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Abstract

In this paper we analyze two popular, markedly different distributed computing paradigms: the client/server
paradigm, and the role symmetric paradigm. We define a simple symmetry condition that partitions the space of
distributed computations into two parts, and use this condition to prove that given any distributed computation
one can construct a functionally equivalent computation that uses one of these paradigms. We then analyze the
basis of this symmetry condition in distributed computations, and show how various practical problems in distri-
buted computing can be viewed in terms of composing subcomputations in different ways according to the sym-
metry condition. We then explore the structural properties of the two paradigms, considering in particular the
strengths each of the paradigms presents to the implementor of a distributed computation. This characterization
is important because a programmer developing a distributed computation can be aware of the properties each
paradigm possesses in solving a specific problem, and thereby more clearly design each piece of the computa-
tion. We illustrate the concepts by examining a diverse collection of existing systems and computations.

This material is based upon work supported i ; part by NSF cooperative agreement DCR-8420944, and by a grant from AT&T Bell Labora-
tories.






1. Introduction

The issues spanned by the field of distributed computing have evolved considerably in the past ten years.
During the early to mid-1980’s, a great deal of attention was focused on supporting the abstraction of an
integrated computing environment built on top of a distributed substrate (e.g., see [Almes et al. 1985, Walker et
al. 1983]). The rapid increase in the number and power of available processors, particularly in the form of prac-
tical parallel computers, has shifted some of this focus to work in parallel computing systems (e.g., see [Martin,
Bergan & Russ 1987]). Additionally, the use of interorganizational, large scale computer networks has called
increasing attention to issues such as security [Steiner, Neuman & Schiller 1988] and heterogeneity [Notkin et
al. 1987].

As the field has grown to encompass an increasingly diverse set of issues, there have been many efforts to
characterize particular problems and techniques that can be applied to them (e.g., see [Chandy & Misra 1986,
Saltzer 1982, Spector 1982, Wang & Morris 1985]). Rather than exploring a specific problem, in this paper we
focus on the basic building blocks used for dealing with distribution, which we call paradigms. This notion
concerns an abstract formulation for organizing and carrying out a computation, based on the principal goals and
constraints placed on the computation. For example, in the realm of sequential computations, divide and con-
quer is a commonly used paradigm.

There have been few attempts to examine computations at the level of paradigms. A notable exception is
Nelson and Snyder’s work on programming paradigms for use in parallel scientific computing applications for
distributed memory multiprocessors [Nelson & Snyder 1987]. In that paper, the authors described and illus-
trated several "recognized to be useful” paradigms that could be considered part of a programmer’s tool kit for
developing parallel applications for distributed memory multiprocessors. In contrast, we focus on the abstract
nature of paradigms for dealing with the distribution of resources and control in a network, using existing com-
putations as examples of the various properties we discuss. While a general characterization of distribution
would also consider various issues associated with potential parallelism (such as concurrency control and
speedup), these issues are outside the scope of this work.

Two paradigms have become particularly popular in practical distributed systems as well as theoretical stu-
dies of distributed computing: the client/server paradigm (used by many file systems and name services), and the
role symmetric paradigm (used by various voting and Byzantine agreement protocols). Yet, in an important
sense these paradigms are not well understood, since there has been no characterization of when and how each
paradigm can be applied in implementing distributed computations. In this paper we give examples of, and for-
mally define, these paradigms. We then characterize the classes of distributed computations that can be sup-
ported by each paradigm, and explore the structural properties of each paradigm. We focus particular attention
on the strengths each of the paradigms presents to the implementor of a distributed computation, We also dis-
cuss how one can compose these paradigms in various ways to construct practical distributed computations.

Throughout this paper, we use the term distributed computing to refer to the general discipline of computing
on a network of machines. We use the term distributed computation 1o refer to a particular problem in distri-
buted computing, such as the Byzantine Generals Problem [Lamport, Shostak & Pease 1982]. We use the term
distributed system 1o refer to a collection of distributed computations assembled to handle a broad range of prob-
lems. We consider a distributed computation to be composed of a collection of processes executing on proces-
sors. While the issues we discuss are not specific to this particular abstraction, we use this term for the sake of
concreteness. In place of "process” one could substitute any abstraction relating to the unit of scheduling and
distribution in a computation, such as thread, object, or coroutine. We use the term resource to refer to any
hardware, software, or information that might be shared among several processes, such as a CPU, a peripheral
device, a record of a file, or a database lock. We use the term "user" to refer to a human, while "client" refers to
a piece of software that runs on behalf of a user, making requests of a server in the client/server paradigm.

The remainder of this paper is organized as follows. In Section 2 we describe and illustrate the two para-
digms. In Section 3 we introduce the symmetry condition that partitions the space of distributed computations,
and use this condition to characterize the computations that can be implemented by each of the paradigms. In
Section 4 we explore the basis of this type of symmetry in distributed computations, and show how various prac-
tical problems in distribution (such as support for replication, and interorganizational administration) can be
viewed in terms of composing subcomputations in different ways according to the symmetry condition. In Sec-
tion 5 we consider the structural properties of the two paradigms, analyzing what strengths each of the
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paradigms presents to the implementor of a distributed computation. Finally, we offer some conclusions in Sec-
tion 6.

2. The Paradigms

In this section, we describe and illustrate the two distributed computing paradigms under consideration. We
also briefly mention some computations that are composed of multiple subcomputations, each of which uses one
of these paradigms. This section is intended to give the reader an intuitive grasp on the paradigms, and to hint at
our approach to partitioning the computation space. We give formal definitions and analysis of the paradigms in
Section 3.

The Client/Server Paradigm

It is difficult to trace the entry of the client/server paradigm into the realm of distributed computing. In its
various guises, it is probably the most widely applied distributed computing paradigm. Using this paradigm,
some collection of resources is managed by one or more servers, whose collective role is to encapsulate techni-
cal and administrative details of the resource. By doing so, servers can present clients with a simple abstraction
of the resource, namely, service request.

This paradigm is quite general. The encapsulated resource could be a physical device, such as a display or a
workstation. In such a case, the server can "export" operations at a variety of levels. For example, in the X win-
dow system, operations are exported for creating and manipulating windows on a display [Scheifler & Gettys
1986]. In the Xerox Process Server system, operations are exported for assigning a (slice of a) workstation’s
CPU to a process for the duration of the computation [Hagmann 1986].

The encapsulated resource could also be some type of information, such as the information accessible from
an information retrieval service [Salton 1986], a user registration service [Harrenstien, Stahl & Feinler 1985], or
an object-oriented database [Hudson & King 1988]. In such a case, processes in the client role are typically pro-
vided with a very restricted interface, such as read-only access to data in a simple textual format, or a collection
of object invocation primitives.

In the computations discussed above, a single server encapsulated various details of the relevant resource or
resources. This approach is not always feasible, either because the environment may be physically too large for
a single server to administer all of the resources (creating a bottleneck or critical point of failure), or because the
environment may span several independent administrative domains, each of which wishes to administer its own
resources. In this case, the server can be decomposed into a hierarchy of processes corresponding to the
resource distribution. In this arrangement, servers can pass requests among each other to fulfill service requests.

As an example system that uses this "distributed client/server paradigm", the Domain Naming System allows
name mapping information to reside in a distributed collection of servers, so that no server need store all map-
pings, and each organization can administer their name mappings independently [Mockapetris & Dunlap 1988].
To allow this, each server maintains some mappings, and is capable of finding other servers that can continue the
name mapping process for other names, either by mapping the names directly themselves, or by further forward-
ing the query. Other name services carry the service distribution further, allowing various syntactic [Cheriton &
Mann 1988] or semantic [Schwartz, Zahorjan & Notkin 1987] transformations at each server before passing the
request to another server. These transformations support various degrees of heterogeneity.

In the Domain Naming System, control is distributed among the servers. The servers collectively support the
abstraction that any server can answer any request, even though the data for a particular request may not reside
at the contacted server. Some systems that use the distributed client/server paradigm support a more primitive
abstraction, wherein clients are explicitly aware of the distributed nature of the data, and must locate and contact
the appropriate server for any particular request. For example, in Sun Microsystems’ Port Map mechanism,
each Port Map server is capable of servicing {Program Number} — {Port Number} requests only for Sun RPC
servers running on the same machine as that Port Map process [Sun Microsystems 1985]. It is the client’s
responsibility to find the machine on which the needed Sun RPC server and its Port Map server are running,
through its own means (e.g., by reading a local file containing the host name on which the server resides).

Many distributed file systems use the distributed client/server paradigm to provide clients with the abstrac-
tion of a single global file system shared transparently across a network [Howard et al. 1988, Nelson, Welch &
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Ousterhout 1988, Sandberg et al. 1985]. Some authentication services also use the distributed client/server
paradigm in large scale environments where no single server can be trusted to authenticate all service requests.
For example, Birrell et al. have developed an authentication service that allows servers to authenticate client
requests without trusting all servers along the path through the hierarchy of authentication servers [Birrell et al.
1986].

Finally, the client/server paradigm has also become popular for use in various traditionally centralized com-
putations. For example, many of the functions of traditional centralized operating systems have been replaced
by network services in modern operating systems, including page servers and file servers [Accetta et al. 1987,
Tanenbaum 1987]. These servers need not necessarily be on separate machines from their clients. Rather, the
client/server paradigm is often used in these cases to simplify the structure of the operating system "kernel”.

The Role Symmetric Paradigm

In some computations it is not possible or not desirable to give distinct client and server roles to constituent
processes. Such computations utilize the role symmetric paradigm.

The role symmetric paradigm has been used in a variety of computations. Because all participants are
equally involved, such computations often involve the use of broadcast. For example, the ARPANET routing
algorithm uses a broadcast-based role symmetric paradigm to disseminate link status information in a fault
tolerant fashion [McQuillan, Richer & Rosen 1980]. Since broadcast is expensive or unreliable in many set-
tings, some algorithms using the role symmetric paradigm have been developed for disseminating information
reliably without broadcasting (e.g., see [Alon, Barak & Manber 19871).

Byzantine agreement protocols are another, more robust class of role symmetric paradigms. They can sup-
port distributed cooperation given relatively few assumptions about the trustability of nodes. (Each of the role
symmetric computations discussed above requires that each node either execute correctly or not at all.) Byzan-
tine agreement protocols can reach agreement at non-faulty nodes given certain basic assumptions about the
environment, such as that the proportion of nodes that are not faulty is less than some fixed amount [Lamport,
Shostak & Pease 1982].

Role symmetric paradigms have also been used for eliminating critical nodes in replicated databases through
the use of weighted voting protocols [Gifford 1979]. Given a distributed system that suffered network partition,
role symmetric paradigms have been used to deal with inconsistencies that may have been introduced into the
system during the partition [Mueller, Moore & Popek 1983].

The computations discussed so far are all deterministic. There are also many probabilistic agreement algo-
rithms, typically used in situations requiring looser coupling among computing processes. For example, the Eth-
ernet binary exponential backoff algorithm allows nodes to arbitrate for access to the network without any cen-
tralized controller, and without knowledge of how many other nodes are on the network [Metcalfe & Boggs
1976]. Probabilistic agreement protocols have also been used to improve the adaptability of various systems for
classifying objects based on an evolving consensus. Gordon describes a system in which document description
categories evolve over time according to algorithms that resemble genetic mutation processes [Gordon 1988].
Schwartz uses probabilistic algorithms to organize and search a non-hierarchical space of resources, to allow
users to discover the existence of resources of interest, according to classification schemes evolved according to
the types of resources that exist and the types of queries users make [Schwartz 1989].

Multi-Paradigm Computations

Some distributed computations utilize more than one paradigm. For example, Chang and Maxemchuk
defined a family of reliable broadcast protocols given by a resiliency parameter that trades off message count
efficiency per broadcast for resiliency against processor failures [Chang & Maxemchuk 1984]. The protocols
depend on a token site that monitors and saves all broadcasts, retransmitting them upon request to sites that
missed the original transmissions. The token site is essentially a broadcast storage server, and hence the compu-
tation utilizes the client/server paradigm. The server migrates around the network to reduce past message
storage requirements and avoid single points of failure. If the token site fails (or when a new computer is added
to the network), the system enters inio a reformation phase, in which the non-failed sites elect a new token site
and agree on a new token site list. This election utilizes the role symmetric paradigm.



As a second example, many network clock synchronization protocols utilize the client/server paradigm to
support a network time server, plus the role symmetric paradigm to elect a new server in case of server failure
[Gusella & Zatti 1986]. Common to both of these examples is the use of the client/server paradigm for the main
focus of the computation, with occasional use of the role symmetric paradigm to hold an election concerning
process roles, to reduce storage requirements or increase robustness.

3. Partitioning the Computation Space

In this section we develop a simple symmetry condition that partitions the space of distributed computations
into two parts. We then formally define the two paradigms described in Section 2, and prove that given any dis-
tributed computation one can construct a functionally equivalent computation that uses one of these paradigms.

To develop the symmetry condition, we begin with the notion of role equivalence. Intuitively, two processes
are role equivalent if they service the same set of interfaces and support equivalent functionality. However, a
formal definition cannot refer to the particular instances of software being executed, because processes imple-
mented with different software could be role equivalent. For example, there could be different implementations
of a standard communication protocol (such as TCP/IP) corresponding to each of the operating Systems on
which the protocol runs.

Instead, we begin by abstracting away all process state (such as variables and environment flags), input, and
output into messages sent and received by the process. For example, reading program variables corresponds to
receiving messages, and modifying program variables corresponds to sending messages. This abstraction is
similar to the standard Turing machine abstraction of a single tape used for all instructions, data, and I/O.
Abstracting process state into messages allows us to treat all computations as functional expressions, avoiding
the complexities associated with computational side effects, which are. not relevant to the analysis.

Given this abstraction, we introduce the following definition:

DEFINITION: Two processes are role equivalent with respect to input message set S if given any sequence of input
messages in S, both processes produce the same sequence of output messages.

We now define the key property of this section:

DEFINITION: Given a computation C consisting of processes Py, P, ..., Pn, we say that C is role symmetric if,
given the set S of all input messages that any of the P; could possibly receive, the processes are pairwise role
equivalent with respect to S. Otherwise, the computation is role asymmetric.

We can use this condition to partition the computation space into two parts that we will now show
correspond to the two paradigms described in Section 2. We begin by formally defining the paradigms:

DEFINITION: A computation uses the client/server paradigm if it is possible to partition its constituent processes
into two groups, labeled "clients” and "servers", such that if any given client and server communicate, the client
always initiates contact with the server, and the server always responds.

DEFINITION: A computation uses the role symmetric paradigm if it is role symmetric.

At first glance these definitions may appear non-uniform, because they use seemingly different issues (contact
initiation vs. role symmetry) to define the two paradigms. However, contact initiation is a characteristic of role
asymmetry. To see this, note that process p; can only initiate contact with process p, in response to some
change in the state of p; (e.g., input from a user or the expiration of a timer), which is modeled as an input mes-
sage. Thus, the fact that a client initiates contact but a server does not indicates that these processes respond dif-
ferently to such an input message, and thus that the computation is role asymmetric.

While our definition of the role symmetric paradigm establishes its connection with role symmetry directly,
intuition might lead one to believe that there are a wide variety of differently organized role asymmetric compu-
tations. In particular, one can easily think of computations that have more than two functionally distinguished
components that do not use the client/server paradigm. An example would be a system in which a collection of
producer processes continuously updates a database while a collection of consumer processes continuously read
from the database, using appropriate locking mechanisms to ensure consistency. However, it turns out that any
role asymmetric computation can be cast as a computation that uses the client/server paradigm, through an
appropriate mapping of components and functions. We state this as a theorem.
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THEOREM: Given any role asymmetric computation one can construct a functionally equivalent computation that
uses the client/server paradigm.

PROOF: The proof proceeds by construction. The first step is to represent the computation as a directed graph,
where each node corresponds to a piece of the computation, each edge corresponds to a communication path
between two of these pieces, and each edge direction indicates which node initiates contact between those two
nodes. While it usually makes conceptual sense to decompose the computation into modules (or some unit of
scheduling and distribution), how one partitions the computation is immaterial for the purposes of the proof. We
need only show that it is possible to map a given decomposition graph to a graph in which there is at most a sin-
gle directed edge between each two pieces (the client initiator condition), without changing the computation’s
functionality.

To perform the mapping, note that for each pair of nodes Ny and N joined by one or more edges, there are
three possibilities:

1. There is a directed edge from N; to N,. This means that Ny always initiates communication with N .
2. There is a directed edge from N, to N1. This means that N, always initiates communication with N ;.

3. There are directed edges in both directions. This means that N1 sometimes initiates communication with
N,, and N, sometimes initiates communication with N .

For case (1), we can label N the client and N the server to complete the construction. Similarly, for case (2),
we label N the client and N the server. For case (3), we construct a functionally equivalent directed acyclic
graph corresponding to the cycle represented by the communication paths between N; and N,. The idea is to
divide N into three components, representing the part that initiates communication with N, the part that is con-
tacted through communication initiated by N, and a "buffer" process through which these first two components
communicate. N3 is divided similarly. This way, each component in the transformed graph can be labeled as
exactly one role that can be implemented as a client or server, as appropriate.

The formal construction is as follows. Replace node N with nodes Ni¢, N1g, and Nz (which will act as a
buffer between Nic and Nig). Similarly, replace node N, with nodes Noc, Nog, and Nog. Then replace the two
edges between N and N, with the following six edges:

Nlc——)st
Ngc——)Nm
Nic—-Nip
Nis—N1p
NZC—>NZB
N2S">N2B

This construction is illustrated in Figure 1. Figure 1b shows the how the original computation shown in Figure
1a is decomposed using the formal construction described above. In Figure 1c, we have rotated the figure some-
what to show the logical structure of the computation more clearly.

We now label Ni¢c and Ny¢ as clients, and Ny, Nog, Nig, and Nog as servers. The communication
correspondence is established as follows. Wherever N1 would have initiated communication with N5 in the ori-
ginal computation, in the corresponding client/server paradigm computation Ni¢ calls Nys. Any state shared
between the component of N that initiates contact with N, and the component of N, that initiates contact with
N is represented as explicit calls by Nic to Nqp to store the state, and by N1g to Nip to retrieve it, or vice
versa. A symmetrical construction holds for wherever N, would have initiated communication with N1. This
completes the construction and the proof.

We have shown that given any role asymmetric computation one can construct a functionally equivalent
computation that uses the client/server computation. Since the client/server paradigm is role asymmetric by
definition, this proof shows that the class of role asymmetric computations is the same as the class of computa-
tions that can be implemented by the client/server paradigm. Combining this result with our definition of the
role symmetric paradigm completes the partioning of the computation space. We state this as a Corollary:

COROLLARY: The condition of role symmetry partitions the universe of distributed computations into two classes
corresponding to the client/server paradigm and the role symmetric paradigm, with the following correspon-
dences: a computation can be implemented by the client/server paradigm if and only if it is role asymmetric;
and a computation can be implemented by the role symmetric paradigm if and only if it is role symmetric.
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a. Original Computation

c. Constructed Equivalent Computation

Figure 1: DAG Construction for Recursive Components

This result is illustrated in Figure 2.

4. The Basis of Role Symmetry; Composite Computations

In the previous section we showed that the condition of role symmetry can be used to characterize the set of
computations that can be implemented with each of the paradigms examined in this paper. However, designers
of distributed computations do not typically think about their tasks in terms of role symmetry. Instead, a
computation’s role symmetry/asymmetry normally derives from constraints placed on the computation. In this
section we analyze the basis of role symmetry, and show how one can view various practical problems in distri-
bution in terms of composing subcomputations in different ways according to role symmetry.

To analyze the basis of role symmetry, we begin by observing that in each of the role symmetric computa-
tions considered in Section 2, an important goal was to avoid centralization, for example to avoid single points
of failure, performance bottlenecks, or the need to designate a globally agreed upon administrative authority. In
fact, a role symmetric computation cannot centralize any of its state or control. If it could, the process responsi-
ble for the centralized component would respond to some requests differently than the other processes in that
computation, violating the definition of role equivalence. Thus, if a computation is role symmetric, it must be
distributed.

If the converse of this statement were true, we would have a complete characterization of the basis of role
symmetry. However, many role asymmetric (client/server) computations support various degrees of distribution
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(cf. Section 2). Therefore, the question to ask is what types of distribution require role symmetry. By definition,
the answer is those computations for which it is required that any process will produce the same output messages
for any given set of input messages. For example, a fully replicated database requires role symmetry, since oth-
erwise some parts of the database would not be available from all processes.” We call this type of distribution
role symmetric distribution.

While the client/server paradigm is role asymmetric, there are many client/server computations that require
role symmetric distribution. In the database example, for instance, a convenient user interface could be provided
in a client that accessed the (role symmetric) database across a network. This suggests an interesting way to
look at such a client/server computation, namely, as a composite computation. At the top level is a client/server
computation, where the server appears to be logically centralized from the client’s perspective (i.e., the client is
not concerned with the distributed nature of the server role). Below that is a conglomerate server, which is a dis-
tributed computation in its own right. This subcomputation can then be analyzed according to the role symmetry
condition of Section 3. Services that need to support role symmetric distribution can be organized into role sym-
metric subcomputations, as illustrated in Figure 3.

On the other hand, the goal of distributing the server role may be to allow parts of a global resource to reside
at distinct nodes (e.g., because the resource is very large or crosses administrative boundaries). We call this type
of distribution role asymmetric distribution. This type of distribution requires the use of a role asymmetric
server subcomputation. In such a case, the server role is often organized hierarchically, for example to facilitate
scalability or the delegation of administrative authority. This organization is illustrated in Figure 4.

Of course, a computation could need both role symmetric and role asymmetric distribution. For example, the
Domain Naming System makes use of a hierarchy of servers for dividing administrative responsibility, and
server replication to provide a measure of fault tolerance and load distribution. One can view this system as a
three level deep computation. At the top level is a simple client/server computation, where clients simply con-
tact any server, without being aware of the distribution of the naming information. Below that, the abstract
name service is a hierarchically organized, role asymmetric collection of services, each of which is authoritative
over a particular part ("domain") of the naming tree. At the bottom level, each of these authoritative services is

*Many databases of a practicably large size would be infeasible to replicate fully. A common practice is to replicate parts of the database in
such a fashion that any particular part can be found at several nodes, yet no part can be found at all nodes. We discuss how our model han-
dles such situations shortly.
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arole symmetric, replicated collection of servers. This decomposition is illustrated in Figure 5.

The analysis done in this section shows how various practical problems in distributed computing can be
viewed in terms of the composition of simpler subcomputations, each of which can be analyzed according to the
structure of Section 3. In general, a computation could be composed of an arbitrarily deep nesting of subcompu-

1LActually, the Domain Naming System uses a less sophisticated form of replication than is pictured here, involving a primary site and some
secondary replicas [Mockapetris & Dunlap 1988]. We have omitted this detail from the figure because it does not further illustrate the ideas
behind the composite representation we have described.



Figure 5: (Simplified) Composite Representation of Domain Naming System

tations using the basic constructions discussed in this section, as needed to solve the problem at hand.

5. Strengths and Weaknesses of the Paradigms

In this section we examine the strengths and weaknesses of each the paradigms considered in this paper. We
begin with a brief example.

An often cited goal of distributed systems is network transparency, to improve the ease with which resources
are shared [Tanenbaum & van Ranesse 1985, Walker et al. 1983]. For example, a pool of printers could be
shared conveniently by placing them together in a room and attaching them to a computer running a server that
load shares printing requests from clients around a local area network. Doing this would be easier, for instance,
than forcing users to check queue lengths explicitly at each printer before specifying which printer to use.

A similarly coherent view can be provided using the role symmetric paradigm, by building a pool of printer
control processes (one per printer) that elect a "service representative” each time a print request is received.
Doing so would have the advantage that no one process’ failure would disrupt access to the printers. However,
to make this pool of processes easy to use, it would make sense to provide a client/server interface. The result is
a computation structure like that of Figure 3.

This example illustrates the basic strengths of both paradigms. First, in an important sense, role symmetric
distribution is a more "thorough" form of distribution than role asymmetric distribution, because in the former
case no control or state can be centralized. Therein lies the strength of the role symmetric paradigm: when role
symmetric distribution is required, only the role symmetric paradigm will suffice. Yet, from a user’s perspec-
tive, the client/server paradigm is easier to use. Moreover, it scems easier to build and reason about computa-
tions that use the client/server paradigm than it is with computations that use the role symmetric paradigm.
(Consider, for example, the volume of theoretical work that has been devoted to role symmetric paradigms, par-
ticularly in Byzantine agreement algorithms [Lamport, Shostak & Pease 1982], voting algorithms [Bloch,
Daniels & Spector 1987], and common knowledge [Halpern & Moses 1984].)

To understand why the client/server paradigm might be easier to build, reason about, and use than the role
symmetric paradigm, we begin with the observation that an important step in designing and building distributed
computations is constructing appropriate abstractions. The client/server paradigm supports the development of
abstractions by providing a powerful structuring mechanism for implementing abstractions, namely, separation
of concerns between the client and server. While a server concerns itself with supporting an abstraction, a client
need only consider how to make requests of the server. The role symmetric paradigm lacks this structuring tool.

In addition to supporting the construction of abstractions, the client/server paradigm also allows more gen-
eral organizational structures than the role symmetric paradigm. By definition, all role symmetric computations
must exhibit a fully connected ("flat") communication structure. Because it is role asymmetric, the client/server
paradigm allows arbitrary organizations. Of particular importance is the ability to support hierarchy, which is
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often used to enhance scalability.

The client/server paradigm’s support for arbitrary organizational structures is also useful for the class of
problems that have a recursively defined nature in which one process must "prime" the computation by solving
an initial instance of the problem, and the remainder of the problem must be solved by another process. The
most common example is an object location service. Before locating an object using an object location service,
the client must first locate an object location server (e.g., by reading a local file containing the host name on
which a server resides). Another example is an authentication service. Before using an authentication service to
gain trust in the identity of some entity in the network, the client must first trust the identity of the authentication
service (e.g., by trusting that the service runs on machines that reside in physically secure areas, and that net-
work communication is secure). Some traditionally centralized computations also exhibit this character. For
example, before a compiler can produce code, some initial instance of the code for the compiler must be pro-
duced without the use of a compiler.

The class of computations that exhibit this type of recursion is probably not very large compared with the set
of all distributed computations. Yet, the issue deserves discussion because some very useful, general purpose
computations fit this scenario. Moreover, the solution to these problems using the client/server paradigm has an
interesting character: it is analogous to the construction of a proof by induction. The simple subcase
corresponds to proving the base case of an induction proof. The base case of a computation (proof) is typically
implemented (proven) very simply, and forms the basis for the rest of the computation (proof). The service’s
responsibility in the computation corresponds to the inductive step in the proof. The server’s (inductive step’s)
implementation typically requires some sophistication, and its usefulness (correctness) depends on the base case.

While the need to solve a base case of the problem in the client is in conflict with the goal of separation of
concerns, this is not a fault with the client/server paradigm. Rather, it is a characteristic of the problem at hand.
In fact, only the client/server paradigm can usefully support this class of computations. Using the role sym-
metric paradigm one would be forced to build both the base case and the inductive step into each process. Usu-
ally it would not make sense to do this in the case of a general purpose computation, since that would not allow
the common infrastructure to be shared. (For example, it would mean that every process were capable of
authenticating all network entities.)

In summary, the role symmetric paradigm provides the sole means of supporting role symmetric distributed
computations, but it is relatively difficult to build, reason about, and use computations based on this paradigm.
The client/server paradigm cannot support this class of computations, but eases the process of building a distri-
buted computation by virtue of role separation. In addition, it is a more flexibly organized paradigm, in that it
can support arbitrary organizations across processes, including, in particular, hierarchy and recursion. The
features of both paradigms can be obtained by building composite computations, as illustrated in Section 4.

6. Conclusions

In this paper we discussed two popular distributed computing paradigms: the client/server paradigm, and the
role symmetric paradigm. We established a simple role symmetry condition that partitions the space of distri-
buted computations into two parts corresponding to these two paradigms. We then showed how to construct a
functionally equivalent computation that uses one of these paradigms, given any distributed computation.
Because programmers do not typically think explicitly about role symmetry when designing computations, we
explored the basis of this type of symmetry in distributed computations, showing the situations where each para-
digm is required, based on the constraints placed on a computation. In doing so, we showed how practical com-
putations can be viewed as compositions of role symmetric and role asymmetric subcomputations. Finally, we
analyzed the strengths and weaknesses of the two paradigms. We showed that the role symmetric paradigm is
required whenever a powerful type of distribution that we call role symmetric distribution is needed in a compu-
tation. In contrast, the client/server paradigm supports the development of abstractions through separation of
concerns. It also allows arbitrary organization of the processes comprising the computation, whereas the role
symmetric paradigm only allows "flat" organization. Of particular interest are hierarchical organizations, which
support scalability; and recursive organizations, which are used in some very common practical computations,
such as name and authentication services.

In summary, any distributed computation can be viewed as a composition of one or more subcomputations,
each of which uses one of the two paradigms. Each of these paradigms has certain strengths and weaknesses for
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building and understanding distributed computations, which are inherited by any subcomputation that uses that
paradigm. Therefore, dividing the universe of distributed computations into these two paradigms is useful,
because a programmer developing a distributed computation can be aware of the properties each paradigm
possesses in solving a specific problem, and thereby more clearly design each piece of the computation.
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