the Augment Step finds as many waps as possible,

each Hungarian search adjusts the duals by at least one (Lemma 2.7).
Lemma 2.2. At any point in the execution of match, A < 5n.

Proof. Let w be the weight function of the current scale and M the current matching (so M =
MU S). Let M_ be the 1-optimal matching of the previous scale (or in the first scale, the initial
matching). It suffices to prove that

w(M-)—n < z(M) <w(M_)+4n — oA,

since the lemma follows by rearranging these inequalities.

The left inequality follows from the 1-feasibility of M, z: (M) > z(M_) > w(M_) — n.

To prove the right inequality, observe several inequalities: z(M) = w(M) < z_(M) + n, by
the 1-feasibility of §,z_. z(5) = z_(5) — ¢A, by (2). The l-optimality of M_ in the previous
scale and the Double Step imply z_(M) < z_(M-), 2—(M-) < w(M_) + 3n. Combining these
and using M = M U § gives the desired inequality:

z(—M) S(zo(M)4+n)+ (2-(S)—cA)<z_(M_)+n-—0cA <w(M_)+4n — oA.]

Lemma 2.3. There are at most 2v/5n + 1 iterations of the loop of match.

Proof. FEach execution of the Augment Step (except possibly the first) augments along at least
one wap, because of the preceding Hungarian search. Hence at most /5n iterations start with
o < v/5n. From Lemma 2.2, ¢ > /5n implies A < v/5n. As already remarked we will show
(Lemma 2.7) that each Hungarian search increases A by at least one. Thus at most /51 + 1
iterations start with A < v/5n. |

The next property shows the algorithm finds short augmenting paths. Define

A = the total length of all augmenting paths found by maich.

Lemma 2.4. A = O(nlogn).

Proof. Consider an augment done by match. Let M be the matching before the augment, M’
the matching after, P the wap and (its length (measured as its number of unmatched pairs). Let
wl denote the weight-length function with respect to M. Observe that P — M and PN M are both

sets consisting entirely of pairs. Define the quantity
W = wl(P - M) —wl(PnM).

Consider the quantity > W, where the summation is taken over all waps found by match. We
estimate) W in two different ways.

The definition of weight-length implies W = w(P — M) —{—w(PN M) = w(M') - w(M) - L.
Summing gives Y, W = w(M,) — w(My) — A, where M, is the final matching and Mp is the initial
matching. The relations My = § and w(M,,) < z_(S-) + n imply our first estimate,

Y W<a (S)+n-A

When the wap P is found, let z denote the dual function and A denote its current value. Let P
contain singletons s; € S;, 7 = 0,1. Since the swaps of P are eligible, W = 2(P - M) —-z(PNM) =
z(s0) + x(s1). Hence by (2),

YW =2 (5.)- > A,

where the second summation is over the values of A for each wap.
Combining the two relations for Y W shows A < n+ Y A. Lemma 2.2 shows that for the it*
wap found, A < 5n/(n— i+ 1). Hence Y. A = O(nlogn). This gives the desired bound on A. I

10

" Now we discuss the details of the Augment Step. The main issue in implementing the batching
of the Augment Step is that each swap of an augment can change the valid swaps. Thus care must
be taken to ensure that each wap gives a valid augment. We use a “topological numbering” of the
elements to guide the search for a wap. This numbering is based on an “acyclic” property of swaps
that is similar to [GoT, GaT87]. However it seems that on general matroids, the acyclic property
cannot be maintained without explicitly maintaining the topological numbering.

Define a (topological) numbering to be a function ¢t : EU S — N (N denotes the natural
numbers) with these properties:

(7) any swap e, f has t(e) > ¢(f);

(42) any pair eg,e; with e; € E; has t(eg) > t(ey) if and only if eg, ey ¢ M.

(The name is motivated by the fact that ¢ is essentially a topological numbering of the directed graph
whose edges are swaps e, f.) Subsequent sections also use a slight extension of this definition, to
handle problems other than weighted intersection: A pair eg, e; that is not eligible need not satisfy
(7¢). This section mentions any slight modifications to the algorithm and proofs needed for this
more general definition. The reader may ignore this issue until subsequent sections, if he or she
desires.

The definition of topological order implies that ¢ decreases along a wap P, in the following
sense: for ¢ = 0 or 1, if ¢, f and g,k are swaps in P; with e, f preceding g, k, then t(f) > t(g).
(Note that the algorithm can use a slightly simpler definition of topological number: any swap e, f
has t(e) > t(f) and two elements g, h have t(g) = t(h) if and only if g,h is a pair. The resulting
algorithm is similar to that given below. The definition used here simplifies the more general
intersection algorithms of Section 5.)

The match routine maintains a topological numbering (that changes as the valid swaps change).
The initial numbering is ¢(e) = if e € Ey then 1 else 0. Thereafter ¢ is maintained by the Augment
and Search Steps.

Now we give the main property of topological numberings. It enables the algorithm to search
for a wap without actually executing any swaps. (Recall the definition of “executing a swap” from
Section 1). Assume the matching is 1-feasible and there is a valid topological numbering. Let g, h

be an arbitrary swap.

Lemma 2.5. Executing a swap g,h does not create or destroy a swap of the form e, f where

t(e) < t(h).
Proof. The following notation is convenient. Let e, f be two elements, exactly one of which is

11

in M. Write {e, f} = {be,n.}, where b, € M and n, ¢ M (“b” and“n” stand for “basic” and
“nonbasic”, respectively). Let C. be the fundamental circuit of n, immediately before swap g, h is
executed. For example this defines by, n, and Cy; furthermore, b, € C|,.

Suppose that when swap g, h is executed, e, f changes from a valid swap to invalid or vice

versa. Both possibilities imply that
by € Ce, be € Cy, z(e) = z(f).

By 1-feasibility, #(by) > z(n.) and z(b.) > z(n,). Thus z(e) = z(f) = 2(g) = z(h). This implies
e,h is a valid swap (before g, h). Hence t(e) > (h), as desired. 1

We note a useful consequence of this argument. The proof shows that if e, f changes from a
valid to invalid swap or vice versa, then e, h is a valid swap immediately before g,k is executed.
Similarly g, f is a valid swap immediately before g, h is executed.

The Augment Step uses a variant of the dynamic-base cycle and cocycle problems introduced
in [GS]. We state the Augment Step in terms of a strong version of these problems. Section 3 gives
two weaker versions of the problems that can be used.

The problems are defined on a matroid where an initial base is given, along with two functions
z,t: EUS — Z. (In our application z and ¢ are the dual function and topological numbering,
respectively). The dynamic-base cycle problem is to process a sequence of intermixed operations
c(e) and update(e, f). The operation update(e, f) changes the current base B to B — e+ f. (Hence
the operation requires e € B, f ¢ B, and e € C(f, B). In our application update is used to execute
a swap.) The operation c(e) outputs an element f € C(e, B), where B is the current base, e ¢ B,
and f is an element with maximum value ¢(f) subject to the restrictions that z(f) = z(e) and f
has not been previously output in any other ¢ operation of the sequence. By definition, a given
element f gets output at most once in the entire sequence of operations. If ¢(e) is executed and no
such f exists, the operation returns . The dynamic-base cocycle problem is defined similarly, with
operations update(e, f) and c(e) (for element e € B). The operation ¢(e) still returns the maximum
element of C(e, B); the only difference is that now C(e, B) is a cocycle.

The Augment Step does a depth-first search to find a maximal sequence of waps P. It uses
the following data structures. A stack represents the path P that eventually becomes the wap.
The dynamic cocycle operations are used on matroid My and dynamic cycle operations on M. A
variable T" gives the currently largest topological number.

The Augment Step works by examining each singleton s € Sy. For each s it initializes path P

12

to contain s. Then it executes the following steps, until either the Dead-end Step discovers that no

wap from s exists or the Complete Step augments the matching.

Scan Step. Let e be the last element in P. Set f to the element returned by c¢(e). (For e € E,
c(e) is a dynamic cocycle operation if : = 0 and a dynamic cycle operation if 2 = 1. In either case
f€C(e,M).) If f=0 then go to the Dead-end Step. If f is a singleton then add f to the end of
P (now P is a wap) and go to the Complete Step. Otherwise (the mate f exists) if f, f is eligible,
add f, f to the end of P; if f,7 is not eligible decrease z(f) by one; in both cases go to the Scan
Step.

Dead-end Step. If e is a singleton (i.e., e = s) stop (no wap from s exists). Otherwise (P ends
with the pair €,e) for ¢ = € and e, delete g from P and increase z(g) by €(g); then set t(e) — T,
t(€) —« T+ 1, T — t(€) and go to the Scan Step.

Complete Step. For each e € (PoN M)U (P, — M) (i.e., e is not a singleton and is the first element
of a swap of P) increase z(e) by €(e) and set t(e) «— #(€) + 1. Augment M along P. (Execute
each swap of P using the dynamic update routine.) Delete the two singletons of P from S. (This

is essentially the procedure of the Augment Step of match.) Stop. I

A minor addition to the algorithm is needed if we use the extended definition of topological
numbering for Section 5: If the Scan Step decreases @(f) it also assigns ¢(f) and T the value T' +1,
to ensure property (i¢).

Now we prove that this implementation of the Augment Step is correct. The main step is the
following lemma, which shows that the algorithm maintains the desired structure. We first make
some preliminary observations. Outside of the Complete Step topological numbers decrease along
P, in the sense noted above. In the Complete Step topological numbers of pairs e,e are set in
accordance with the definition. Any element f has its dual changed at most once in the entire
Augment Step (since the dynamic ¢ operation outputs f at most once). In part (a) below we say
that a dual variable “has changed” if it has changed during the Augment Step. Conditions (1a)
and (1b) are clearly preserved by Augment Step: The Scan Step only decreases a dual if (la) is
satisfied with strict inequality; the Dead-end Step does not change any sum z(e,€); the Complete

Step makes z(e,€) = wl(e, €) (after the augment) for any pair in P.

13

Lemma 2.6. The following properties hold throughout the Augment Step.
(a) If e, f is a valid swap and z(f) has changed, then z(e) has changed.
(b) The dominance property (1¢) always holds.
(¢) The topological numbering is valid.

(d) Any augment results in a valid matching.

Proof. We prove the assertions by induction on the number of steps executed. We consider a
Scan Step, Dead-end Step and Complete Step in turn.

A Scan Step can only decrease the dual of an element in Eog — M. Clearly this preserves (a) -
(d).

Consider a Dead-end Step. We must verify parts (a) - (¢). The Dead-end Step removes the pair
€,e from P, where € is the second element of a swap of P. First consider €. After z(€) is changed,
no valid swap involves €. Thus (a) and (c) are vacuous for swaps involving €, and dominance (b)
holds for e.

Next consider e. We first show that immediately before z(e) is changed, there are no valid
swaps e, f. For the sake of contradiction assume e, f is valid. Since ¢(e) returned @ in the Dead-end
Step, f has already been output. Since e is the last element in P and t(e) > t(f), f is not in P.
Hence either f was never added to P or f was removed from P. In the first case, the Scan Step
changes z(f). In the second case, the Dead-end or Complete Step changes z(f). (If f was removed
in a Complete Step that augmented along a wap @, f changed from matched to unmatched or vice
versa, and so f was first in a swap of ¢).) Hence (a) (which is true by induction) implies that z(e)
has already changed. This is the desired contradiction.

The preceding observation implies that when the Dead-end Step changes z(e), dominance (b)
is preserved. Since t(e) is changed to the largest topological number (¢) holds. Obviously the
conclusion of (a) becomes true. (N.B. The change to z(e) can create valid swaps e, f: swaps that
became invalid when z(f) was changed in the Augment Step, or entirely new swaps if z(f) was
never changed.) We conclude the Dead-end Step works as desired.

Now consider a Complete Step. It is convenient to assume that the Complete Step processes
the swaps of P in order. More precisely, the swaps g, h of P are executed in left-to-right order, and
the dual z(g) is changed immediately after the swap.

We first verify (d). This amounts to showing that after executing a swap g,h in P, any
subsequent swap e, f in P is still valid. This follows from Lemma 2.5.

Next we verify (a) and (¢). Let e, f be a swap that is valid after swap g, h is executed. We

14

first show (a) and (c) in the case that {e, f} N {g,h} = @. Clearly we can assume that e, f is a
swap that gets created when g, h is executed. From Lemma 2.5 t(e) > t(h), and as noted after the
proof, before g, h is executed swaps e, h and g, f are valid.

Since g, f is valid and z(g) has not changed, (a) shows that (f) has not changed. This implies
that (a) is vacuous for e, f. It also implies that f has not been processed in a Scan, Dead-end or
Complete Step (for the latter note that f would have been the first element of a swap). Thus when
the dynamic operation ¢(g) outputs h, f has not been output. Furthermore swap g, f is valid at
that time. (To see this observe that the only swaps that are executed between when h is output and
when g, h is executed are the swaps k,{ preceding g,h in P. We can assume ¢({) > #(g), so these
swaps do not affect the validity of g, f, by Lemma 2.5.) The definition of the dynamic ¢ operation
now shows t(h) > #(f). Also since e,k is valid, t(e) > t(h). These inequalities show ¢(e) > t(f), as
desired for (¢).

Now we show (@) and (c¢) in the second case, when a new swap involves ¢ or h. The Complete
Step changes z(g) so that ¢ is not in any valid swap. So consider a new swap h, k. Observe that
before g, h is executed, k is in ¢’s fundamental circuit (cocircuit). Hence g,k is a swap. Since z(g)
has not changed, (a) shows that z(k) has not changed. This implies that (@) is vacuous for swap
h,k. It also implies that t(h) > ¢(k) (examining the dynamic operation c(g) as above). This gives
(¢).

It remains to verify (b). It suffices to consider an element e whose fundamental cycle is changed

by the swap g, h. The argument is similar to the above and so is omitted. §

Lemma 2.7. FEach Hungarian search increases A by at least one.

Proof. It suffices to show that at the end of an Augment Step, no remaining singleton s has
a valid swap s, f. We first show this holds when the Dead-end Step deletes s from P. At this
point the dynamic operation ¢(s) returns . Hence if there is a valid swap s, f, then f has been
output. Hence z(f) has changed in the Augment Step. Thus (a) implies that z(s) has changed, a
contradiction.

A valid swap s, f is not created in a Scan or Dead-end Step, which can only decrease z(f).
Similarly the remark after Lemma 2.5 shows that s, f is not created in a Complete Step (if executing

swap g, h creates s, f, then s,k is valid before the swap). 1

This concludes the proof that the Augment Step is correct. We turn to the Hungarian search

(in the Search Step). It grows a forest F of singletons, eligible pairs and unmatched elements of

15

Ey. F has similar structure to the search forest of Frank’s algorithm, with one main change: A
pair e,€ is in F only if it is eligible. Thus if e,€ is unmatched and ineligible, it is possible that
e€ Foand € ¢ F.

The search grows a maximal search forest F. If F cannot be enlarged and yet no wap has
been found, a dual adjustment is done. This step calculates a dual adjustment quantity &; then it
increases each dual z(e), e € F, by €(e)é. § is chosen so that the new dual function is 1-feasible and
has a new valid swap or eligible pair, so F can be enlarged. More precisely to define § first define a
quantity 6(f) for elements f ¢ F: For f € (Eo— M — F)U(My = F), 6(f) = min{|z(e)—=(f)| | e €
C(f,M)NF}. For f € By — M —F and f € F, 6(f) = «(f,f) — w(f, f) + 1. Define § as the
smallest of all these quantities 6(f). |

The Hungarian search alternates between grow steps and dual adjustments. Eventually the
desired wap is found.

In general the difficulty in implementing the Hungarian search is performing the dual adjust-
ment. This leads to more elaborate organizations for the Hungarian search (see [GX]). However for
linear matroids the Augment Step seems to dominate the time; this is true for the algorithms of
this paper. Hence the above simple organization for the Hungarian search suffices for our purposes.

It remains to specify how the Hungarian search maintains the topological numbering. Suppose
the search has a valid numbering ¢, and then it does a dual adjustment. We define the new
numbering by specifying the relative order of all elements. Let F be the search forest before the
dual adjustment. For any element e let s(e) = (if e € F then 1 else 0). Then the new ordering is
determined by lexical order of the values (s(e),t(e)).

To see this rule is correct, first note that property (i7) of topological numberings holds: If
a pair eg,e; has s(ep) = s(eq), (it) follows from the same property for t. If s(eg) # s(eq), then
eo,e1 ¢ M, s(eo) =1 and s(ey) = 0, so (7¢) again holds. To show property (), consider a swap e, f
that is valid after the dual adjustment. If it became valid in the dual adjustment then z(e) changed
but z(f) did not, whence s(e) = 1, s(f) = 0 and (7) holds. On the other hand if e, f was a swap
before the dual adjustment, (i) follows from the same property for ¢, unless s(e) = 0 and s(f) = 1.
In this case 2(f) changes but z(e) does not. But then e, f is not valid after the adjustment. Thus
(¢) always holds.

To implement the rule efficiently we extend it to the entire Hungarian search. Let ¢ be the
topological numbering at the start of a Hungarian search. Suppose the search does k dual adjust-
ments. Assign each element e a value s(e) as follows. If e is in the search forest F before the 7"

dual adjustment but not earlier, then s(e) = —i (e.g., a singleton e € Sy has s(e) = —1). Otherwise

16

s(e) = —k — 1. Then it is easy to see that at the end of the Hungarian search the topological order
is given by lexical order of the values (s(e),t(e)). A radix sort at the end of the Hungarian search
can construct a list of all elements in the new topological order, in O(m) time.

We close the discussion of the Hungarian search with some further implementation details. We
show how to calculate § and how to adjust duals (by €(e)d). For the latter we use offsets, as follows.
When an element e is added to F, its current dual value and the current value of A are saved as
z%(e) and A%(e), respectively. Then at any point in the Hungarian search the current value of z(e)

can be calculated as

z(e) = 2%(e) + (A — A%(e))e(e).

Hence all duals can be appropriately changed by simply increasing the value of A. At the end of
the Hungarian search all the duals z(e) are changed to their correct value (using the above formula)
in O(m) time.

Next we show how to calculate §. Lemma 2.2 shows that A < 5n. Each Hungarian search
maintains an array Q[1..5n]. Each entry Q[d] points to a list of pairs of elements p,c. For each
such pair, ¢ can be added to F as the child of p if A reaches the value d and ¢ is still not in F. To
find the next dual adjustment, the algorithm scans down @ and chooses A as the smallest value
whose list Q[A] gives a grow step.

Pairs are added to () as follows. Assume that routines are available to compute fundamental
cycles and cocycles. Specifically for a given base B and an element e, a routine cyc(e) returns the
elements of C'(e, B), which is the fundamental cycle of e for e ¢ B and the fundamental cocycle for
e € B. When a grow step adds an element e to F, the routine cyc(e) is used to find the elements f of
its fundamental cycle or cocycle. For each such f not in F, the quantity d = [2%(e) — z(f)| + A%(e)
is calculated. If d < 5n then the pair e, f is added to Q[d]. A similar calculation is done when a
grow step adds an element e but not € to Fy. (The space for this data structure is O(mmn). This is
easily reduced to O(m): For each element ¢, maintain only the entry for ¢ that is on the list Q[d]
with smallest index d. This is easy to do if the lists of) are doubly-linked.)

To calculate the time associated with @, note that one Hungarian search adds O(nm) pairs
to ¢): an unmatched element can be in n pairs and a matched element (or singleton of S1) can be
in m pairs. The algorithm spends O(1) time on each pair. In addition it uses O(n) time scanning
down the @ array. Thus aside from the time for cyc routines, the total time is O(nm).

Finally we discuss maintaining the topological numbering in the Augment Step. An array

t[1..m] is used to store topological numbers. This allows topological numbers #(e) to be accessed

17

and changed in O(1) time. Note that if all topological numbers are at most m at the start of an
Augment Step, they are at most 2m at the end.

We conclude this section by estimating the time to find a maximum perfect matching. First
consider Augment Steps. Let ¢; denote the time for all dynamic operations in all Augment Steps
of one scale. It is easy to see that the time for an Augment Step is dominated by the time for
the dynamic operations. Hence the total time for Augment Steps in one scale is O(4). tq can be
described more precisely as follows. There are O(y/n) different sequences of dynamic operations in
all Augment Steps. Each sequence does O(m) ¢ operations: each operation c(e) either outputs an
element or is the last operation for e in the sequence. The sequences collectively contain O(n logn)
update operations. More precisely after the d** sequence, the remaining updates occur as O(n/d)
subsequences (each subsequence corresponding to a wap). This follows from Lemma 2.2, since
A > d after the d** sequence.

Next consider Search Steps. Let t; denote the time to execute one Hungarian search. Clearly
the time for all Search Steps in one scale is O(y/nty,). For linear matroids a good estimate of #), is
the following. Let t.,. denote the time to execute a sequence of cyc operations, possibly outputting

every element’s fundamental cycle or cocycle. Then
ty = O(nm + teye).

This follows since calculating dual adjustments and processing @ takes O(nm) time.
We give two time bounds for the entire algorithm. The first is for general matroids (for

applications, see [GX]). The second is oriented to linear matroids, and is applied in Section 4.

Theorem 2.1. The weighted matroid intersection problem can be solved in time O((v/n(m +
th) + ta)log(nN)). The time is also O((v/n(nm + teye) + ta) log (nN)).

Proof. First consider maximum perfect matching. There are log(nN) scales. In each scale
various operations use time O(m). (For example the Double Step of the main routine uses time
O(m): To create singletons, we can assume that every element of £ is given with a copy, which can
be used as a singleton.) In each scale the match routine does O(y/n) Augment and Search Steps.
The above discussion shows that the time bound of the Theorem applies to these steps.

Next consider the other variants of weighted matching, maximum weight maximum cardinality
matching, and maximum weight matching. They are solved using the reductions at the start of

this section. 1

18

3. Cardinality Intersection Algorithm and Other Extensions.

This section discusses the specialization of the weighted intersection algorithm to maximum
cardinality matching. The cardinality algorithm is given and anlayzed. Properties that make it
more efficient are discussed. Most of these properties are proved in the context of the weighted
intersection algorithm. Some of the properties are applied elsewhere [GX] for efficient weighted
intersection algorithms on other matroids.

We begin by stating the algorithm for maximum cardinality matching. It is a specialization of
the weighted intersection algorithm. The given weight function w is taken to be the zero function.
Scaling is not needed for cardinality matching — the algorithm works in just one scale. It initializes
the singleton set S to an arbitrary base of M, and the dual function z to the zero function. Then
it calls match. The match routine works as before except for the halting criterion: It halts when
the Hungarian search fails to find a wap.

This algorithm is correct for two reasons. First note that the initialization makes the empty
matching 1-feasible when match is called, as desired. Second, the halting criterion is correct, i.e.,
match returns a maximum cardinality matching. This follows from a standard duality argument:
Suppose the algorithm halts with matching M after growing a search forest F. Any unmatched
pair eg,e; with e; € I; is either in F, in which case e; € sp(My N F), or not in F, in which case
eo € sp(My — F). Thus any matching has at most | My N F|+ | Mo — F| = | M| elements, as desired.

The timing analysis of this algorithm follows Section 2. First define
i = the cardinality of a maximum matching;
r = the rank of My;
a = |So| = (r —).

Since p <7 < n, the following result is stronger than Lemma 2.2.
Lemma 3.1. At any point in the execution of match, cA < p.

Proof. Let M be the current matching, S the current singleton set, and M_ a maximum cardi-
nality matching. Add elements of M to M_ to get a base B of M. Then z(M) = z(5) = —|Sp|A.

Also #(M) > z(B) > —pu — (r — p)A (the last inequality follows since in each matroid M; the

singletons have the smallest dual value). Combining gives the desired inequality. i

The proofs of the remaining lemmas of Section 2 are essentially unchanged. In Lemmas 2.3

and 2.4, “n” can be changed to “u”. This gives an analog of Theorem 2.1 for cardinality matching,

19

with time bounds O(\/u(m + t,) + tq) and O(\/(nm + teye) + tq). The algorithm can be made
even more efficient because of three properties related to the dynamic operations, which we now

derive.

Lemma 3.2. In any wap found in the cardinality matching algorithm, each swap g, h has a

distinct dual value z(g).

Proof. Consider a wap P found at a certain value of A. If g, h is a swap of P, then the next swap
of P has dual value —z(g) — 1, and the following swap (if it exists) has dual value z(g) + 1. Hence
(2) of Section 2 implies that the dual values of the swaps of P form the sequence z,—z — 1, z =
—A,...,—1. Note that the last swap is in My, with dual value zero. There are no swaps after it,
since singletons are the only elements of M with dual value zero. This follows from the way the

Complete Step changed duals. The lemma follows. 1

Observe that the proof of the lemma implies the function n+ez is a valid topological numbering.
(Here we use the extended definition of topological numbers, i.e., an ineligible pair need not satisfy
(42).) If this numbering were used, the algorithm would behave just as if there were no topological
numbers at all. We conclude that the algorithm works correctly without topological numbers.

This gives the first simplification of the algorithm: Topological numbers are not maintained.
The dynamic operation c(e) is defined to output an element f € C(e, B) that has not been previ-
ously output and has z(f) = z(e).

The rest of this section derives properties of the weighted matching algorithm; it will be
obvious that the properties also hold for the cardinality matching algorithm. These properties
combined with Lemma 3.2 give an efficient cardinality matching algorithm in Section 4. The
weighted matching algorithm of Section 4 could be improved by using these properties, if one could
develop an analog of Lemma 3.2.

The main property is similar to Lemma 2.5: the portion of C(e, M) that is relevant for the
operation ¢(e) is changed by an operation update(g, h) only if 2(g) = z(e). (A similar property is
used in [GS85] for cardinality matching.) The next lemma proves a more general statement. For

any set of elements A and a set of integers 5, define
As = {ala € A and z(a) € S at the start of the Augment Step}.

Consider a sequence of swaps executed in the Augment Step that changes the matching from M

to N. M and N can be chosen at any point (even in the middle of a Complete Step, if desired).

20

Consider an interval [¢..h]. Let B be the result of starting with base M and executing only the

swaps with dual value in [£..h], i.e., B = —M_(_oo“g)u(h”oo) U —N—[g“h}.
Lemma 3.3. B is a base. For any element e € E_), C(G,N){g__h} = C(e, B)e.n-

Proof. The first part of the lemma, the fact that B is a base, follows from the secoﬁd part, by
an easy induction. Hence it suffices to prove the second part.

Observe that the dual function at the start of the Augment Step is dominating throughout the
Augment Step. This follows from Lemma 2.6(a). In the rest of the argument “dominance” refers
to this dominance of the original dual function.

Note that for any 1, SP(H[i..oo)) = sp(N[,;_oo)). This follows by an easy induction on the
number of swaps, using dominance.

Now consider elements e, f € Ej,). By dominance, f € C(e,N) if and only if
f € C(e,_ﬂ(_oo“() U YV_[L_OO)). Since sp(h]\—f(h”oo)) = sp(N(h”oo)) the latter is true if and only if
fe C(e,M(_oo“g)U(h_.OO) U]_V_[g”h]). The base in the last expression is B, so the lemma, follows. 1

The lemma allows the dynamic operations to be simplified, as follows: At the start of each
Augment Step, partition the elements into the sets E, (here E, stands for the notation E.y). Each
such partition maintains a copy of the base, B*; this copy is modified by an operation update(e, f)
only if e, f € E;. Thus each wap executes one update in each set F,, by Lemma 3.2. The dynamic
operation c(e), where z(e) = z, outputs an element f € C(e, B®),. Correctness of this modification

follows from the lemma with ¢ = h = z.

The lemma allows us to avoid executing swaps during one Augment Step. We now generalize
to avoid executing swaps during a sequence of Augment and Search Steps. Consider a sequence of
swaps changing M to N, that extends over a number of Augment and Search Steps. We construct
the base B as follows. In the above definition of Ag, use dual values z(a) at the start of the current
Augment Step. Choose an initial interval [(..h] so that h — € > 2(ANx — Apg), where Ay is the
value of A when the matching is M and similarly for Ay. After a Search Step that increases A
by 6, assign £ « £+ 6, h — h — §. In the Augment Step, modify B by executing the swaps with

(current) dual value in the (current) interval [£..h].

In the corollary below, all quantities are evaluated at the current point in the algorithm.

21

Corollary 3.1. B is a base. For any element e € E}y. p, C(e,j\f”)[g“h] = C(e, B)z..n-

Proof. As in the lemma it suffices to prove the second part. We do this by induction (on the
number of steps executed in the algorithm). The inductive hypothesis makes two assertions in
addition to the second part of the lemma: (7) -]—V—[,g_.h] = Big..np; (17) sp(ﬁ(h”oo)) = sp(B(h..0))-

Assume the inductive hypothesis holds after some Augment Step. Suppose the next Hungarian
Search adjusts duals by 6. Let £ and h denote their value after they have been modified by §. We
first show that (i) — (¢4) hold at the start of the next Augment Step.

Equation (7) holds since before the Hungarian search changed duals, N[g__(g“h.*.g] = Bl—s..n+6-
Furthermore, a dual value in [£..h] at the start of the Augment Step was previously in [¢ — §..h + §].
(Even though the Augment Step changes duals, it is easy to see that no dual changes by more than
6 from the start of one Augment Step to the next).

Equation (¢) holds since before the Hungarian search sp(N(hM._oo)) = $p(B(ht5.00)) and
N(h_(‘;.'h_*_g] = B(h-s..n4+6], by induction. Furthermore the set E(h..oc) at the start of the Augment
Step consists of the previous set E(h16..00) Plus a subset of the previous set Eh—s..h+5-

It is easy to see (i) — (¢4) are preserved throughout the Augment Step. These equations imply
that for any ¢ € [£..h + 1], sp(N{i“oo)) = sp(Bi..0))-

Now consider elements e, f € Ejy. 4. Observe that f € C(e,N)ifand onlyif f € Cle, B(—co..)U
—N.[g“oo)). This follows from dominance and the fact that sp(TV—[LOO)) = sp(Bs..00))- Since
sp(B(h..c0)) = sp(N(h“oo)) the last membership holds if and only if f € C(e, B(_co..qpu(h..c0) U

Nie.n))- The base in the last expression is B, so the corollary follows. 1

The corollary allows us to execute a Hungarian search knowing only a portion of each element’s
fundamental cycle or cocycle, as follows. Define a period of the algorithm to be the time when
Ag £ A < Ay, for some values Ap,Ay. At the start of this period the algorithm computes all
fundamental cycles and cocycles. During the period the algorithm maintains only a portion of each
fundamental cycle and cocyle. Specifically for an element e not initially in the base, it maintains
the cycle C’(e,fd’—)[[“hl for £ = 2(e)—~ (A1 = A), h = z(e)+(A; — A). This can be done by executing
only the swaps with dual value in [(..h], by Corollary 3.1. Fundamental cocycles are similar. Note
that as long as a Hungarian search keeps A within the period, the cyc operations can be executed
correctly, knowing just the above subsets of the fundamental cycles and cocycles.

We now summarize the time for the cardinality matching algorithm. Define t4 and ¢, as in
Theorem 2.1. However the dynamic operations, and consequently ¢4, can be simplified: There are

no topological numbers. If desired, an Augment Step can partition the elements into sets F,, on

22

which only update operations for swaps with dual value z are executed. Alternatively if desired,
portions of the algorithm can be declared periods, where again, only a subset of update operations

need be executed on each element.

Theorem 3.1. The cardinality matroid intersection problem can be solved in time O(/i(m +
tn) +tq). The time is also O(\/f(nm + teye) + ta)-

We close this section by noting that Lemma 3.3 can be used to modify the weighted matching
algorithm and make it more efficient on other matroids, such as graphic matroids [GX]. This
modification does not seem to be useful for linear matroids, but we state it here for completeness.
The idea is that because of the lemma, the dynamic routines can be executed on matroids of rank
less than n. To define these matroids we first remove elements that cannot be in a wap. More
precisely let M denote the matching at the start of the Augment Step. The proof of the lemma
shows that any element e in a wap is not in SP(M(a:(e),.oo))- Thus we can restrict attention to the

elements
F={ele¢ sp(ﬁ/fj(x(e)_.oo)) and either e € S or € ¢ sp(mﬂ/f(x(g)”oo)) and e, e is eligible}.

Now define a matroid N as follows. For a set of elements A with i = 0 or 1 and z an integer,
abbreviate the notation (A,-){:U} to A; . N is the direct sum of matroids N;, ¢ = 0,1. Each N; is
itself the direct sum of matroids N; ., where z ranges over all distinct dual values z(e) of elements

€ c —M—z‘, and

Niz=(M;UF;,)/(M; - Fi).

N uses the pairing relation of M.

Consider the following implementation of the Augment Step. It starts by constructing matroid
N. It searches for waps and augments the matching using the same three step procedure given above,
working on matroid N. It ends by using the final matching on M and discarding N.

Such an execution of the Augment Step on N corresponds to an execution on M. This follows
from the lemma: B, is a base of N; ,, and swaps with respect to the current base of N correspond

to swaps with respect to the current base of M. Hence the modified Augment Step is correct.

23

4. Linear Matroids.

This section starts by reviewing relevant ideas from linear algebra. Then it gives imple-
mentations of our intersection algorithm on linear matroids, first weighted intersection and then
cardinality.

A representatz’onyof a linear matroid is an n X m matrix, where each matrix column corresponds
to a matroid element [W]. Assume that the input to the algorithm is a representation A of the
matroid M.

In a (standard) representation with respect to base B, the columns for the elements of B form
a permutation matrix. The element corresponding to the r** column of the identity is called the
r* basic element. Let B be a base. Let B denote the columns of A corresponding to B, in some
order. Then B™!A is the representation with respect to B where the 7" basic element corresponds
to the 7" column of B. From this representation it is easy to compute fundamental cycles and
cocyles with respect to B: they are determined by the rows and columns of the representation,
respectively.

We are interested in efliciently computing fundamental cycles and cocycles when the base is
repeatedly changed by swaps. Consider a swap that replaces e by f. Let A_ be a representation
with respect to the base before the swap, in which e is the r*" basic element, and f has column
vector with entries f;. If f becomes the 7" basic element, the new representation is A _. Here 5

is the n x n identity matrix with 7** column replaced by the values
Nir = (if ¢ = r then 1/f, else — f;/f.), 1<i<n.

Such a matrix 7 is called an eta matriz in linear programming [Ch].
Suppose we start with a base having representation A _, and execute a sequence of s swaps.
Let the corresponding eta matrices be 7;, i = 1,...,s (n; is calculated immediately before the 7

swap). The new representation is
Ns..-MA_.
The following lemma summarizes how to compute this new representation efficiently. To
achieve the given bounds we store an eta matrix in n + 1 words: the index r and the values

Nir, 1 <1 < n. We store a representation A in mn words as a two-dimensional array. This allows

each element to be accessed in time O(1), given its indices.

24

Lemma 4.1. Consider a product A’ = 5,...m A, where each 7; is an n X n eta matrix and A
is an n X m matrix, n < m.

(a) One column of A’ can be computed in time O(sn).

(b) One row of A’ can be computed in time O(sm).

(c) For s < n, A’ can be computed in time O(mns®).

(d) For ¢ indices ¢ (each index in 1 <7 < s) the ¢ products 7; ... 71 A can be computed in time
O(mns“t?=*). This bound holds even if the sequence of indices is given on-line in increasing order,

i.e., each product is computed before the next higher index is known.

Proof. (a) To calculate one column, associate the multiplications to the right. This gives O(n)
time to multiply one eta matrix. The total time is O(sn) as desired.

(b) To calculate the r'* row, let r denote the r** row of n,...7;, so we seek rA. Compute r
by associating the multiplications to the left. Hence r is found in time O(sn). Note that r has at
most s+ 1 nonzero entries, one in column r and one in the column of each eta matrix. Hence entry
column of rA can be found in time O(s). The total time to compute the row is O(sm), as desired.

(c) First compute the product E = 5,...7;, and then compute the desired product EA. We
discuss the latter first.

Let C denote the indices of the columns corresponding to the s eta matrices. As noted above

we can write

E=I+S. (1)

Here as usual I is the identity matrix and S is a matrix that is zero except in the columns of C.
This shows the desired product can be found in time O(mn) from the product SA. Let S’ denote
the n X s matrix consisting of the columns for C'in S; let A’ denote the s x m matrix consisting of
the rows for C'in A. Clearly SA = S’A’. Since s < n < m the latter multiplication can be done
by decomposing S into [4] s x s matrices, A’ into [] s X s matrices, and performing O(mn/s?)
multiplications of s X s matrices. This gives the desired time.

It remains to compute the product E. Suppose we use naive matrix multiplication, associating
to the left. The time is O(sn) for one multiplication, by (1). This gives O(s?n) time total. This
bound will often be within the desired time bound. If not the time can be improved to O(ns't),
less than the desired bound. This is done using the following divide-and-conquer scheme.

Consider first the product of two n X n matrices, each having at most & nonzero columns (the

columns can be different in the two matrices). The product can be found in time O(nk'*«). This

25

is because it amounts to multiplying matrices of dimension n X k and & x k. The latter can can be
done as [7] multiplications of k& X k matrices, giving the desired bound.

To compute E, assume for convenience that s is a power of two. The algorithm recursively
computes Eq, the product of the first s/2 matrices, and E,, the product of the remaining matrices.
Now we seek the desired product E = E{E,. Applying (1) to each matrix E; shows that computing
the product amounts multiplying two matrices of s/2 nonzero columns each. As already noted this
is done in time O(ns'*t*). Hence the time for the entire computation is given by the recurrence
t(s) = 2t(s/2) + ns'*¥. This implies #(s) = O(ns'*¥) as desired.

(d) We use the algorithm of part (¢) to compute each product. Let the j** product include s;
more eta matrices than the j—1°%, 1 < j < t. Hence Z;zl s; = s, and the total time is proportional

to 23:1 mnsy. Since w < 1 the sum is maximized when each s; equals s/t. This gives the desired

bound. I

Now we present the algorithms for matroid intersection. They all implement the algorithms of
Sections 2-3. Recall that to completely specify these algorithms we need only give implementations
of the dynamic routines and the cyc routine; the time is given by Theorem 2.1.

We start with two algorithms for weighted intersection. The first algorithm is not asymptoti-
cally fastest but has the practical advantage of using only naive matrix multiplication.

The first algorithm implements the dynamic and cyc routines by simply maintaining a represen-
tation with respect to the current matching M. An update operation multiplies the representation
by the eta matrix corresponding to the swap. A ¢ or cyc operation scans a column, or row, of the
representation to find the desired cycle, or cocycle, respectively. (A ¢ operation scans the column
or row in decreasing topological number.)

To estimate the time for this algorithm recall Theorem 2.1. The dynamic time ¢4 =
O(mn?logn). It is dominated by the time for O(nlogn) update operations, since the matrix
multiplication for one swap uses time O(mn) (Lemma 4.1(a)). The dynamic ¢ operations use less
time O(n'"m), since each Augment Step scans the entire representation in time O(mn). Similarly
for the Hungarian Search, t.,c = O(mn). (This includes O(m) time to sort the elements of the
matching by topological number, as needed for the dynamic c operations.) This gives the following

result.

Theorem 4.1. The weighted matroid intersection problem on a linear matroid can be solved in

time O(mn?log nlog (nN)) (using only naive matrix multiplication). |

26

The theorem generalizes Cunningham’s bound for cardinality matching on linear matroids,
O(mn?logn) [Cu]. In fact, the time bound of the theorem can be achieved by a simpler version of
the first algorithm. This algorithm does not use topological numbers, but rather always augments
along a wap of minimal length (i.e., a wap without shortcuts). This simplified algorithm is very
much like Cunningham’s cardinality algorithm. Further details are left to the reader.

The second algorithm for maximum perfect matching uses fast matrix multiplication. We
present the algorithm in terms of two integral parameters d and s, to be specified later.

The second algorithm works as follows. It computes the representation for the current base
at various points, using Lemma 4.1(d). These points are (¢) after every Augment Step; (4¢) when
A > d, after every augment; (¢i¢) when A < d, after every s swaps.

Because of (¢), the cye routine amounts to scanning the appropriate row or column of the
representation. A similar remark holds for the dynamic ¢ routine when A > d, because of (it). When
A < d the routine ¢(e) computes e’s fundamental cycle or cocycle, by computing the appropriate
column or row of the current representation. It does this using Lemma 4.1(a—b) to compute the
product of the last representation matrix A and the eta matrices for the subsequent swaps (by

(7i7) there are at most s eta matrices).

Theorem 4.2. The weighted matroid intersection problem on a linear matroid can be solved in

time O(mn'"" log (nN)). More precisely the time is O(mnl+2/3=)) |og 1+)/ =)y 160 (n V).

Proof. The time for computing the representations in ()—(é:7) is
O(mn't*log“n(y/n + (n/d) + (nlogn)/s)1=+).

This follows from Lemma 4.1(d) and these facts: There are O(y/n) Augment Steps; O(n/d) waps
are found when A > d; there are O(nlogn) swaps in total. The time to compute all fundamental

cycles and cocycles in ¢ routines when A < d is, by Lemma 4.1(a-b),
O(dsmn).

To balance these terms choose s = (nlog?n)/(3=%) and d = s/logn. This gives the desired
bound. (Note that w < 1 implies that 1/(3 —w) < 1/2, so s = o(y/n) and /n = o(n/d). Also note
that for w = 0.4 our choice makes s and d about n°-3%.)

It is usually nontrivial to compute the values s and d. In this case observe that it suffices to

use values s’ and d’, where s/8 < s’ < s and similarly for d’. Such a value s’ can be found by

computing log s to within 3, which is easily done; d’ is similar. 1

27

We turn to cardinality matching. It is convenient to define
a=1/(2-w).

(For w = 0.4, o = 0.625; in general 1/2 < a < 1.) As in Section 3 u denotes the cardinality of
a maximum matching. In general y is unknown at the start of the algorithm. Let 7 be a known
upper bound on p (we can take & = n but a better bound may be available; this is illustrated in
Corollary 5.2). The algorithm has two phases which we now describe.

The first phase is when A < @'~?. The first phase computes the representation for the current
base after every Augment Step. Thus as in the previous algorithm, the cyc routine amounts to
scanning the appropriate row or column of the representation.

Now consider the Augment Step for the first phase. It is based on Lemma 3.3, which allows it
to partition the elements into sets F, on which only update operations for swaps with dual value z

are executed. Define A = max{A,1} and
s = (E/QZI_]og—A—J)a.

(Note that s > 1 since the definition of first phase implies s > F(**~1® and a > 1/2.) Associated
with each dual value z is a matrix A,, that has a row (column) for each element of E, N M
(E; — M). The algorithm updates each A, after every s waps, using Lemma 4.1(c) on the last
matrix A, and the subsequent eta matrices corresponding to swaps with dual value z. Lemma 3.2
implies there are precisely s such eta matrices. The routine ¢(e) computes the appropriate column
or row for e using Lemma 4.1(a~b) on the last matrix A ey and the subsequent eta matrices for
swaps with dual value z(e). Again there are at most s of these.

The second phase is when A > z'~“. It is based on Corollary 3.1, which allows portions of
the algorithm to be declared periods, where only a subset of update operations need be executed

on each element. Define

P o= 2[10g A]/—ﬂl—a.

(Note that r > 1 by the definition of the second phase.) The second phase is divided into periods
corresponding to the intervals ir < A < (¢ + 1)r for integers i. At the start of each period
the algorithm computes the representation for the current base. During a period the algorithm
maintains only a portion of the expansion of each element e ¢ M with respect to the current base
M. Specifically it maintains the coefficients in e’s expansion for all elements f € M such that

lz(e) — z(f)] < (i+ 1)r — A. To do this, after augmenting along any wap, the expansion of each

28

e ¢ M is updated by multiplying by the eta matrices for swaps with dual value in the above range.
Lemma 3.2 implies there are at most 7 such swaps. The cyc(e) and ¢(e) routines work by scanning
the appropriate column or row for e. Corollary 3.1 implies that the relevant matrix entries are

correct.

Theorem 4.3. A maximum cardinality matching on a linear matroid can be found in time

O(mn'-$%). More precisely the time is O(mnz'/(=%) log p).

Proof. Correctness of the algorithm follows from the discussion. Now we show the desired time

bound, which equals O(mnpz®log u). It is useful to note that
wa = 2a — 1.

For a later application involving matroid duality (Corollary 5.2(¢)) it is useful to observe the time
is dominated by the dynamic and cyc routines, and our timing analysis depends on only two facts
about the time for linear algebra operations, both consequences of Lemma 4.1: Lemma 4.1(a-b),
summarized by saying that the time to compute every row (column) of a representation once during
a sequence s swaps is O(smn); and Lemma 4.1(¢). Note that Lemma 4.1(d) is implied by Lemma
4.1(c).

We analyze the two phases separately. Consider the first phase, and start with the computation
of matrices A,. Fix a value of s; let A be the smallest value corresponding to s. The total time

for computing all matrices A, for this value s is
O(mnp® /A*7). (2)

To show this note that by Lemma 4.1(c), an A, matrix with n, rows and m, columns is updated
once in time O(mgzngys”). (Lemma 3.2 ensures that n, > s.) Summing over all 2 gives time
O(mns*) to update all A, matrices once. There are at most o < u/A waps for the chosen value of
5 (Lemma 3.1). Hence there are at most 7i/(As) updates to the A, matrices. This implies the time
for all updatesis O(mnp/(As!~)). (Note @ > Assince s < i%.) By definition, As'~+ = gl=*A*",
This gives (2).

The quantities (2) (for distinct values of s) form a geometric progression with ratio (1/2)~* < 1.
Hence the sum is dominated by the first term, when A = 1. Thus the total contribution of (2) for
the entire phase is O(mnu®), less than the desired bound.

Next consider the ¢(e) routine. Again fix a value of s and let A be the first value corresponding

to s. The total time for all operations ¢(e) for this value s is (2). To show this note that there are

29

at most 2A Augment Steps for s. Each Augment Step can execute c(e) for each element e. Hence
Lemma 4.1(a-b) gives total time O(smnA). (Recall there are at most s eta matrices for each ¢(e).
These estimates are valid since s > 1.) This expression simplifies to (2). Hence the time is again
O(mnpu®).

Finally consider the time to compute the representation after every Augment Step. There are
O(f'~*) Augment Steps in the first phase and hence that many representations. We now show
that the second phase computes more representations, whence the time is dominated by the second
phase.

Consider the second phase. Start with the time to compute representations. Fix a value of 7
let A be the first value corresponding to r. The number of representations computed for this value
7 is at most ' ~*. This follows since there are at most A/r = '~ periods for 7. We conclude
that the second phase computes O(5'~* log u) representations. (Note this is more than the number
in the first phase). Now Lemma 4.1(d) shows that the total time to compute representations is
O(mnp == Jog 1) = O(mnE* log 1), which is the desired bound.

Next consider maintaining the coefficients in expansions during a period. Again fix a value of
r and let A be the first value corresponding to 7. The total time to maintain expansions for this
value 7 is O(mnp®). To show this note that there are at most p/A waps for r. The time to update
expansions after a wap is O(rmn) by Lemma 4.1(a-b). (This estimate is valid since » > 1). Hence
the total time for r is O(rmnpu/A) = O(mnfa), as desired. Thus the total time for all distinct
values of 7 is O(mn'T®logp), the desired bound.

Finally note that as in Theorem 4.2, it is usually nontrivial to compute '™, s and 7. As in
that theorem it is easy to compute values that are ¢ times the desired value, for ¢ varying between
1/2 and 1. Using these values in the algorithm gives the same asymptotic time bound. (For instance
in the geometric progressions for the first phase, each term for the actual time is at most a constant

times the exact value.) 1

5. Generalized Intersection Problems and Applications.

This section extends previous algorithms to more general matroid intersection problems, in-
cluding the independent assignment and linking problems. It concludes by applying our algorithms
to a class of problems arising in control theory and numerical computation.

We begin with an observation about matroid duality that can make our algorithm more effi-

cient. In an intersection problem (weighted or cardinality) denote one of the matroids M; as N, and

30

let N* be its matroid dual. If desired the algorithm can work on N* rather than N. In proof, let B
be a base of N and B* its complementary base of N*. Any element e has C(e, B,N) = C(e, B*,N*).
Hence the dynamic routines on N can be implemented by the dynamic routines on N*. Specifically
the algorithm maintains B*, the complement of the base of N; an update operation on N is executed
as the same operation on N*; the dynamic cycle (cocycle) problem on N is the dynamic cocycle
(cycle) problem on N*. The cyc routine can be similarly implemented on N*.

To illustrate, suppose a matroid intersection problem has My given in a standard representation
as an n X m matrix. The dual Mg is represented by an easily calculated (m — n) X m matrix [W].
If m —n < n it is more efficient to implement the algorithms of Section 4 on M rather than M.
This principle is used in Corollary 5.2(c) below.

Now consider the independent matching problem. It generalizes matroid intersection by al-
lowing the pairing function to be given by a bipartite graph. More precisely, consider a bipartite
graph G' with vertex sets F;, ¢ = 0,1 and edges E. Matroids M; are defined on F;, and matroid M
is the direct sum Mo + M;. An (independent) matching is a matching on G' whose endpoints are
independent in M. A mazimum cardinality (independent) matching has as many edges as possible.
If there is a weight function w : E — R then mazimum perfect matching, mazimum weight mazi-
mum cardinality matching, and mazimum weight matching are defined as for matroid intersection.
The independent assignment problem refers to any of these variants of weighted matching.

Other definitions follow by analogy with matroid intersection. To state resource bounds, let
M have rank 7 and n elements; let |E| = m. Assume that all weights are integers of magnitude at
most N.

We use a straightforward reduction of independent matching on M to intersection on a matroid
N. Construct N as follows. Replace each edge vw € E by a pair v',w’ where v’ and w' are parallel
copies of v and w respectively. Thus N is the same as M except it has parallel copies of elements.
For a vertex v of M, let E, denote the set of all elements of N that are parallel copies of v. We
use obvious notation for N derived from notation for M, e.g., N = Ny 4+ N;. Clearly a set of
edges is a matching on M if and only if the corresponding set of pairs is a matching on N. Thus an
independent matching problem can be solved by the algorithm for the corresponding intersection
problem. This holds for all variants of the problems considered in this paper, both weighted and
unweighted.

We solve the intersection problem on N using the algorithms of Sections 2-3. Note that each
matroid N; has m elements. We modify the intersection algorithm so the time for each iteration

of match is as if the matroids had only n elements, plus O(m) overhead.

31

There are three main changes in match. First, it uses the extended definition of topological
numbering given in Section 2: An ineligible pair need not satisfy property (i) of the definition of
topological numbering.

For the second change it is convenient to extend the algorithm’s dual function and topological
numbering to the vertices v of M. Let y; denote maz if i = 0 and min if ¢ = 1. Define z(v) =
max{z(e)le € E,}, and for v € Ey, t(v) = pi{t(e)le € E, and z(e) = z(v)}.

Immediately before each Augment Step and Search Step, the algorithm “normalizes” values

as follows.
Normalize Step. For each vertex v and each e € E, set z(e) « z(v) and t(e) « t(v). 1

This normalization takes O(m) time, which is within the desired bound. Now observe that
normalization does not destroy any relations needed by the algorithm: It does not change the values
of a matched element. It gives 1-feasible duals and a valid topological numbering (for the latter,
note that property (i¢) of topological numbering need only hold for eligible pairs). It may change a
pair from eligible to ineligible. However it does not destroy any wap found by a Hungarian search,
since no dual of an element in a valid swap is changed. It does not create a wap after an Augment
Step, since it does not change a singleton’s dual (recall Lemma 2.7).

By normalization, the Augment and Search Steps can assume every copy of an element has
the same values. This allows these steps to be implemented efficiently. This is the third and final
change, which we now describe.

Consider the Augment Step. Suppose we are given implementations of the dynamic operations
on M. We adapt them to N as follows: The update routines are unchanged. Consider a dynamic
operation ¢(e), where e is a copy of v in N;. If : = 1 (dynamic cycle), c(e) executes c(v) unless
another copy of v has done so; in the latter case c(e) returns §. If ¢ = 0 (dynamic cocycle), ¢(e)
executes c(v) in the following sense. Suppose repeated calls to ¢(v) would output the sequence
of elements fi,..., fyr. Then c¢(e) outputs the sequence of unmatched elements in E,,, for w =
v, f1,..., i (elements within a set E,, can be output in arbitrary order).

To see the dynamic ¢ operations are correct, first consider Ny. Suppose a number of operations
c(e) are done, but not all elements of C(e, M) are output (here M is the current matching); then
later on c(f) is done, where e, f € F,. We must check it is correct for ¢(f) to return §. Clearly e
was in a wap. When ¢(f) is executed, C(f, M) = {e, f} and z(e) > z(f). Hence § is the correct

output.

32

Next consider Ny. Normalization implies that the sequence of copy elements output in ¢
operations is correct. We must verify another detail: Suppose operations ¢(e) are done, and some
but not all copies of an element v € C(e, M) are output. We must check it is correct for no
subsequent ¢ operation to output a copy of v. The copy g € E, output last was in a wap. Hence
any f € E, has C(f, M) = {g, f}. Thus such elements f can be ignored in subsequent ¢ operations,
as desired.

The time for an Augment Step is as desired: If ¢, is the time to execute the dynamic operations
corresponding to all Augment Steps of one scale on M, the total time used by the algorithm on N
is O(tq + m).

Next consider the Hungarian search. By normalization, an element e € E, can be added to
the search forest 7 precisely when all elements of E, can be added. Furthermore the routine cyc(e)
need only be executed for one copy of a given element v (the first copy added to F). Thus it
is easy to see that a Hungarian search can be implemented in time O(m) plus the time for the
corresponding search on M.

We now summarize the results. The following theorem uses the notation of Theorem 2.1. In

the corollary u denotes the cardinality of a maximum matching.

Theorem 5.1. The independent assignment problem can be solved in time

O((r(m + tn) + ta)log (rN)). 1

Corollary 5.1. (a) The linear independent assignment problem can be solved in time
O((nr' ™" + \/rm)log (rN)), or alternatively time O((nr?logr + /7m)log(rN)) using only naive
matrix multiplication.

(b) The linear cardinality independent matching problem can be solved in time

O(nr'%2 + | /um) using fast matrix multiplication. I

The algorithm generalizes to matroid versions of various network flow problems. We describe a
representative problem, linking; other problems are similar. Given is a directed graph G' = (V, E).
The vertices are partitioned into sets V;, ¢ = 0,1,2. For ¢ = 0,1, matroids M; are defined on ground
sets V;. No edge goes from Vi to Vo. A Menger linking is a set L of vertex-disjoint simple paths
from Vp to Vi. A linking is defined similarly, except the paths are edge-disjoint and may intersect
in vertices of V5. The endpoints of a linking are the vertices of V;, i = 0,1 on paths. Linking £ is

independent if its endpoints are independent in M;, ¢ = 0,1. A linking has mazimum cardinality

33

if it has as many paths as possible; it is perfect if its endpoints are a base of M;, 7 = 0,1. If each
edge e has a cost c(e), the cost of a linking is the total cost of all its edges. A minimum perfect
linking is a perfect linking with minimum possible cost. Other terminology follows by analogy
with matching. The weighted independent linking problem is to find a minimum perfect linking,
minimum cost maximum cardinality linking, or minimum cost linking.

Let the total rank of the two matroids M; be 7, and let [V| = n, |E| = m. Assume all costs
are integers at most N in magnitude. Furthermore assume that G has no negative cycles.

An independent linking problem on G reduces to an independent matching problem on a
bipartite graph B as follows. For a vertex v, let d(v) be its total degree in G. Modify graph G
to G': For each v € V5, add d(v) loops, i.e., edges vv, of cost zero. Let Eo(v) be the set of edges
directed from v in G’ and E;(v) the set of edges directed to v in G’ (each loop is in both these
sets). For each v € V3 define uniform matroids M,;, i = 0,1, to have elements E;(v) and rank d(v).
Define a bipartite graph B: Its vertex set is the disjoint union of the ground sets of all matroids
Myi, Mo and M. Its edges are formed by joining the two copies of every edge of G'. Edges in B
have the same cost as in G’. Define the matroid (Mo + > My) + (M1 + 3. M,) on the vertices
of B.

A perfect independent linking on G corresponds to a perfect independent matching on B. Thus
a minimum perfect linking can be found using this reduction. (This depends on the fact that there
are no negative cycles). Similarly a minimum weight maximum cardinality linking and a minimum
weight linking can be found. (For these problems, use the reduction at the start of Section 2 to
transform a matching problem into perfect matching. However, instead of creating a copy of every
element of the matroid, only create copies of the elements of M;, i = 0,1.)

A maximum cardinality linking can also be found using this reduction, as follows. A matching
on B corresponds to a linking on G if it contains a base of every matroid M,;. To find such a
matching, of maximum cardinality, execute match on B, initializing the matching M to contain all
edges corresponding to loops vv. Since sp(M) is increasing in match, the final matching has the
desired property, since the initial matching does.

To compute the time for linking, first observe that the dynamic operations are trivial for a
uniform matroid U: Let 2* denote the smallest dual value of an element of the base of U. In a
valid swap both elements have dual value z*. The only data structure needed for dynamic cocycle
operations is a list of elements not in the base, having dual z*, that have not been output, ordered
on topological number; for dynamic cycle a similar list of elements in the base is used. A dynamic

update operation uses time O(1).

34

This shows that in one Augment Step, the time for all dynamic ¢ operations on uniform
matroids M,; is O(m). Similarly in one Hungarian search the time for all cyc operations on these
matroids is O(m). Thus Theorem 2.1 shows that the time to solve a weighted independent linking

problem is
O((V/mi(m +13) + La) log (mN)).

Here t; and tj, are the time for dynamic operations and Hungarian search, respectively, in matroids
M;, i = 0,1 (these quantities are described more completely in Theorem 2.1). The cardinality

independent linking problem can be solved in time

O(/mi(m + th) + ta)-

Here t4 and t, are as described in Theorem 3.1. The weighted and cardinality independent Menger
linking problems have the similar bounds, O((v/n(m +t5) + tq)log (nN)) and O(v/n(m + 1) +tq),
respectively.

We illustrate these results by considering a matroid partition problem. Recall that if M;,
i = 0,1 are matroids on the same ground set, their sum My V M is a matroid whose independent
sets I are those that can be written I = Ip U I; with I; independent in M;. The matroid partition
problem is to find a base of Mg V M.

Next consider a linear matroid T represented by a matrix whose nonzero entries are distinct
variables (equivalently, the nonzero entries are distinct and algebraically independent); columns of
T are interpreted as vectors over the field of rational numbers extended by these variables. It is
well-known that such a matroid is a transversal matroid [W]. Specifically, suppose T is represented
by a matrix A with row set R, column set C, and all nonzero entries algebraically independent.
Form the bipartite graph B(T) having vertex sets R and C and edges {rcla,, # 0}. A set of
columns is independent in T if the corresponding vertices can be covered by a matching in B(T).

Define the mized linear partition problem to be a matroid partition problem where M;, i = 0,1
are linear matroids, with M, represented as a matrix of integers and M; a transversal matroid
represented like T above.

It is most convenient and efficient to solve such a problem by incorporating the transversal
matroid into the graph of a matching or linking problem. In this instance we reduce the mixed
linear partition to a matching problem as follows. Let the two matroids M; have the same column
set I; let My have row set R. Form a bipartite graph G with vertex sets Vo = E, V; = EUR
(strictly speaking sets V; contain two distinct copies of E). G has edges {eele € E} U B(M;).
Define the free matroid on ground set Vj, the free matroid F on R, and the matroid Mg + F on V4.

35

It is easy to see that independent sets of MV M; and independent matchings on G correspond
with each other. Hence the mixed linear partition problem can be solved using the algorithm for
linear cardinality independent matching (and the above routines for uniform matroids). To compute
the time assume each matroid M; has at most m columns and n rows. A maximum cardinality
matching on G has at most 2n elements, and G has at most m(n + 1) edges. Thus Corollary 5.1(b)
shows the time is O(mn!-2).

The mixed linear partition problem and related problems have applications in control theory

and numerical calculation. We state our results and briefly discuss the problems below; further

details are in the references cited.

Corollary 5.2. (a) The rank of an m x n mixed matrix (m > n) [MIN] can be found in time
O(mn1-92).

(b) The combinatorial canonical form of an m X n layered mixed matrix (m > n) [MIN] can
be found in time O(mn!-6?).

(¢) The structural controllability of a descriptor system with m input variables and n internal
variables [M87b] can be tested in time O((m + n)n!-62).

(d) The dynamic degree of a descriptor system system with n internal variables [M87a] can be

found in time O(n*™7), or alternatively O(n®log*n) using only naive matrix multiplication.

Proof. (a) In a mized matriz each entry is an integer or a variable that occurs only once. The
rank problem reduces to a mixed linear partition problem. The problem can be used, e.g., to test
the unique solvability of an electrical network [MIN]. It is also investigated in [SVY].

(b) This canonical form generalizes LU-decomposition and Dulmage-Mendelsohn decomposi-
tion. It can be used to efficiently solve a system of linear equations with varying coefficients.
[MIN] reduces the canonical form problem to calculations that are dominated by a linear cardi-
nality independent matching problem. Inspection shows that the latter is a mixed linear partition
problem.

(¢) [M87b] reduces the controllability problem to calculations that are dominated by two mixed
linear partition problems and a cardinality independent Menger linking problem. Inspection shows
that the latter is a cardinality independent matching problem on a graph with structure similar
to the above G. The main difference is that the matroid on Vg has rank n, while the matroid on
Vi has m + 2n elements and rank m + n, being the dual of a matroid of m + 2n elements and
rank n. To solve this matching problem we use our cardinality algorithm with upper bound 7 = n

on the size of a matching; we implement the dynamic routines on V; using dynamic routines for

36

the dual. Theorem 4.3 shows that in this case the first term in the estimate of Corollary 5.1(b) is
O((m 4 n)n'?), as desired.

(d) The dynamic degree gives the number of degrees of freedom of the system. [M87a] reduces
the dynamic degree problem to a maximum weight maximum cardinality independent Menger
linking problem. Inspection shows this problem amounts to weighted independent matching on a
graph similar to G'. Also the weights are integers in the range [0..n + 1] (this follows from [M87a,
p. 145, (18.13); note the range is independent of m). The dynamic degree generalizes the order of
complexity of an electrical network. The latter is also found by a weighted independent matching

problem, but on a graphic matroid [I]. I

Previous bounds for these problems are time O(mn?logn) for (a), using an extension of [Cu],
and similar expressions for (b) and (c); time O(n*) for (d), using [F]. Most of our improvements
are at present only theoretic, since they use matrix multiplication routines that have very large
hidden constants [CW]. However we believe that the O(n®log *n) time algorithm of part (d) would

be simple and practical to implement, based on experience with related scaling algorithms [GaT87].

37

References.

[GaT87]

[GaT8sg]

[GoT]

M. Aigner, Combinatorial Theory, Springer-Verlag, New York, 1979.
V. Chvétal, Linear Programming, W.H. Freeman and Co., New York, 1983.

W.H. Cunningham, “Improved bounds for matroid partition and intersection algo-
rithms”, SIAM J. Comput., 15, 4, 1986, pp. 948-957.
D. Coppersmith and S. Winograd, ”Matrix multiplication via arithmetic progressions,”

Proc. 19*" Annual ACM Symp. on Theory of Comp., 1987, pp. 1-6.

G.B. Dantzig, Linear Programming and Eztensions, Princeton Univ. Press, Princeton,

N.J., 1963.
J. Edmonds, “Minimum partition of a matroid into independent subsets”, J. Res. Na-
tional Bureau of Standards 69B, 1965, pp. 67-72.

A. Frank, “A weighted matroid intersection algorithm”, J. Algorithms 2, 1981, pp.
328-336.

M.L. Fredman and R.E. Tarjan, “Fibonacci heaps and their uses in improved network
optimization algorithms”, J. ACM 34, 3, 1987, pp. 596-615.

H.N. Gabow, “Scaling algorithms for network problems”, J. of Comp. and Sys. Sciences
31, 2, 1985, pp. 148-168.

H.N. Gabow and M. Stallmann, “Efficient algorithms for graphic matroid intersection
and parity”, Automata, Languages and Programming: 12" Colloquium, Lecture Notes
in Computer Science 194, W. Brauer, ed., Springer-Verlag, 1985, pp. 210-220.

H.N. Gabow and M. Stallmann, “An augmenting path algorithm for the parity problem
on linear matroids”, Combinatorica 6, 2, 1986, pp. 123-150.

H.N. Gabow and Y. Xu, “Efficient algorithms for independent assignment on graphic

and other matroids”, manuscript in preparation.

H.N. Gabow and R.E. Tarjan, “Faster scaling algorithms for network problems”, SIAM
J. Comp., to appear.

H.N. Gabow and R.E. Tarjan, “Faster scaling algorithms for general graph matching

problems”, unpublished manuscript.
A.V. Goldberg and R.E. Tarjan, “Solving minimum-cost flow problems by successive

approximation”, Proc. 19%" Annual ACM Symp. on Th. of Computing, 1987, pp. 7-18.

38

[M87a]

[MS87b]

[MIN]

[SVY]

M. Iri, “Applications of matroid theory”, Mathematical Programming — The State of
the Art, A. Bachem, M. Grétschel and B. Korte, eds., Springer-Verlag, New York, 1983,
Pp. 158-201.

D.E. Knuth, “Matroid partitioning”, Tech. Rept. STAN-CS-73-342, Comp. Sci. Dept.,
Stanford Univ., Stanford Calif., 1973.

E.L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and

Winston, New York, 1976.

K. Murota, Systems Analysis by Graphs and Matroids: Structural Solvability and Con-
trollability, Algorithmics and Combinatorics 3, Springer-Verlag, New York, 1987.

K. Murota, “Refined study on structural controllability of descriptor systems by means

of matroids”, SIAM J. Control and Optimization 25, 4, 1987, pp. 967-989.

K. Murota, M. Iri and M. Nakamura, “Combinatorial canonical form of layered mixed
matrices and its applications to block-triangularization of systmes of linear/nonlinear

equations”, SIAM J. Alg. Disc. Meth. 8, 1, 1987, pp. 123-149.

P.W. Shor, V.V. Vazirani and M. Yannakakis, “Testing singularity of a class of matrices

by linking matching and Gaussian elimination”, manuscript.
R.E. Tarjan, Data Structures and Network Algorithms, SIAM, Philadelphia, PA., 1983.
D.J.A. Welsh, Matroid Theory, Academic Press, New York, 1976.

39

