Benchmarking Fortran and Ada Programs
on Parallel Machines f

L. D. Fosdick
C. J. C. Schauble
K. M. Olender %

CU-CS-420-89 January, 1989

Department of Computer Science
Campus Box 430 ‘
University of Colorado

Boulder, CO 80309-0430

+ This work was supported in part by a grant from IBM.
t Current address: Computer Science Dept., Colorado State University, Fort Collins, CO 80523.

ABSTRACT

Benchmarking runs were made on a group of programs
furnished by IBM in both Fortran and Ada to compare
sequential execution times on the Vax 11/780 against
paralle] executions on both the Encore Multimax and the
Alliant FX/8. Timings were made with the original
versions of the programs and with versions rewritten to
take advantage of the parallelism and vectorization
possible on the machines. In some cases, the Force
language was used for the improved versions of Fortran
programs.

The Force language allowed the parallel versions of the
Fortran programs to be written quickly and easily.
Rewriting Fortran code improved the speedups of the
programs in many cases. Further revisions concerned with
efficient paging also showed an effect. Depending upon
the amount of revisions and the mode of execution,
speedups ranged from 1.12 to 67.1.

Fosdick, Schauble, and Olender January 1989

1. INTRODUCTION

1.1. Statement of Project

At the request of IBM, a group of programs written in both Fortran and Ada were
run on different machines to compare execution times of sequential, vector, and parallel
machines. The Vax 11/780 was used as a sequential machine to provide a base for both
the Fortran and Ada programs. The Alliant FX/Series machines which include vector
operations in their parallel, shared-memory computers were used with both Fortran and
Ada programs to show the speedups currently available under such a system. The Encore
Multimax, a twenty-processor, shared-memory machine was used as an additional
parallel example for the Fortran programs.

The resultant speedups were only about 1.63 to 2.33 for the Ada codes on the
Alliant FX/8. The Fortran programs run on the Alliant were timed using scalar, vector-
only, concurrent-only, and concurrent with vector processing modes; the speedups
between the first and last modes varied from 1.12 to 3.18 on the original programs. Some
of the Fortran programs rewritten to take advantage of the machine architecture provided
speedups of 6.82 to 67.1 on the Alliant. Other Fortran programs were rewritten using the
Force, a parallel extension of Fortran which is available for both the Encore and the
Alliant (see [Jor87] for further information). With some additional but simple
modifications to the original code, the Force versions of the programs had speedups
ranging from 8.16 to 10.1 on the Alliant and from 6.31 to 16.7 using sixteen of the
twenty processors on the Encore. Later optimizations to reduce paging resulted in
Encore Force programs with speedups of up to 23.5 using sixteen processes.

2. EXECUTION OF PROJECT

The main work on this project was done between October, 1987 and December,
1987. The work was shared between the Academic Computing Services, which houses
the Alliant FX/8 computer, and the Computer Science Department of the University of
Colorado at Boulder.

2.1. Machines Used

Three different types of computers were used. Two were parallel multiprocessors,
one of which had vector processing capability, and the third machine was sequential.

2.1.1. The Alliant FX/8

The Alliant FX/8 at the University of Colorado at Boulder handled all Alliant
Fortran and Force runs. The Boulder Alliant is a shared-memory multiprocessor with
eight computational elements (CE’s) or processors, each of which has vector processing
capability for vectors of length 32. The machine also has five interactive processors
(IP’s) to handle I/O. All the CE’s are connected to the same cache. The Concentrix
operating system, which conforms to Unix externally, runs on all the processors [AlI87b].

-1-

Fosdick, Schauble, and Olender January 1989

Because the University of Colorado Alliant does not have an Ada compiler for the
Alliant FX/8, Alliant Computer Systems Corporation provided their computer in
Littleton, MA for the Ada testing.

2.1.2. The Vax 11/780

To better judge the performance of both the Ada and the Fortran programs, they
were also run on a sequential machine. The computer chosen for this was a Vax 11/780
belonging to the Computer Science Department of the University of Colorado at Boulder.

2.1.3. The Encore Multimax

For supplemental testing of the Fortran programs on a different parallel machine,
the Encore Multimax belonging to the Computer Science Department of the University
of Colorado at Boulder was used. This parallel computer is a shared-memory, MIMD
(Multi-Instruction, Multi-Data) machine with twenty 32-bit processors, each of which
can supply up to 0.75 MIPS. Each processor shares a 32K byte cache with one other
processor and is connected to the main shared memory and to the I/O interfaces by a
wide high-speed bus, called the Nanobus. The operating system is a version of Unix,
called UMAX 4.2, which allows multi-threading [Enc87].

2.2. Languages Used

The programs provided by IBM were written in Fortran and in Ada. The rewritten
parallel versions were also in Fortran and in Ada; in addition, some Fortran programs
were rewritten in the Force.

2.2.1. Fortran

To compile and run the Fortran programs in the experiment, three different Fortran
compilers were involved. For the sequential runs done on the Vax 11/780, the Berkeley
Unix f77 Fortran compiler was invoked. The Encore UMAX f77 Fortran compiler
handled programs for the Encore Multimax, and the FX/Fortran compiler was used for
the Fortran programs run on the Alliant FX/8 [AlI87b]. Hence, the comparisons being
made in this report are among different Fortran compilers as well as different machines.

2.2.2. Ada

With very little change, the Ada programs were compiled and run using the FX/Ada
compiler on the Alliant [All87a]. The Verdix VADS Ada compiler, Version 5.41,
handled the Ada programs run sequentially on the Vax [VER87]. The two compilers
have basically the same front end; the main differences are in the code generation
[Pom87].

2.2.3. The Force

The Force is a Fortran extension which allows parallel constructs such as
DOACROSS loops and critical sections. Parallelism is inherent in the Force since all the
requested processes are started at the beginning of the execution of the program and run
to the end, executing essentially the same code. DOACROSS loops may be pre-scheduled,
meaning that the various iterations are assigned to particular processes at compile-time,
or self-scheduled, meaning that the iterations are assigned at run-time as the processes

2.

Fosdick, Schauble, and Olender January 1989

become available. The processes may be synchronized by a Barrier construct which
forces all the processes to wait for the others to reach the same point before proceeding,
possibly with some sequential code. Variables may be global to the whole program or
local to a single process; they may also be considered critical variables. For further
information on the Force, see [JBA87] or [Jor87].

The Force preprocessor is available on both the UCB Encore Multimax and the
UCB Alliant FX/8. In both cases, the preprocessor produces Fortran code with
additional parallel constructs appropriate for the particular machine on which it is run.
This code is then processed by the Fortran compiler for that machine: the Encore
UMAX f77 Fortran compiler or the Alliant FX/Fortran compiler.

2.3. How Results were Obtained

The actual timings were of one or two subroutine calls in each program. These calls
were enclosed in a loop which was executed twenty times. The user time was recorded
before and after each call. The printed output included the time for each call, as well as
the average time over twenty calls.

Each program was executed at least three times in a single-user environment on
each machine. The lowest of the three or more average times produced by these runs is
the result given for this experiment.

3. FORTRAN BENCHMARKS

3.1. Original Programs

The original programs were provided by Dr. T. J. Smith of IBM of Boulder. Most
of the programs required changes to meet the requirements of the tests. As the programs
were to be run over a range of data values, the DATA statements which previously defined
the input data were replaced by READ statements. Some comments were also added. Ina
few cases, the array dimensions had to be increased to accommodate the new data sizes.
User time was used in computing the timed runs; so, the programs actually used for the
base runs were somewhat different from the original programs as delivered.

For the Alliant, it was necessary to include additional timing loop iterations. The
timings for the first few times through a loop were always more than those for the middle
iterations, and the last pass through the loop tended to be out of line as well. Hence, the
number of repetitions was increased from twenty to twenty-five or forty, with the timings
used coming from the middle iterations. We suspect that the extra time used by these
iterations are related to paging and caching on the Alliant.

3.2. Methods Used to Improve Performance

Appendix A has a list of hints for parallelizing or vectorizing programs. This list
includes techniques used for this project.

Other improvements were made by simply rewriting bad code or eliminating
unnecessary and untimed code. For most programs run on the Alliant, few changes were
made; most of the parallelization and vectorization was performed by the compiler itself.
The only program with significant alterations was the stereo line-of-site code, loscodel,

Fosdick, Schauble, and Olender January 1989

and the majority of those changes were to make it run correctly.

3.2.1. Rewriting a Fortran Program for the Alliant/FX

The alterations on the original programs for the base timing runs included simple
changes such as changing variable names (some programs used names over 15 characters
long) and altering or adding wRITE statements to correctly identify the output. Of
course, the modifications also included those mentioned above: changing bpaTa
statements t0 READ statements, adjusting array sizes to match the input data, and altering
the program to collect user time. Since not all the programs computed out the average
iteration time which was needed for this experiment, this calculation and output were
added to the programs, when necessary. Additional alterations included adding
comments or rewriting the code to make it clearer, the consolidation of independent Do
loops with similar limits, and switching the inner and outer limits of po loops, either to
improve vectorization or to allow a better distribution of the loops among the concurrent
processors.

The rewritten programs also made some use of the vector processors and
concurrency available on the Alliant. This involved replacing some po loops with vector
notation, e.g.,

DO 5, Il=1,NUMSEN, 1
DO 6, I2=1,NUMOBJ,1
DO 7, I3=1,NUMSEN,1
DO 8, I4=1,NUMOBJ,1

PAIRS (I1,I2,1I3,I4) = .FALSE.
8 CONTINUE
7 CONTINUE
6 CONTINUE
5 CONTINUE
becomes the following:
PAIRS (1:NUMSEN, 1:NUMOBJ, 1:NUMSEN, 1:NUMOBJ) = .FALSE.

The Alliant FX/Fortran compiler will produce code to execute this statement as
efficiently as possible. The original code, from the Stereo Line-of-Site program,
loscodel, initializes the array PAIRS such that the rightmost subscript varies first. Since
arrays in Fortran are stored in column-major order, this is the worst way available. The
altered version permits the compiler to decide the actual order of execution. Further,
when compiling in concurrent or vector mode, the generated code will attempt to use the
vector processors and concurrency whenever possible.

3.2.2. Rewriting a Fortran Program into a Force Program

In Appendix C are four versions of one of the IBM programs as used on the Encore
Multimax. The first is the version used for the base timing runs. Note the bpata
statements are replaced by REaD statements. The second version is the Force program.
The Force commands are all in lower case with the first character in upper case. Note
how the po loops spread their work among the processors using the Force construct
Presched DO. For further improvement of performance, the bodies of some subroutine
Do loops are consolidated into a single loop. Actions that must be done in sequential
mode, like reading input values, are within a Barrier. The third version shows the
output of the Force preprocessor. Here the Force commands have been replaced with

-4-

Fosdick, Schauble, and Olender January 1989

the appropriate Encore Multimax parallel processing Fortran primitives. The fourth and
final version of att_ xfrm, in Appendix C.4 is a Force program to be discussed later.

Appendix B contains a list of the changes required to rewrite a Fortran program as
a Force program for the Encore Multimax, step by step. This shows the actual procedure
used to parallelize and improve the performance for the att_xfrm program as given in
Appendix C.

3.3. Execution of Fortran Programs

Tables 1 and 2 show the size in lines of the eight Fortran programs in their various
forms. Tables 3, 4, and 5 compare the size in bytes of the executable object file of each
of these programs.

Two columns of Tables 1 and 2 contrast the number of lines in the Force program
(the actual Force code) against the number of lines in the Fortran program produced by
the Force preprocessor. The Force output includes all the translations of the Force
commands to the more primitive Fortran commands of the parallel constructs given for
the Encore Multimax. Note that the Force programs are a little larger than the original

Table 1: Size in Fortran Lines of Alliant FX/8 and Vax 11/780 Programs

Alliant Program

Name of | Original | Program | Rewritten | Force | Force | on Vax

Program | Program | Used Program | Program | Output | 11/780
att_xfrm 67 71 74 79
intcodel 71 83 84 99 343 83
intcode2 84 96 94 119 399 96
kalman2 876 878 824 878
loscodel 282 286 259 288
1lsbml 91 89 90 98
stprpl 120 121 103 124
stprp2 153 153 140 158

Table 2: Size in Fortran Lines of Encore Multimax Programs
Name of Original | Program | Rewritten Force Force
Program Program Used Program Program | Output

att xfrm 67 79 94 304
intcodel 71 83 98 324
intcode?2 84 96 108 343
kalman?2 876 878 867 564 1212
loscodel 282 288 249 240 602
1sbml 91 98 158 431
stprpl 120 124 148 377
stprp2 153 158 212 442

Fosdick, Schauble, and Olender

January 1989

Fortran programs while the preprocessed programs are much larger. This difference
suggests the simplicity of programming in the Force, as compared to using the actual
library routines given by the machine manufacturer.

The Fortran programs were compiled and executed in four different ways on the

Alliant FX/8:
(1) scalar sequential, which allowed no vector processing and was confined to run in
a single processor;
(2) vector processing on a single processor or CE,
(3) concurrent execution on all eight processors with no vector processing and
(4) acombination of full concurrency with vector processing in all eight processors.

This last mode, as expected, showed the most improved time. The Force programs were
all compiled and run in the last mode. Since the vector length for the vector processors is
32, the maximum linear speedup has an upper bound of 8 x 32 or 256.

Table 3: Alliant FX/8 and Vax 11/780 Original Fortran Object Files
Size in Bytes
Con- Vax
Name of Seq Scal | Vector | current | Con Vect | 11/780
Program Object Object | Object Obiect Object
att_xfrm 16384 38912
intcodel 16384 16384 16384 16384 38912
intcode2 16384 16384 16384 16384 39936
kalman2 32768 28672 24576 28672 57344
loscodel 16378 21653
lsbml 16384 45056
stprpl 16384 46080
stprp2 16384 46080

Table 4: Size in Bytes of Alliant FX/8 Rewritten Fortran Object Files

Name of Seq Scal | Vector | Concurrent | Con Vect | Force
Program Object | Object Object _ Object Object
att xfrm 16384 16384 16384
intcodel 20480 20480 16384 20480 20480
intcode2 20480 20480 16384 20480 20480
kalman2 24576 32768 28672 32768
loscodel 19928 12906 15696
lsbml 20480 20480 20480
stprpl 16384 16384 16384
stprp2 16384 16384 16384

Fosdick, Schauble, and Olender January 1989

Table 5: Size in Bytes of Encore Multimax Fortran Object Files
Name of Base Rewritten Force
Program Object Object Object

att_xfrm 56632 73344

intcodel 57986 73494

intcode2 57986 73494

kalman?2 72687 72687 84154

loscodel 63168 62144 77460

lsbml 71594 79798

stprpl 70790 78794

stprp2 70810 79054

It is interesting to note that the Force object files are not as large as one might
expect from the number of source lines for the preprocessed programs. Most of the code
inserted by the Force preprocessor consists of comments or primitive commands which
do not generate much object code.

3.4. Fortran Results

Results of runs made on the various machines are given in Appendices D.2 and D.3.
Runs on the Encore Multimax were done on one, two, four, eight, and sixteen of the
twenty available processors. Concurrent execution of the Alliant FX/8 implied all eight
processors were being utilized.

Many of the programs have a computational complexity of O (n), where n is the
size of the input. These programs are att xfrm, intcodel, intcode2, stprpl, and
stprp2. The Kalman filter code, kalman2, is of complexity O (n3). The subroutine
being timed in the least squares batch program, 1sbml, has complexity O (nmp?2), where
n is the number of rows, m is the number of columns, and p is the number of points
being used. The stereo line-of-site program, loscodel, has complexity O (n2s2), where
n is the number of objects and s is the number of sensors given as input.

3.4.1. Original Programs

The original programs, modified as described above, were used to provide the base
times on each machine. In Appendix D these times are marked as Original or Orig.

3.4.2. Rewritten Programs

The results of timing the execution of the rewritten programs against the base runs
of the original programs are given in Appendix D. These times are marked as Rewritten
or Rewrtn. While the Force was used for most of the Fortran programs run in parallel
on the Encore Multimax, the majority of the parallel runs on the Alliant FX/8 were done
with rewritten programs.

The speedups shown for the rewritten programs for the Alliant over the base
versions of the programs run in scalar sequential mode ranged from 2.13 to 4.11. When
the base programs were run in the full concurrent/vector mode, the speedups ranged from

-7-

Fosdick, Schauble, and Olender January 1989

2.82 to 21.1. Comparing the sequential scalar runs of the base programs against the
concurrent/vector runs of the rewritten versions, the speedups ranged from 5.31 to 67.1.
Note that these speedups are all far less than the upper bound of 256 for a linear speedup
of a machine with eight processors, each equipped with vector processors of length 32.

Code rewritten for the Encore Multimax showed little speedup, up to 1.05, since it
was not parallelized and was only run on a single processor. Inclusion of the Encore
Multimax Fortran parallel library calls would have allowed the programs to be executed
in parallel, but this was not done due to insufficient time.

3.4.3. Force Programs

Most of the Force program revisions were done on the Encore, as that is the easiest
way to alter Fortran programs to run in parallel on the Multimax. Use of the Force
avoids the use of primitive commands for parallelization, which varies by manufacturer.
A few Alliant Force programs were also written. These provide a comparison against
both the Encore Force speedup and the concurrent vector mode of the Alliant
FX/Fortran compiler.

Graphs are provided in Appendices D.4 and D.5, which show the timed results of
the Encore Fortran and Force programs. The keys denote Fortran as Fitn and Force as
Frc-n where n is the number of processors used for the given run.

The speedups on the Encore for Force programs versus the original base programs
ranged from 6.31 to 16.7, using a maximum of sixteen of the twenty available processors.
Some programs were more easily redesigned into a parallel algorithm than others. For
instance, modifying a loop executed many times in the intcode2 code, by spreading the
work over all the processes, showed considerable speedup. On the other hand, the
stprpl code had a large loop limit of eight; spreading it over more than eight processors
showed no improvement. In this case, the best times were shown when it ran with eight
processors, rather than sixteen, with a speedup of 8.10.

The Force programs included some of the alterations in the rewritten programs as
well, which explains the better than linear speedup. During the rewriting process, some
loops were combined or reordered. This reduced loop overhead since there were fewer
loops; it also improved the efficiency of the executing loops as each processor had a fair
amount of work to do on each iteration before getting the data for the next. Further,
interchanging the loops so that a large Fortran array will be accessed by columns instead
of by rows can improve the execution time of the program, as less paging will be
required. A sequential run of the revised programs without the Force directives would
have shown some improvement as well.

The Force programs to be tested on the Alliant showed a speedup of up to 10.1 over
the base code run sequentially, using all eight processors. This same program showed a
8.81 speedup over the rewritten sequential version. The speedups over the base and
rewritten versions running in concurrent/vector mode are only 2.47 and 1.24. This
suggests that simply recasting a Fortran program into a Force program can produce a
parallel version as good as a hand-rewritten program.

Again, the Force proved to be an easy way to rewrite a sequential Fortran program
into a parallel Fortran program. These experiments have shown that the Force programs
have speedups comparable to (if not better than) the Fortran programs which were

8-

Fosdick, Schauble, and Olender January 1989

simply rewritten using the manufacturer’s parallel Fortran constructs. Since the Force is
available on more than one parallel computer, unlike most manufacturer’s parallel
constructs, the results of these experiments strongly recommend the Force as a medium
for converting sequential to parallel Fortran programs.

Along this line, however, it should be noted that the Alliant FX/Fortran compiler
includes many automatic parallelization techniques. This makes it fairly easy to use for
the creation of parallel programs as well as for the conversion of sequential to parallel
programs. An Alliant parallel version of a sequential Fortran program can sometimes be
accomplished by a single computation with the correct optimizations. Otherwise, the
insertion of a few compiler directives into the code itself and/or some simple loop
revisions may be all that is required to make the parallel version fairly efficient. Because
the Force on the Alliant makes use of all the optimization available, full concurrency and
vectorization, there were occasional problems with Alliant Force programs being over-
parallelized; that is, the Alliant compiler would attempt to parallelize a loop already
taken care of by the Force. Hence, using the Force on the Alliant required a little more
care than on the Encore Multimax.

4. IMPROVED FORTRAN BENCHMARKS

Although the benchmarking tests were completed in December, 1987, a few
programs were reconsidered for further optimization during the summer of 1988. These
optimizations were concerned with efficient memory management while the earlier
rewriting attempts had been more interested in making a program spread its work in
parallel as much as possible. While doing the work of a program in parallel will
certainly speed up the execution time (as can be seen by the results in Appendix D), more
careful consideration of the use of memory in order to avoid excess paging should also
help.

It should be noted that the original Fortran programs provided by IBM were
designed for a vector machine like the IBM 3090. Vector processors can handle large
groups of data efficiently, but do so quite differently than parallel multiprocessors. In
particular, the order of the data which is best for a vector processor may result in
extraneous variables and be a poor arrangement for a parallel processor like the Encore
Multimax. Since the Alliant FX/8 includes vector processing elements in its CE’s, these
new optimizations were done only for the Encore programs.

4.1. Further Optimizations

The actual optimizations done involve redeclaring the arrays and interchanging
nested Do loops so that all the arrays are accessed in column order so that the memory
locations accessed by the program are contiguous whenever possible. In turn, this means
that the information in each page allocated to the array is fully used before the next page
is brought into the cache, and paging is minimized.

The bar graphs in Figures 1, 2, and 3 show the difference in speedup between the
two Force versions. The label, Force, implies the parallel version used to provide the
benchmarking data discussed earlier; OptForce refers to the later Force version, which
was rewritten from the first Force program in an attempt to optimize memory use. It is
clear from these graphs that proper memory management can make a difference in the

9.

Fosdick, Schauble, and Olender January 1989

2

15:

10:

Speedup over Original Fortran Version

_ Force

Figure 1: Speedup Shown by Both Force Versions of att_xfrm for n=50,000

execution time of parallel programs.

A change was made to the attitude transformation program, att xfrm, to ease
memory use. Because the program had been designed for use by a vector machine, the
main loop of the subroutine being timed used several temporary arrays to store partial
results of the vector operations. In a vector machine, the Fortran compiler would
probably optimize these temporary arrays into vector registers. However, this is not the
case on a machine like the Encore Multimax. Thus, the temporary arrays were removed,
and the body of the loop was rewritten to include a single assignment statement. This
last Force version of the program follows the other versions of att xfrm in Appendix
C4.

4.2. Optimized Storage Results

Results of these optimizations are given in Appendix E for a subset of the Fortran
programs, namely att_xfrm, intcodel, and intcode2. They are compared with

reruns of the other versions.! Figures 1 through 3 also show the speedups obtained by

! The programs all needed to be recompiled and run, as a new Fortran compiler was installed on the Encore Multimax during the
Spring of 1988 which generated much faster code. Thus the execution times given in these tables will be smaller than those in the tables

in Appendix D.3; however, the speedups for the unchanged Force versions over the original programs are still from 13.4% to 16.1% for
16 processes.

-10-

Fosdick, Schauble, and Olender January 1989

25:

20:

15:

10:

Speedup over Original Fortran Version

— Force

Figure 2: Speedup Shown by Both Force Versions of intcodel for n=50,000

this optimization for the three different programs. The new optimized Force programs
now show speedups from 16.0% to 23.5% using 16 processes, while the single process
runs were all faster than the sequential Fortran runs (1.07% to 1.49%). The three

programs involved all had computational complexity of O (n), as can be easily seen from
the tables of results.

5. ADA BENCHMARKS

A second series of benchmarks was performed comparing the performance of
sequential Ada versions of the following programs on a Vax 11/780 to the Alliant: xfrm,
intcodel, intcode2, stprpl, stprp2, kalmanl, kalman2, lsbm, and stereo.
These Ada versions were provided by IBM. In addition, a program with three simple
tasks, also provided by IBM, was instrumented to determine the performance overhead
associated with the Ada tasking mechanism on the Alliant. The clock accuracy on the
Vax was insufficient to gather meaningful data for the tasking program. The compilers
used were Verdix VADS, Version 5.41, on the Vax and the Alliant FX/Ada, which uses
essentially the Verdix front end with an Alliant code generator [Pom87].

-11-

Fosdick, Schauble, and Olender January 1989

25:

20:

15:

10:

Speedup over Original Fortran Version

— Force

OptForce

Figure 3: Speedup Shown by Both Force Versions of intcode2 for n=50,000

5.1. Ada Benchmark Results

Tables in Appendix D.1 summarize the results obtained from the sequential Ada
programs. Overall the Alliant executed the Ada versions of the benchmark programs
about twice as fast as the Vax 11/780. This is the same speedup as between the strictly

sequential Fortran versions on both machines, and so can be attributed to the faster
scalar processor of the Alliant.

Also note that Ada timings on both machines were considerably slower than the
sequential Fortran results, a factor of 8 on the Vax and 20 on the Alliant. Much of the
blame must go to poor code generation and the run-time constraint checking
requirements of the Ada language, although some of the difference between the Alliant
and Vax slowdowns may be due the inability of the then-current Alliant code generator
to take advantage of the vector and parallel hardware.

For a simple vector sum loop, Ada and Fortran versions of which are given in
Figure 4, the size of the object codes generated for the Vax were drastically different.

Although the object code was unavailable for the Alliant versions, we speculate that the
problems are similar.

The f77 Fortran compiler on the Vax generates 3 instructions for the assignment
statement in the loop with no optimization. The Verdix Ada compiler generates 45
instructions. Much of this code performs the bounds checking required by Ada. Under

-12-

Fosdick, Schauble, and Olender January 1989

po 10, I=1,N
R{(I) = A(I) + B(I)
10 CONTINUE

Figure 4a: A simple vector sum loop in Fortran

for I in 1..N loop
R{(I) := A(I) + B(I):
end loop;

Figure 4b: A simple vector sum loop in Ada

addl3 v.2-v.1+-4(rll) [r10],v.3=-v.1+-4(rll) [x10],v.12~v.14+-4(r11) [r10]

Figure 5a: Optimized Fortran assembly code for R(I) = A(I) + B(I)

movl -28 (fp) , r2
movl -74 (£p) , 0
movl -74 (fp) , 3
movl -74 (fp) , x4
subl3 =1,x0,xr0
mull3 =4,r0,r0
addl3 -28 (fp),x0, x0
movl (x0), rl

movl -40 (fp) , r2
subl3 =1,r3,x0
mull3 =4,r0,r0
addl3 -40(fp) ,x0,x0
movl (x0),x0

addl3 rl,rz0,rl
subl3 =1,r4,x0
mull3 =4,r0,r0
addls -58 (fp) , x0, 0
movl rl, (x0)

Figure 5b: Optimized Ada assembly code for R(I) := A(I) + B(I);

optimization, f77 reduced those three statements to one by taking advantage of the full
range of addressing modes available on the Vax. The Ada compiler, with full
optimization and all constraint checking suppressed, still generates 18 instructions using

strictly register operations. The fully optimized assembly codes generated by the two
compilers are given in Figures 5a and 5b.

Although the Ada code generated appears to be eighteen times as long as the
generated Fortran code, the Ada instructions use only register operations, which are
faster. Hence, the Fortran code for this simple loop only runs about four times faster

-13-

Fosdick, Schauble, and Olender January 1989

overall than the Ada code, even when both are optimized fully (a factor of 4.1 between
the unoptimized versions and 3.6 between the optimized versions). The loop overhead
per iteration was approximately the same, 5 instructions, in both languages. The Fortran
code experienced a speedup of 1.43 due to optimization, while the Ada code did slightly
better at 1.64, in part due to the elimination of the bounds checks as well as the more

conventional optimizations performed. The following table gives the times to execute
1000 iterations of the given loop on the Vax.

Code Time(sec)
Optimized Fortran 0.58
Unoptimized Fortran 0.83
Optimized Ada 2.12
Unoptimized Ada 3.47

It is not hard to see that even without the bounds checking, the code generation for
Ada is not good. This is not necessarily an attribute of the Ada language. Several Ada
compiler vendors claim generated code quality as good or better than C or Pascal

compilers for the most recent versions of their compilers being distributed as measured
by the Whetstone and Dhrystone benchmarks.

Since the Alliant Ada compiler did not utilize the machine’s parallel capabilities, no

effort was made to restructure the Ada programs to permit fuller use of the facilities as
was done with Fortran.

We should note that a new version of the Alliant FX/Ada compiler has been
distributed since these measurements were taken. This new version improved the code

generation phase to take advantage of the parallel and vector hardware features. It is not
known whether it addressed any of the other code generation problems.

5.2. Tasking overhead measurements

The results of the tasking overhead measurements are given in Tables 6 and 7. The
Alliant did permit the assignment of Ada tasks to processors, the only use of the Alliant
parallel hardware it made at the time. However, none of the data measured was of a
nature that the number of processors assigned would be a major factor and this was borne

out by the results, which were relatively consistent between the one and four
computational element cases.

Note that these results are only for the Alliant. The clock on the Vax was
insufficiently accurate (only about 1/60 seconds) for conclusive timings.

The overhead to execute an Ada delay statement can be broken down into two parts,
delay computation and blocking. The delay computation is the time to compute the
amount of delay requested and to decide if blocking is necessary; blocking is
unnecessary, for example, when the expression giving the amount of time to delay is zero
or negative. The blocking time is the overhead incurred to suspend and reinstate the
delayed task. The delay computation time was about 350 microseconds. Blocking time
was about 2.2 milliseconds. As expected, the data showed no correlation between the

amount of time actually delayed and the overhead incurred other than positivity of the
requested delay.

.14-

Fosdick, Schauble, and Olender January 1989

Another important task-related overhead is task swap time, the amount of time from
completion of a task entry until the calling task’s context is restored. The values
measured were very consistently about 500 microseconds with small deviation.

Inter-task data exchange is the amount of time taken by a task whose sole purpose is
to exchange protected data between tasks. It is quite consistently about the same value.
This shows that the dominant factor in task invocation is context switching and not data
transfer.

Rendezvous with no parameters is the amount of time between calling a task entry
that has no parameters and the actual completion of the rendezvous with the called task.
Rendezvous with one parameter is the equivalent time when the entry has a single
parameter. The values here varied more widely, but as expected, the parameterized
rendezvous takes slightly longer. All times are in microseconds.

Table 6: Tasking overhead data for one CE
Value High Low | Average | Std. Dev.
0 Delay 400 360 370 +100
+ Delay 4,960 | 1,390 2,580 +630
Task swap 580 480 510 +16
Inter-task data exchange 650 550 588 +19
Rendezvous with no parameters 310 260 290 +14
Rendezvous with one parameter 720 320 360 +38

Table 7: Tasking overhead data for four CE’s

Value High Low | Average | Std. Dev.
0 Delay 380 320 340 +140
+ Delay 5,700 | 1,230 2,490 1630
Task swap 580 470 496 19
Inter-task data exchange 650 530 576 +23
Rendezvous with no parameters 310 240 274 +17
Rendezvous with one parameter 380 300 336 +17

6. SUMMARY

The purpose of this research was to see how well the given programs could perform
on the parallel machines, and in particular, on the Alliant FX/8. In hindsight, of course,
many other optimizations now appear possible which might have improved the speedups
even more. However, during the limited time given to the experiments, much was
accomplished.

The main results of this work are as follows:

(1) As expected, the project showed that the execution of many Fortran programs
could be improved on a parallel machine with vector processing, such as the
Alliant FX/8. Even using a parallel multiprocessor can reduce processing time.
With appropriate rewriting of the code, the improvements on some could be more
than linear. However, this is not the case for all the programs, as the timings for

-15-

Fosdick, Schauble, and Olender January 1989

the stprpl code on the Encore indicate.

In particular, rewriting Fortran code improves the speedup by a factor of at least
1.05 on the Encore Multimax and 2.13 on the Alliant FX/8 in all cases, and by a
factor of four to eight in many cases.

(2) The Force is shown to be a convenient, portable language for rewriting
sequential Fortran programs into parallel Fortran programs. Execution of the
programs rewritten in the Force have speedups comparable with (or better than)
the programs that were rewritten to make use of the available parallel constructs.
Use of the Force combined with some revised code can result in a better than
linear speedup of the original code.

(3) When additional revisions were made to the Force programs for the Encore
Multimax in an attempt to reduce paging faults and caching, the improvements of
speedups ranged from a factor of 1.19 to 1.47. The importance of efficient
paging for parallel machines with shared memory must be stressed. Here
machines must compete for a single resource, the shared memory; the more
efficient the use of this resource, the better the speedup obtained by the parallel
execution.

(4) The state of the Alliant FX/Ada compiler at the time of these tests did not allow
for parallel code generation. Without any concurrency or use of the vector
operations available, the Alliant Ada over the Vax Ada showed only the speedup
expected from the different types of processors. Hence, the possible speedup for
concurrent Ada cannot be derived from this experiment.

What this project did show was that the Ada compiler performance on Alliant
appeared poor compared to that of the Fortran compiler. Clearly, the code
generation could use some improvement. It would be interesting to test these
codes on the new compiler.

6.1. Further Work

Now that the Alliant Computer Systems Corporation has a new Ada compiler which
incorporates the parallel capabilities of the machine, it would be interesting to rerun the
experiments using the new compiler. Is the parallelism now provided by the compiler
able to provide a reasonable (almost linear) speedup? Has the code generation for the
new compiler significantly improved over the previous version? Unfortunately, we do
not have an Ada compiler for the UCB Alliant FX/8. If it were to be made available in
the future, such experiments could be done.

The performance of loops on the Alliant FX/8 is worth further investigation. While
paging faults and cache misses can easily account for extra time during the first iteration
of a loop, the second, third, and last iterations also seem to require extra time.

It would also be interesting to attempt to optimize the other Encore Fortran
programs with respect to memory management to see if the speedup of these programs
would improve in the same manner. Would carrying this work to the Alliant which has a
much different hardware configuration also have an effect? Could something similar be
done to the Ada programs?

-16-

Fosdick, Schauble, and Olender January 1989

6.2. Acknowledgements

We would like to acknowledge Dr. Howard Pomerantz of Alliant Computer
Systems, Inc. for his assistance in locating an Alliant FX/Ada manual and in allowing us
to use the Alliant FX/8 in Littleton, Massachusetts to run the Ada tests.

Most of the Fortran timing runs on the Alliant FX/8 were done by Donna Pattee of
the Administrative Computing Center of the University. Both she and Dave Wood of
ACS should be recognized for their part in the project.

We also would like to thank Dr. T. J. Smith of IBM for his support and suggestions.

And, of course, thanks goes to Muhammed Benten for his counsel on both the
Encore and the Alliant, as well as the Force.

-17-

Fosdick, Schauble, and Olender January 1989

7. BIBLIOGRAPHY

[All87a] Alliant Computer Systems Corporation, ‘‘FX/ADA User’s Guide’’, Version
1.1, Alliant Computer System Corporation, Littleton, MA, Aug. 1987.

[All87b] Alliant Computer Systems Corporation, ‘‘FX/FORTRAN Programmer’s
Handbook”’, Version 3.0, Alliant Computer Systems Corporation, Littleton,
MA, Mar. 1987.

[Ame83] American National Standards Institute, ‘‘Ada Language Reference Manual
’, American National Standards Institute/MIL-STD-1815A, U. S.
Government, Ada Joint Program Office, 1983.

[Don81] J. J. Dongarra, ‘‘Some Linpack Timings on the CRAY-1"’, Tutorial on
Parallel Processing, 1981, 363-380.

[Enc87] Encore Computer Corporation, Multimax Technical Summary, Encore
Computer Corporation, Marlboro, MA, 1987.

[FWB85] S. I. Feldman, P. J. Weinberger and J. Berkman, ‘‘A Portable Fortran 77
Compiler’’, in Unix Programmer’s Manual Supplementary Documents,
Volume 1, Univ. of California, Berkeley, CA, Sep. 1985.

[Jor87] H. Jordan, ‘“The Force’’, in The Characteristics of Parallel Algorithms , L.
H. Jamieson, D. B. Gannon and R. J. Douglass (editor), MIT Press,
Cambridge, MA, 1987, 395-436.

[JBA87] H. F. Jordan, M. S. Benten, N. S. Arenstorf and A. V. Ramanan, Force
User's Manual, Revised edition, Department of Electrical and Computer
Engineering, University of Colorado, Boulder, CO , June 1987.

[Pom87] H. Pomerantz, Personal Communication, Alliant Computer Systems
Corporation, Nov. 1987.

[Pon88] C. G. Ponder, ‘‘Benchmark Semantics’>, SIGPLAN Notices 23, 2 (Feb.
1988), 44-48.

[Syd80] P. J. Sydow, CRAY-1 Optimization Guide, Cray Research, Inc., Mendota
Heights, Minnesota, 1980.

[VER87] VERDIX Corporation, ‘“VADS® VERDIX Ada Development System
Manual’’, Version 5.41 for VAX/UNIX, VERDIX Corporation, Chantilly,
VA, 1987.

-18-

)

@

3

“

APPENDIX A

Modifying Fortran Code for Vector/Parallel Speedup on the Alliant/FX

Avoid loops that include a two-way branch. Such loops can rarely take
advantage of vectorization and may be difficult to parallelize. If one branch will
only be taken a small percentage of the time, include it after the main loop has
run.

For instance, consider the code to initialize a matrix to zeros except for the
diagonal elements which should be set to one. First, set the matrix to all zeros in
a doubly-nested loop. After the completion of the inner loop, set the appropriate
diagonal element. E.g.,

Do 10 1I=1,N

Do 20 J=1,N
20 A(r,J) = 0.0
10 A(I,I) = 1.0

In this manner, the inner loop can be done concurrently and with vectorization.
The outer loop may be handled concurrently as well. The extra time used for a
double assignment to a (1, 1) is more than made up by the speedup of doing the
whole loop concurrently or with vectorization.

For better vectorization, let innermost loop have the greatest range. There is
always some inherent setup time for vectorization. The larger the vector, the
better amortization of this time.

For better vectorization, the innermost loop should work with the leftmost
subscript of a multiply-dimensioned array. If this conflicts with (3) above,
consider altering the declarations of the array to make the largest subscript range
leftmost.

Avoid data dependencies in DO loops. A data dependency occurs between
different iterations of a loop if the later iteration uses the results of the earlier
iteration. For instance, consider the following loop:

A(1) = 0.0

DO 5 1I=1,N

5 A(I+l) = A(I) + 2.5

Here each iteration must follow the previous one or the value of a (1) will be
undefined. The iterations of the loop are not independent of each other; they

Fosdick, Schauble, and Olender January 1989

cannot be run in parallel. A better solution would be the following loop.

DO 5 1I=1,N
5 A(I) = FLOAT(I-1) * 2.5

(5) Avoid carry-around scalars in DO loops. Suppose a loop contains a statement
like s = s + a(r)*B(1)/Cc(1). This cannot be executed in parallel as every
iteration will be adding a value to the same scalar, s. However, there are several
methods of dealing with this.

One way is to substitute an array for the scalar, e.g. sum(1) =
A(I)*B(I)/C(I), adding the elements of the array sum after the loop has been
exited. This is especially good when there is a special vector operation available
(as on the Alliant) which efficiently sums the elements of a vector.

Another way is to use a private (non-shared) variable to gather the partial sum
within each process during the loop:

PRIVATE PSUM

Pééﬁ = PSUM + A(I)*B(I)/C(I)

When the loop has finished, these partial sums can be added together to form the
total sum, perhaps in a critical section.

(6) Combine DO loops when possible. This may mean moving some loop
statments up in a module. Do not do this if it means adding data dependencies.

There is always some overhead for running a po loop. If the index is used as a
subscript, some address computation may be saved by including references to
more than one array within the same loop.

(7) Define arrays with fewer dimensions. A singly-dimensioned array is easier to
vectorize. A single subscript will also allow quicker address computation.

(8) Avoid subroutine calls in DO loops. Because of possible side effects,
subroutines cannot be called in parallel. It is better to include the actual
subroutine code within the loop, when possible, or to put the loop in the
subroutine. The Alliant does have a special compiler directive which will allow
parallel subroutine calls within a loop, but the user must be sure of the possible
side effects before using such a directive. The Force has a similar capability.

(9 Become familiar with special compiler directives and options for
concurrency and vectorization for the machine and compiler you use. For
instance, the -alt option of the Alliant compiler allows alternate code to be
compiled for the case when the loop is long and for when it is short. The code

that will actually be executed is decided dynamically when the loop range is
known.

-20-

Fosdick, Schauble, and Olender January 1989

(10) Become familiar with special library routines and language extensions for
concurrency and vectorization for the machine and compiler you use. For
instance, the Alliant FX/Fortran supplies dotproduct and sum routines which
handle efficient vector multiplications and the summing of the elements of a
vector. It allows arrays to be addressed as vectors, e.g., A(1:N) implies A (1),
A(2), ..., A(N), and also has a number of matrix operations.

More ideas for efficient Fortran programming with vectorization and concurrency can be
found in the Alliant FX/Fortran Programmer’s Handbook [All87b] and in the CRAY-1
Optimization Guide [Syd80].

21-

M

()

(3)

4

(3)

(6)

@)

8

©)

APPENDIX B

Modifying Fortran Code to Force Code for the Encore Multimax

Change the PROGRAM statement to a Force statement. The Force preprocessor
will add its own main program to start the correct number of processes at run-
time.

Adjust the declarations to denote which variables are Shared or global to all the
processes and which are to be private or local to the individual processes. Be
sure to include an End declarations statement.

Place a Barrier and an End barrier around each READ statement and/or
global scalar initialization to assure that these will be be done by only one
process. Try to include as much sequential code within a single Barrier as
possible.

For subroutines that can be run in parallel without conflict, change the caLL
statement to these routines to Forcecall statements. This allows all the
processes to call and execute the subroutine in parallel.

Make sure that the timing calls come just before and just after the main
subroutine call. It will not be correct to put the timing calls before and after the
main loop and then divide the time by the number of loop iterations. The timing
is to be of the actual call to the subroutine and should not include the overhead of
the loop itself.

Put all the wrRITE statements and the timing statements within an IF statement to
assure that they will only be performed by a single process and that that process
will always be on the same processor. Without this restriction, chaos could result.
Different processors may empty their output buffers at different times, causing
the output to be out of order. Also, the clocks of the processors are not exactly in
sequence. By having one processor record the beginning time and another the
ending time, the execution time may even appear to be negative.

For those subroutines which have been called using Forcecall statements, alter
the SUBROUTINE statement to a Forcesub Statement.

The declarations for the Forcesub routines will also need to be altered as in (2)
above. The parameters must remain as is, not marked Shared or Private. Be
sure to include an End declarations statement.

All po loops should be examined for possible parallelization. If the body of a
loop is independent, that is, if each iteration has no data dependencies with other
iterations of the loop, the loop can be changed to a Presched DO or a

Fosdick, Schauble, and Olender January 1989

Selfsched DO loop. Doubly nested loops can be handled by Pre2do or
Self2do statements. Be sure to end the loop with the appropriate End
presched do Or End selfsched do statement.

(10) It might be possible to break up an unparallelizable loop into two loops, one of
which can execute in parallel and the other sequentially. This will allow
concurrent execution whenever possible while keeping the synchronization
constraints inherent in the program.

(11) See if some small loops can be combined. A larger loop body is often more
efficient than a smaller one because of the overhead involved in spreading out the
work over the processes.

For more information, see the Force User’s Manual [JBAST].

223-

APPENDIX C

A Sample Program done in Fortran and in the Force

C.1. Fortran Version of Altitude Transformation Program

Q00

[eNeNe!

100

150

PROGRAM ATTXFM

REAL A(3,3,50000),X(3,50000),Y(3,50000)
REAL TT,TX,TA(100),TB(100)

REAL TEMP (2), TMPTIM

INTEGER LOOP, NLOOP, NUMOBJ

GET NUMBER OF TIMES TO LOOP AND THE ARRAY DIMENSIONS

DATA NLOOP /21/
DATA NUMOBJ /1000/

READ (5,*) NUMOBJ

CALL INIT (A, X, NUMOBJ)

PERFORM ATTITUDE TRANSFORMATION "NLOOP"™ TIMES

DO 100, LOOP=1,NLOOP, 1

TMPTIM = etime (TEMP (1), TEMP (2))
TB (LOOP) = TEMP (1)

CALL XFRM(A, X, Y, NUMOBJ)

TMPTIM = etime (TEMP (1), TEMP (2))
TA (LOOP) = TEMP (1)

CONTINUE

TT = 0.0

DO 150, LOOP=2,NLOOP, 1

TX = TA(LOOP) - TB(LOOP)

TT = TT + TX

WRITE (6,*) ’ITERATION NUMBER: ’,LOOP-1,

* TIME:’,TX

CONTINUE

WRITE (6, *)

WRITE (6,*) ’***NUMBER OF OBJECTS***’, NUMOBJ
WRITE (6, %)

WRITE (6,*) ’***TQTAL TIME***/, TT

WRITE (6,*) ’***AVERAGE TIME***’, TT/20.
WRITE (6, %)

Fosdick, Schauble, and Olender January 1989

END

SUBROUTINE XFRM(A,X,Y,NUMOBJ)

REAL A(3,3,NUMOBJ),X (3, NUMOBJ) , Y (3, NUMOBJ)
REAL TEMP1(50000), TEMP2 (50000), TEMP3(50000)
INTEGER NUMOBJ

INTEGER AXIS,OBJECT

DO 100,AXIS=1,3,1

DO 10, OBJECT=1, NUMOBJ, 1

TEMP1 (OBJECT) =A (AXIS, 1,0BJECT) * X(1,0BJECT)
10 CONTINUE

DO 20,0BJECT=1, NUMOBJ, 1

TEMP2 (OBJECT) =A (AXIS, 2,0BJECT) * X(2,0BJECT)
20 CONTINUE

DO 30,0BJECT=1,NUMOBJ, 1

TEMP3 (OBJECT) =A (AXIS, 3,0BJECT) * X(3,0BJECT)
30 CONTINUE

DO 40,0BJECT=1,NUMOBJ, 1

Y (AXIS, OBJECT)=TEMP1 (OBJECT) + TEMP2 (OBJECT)

1 + TEMP3 (OBJECT)
40 CONTINUE
100 CONTINUE
END
c
SUBROUTINE INIT (A, X, NUMOBJ)
REAL A(3,3,NUMOBJ), X (3, NUMOBJ)
INTEGER OBJECT, NUMOBJ, ROW, COL
DO 10,0BJECT=1,NUMOBJ, 1
DO 20,ROW=1,3,1
X (ROW, OBJECT) =ROW
Do 30,CO0L=1,3,1
A (ROW, COL, OBJECT) =ROW + COL
30 CONTINUE
20 CONTINUE
10 CONTINUE
RETURN
END

-25-

Fosdick, Schauble, and Clender

C.2. Force Version of Altitude Transformation Program

QOO0

QO

100

c

150

Force ATTXFM of NPROCS ident ME

Shared
Shared
Shared
Shared

REAL
REAL
REAL
INTE

A(3,3,50000),X(3,50000),Y(3,50000)
TT, TX, TA(100),TB(100)
TEMP (2), TMPTIM

GER LOOP, NLOOP, NUMOBJ

End declarations

GET NUMBER OF TIMES TO LOOP AND THE ARRAY DIMENSIONS

DATA NLOOP /21/
DATA NUMOBJ /1000/

Barrier
NLOOP

= 21

READ (5, *) NUMOBJ

End barr

ier

Forcecall INIT(A,X,NUMOBJ)

PERFORM ATTITUDE TRANSFORMATION "NLOOP" TIMES

DO 100 LOOP=1,NLOOP,1
IF (ME .EQ. NPROCS) THEN
TMPTIM = e
TB (LOOP) =

ENDIF

time (TEMP (1), TEMP (2))
TEMP (1)

Forcecall XFRM(A,X,Y, NUMOBJ)

IF (ME .EQ. NPROCS) THEN
TMPTIM = e
TA (LOOP) =

ENDIF
CONTINUE

IF (ME
TT = 0

time (TEMP (1), TEMP (2))
TEMP (1)

.EQ. NPROCS) THEN

.0

DO 150, LOOP=2,NLOOP, 1

X =

TT =

TA (LOOP) - TB(LOOP)

TT + TX
WRITE (6,*) ’ITERATION NUMBER: ’,LOOP-1,

CONTINUE

WRITE
WRITE
WRITE
WRITE
WRITE
WRITE

ENDIF
Join

(6,%)
(6,%)
(6, %)
(6,%)
(6,%)
(6, %)

f TIME:’,TX

! ***NUMBER OF OBJECTS***’ , NUMOBJ

f***TOTAL TIMEX*x’ T
" ***AVERAGE TIME***/, 6 TT/20.

226-

January 1989

Fosdick, Schauble, and Olender January 1989

END
C
Forcesub XFRM(A,X,Y,NUMOBJ) of NPROCS ident ME
C
INTEGER NUMOBJ
REAL A(3,3,NUMOBJ), X(3,NUMOBJ), Y (3,NUMOBJ)
Private REAL TEMP1(50000), TEMP2(50000), TEMP3(50000)
Private INTEGER AXIS, OBJECT
End declarations
C
Pre2do 100 AXIS=1,3,1 ; OBJECT=1,NUMOBJ, 1
TEMP1 (OBJECT) = A(AXIS,1l,0BJECT) * X(1,0BJECT)
TEMP2 (OBJECT) = A(AXIS,2,0BJECT) * X(2,0BJECT)
TEMP3 (OBJECT) = A(AXIS,3,0BJECT) * X (3,0BJECT)
Y (AXIS,OBJECT) = TEMP1l (OBJECT) + TEMP2 (OBJECT)
1 + TEMP3 (OBJECT)
100 End Presched Do
RETURN
END
C
Forcesub INIT(A,X,NUMOBJ) of NPROCS ident ME
C
INTEGER NUMOBJ
REAL A(3,3,NUMOBJ), X(3,NUMOBJ)
Private INTEGER OBJECT, ROW, COL
End declarations
C
Presched DO 10 OBJECT=1,NUMOBJ, 1
DO 20,ROW=1,3,1
X (ROW, OBJECT) = ROW
DO 30,C0L=1,3,1
A (ROW,COL,OBJECT) = ROW + COL
30 CONTINUE
20 CONTINUE
10 End Presched Do
RETURN
END

27

Fosdick, Schauble, and Olender January 1989

C.3. Fortran Output of Force Preprocessor

C

S HONCHONONCNONON]

QOO0

Force ATTXFM of NPROCS ident ME

SUBROUTINE PMAIN

INTEGER NPROCS, FFFNUM,NUMLCK, BARWIT,BARLCK,FFNBAR
INTEGER BARWIN, BARWOT, ZZNBAR, ZPCASE

INTEGER 10i(256),1003(256)

COMMON /PRVTNV/ ME,ZPCASE

COMMON /PARENV/ i0i, i00i,NPROCS, FFFNUM,NUMLCK, LRD, LWR
COMMON /PARENV/ BARWIN, BARWOT, ZZNBAR

COMMON /PARENV/ BARLCK,FFNBAR,BARWIT,master,i00]
LOGICAL getstat

INTEGER timer

The parallel environment variables are:

NPROCS ~-- total number of processes
FFFNUM -- process numbering variable
FFNBAR -- Dbarrier process counter
BARWIT -- barrier wait variable
BARLCK -- barrier lock variable

ME -~ unique process index

INTEGER ME,getpid
DIMENSION 10011i(256),1i0005(256)
COMMON / ATTXFG/ i1001i,10001
Shared REAL A(3,3,50000),%(3,50000),Y(3,50000)

REAL A(3,3,50000),%X(3,50000),Y(3,50000)
COMMON / ATTXFG / A(3,3,50000),X(3,50000),Y(3,50000)

Shared REAL TT,TX,TA(100),TB(100)

REAL TT, TX, TA(100), TB(100)
COMMON / ATTXFG / TT,TX,TA(100),TB(100)

Shared REAL TEMP(2), TMPTIM

REAL TEMP (2) , TMPTIM
COMMON / ATTXFG / TEMP(2), TMPTIM

Shared INTEGER LOOP,NLOQOP,NUMOBJ

INTEGER LOOP, NLOOP, NUMOBJ
COMMON / ATTXFG / LOOP,NLOOP,NUMOBJ

End declarations

COMMON / ATTXFG/ 10007
GET NUMBER OF TIMES TO LOOP AND THE ARRAY DIMENSIONS
DATA NLOOP /21/

DATA NUMOBJ /1000/

-28-

Fosdick, Schauble, and Olender January 1989

C
C Barrier
CALL spin_lock (BARLCK)
IF (FFNBAR.LT. (NPROCS - 1)) THEN
FFNBAR = FFNBAR + 1
CALL spin_unlock(BARLCK)
CALL spin_lock (BARWIT)
ENDIF
IF (FFNBAR .EQ. (NPROCS-1)) THEN
NLOOP = 21
READ (5,*) NUMOBJ
C End barrier
ENDIF
IF (FFNBAR.EQ.0) THEN
CALL spin_unlock (BARLCK)
ELSE
FFNBAR = FFNBAR -~ 1
CALL spin_unlock (BARWIT)
ENDIF :
c
C Forcecall INIT (A, X,NUMOBJ)
CALL INIT(A,X,NUMOBJ)
C
C PERFORM ATTITUDE TRANSFORMATION "NLOOP" TIMES
C
DO 100 LOOP=1,NLOOP,1
IF (ME .EQ. NPROCS) THEN
TMPTIM = etime (TEMP (1), TEMP (2))
TB(LOOP) = TEMP (1)
ENDIF
C
Cc Forcecall XFRM(A,X,Y,NUMOBJ)
CALL XFRM(A,X,Y,NUMOBJ)
C
IF (ME .EQ. NPROCS) THEN
TMPTIM = etime(TEMP(l), TEMP (2))
TA(LOOP) = TEMP (1)
ENDIF
100 CONTINUE
C
IF (ME .EQ. NPROCS) THEN
TT = 0.0
DO 150, LO0OP=2,NLOOP, 1
TX = TA(LOOP) - TB(LOOP)
TT = TT + TX
WRITE (6,*) 'ITERATION NUMBER: ’,LOOP-1,
1 f TIME:’,TX
150 CONTINUE
C
WRITE (6, *)
WRITE (6,*) ’***NUMBER OF OBJECTS***/7 , NUMOBJ
WRITE (6, *)
WRITE (6,%) ’***TQTAL TIME***/, k6 TT
WRITE (6,%*) ’***AVERAGE TIME***/, TT/20.
WRITE (6, *)
C

-29.

Fosdick, Schauble, and Olender January 1989

QOO0

ENDIF
Join
RETURN

END
Forcesub XFRM(A,X,Y,NUMOBJ) of NPROCS ident ME

SUBROUTINE GATTXF
INTEGER 10011i(256),10003(256),10001i,share
COMMON / ATTXFG/ 1001i,10001
REAL A(3,3,50000),%X(3,50000),Y(3,50000)
COMMON / ATTXFG / A(3,3,50000),%X(3,50000),Y(3,50000)

REAL TT,TX,TA(100),TB(100)
COMMON / ATTXFG / TT,TX,TA(100),TB(100)

REAL TEMP (2), TMPTIM
COMMON / ATTXFG / TEMP(2), TMPTIM

INTEGER LOOP, NLOOP, NUMOBJ
COMMON / ATTXFG / LOOP,NLOOP, NUMOBJ

COMMON / ATTXFG/ 10007
IF (1000i.NE.99) THEN

ISHARE = share(i000i, (loc(i0007j)-loc(i0001i)))
1000i = 99

ELSE
ISHARE = 1

ENDIF

IF (ISHARE.NE.1l) THEN
write(*,*) ' Force: '/
write(*,*) ’ Memory Sharing error ' ,

1 (loc(10003) ~1loc(10001))

call exit (0)
ENDIF
RETURN
END

SUBROUTINE XFRM (A,X,Y,NUMOBJ)

INTEGER NPROCS, FFFNUM,NUMLCK, BARWIT,BARLCK,FFNBAR
INTEGER BARWIN, BARWOT, ZZNBAR, ZPCASE

INTEGER 101 (256),1i0073(256)
COMMON /PRVTNV/ ME, ZPCASE
COMMON /PARENV/ i0i,i00i,NPROCS, FFFNUM,NUMLCK, LRD, LWR
COMMON /PARENV/ BARWIN, BARWOT, ZZNBAR
COMMON /PARENV/ BARLCK, FFNBAR, BARWIT ,master, 10073
LOGICAL getstat

INTEGER timer

The parallel environment variables are:

NPROCS -- total number of processes
FFFNUM —— process numbering variable
FFNBAR -- barrier process counter
BARWIT -—- Dbarrier wait wvariable
BARLCK -- Dbarrier lock variable

-30-

Fosdick, Schauble, and Olender January 1989

C ME -- unique process index

INTEGER ME, getpid
DIMENSION 10011 (256),10007j(256)
COMMON / XFRMG/ i001i,i000i

C
INTEGER NUMOBJ
REAL A(3,3,NUMOBJ), X(3,NUMOBJ), Y (3,NUMOBJ)
o] Private REAL TEMP1(50000), TEMP2(50000), TEMP3(50000)
REAL TEMP1(50000), TEMP2(50000), TEMP3(50000)
C Private INTEGER AXIS, OBJECT
INTEGER AXIS, OBJECT
o End declarations
COMMON / XFRMG/ 10007
C
C Pre2D0 100 AXIS=1,3,1 ; OBJECT=1,NUMOBJ, 1
N1000T = (3 - 1)/1 + 1
N2000T = (NUMOBJ - 1)/1+ 1
DO 100 LOOOT = ME, N100OT*N2000T, NPROCS
AXIS = 1 + 1 *MOD(LO0OT~1, N100OT)
OBJECT = 1 + 1*((LOOOT - 1)/N1000T)
TEMP1 (OBJECT) = A(AXIS,1,0BJECT) * X(1,0BJECT)
TEMP2 (OBJECT) = A(AXIS,2,0BJECT) * X(2,0BJECT)
TEMP3 (OBJECT) = A(AXIS,3,0BJECT) * X(3,0BJECT)
Y (AXIS,OBJECT) = TEMP1 (OBJECT) + TEMP2 (OBJECT)
1 + TEMP3 (OBJECT)
C100 End Presched Do
100 CONTINUE
RETURN
END
C
Cc Forcesub INIT(A,X,NUMOBJ) of NPROCS ident ME

SUBROUTINE GXFRM
INTEGER i0011(256),410005(256),10001i,share
COMMON / XFRMG/ 1001i,i000i

COMMON / XFRMG/ 10007
IF (i000i.NE.99) THEN

ISHARE = share(i000i, (loc(i0007j)-1loc(i000i)))
1000i = 99

ELSE
ISHARE = 1

ENDIF

IF (ISHARE.NE.1l) THEN
write(*,*) ’ Force: '
write(*,*) ’/ Memory Sharing error ' ,

1 (loc (100073)-1loc (10001))

call exit (0)

ENDIF

RETURN

END

SUBRCUTINE INIT (A, X,NUMOBJ)

INTEGER NPROCS, FFFNUM,NUMLCK, BARWIT,BARLCK,FFNBAR
INTEGER BARWIN, BARWOT, ZZNBAR, ZPCASE

-31-

Fosdick, Schauble, and Olender January 1989

INTEGER 101(256),1003(256)

COMMON /PRVTNV/ ME, ZPCASE

COMMON /PARENV/ 10i,i00i,NPROCS, FFFNUM,NUMLCK,LRD, LWR
COMMON /PARENV/ BARWIN, BARWOT, ZZNBAR

COMMON /PARENV/ BARLCK,FFNBAR,BARWIT,master, 1003
LOGICAL getstat

INTEGER timer

The parallel environment variables are:
NPROCS -- total number of processes
FFFNUM -- process numbering variable
FFNBAR -- barrier process counter
BARWIT -- barrier wait variable
BARLCK ~- Dbarrier lock variable

ME -- unique process index

oNoNONONONINONO NS

INTEGER ME, getpid
DIMENSION i001i(256),100073(256)
COMMON / INITG/ i001i,i0001

INTEGER NUMOBJ
REAL A(3,3,NUMOBJ), X(3,NUMOBJ)
C Private INTEGER OBJECT, ROW, COL
INTEGER OBJECT, ROW, COL
C End declarations

COMMON / INITG/ i000j

C Presched DO 10 OBJECT=1, NUMOBJ, 1
DO 10 OBJECT = 1 +4+1*(ME - 1), NUMOBJ, 1*NPROCS
DO 20,ROW=1,3,1
X (ROW, OBJECT) = ROW
Do 30,C0L=1,3,1
A(ROW, COL, OBJECT) = ROW + COL
30 CONTINUE
20 CONTINUE
Cc10 End Presched Do
10 CONTINUE
RETURN
END

SUBROUTINE GINIT

INTEGER 1001i(256),10003(256),1000i, share
COMMON / INITG/ 1001i,i000i

COMMON / INITG/ 10007

IF (1i000i.NE.99) THEN

ISHARE = share(i000i, (loc(i0003)~1loc(1i0001)))
1000i = 99

ELSE
ISHARE = 1

ENDIF

IF (ISHARE.NE.1l) THEN
write(*,*) ’/ Force: '
write (*,*) ' Memory Sharing error ’ ,
1 (loc (10003) -loc (10004i))

-32.

Fosdick, Schauble, and Olender January 1989

call exit (0)
ENDIF
RETURN
END

SUBROUTINE MEMSHR
CALL GATTXF

CALL GXFRM
CALL GINIT

RETURN
END

Fosdick, Schauble, and Olender January 1989

C.4. Optimized Force Version of Altitude Transformation Program

Force ATTXFM of NPROCS ident ME

C
Shared REAL A(3,3,50000),X(3,50000),Y(3,50000)
Shared REAL TT,TX,TA(100),TB(100)
Shared REAL TEMP(2), TMPTIM
Shared INTEGER LOOP,NLQOOP, NUMOBJ
End declarations
C
C GET NUMBER OF TIMES TO LOOP AND THE ARRAY DIMENSIONS
C
c DATA NLOOP /21/
c DATA NUMOBJ /1000/
C
Barrier
NLOOP = 21
READ (5, *) NUMOBJ
End barrier
C
Forcecall INIT(A,X,NUMOBJ)
C
C PERFORM ATTITUDE TRANSFORMATION "NLOOP" TIMES
C
DO 100 LOOP=1,NLOOP,1
IF (ME .EQ. NPROCS) THEN
TMPTIM = etime(TEMP(l), TEMP (2))
TB (LOOP) = TEMP (1)
ENDIF
C
Forcecall XFRM(A,X,Y,NUMOBJ)
C
IF (ME .EQ. NPROCS) THEN
TMPTIM = etime (TEMP (1), TEMP (2))
TA(LOOP) = TEMP (1)
ENDIF
100 CONTINUE
Cc
IF (ME .EQ. NPROCS) THEN
™ = 0.0
DO 150, LOOP=2,NLOOP, 1
TX = TA(LOOP) - TB(LOOP)

TT = TT + TX
WRITE (6,%*) ’ITERATION NUMBER: /,LOOP-1,’ TIME:’,TX
150 CONTINUE

C
WRITE (6, *)
WRITE (6,*) !***NUMBER OF OBJECTS***f , NUMOBJ
WRITE (6, *)
WRITE (6,%*) 7 ***xTQOTAL TIME**xr TT
WRITE (6,*) ' ***AVERAGE TIME*x**/ TT/20,
WRITE (6, *)
C
ENDIF
C
Join

-34-

Fosdick, Schauble, and Olender January 1989

END
C
C
C
Forcesub XFRM(A,X,Y,NUMOBJ) of NPROCS ident ME
C
INTEGER NUMOBJ
REAL A(3,3,NUMORJ), X(3,NUMOBJ), Y (3,NUMOBJ)
Private INTEGER AXIS, OBJECT
End declarations
C
Pre2do 100 OBJECT=1,NUMOBJ,1 ; AXIS=1,3,1
Y (AXIS,OBJECT) = A (AXIS,1,0BJECT) * X(1l,0BJECT)
1 + A(AXIS,2,0BJECT) * X(2,0BJECT)
2 + A(AXIS,3,0BJECT) * X(3,0BJECT)
100 End Presched Do
RETURN
END
C
Forcesub INIT(A,X,NUMOBJ) of NPROCS ident ME
C
INTEGER NUMOBJ
REAL A(3,3,NUMOBJ), X(3,NUMOBJ)
Private INTEGER OBJECT, ROW, COL
End declarations
C
Presched DO 10 OBJECT=1, NUMOBJ, 1
DO 20,ROW=1,3,1
X (ROW, OBJECT) = ROW
DO 30,C0L=1, 3,1
A (ROW, COL, OBJECT) = ROW + COL
30 CONTINUE
20 CONTINUE
10 End Presched Do
RETURN

END

-35.

APPENDIX D

Graphical Results

D.1. Ada: Vax 11-780 and Alliant Results

For comparison, the Alliant Fortran sequential scalar and Vax Fortran results are
included.

130:
120:
110:
100:
90:
80:
70:
60:
50:
40:
30:

Average Running Time in Seconds

20:
10:

Att_xfrm Intcode1 Intcode2

Program run with Largest Input

_ Ada(Vax)

Ada(Alliant)

Fortran(Vax) Fortran(Alliant)

Fosdick, Schauble, and Olender

D.1. Ada: Vax 11-780 and Alliant Results (cont.)

Average Running Time in Seconds

s I :
Lsbm1 Stprp1 Stprp2

Program run with Largest Input

_ Ada(Vax)

d Ada(Alliant)

| Fortran(Vax) : Fortran(Alliant)

37-

January 1989

Fosdick, Schauble, and Olender

D.1. Ada: Vax 11-780 and Alliant Results (cont.)

Average Running Time in Seconds

500:

400:

300:

200:

100:

e

Kalman1 Kalman2 Stereo-Line-of-Site

Program run with Largest Input

— Ada(Vax)

| Ada(Aliiant)

Fortran(Vax) i Fortran(Alliant)

-38-

January 1989

Fosdick, Schauble, and Olender January 1989

D.2. Fortran: Alliant Results

0N
°
c
o
&1
D
.=
)
€
=
o)
£
c
c
35
o 1: —
@
o
<
S
)
>
<
- 0: e
ScalarSeq VectorSeq VectorConc

Program run with Largest Input

_ Orig_Intcode1

Rewrtn_Intcode1

Orig_Intcode2

Rewrtn_Intcode?2

-39.

Fosdick, Schauble, and Olender

January 1989
D.2. Fortran: Alliant Results (cont.)
30:
20

Average Running Time in Seconds

ScalarSeq VectorSeq ScalarConc VectorConc

Program run with Largest Input

— Orig_Kalman2

Rewrtn_Kalman2

-40-

Fosdick, Schauble, and Olender January 1989

D.3. Fortran: Encore Multimax Results

B00. i h i e eimnacenseamameasssummsEmeamemesaccasaaswmmmcmana..aan ..

% 500:

c

(o]

(&)

(]

@ 400:

£

[¢b]

=

= 300

(@]

[l

f=

st

3

r 200

[eb]

[@)]

[0

S

2 100:

z :
0:

5,10 5,20 5,40 10,20 10,40
Input Values

— OriginalStereo

RewrittenStereo

-41-

Fosdick, Schauble, and Olender January 1989

D.4. Fortran vs. The Force: Alliant Results

3 T et T

2: e eme

Average Running Time in Seconds

ScalarSeq VectorSeq ScalarConc VectorConc

Program run with Largest Input

— Orig_Intcode1

Rewrtn_Intcode1 § 3 Force_Intcode

-42-

Fosdick, Schauble, and Olender

D.5. Fortran vs. The Force: Encore Multimax Results

60:
'8 50:
oy

1)

[&]

QO
LT
£

[b]
£
= 30

(@]

o
b=

c

oo |
oC 20:
)

o
[

S

g 10:
z :

0:

att_xfrm intcode1 intcode2

Program run with Largest Input

I

Frc-2

Frc-16

Frc-8

Frc-4

-43.

January 1989

Fosdick, Schauble, and Olender

D.5. Fortran vs. The Force: Encore Multimax Results (cont.)

Average Running Time in Seconds

stprp1

R

January 1989

stprp2

Program run with Largest Input

Fre-1 Fre-2

Frc-8 Frc-16

-44-

Fosdick, Schauble, and Olender

D.S. Fortran vs. The Force: Encore Multimax Results (cont.)

Average Running Time in Seconds

40:

30:

20:

n=5,000 n=10,000

Input Values for Program ATT_XFRM

I

Fre-1

Frc-4

3 Fro-8 Fre-16

-45-

January 1989

n=50,000

APPENDIX E

Tables of Optimized Storage Results for Encore Fortran Programs

Fortran vs Force vs Optimized Force
Encore Attitude Transformation
Number | Number Lowest Average User Time/Iteration for Number of Processors
of of
Objects Procs Sequential Force Speedup Opt. Force Speedup

5,000 1 1.85 2.10 0.881 1.72 1.08
2 1.07 1.73 0.867 213
4 0.539 343 0433 427
8 0.274 6.75 0.218 849

16 0.138 134 0.113 164
10,000 1 3.70 4.19 0.883 345 1.07
2 2.13 1.74 1.74 2.13
4 1.08 343 0.884 4.19
8 0.543 681 0.448 8.26

16 0.276 134 0.228 16.2
50,000 1 18.6 21.0 0.886 17.2 1.08
2 10.7 1.74 8.73 213
4 5.38 346 441 422
8 2.75 6.76 2.24 830

16 1.39 134 1.16 16.0

Time in seconds

Fosdick, Schauble, and Olender January 1989
Fortran vs Force vs Optimized Force
Encore State Vector Integration 1
Number | Number Lowest Average User Time/Iteration for Number of Processors
of of
Obijects Procs Sequential Force Speedup Opt. Force Speedup
5,000 1 3.92 4.06 0.966 2.84 1.38
2 2.05 191 143 2.74
4 1.03 3.81 0.718 5.46
8 0.512 7.66 0.357 11.0
16 0.258 152 0.181 21.7
10,000 1 7.83 8.11 0.965 5.70 1.37
2 4.08 1.92 2.85 2.75
4 2.06 3.80 1.44 5.44
8 1.02 7.68 0.714 11.0
16 0.518 152 0.359 218
50,000 1 39.2 40.6 0.966 284 1.38
2 204 1.92 143 2.74
4 10.2 3.84 7.15 5.48
8 5.11 7.67 3.61 10.9
16 2.56 15.3 1.82 215

Time in seconds

Fortran vs Force vs Optimized Force
Encore State Vector Integration 2
Number | Number Lowest Average User Time/Iteration for Number of Processors
of of
Objects Procs Sequential Force Speedup Opt. Force Speedup
5,000 1 4.76 4.70 1.01 3.20 149
2 2.36 2.02 1.61 2.96
4 1.19 4.00 0.812 5.86
8 0.593 8.03 0.403 118
16 0.298 16.0 0.203 234
10,000 1 9.52 9.39 1.01 6.40 1.49
2 4.73 2,01 322 2.96
4 2.37 4.02 1.62 5.88
8 1.19 8.00 0.806 11.8
16 0.593 16.1 0.405 235
50,000 1 47.6 47.1 1.01 32.0 149
2 23.6 2.02 16.1 2.96
4 11.9 4.00 8.12 5.86
8 5.96 7.99 4.07 11.7
16 3.00 159 2.05 232

Time in seconds

-47-

