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ABSTRACT

Assertional s-rings are introduced to provide an algebraic setting in which the finite
and infinite behavior of nondeterministic programs can be expressed and reasoned about.
This includes expressing the fair infinite behavior of nondeterministic iterative programs,
and reasoning about termination under various fairness assumptions. We also address the
question of when the reasoning techniques are semantically complete.
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1. Background and Motivation

The purpose of this paper is to provide an algebraic setting for reasoning about the con-
trol structures of iterative nondeterministic programs. The algebra supports reasoning about
nontermination (i.e., total correctness) and about fair nondeterministic constructions. To
quote Kuich and Salomaa: "The tools from linear algebra make the proofs computational in
nature and, consequently, more satisfactory from the mathematical point of view than the

customary proofs." [§]

This algebraic approach to the semantics of programs also underlies dynamic logic
(e.g. [6,7]), and our particular approach owes much to the assertional categories of Manes
[12,14,13] and the use of the Boolean algebra of guards within a zerosum-free semiring
[15]. The major addition of our work to this earlier research is the algebraic treatment of

nontermination and fairness.

Our starting point is a familiar idea: Nondeterministic programs denote elements in an
algebraic structure, which is almost a semiring. Each of the usual syntactic constructions on
programs (such as IF-THEN-ELSE or WHILE-DO) has a corresponding semantic operation
that is defined in the algebra. Boolean expressions, used as pre-conditions and post-
conditions about programs, are elements in a Boolean algebra of "guards", which exists as a
subset of the algebra. Because of this, the usual program assertions (involving a pre-
condition, a program, and a post-condition) can be proved algebraically, using only the laws
of the algebra. Moreover, we show algebraically that the usual Hoare rules for proving total
correctness assertions are valid — and if certain conditions (given in Section 6) are valid,
then the entire Hoare calculus (including rules for termination of fair nondeterministic

loops) is "semantically complete”.

This use of the Boolean algebra of guards in a semiring was proposed by Manes and
Benson [15] and had some of its motivation from [9,10]. It has been further developed by
Manes and Arbib [12,13,14], who use partially additive semirings which are morphism sets
in a certain kind of category, called an assertional category. They develop a calculus for
proving partial correctness assertions about programs, and this calculus was recently shown
by Bloom to be sound and complete in the setting of iterative algebraic theories [1]. The

semirings used by Manes and Arbib possess a unary operation * which meets the axiom



s* =ss* +1. The * is used to provide semantic operations for iterative constructions by
solving iteration equations — in the spirit of Elgot [3,4] and dynamic logic. In general, these
semantic operations ignore infinite iterative behavior and are not appropriate for expressing

total correctness assertions (i.e., assertions where termination is guaranteed).

With this in mind, we introduce another unary operation =, where the axiom s*=ss> is
met. Intuitively, s* is the result of executing s infinitely often (in much the same way that
s* is the result of executing s finitely often). The meaning of an iterative program is still a
solution to the usual iteration equation, but the solution is constructed using both the * and
the = operations. Whereas the original approach (using only *) provided a calculus for par-
tial correctness assertions, the new approach (with * and *) yields a calculus for total

correctness assertions.

In addition, the two unary operations can be combined in various ways that express dif-

ferent kinds of fair behavior within a DO—0D loop (as presented by Francez [5]).

2. S-rings and a Concrete Example

2.1 S-rings

In the previous section, we said that nondeterministic programs will denote elements in
a certain kind of algebra. This algebra is almost a semiring: The "almost" occurs because
our primary example violates the semiring law s0=0. But apart from this violation, the
structure is a semiring. We refer to this algebraic structure as an s-ring (think of a semiring
with something missing). Formally, an s-ring is a set § with two binary operations (+ and *)
and two distinct constants (0 and 1) such that:

1. (S,+,0) is a commutative monoid.

2.(S,", 1) is a monoid.

3. Multiplication () distributes over addition (+) on both sides.

4.Foralls € §:0s =0.

 Total correctness assertions have been studied by Manes and Arbib in one assertional category (the category of partial functions —
suitable for deterministic programs), but it's unclear whether the technique extends to other assertional categories.



A zerosum-free s-ring also has the axiom:

S.Foralls,te S: s+t =0iff s =0=¢.

We will use the typical semiring notation with s-rings, writing st instead of s ‘¢, and assum-
ing that multiplication has precedence over addition in expressions like s+fu. If s is an ele-
ment of an s-ring and i is a natural number, then s¢ denotes the multiplication of i copies of
s (with 50 defined as 1).

2.2 The S-ring of Strict Relations

A simple example can clarify the representation of nondeterministic programs by ele-
ments of an s-ring. For this example, consider a setting where each program computes in
some fixed "state space” D . Thus, each execution of a program starts in some state d € D
and, if it terminates, will finish in some state e € D . There may also be nonterminating exe-

cutions, which start in some state, but fail to terminate.

A nondeterministic program denotes a binary relation on D » Where D, is the set D
plus a new element | which represents the "result” of a program that is in an unending loop.
Intuitively, the relation denoted by a program is the state-transition for the program: if s is
a relation denoting a program, and (d,e) € s, then the corresponding program is capable of
mapping an initial state d to a final state e. If e = | then the program has a nonterminating
execution starting in state d. We also require each program’s relation to map | to | and
nowhere else ((| ,e)e s iff e = | ). This means that if the input to s came from a nonter-

minating program, then s cannot fix this. A relation with this behavior for | is called strict.

Now we focus on the algebraic structure of the set of all strict binary relations on D I
We call this set of relations A and note that it forms an s-ring. Addition in A is union of
relations, so (d,e)e s+t iff (d,e)e s or (d,e)e ¢r. Multiplication is composition of rela-
tions, so (d,e) € st iff there exists some ¢ € D | with (d,c)e s and (c,e)e ¢t. The multi-
plicative identity (1) is the identity relation ((d,d)| d € D 1), and the zero (0) is the small-
est strict relation {(] , | )}. These s-ring operations correspond to operations on programs.
If s and ¢ represent programs, then sz is the composite program ("first do s, then do ¢").
The union relation s +¢ is a program which can behave like either s or ¢ ("a nondeterminis-

tic choice between s and t").



Certain relations in A do not correspond to programs, but they have another important
interpretation. These are the relations which are subrelations of 1. Such a relation, called a
guard, has two choices for each d € D: either d is related to d (and nothing else) or d is
related to nothing. A predicate p on D can be interpreted as the guard
{(d,d)| p(d)ord=]}. Note that (| , | ) is included since we are dealing with strict rela-
tions. For a guard p and a state d, we say that d sarisfies p provided that (d,d)e p. Each
guard p has a complement guard 7, such that p +5 =1 and pg=0=pp. A state from D

satisfies exactly one of p and p.

2.3 Conditional Programs and Iteration

Let b be a guard and, let s and ¢ be relations. The relation for a conditional program

IF b THEN s ELSE ¢ is expressed in the s-ring of relations as bs + bt.

To express the relation for an iterative program WHILE b DO s, we use two unary
operations on relations. For any u € A, define u* to be the transitive and reflexive closure
of u. And define u> to be {(d, | )| d lies on an infinite u-path}. An infinite u-path is a
countably infinite sequence dg, d, - such that for all i >0, (d;,d;;1) € u. With these
operations, the meaning of WHILE b DO s is (bs)™ + (bs)*b. The left term provides the

nonterminating behavior of the loop, and the right term provides the terminating behavior.

The * and = can also be used to express various kinds of fair iteration. For example,
consider the program
WHILE b DO (s 053),
where O indicates a nondeterministic choice. In the usual semantics, this WHILE-loop may
have infinite computations which do not execute each of the choices (s; and s5) infinitely

often. If we let £ =bs+bs, then the usual meaning of the loop is t=+ b .

But this kind of program has also been studied using various fairness assumptions (see
[5D. The simplest fairness assumption is to forbid infinite computations that don’t choose
both branches infinitely often. In our algebra, the meaning of the loop with this fairness
assumption is:
(t*bs 1t7bs )™ + 1*b ,

where ¢ is defined as in the previous paragraph. Intuitively, the second term represents the



finite behaviors and the first term represents fair infinite behaviors. Later we will show how

to express other kinds of fairness.

In a moment, we will introduce assertional s-rings, which are s-rings with two addi-
tional operations * and *. But first we explain how assertions about programs are given in

the s-ring of strict relations.

2.4 Assertion Semantics and ps7 =0

In assertion semantics, reasoning about programs occurs in terms of a pre-condition p
and a post-condition g. These conditions are guards (i.e., predicates on states), and in order
for a program s to be totally correct with respect to the conditions, the following must hold:
whenever the program s starts in a state which satisfies p, then it will end in a state which
satisfies ¢. The notation [p]s [¢] is an assertion that s is totally correct for pre-condition
p and post-condition ¢ .

In the s-ring of strict relations, correctness of a program s with respect to pre-condition
p and post-condition g is simply ps7 =0. The intuitive translation of this equality says that
certain mappings are forbidden by s: Specifically, it is not possible to start in a state d € D
such that p (d) holds, (d,e) e s, and g (e) fails to hold. Also, it is not possible to start in a
state d € D such that p(d) holds and (d, ] )€ s, since this would imply (d, | ) € psg #0.

Thus, psq =0 expresses total correctness: s cannot fail to terminate when it’s started in a

state that satisfies p .

Manes [12,14,13] used the equation psg =0 in the more general setting of assertional
categories. However, in these papers, the equation expressed partial correctness of non-

deterministic programs (termination was not guaranteed).



3. Program Denotations in Assertional S-rings

The previous section illustrated the idea that nondeterministic programs denote ele-
ments in an s-ring of relations, and Boolean expressions denote guards in this s-ring. We
now generalize this idea as follows: nondeterministic programs denote elements in a certain
kind of s-ring called an assertional s-ring, defined in this section. Boolean expressions
denote a certain kind of element, which we will call a guard, and correctness assertions
about programs are proved by showing algebraic identities of the form psg =0. We begin
by defining the meaning of a guard in an arbitrary s-ring, and observing some of the proper-

ties of guards.

3.1. The Boolean Algebra of Guards

In the s-ring of relations, we defined special relations called guards, which correspond

to "state predicates”. A similar notion is available in any s-ring, as defined here:

Definition: Let S be an s-ring. A guard of S is an element p such that for some g e S:
p+p=1and pp=0=pp. The element j is called the complement of p. The set of all
guards of S is denoted GUARDy;.

Manes and Benson [15] showed that the set of guards in any zerosum-free semiring
forms a Boolean algebra, with the partial order s <t iff there exists u with s +u =¢. This
order, called the sum-ordering is not always a partial order on a semiring (anti-symmetry
can fail). But for a zerosum-free semiring, it is a Boolean-algebra order on the guards and 0

is the minimum element in the semiring.

Manes and Benson’s results also hold for zerosum-free s-rings: the guards form a
Boolean algebra under the sum-order, and 0 is the minimal element in the s-ring. In the
Boolean algebra of guards, the minimum guard is 0, the maximum guard is 1, the "meet" of
p and q is pq and the "join" of p and ¢ isp +pg. If W is a set of guards and the join (or

least upper-bound) of W exists, then we denote this by VW or sometimes é/W p.
p



3.2. Assertional S-rings

Now we can define assertional s-rings, which we will use as semantic models of non-

deterministic programming languages.

Definition: An assertional s-ring is a zerosum-free s-ring S, with two unary operations
(* and =) which meet these axioms: For all s, € S and W c GUARDg:

1. Closure Axiom: s* =yss* + 1.

2. Iteration Axiom: (V i. rsit =0) implies rs*¢=0.

3. Infinity Axiom: s==s5~=5¢.

4. Continuity Axiom: When VW exists then (V p € W.ps =0) implies (VW )s =0.

We write the unary operations using postfix notation, and these have higher precedence than
the s-ring operations in expressions. For example ss* is s (s*°). The motivation for the two
new operations and their axioms comes from the corresponding operations in the s-ring of
strict relations over D | (see Section 2.3). The intuition behind the axiom ss*=s5>¢ is that

s represents infinite behaviors, therefore anything which follows s will never be reached.

3.3. Program Constructs and Correctness Assertions

Assertional s-rings provide semantic models for nondeterministic programming
languages. In general, nondeterministic programs denote elements in an assertional s-ring,

and Boolean expressions denote guards in the same s-ring.

Within any assertional s-ring, the usual program constructs, such as IF-THEN—ELSE and
WHILE-DO can be represented algebraically, as discussed in Section 2. Also, the identity
psq =0 is important when p and ¢ are guards and s denotes a program, since this
corresponds to the correctness assertion [p]s[g]. Because of this, we will use the
[p1s [q] notation to express the equality psg =0. This can be either total or partial correct-

ness, depending on the particular s-ring,

The remainder of the paper gives algebraic demonstrations of rules for showing
correctness assertions for various different forms of the program s. When s has the form of

one of the usual program constructions (such as bs;+bs, for the program



IF b THEN s 1 ELSE 55), then the demonstrated rules will be the usual Hoare rules for total

correctness assertions. This includes rules for fair iterative constructions.

In effect: every assertional s-ring comes with the "semantic operations for program-

ming" and the "Hoare calculus of programs" as standard equipment.

4. Some Basic Rules

This section provides basic rules for proving [p]s [¢], where s has one of the forms
$152, S1+s82, (s1)*, or (s1)°. We also present rules that correspond to the Consequence
Rule and the Disjunction Rule of the Hoare calculus. Some of the proofs are based on

results in [14, Section 3.3] — although the proofs need changing to avoid using s 0=0.

Throughout this section and the rest of the paper, we will assume a fixed assertional s-
ring, using the letters 5, ¢ (sometimes with subscripts) for arbitrary elements. We’ll use

b,p,q,r (sometimes with subscripts) for arbitrary guards.

4.1. Composition
This section gives a rule for proving a correctness assertion of the form [p]st [¢].
Composition Rule: [p]s [g] and [¢]¢ [r] imply [p]st [r].
Proof: We are given psg =0=¢q:7, and we must show pstF = 0. This is done here:
pstr = ps(q+g )ir = psqtr +psqir =ps0+0F =ps0+0=ps0+psg =ps (0+7) =psg =0
Note the bit of extra work because we cannot immediately conclude that ps 0 = 0. [

In general, this rule is not semantically complete — meaning that even when [p]st [r]

is true, there might not be any guard ¢ such that [p]s [¢] and [g]z [r]. We’ll address this

more in Section 6.



4.2. Addition

This section gives a rule for proving a correctness assertion of the form [p]s+t [¢].
This rule is semantically complete, meaning that it is sufficient for any assertion of this
form.
Addition Rule: [p] s +¢ [¢] iff [p]s [¢] and [p]¢ [q].
Proof:

[p1s+t [q]
<> psq +ptg =0
<> psq=0=piq

<> [plslq] and [p]riq]

The second equivalence is valid from the zerosum-free law. [

4.3. The Consequence Rule and the Disjunction Rule

In the usual Hoare calculus, a valid program assertion remains valid when the pre-
condition is weakened or the post-condition is strengthened. This section gives the
corresponding rule for assertional s-rings. In this section, we use Boolean algebra terminol-
ogy on guards, so for example "q1 implies g," means ¢q1¢g,=q (which is also equivalent to

the program assertion [g1]1[g2]).

Consequence Rule: Suppose p, implies pi, and g, implies g9, and [p1]s [¢;]. Then
[p2ls [g2].

Proof: The two assumptions about implications are equivalent to the program assertions
[p2]11[p2] and [g1]1[g2]. From two applications of the composition rule, [p2]11[p4] and
[p1]s [q1] and [g1]1[q2] imply [p2]1s1[gs]. This is just the result we need, since
Isl=s.0
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Another rule in the Hoare calculus is the Disjunction Rule, which follows immediately
from our Continuity Axiom:
Disjunction Rule: Let W be a set of guards such that VW exists, and suppose that for all
peW,[plslg]l. Then [VW]s [¢q]. O

4.4. The * Operation

Here is the rule for *, which uses the Consequence Rule:
Iteration Rule: Suppose there exists a guard p such that ¢ implies p, and [p]s [p], and
p implies r. Then [g]s* [r].
Proof: An induction on i shows that [p]s’ [p] is valid for all i, and by the Iteration Axiom
this implies [p]s* [p]. Using the Consequence Rule (together with "¢ implies p" and "p
implies r "), yields the needed result: [¢]s* [r]. O

4.5. The = Operation

The correctness rule for [p]s=[q] is notable because it is independent of the post-
condition g. This matches our intuition that s> consists of the behaviors resulting from exe-
cuting s infinitely often — so that the post-condition is never reached! Thus, [p]s>=[q]
really means that the pre-condition p is sufficient to guarantee there will be no "infinite
paths” in s*°. Thus, instead of proving assertions [p]s>[q] with arbitrary post-conditions,
we’ll generally only prove them with the post-condition 1 (true). Here’s the formal
justification:

Theorem. [p]s=[q] iff [p]s=[1].

Proof: The equivalence follows from this derivation:
[P1s=[q] <= ps=F=0 <= ps==0 <> ps=0=0 <= [p]s=[1]

The second and third equivalences follow from s> =5, which is part of the Infinity
Axiom.
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Notation. Because the post-condition doesn’t matter, we will sometimes write

TERMINATE(p , t) as notation for [p]t~[q]. O

Now we’ll give the general rule for proving an assertion TERMINATE(p , 7 ):

Infinity Rule: Let (/, <) be a well-founded set and for each i € I let p; be a guard such that:
pilt [j\éi pjl.

Also suppose that p implies i\e/l pi. Then TERMINATE(p,?).

Proof: To begin, we show that for any i € I, [p;]1¢>°[1]. The proof is by well-founded

induction on 7. For this induction, let i € I, and suppose (for the induction hypothesis) that

whenever j<i then [p;]¢=[1]. From the Disjunction Rule, this implies [j\él, pjle=[1].

This is combined with the given assertion [p;]1? [j\éi pjl toyield [p;]zz=[1]. Butz==1¢=

(by the Infinity Axiom), so this last assertion is just [p;]1z>[1], and this completes the

induction.
Finally, since we have shown [p;]r~[1] for all i e I, the Disjunction Rule implies
[i\E/I pilt=[1], or equivalently TERMINATE(i\é] pi, t). Since p implies l,\e/ ; Pis the needed

result then follows from the Consequence Rule. [

A combination of the Composition Rule and the = Rule will be useful later on:
=-Composition Rule: Suppose ¢4, t, ..., #, are any elements in the s-ring. Let (/,<) be a
well-founded set and for each i € I let p; be a guard such that:

YmA<m<n)[p;t, [p;l.
Im (1€m <n). [p;ltn [j\éi pjl.

Also suppose that p implies i\e/ , Di Then TERMINATE(p, t1t9 " " I,).

Proof: Lett =t1t5 -+ #,. As in the previous proof, we can show (by well-founded induc-
tion on /) that for any i € I, [p;]¢=[1]. From this and the Disjunction Rule it follows that

[i\e/ ; pilt=[1]. Since p implies i\e/ ; Pis the needed result then follows from the Conse-

quence Rule. []
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5. Hoare Calculus in Assertional S-rings

The previous section gave rules for proving correctness assertions about programs con-
structed with the multiplication, addition, * and * operations in any assertional s-ring. In
this section, these four operations are used to define compound operations in an assertional
s-ring, corresponding to typical operations on programs (such as IF-THEN-ELSE and
WHILE-DO). The results of Section 4 are then used to pxrove that the usual rules of the Hoare
calculus are valid in any s-ring. This includes rules about certain fair iteration construc-

tions.

5.1. IF—THEN—-ELSE

Suppose that b is a guard denoting a Boolean expression B, and s, are elements
denoting some syntactic programs S and T. Then the syntactic program
IF B THEN S ELSE T is denoted by the element bs + bz .

Notation. For any guard b and any elements s,t, we use the mnemonic notation
IF b THEN s ELSE ¢ for bs +bt. [

The usual Hoare calculus rule for IF~-THEN-ELSE provides a necessary and sufficient
condition for proving assertions about these programs:
IF Rule: [p] IFb THEN s ELSE ¢ [q] iff [pb]s [¢] and [pb ]z [¢].
Proof:

[P]11IFb THEN s ELSE ¢ [q] <= [p]bs +bt [¢]
<= [p1bs[q] and [p]br [q]
<> pbs§ =0 =pbtg
<= [pb1s[q] and [ph]z [¢]

Note that the second equivalence follows from the Addition Rule. []
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5.2. Iteration

Suppose that b is a guard denoting a Boolean expression B, and s is an element denot-
ing some syntactic program S. Then the syntactic program WHILE B DO § is denoted by the
element (bs)>=+ (bs)*b. Intuitively, (bs)> gives the infinite behavior of the WHILE-loop,

and (bs )*b gives the finite behaviors.

Notation. For any guard b and any element s, we use the mnemonic notation
WHILE b DO s for (bs )=+ (bs)*b. O

The usual Hoare calculus rule for WHILE-DO is valid for proving assertions about these
programs:
WHILE Rule: Suppose the following two conditions hold (where "or" is join in the Boolean
algebra of guards):

PARTIAL CORRECTNESS: There exists a guard p (the "loop invariant") such that q

implies p, and [pb]s [p], and p implies (b orr).

TERMINATION: There exists a well-founded set (/, <) and a guard p; for each i € /

such that:

(i) Foreveryi e l: [p;b]s [j\éi pjl,and

(ii) ¢ implies i\e/l Di.
Then [¢g] WHILE b DO s [r].

Proof: Assume the two conditions hold. We must prove [g] WHILEb DO s [r], or
equivalently both
(1) TERMINATE(qg, bs ), and
(2) [q1(bs)*b [r].
Assertion (1) will follow from the TERMINATION condition, and assertion (2) from
PARTIAL CORRECTNESS.

For (1), we can rewrite part (i) of TERMINATION as this:
Yiel.[p;]bs [j\éi p;l.

This rewriting makes TERMINATION equivalent to the hypothesis of the Infinity Rule (taking
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bs as t in that rule). Therefore, the Infinity Rule implies TERMINATE(l, \e{ ; Pis bs). This and

"q implies i\e/l pi ", (together with the Consequence Rule) implies (1).

For (2), we can rewrite PARTIAL CORRECTNESS as:

q implies p, and [p]bs [p], and p implies (b orr).
This is now in the form to apply the Iteration Rule, which implies [¢](bs)* [b orr], or
equivalently O0=q(bs)* (b orr)=q(bs)* b 7. Since this last expression is 0, we have
[q](bs)*b [r], as required. (I

5.3. Fair Iteration

In Section 2.3 we discussed the program WHILE b DO (s; O s3). Using a simple fair-
ness assumption which forbids an infinite computation from eventually ignoring one of the

directions, this program has the algebraic meaning:
(t5bs 1t*bs )™ + t*b
where ¢ is defined as bs+ bs .
In proving correctness assertions about such a program, the second term (#*b, which
represents terminating behavior) can be handled using the PARTIAL CORRECTNESS condi-
tion of the WHILE-Rule. The first term — representing the fair infinite behavior — can be han-

dled with the following rule, which is motivated by the "Unconditional Fair Termination"
Rule of [5].

Fair-wHILE Termination Rule: Let (/, <) be a well-founded set and for each i € I let p; be
a guard such that:

(i) Forall k (1<k <2): [p;b]si [p;], and

(i1) For some k (1<k <2): [p;b]s; [j\éi pil.

Also suppose that p implies i\é’ ; Div

Then TERMINATE(p , t*bs 1*bs ;), where t = (bs |+ bs»).
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Proof: We will show that the hypothesis of the *-Composition Rule (Section 4.5) is met, by

breaking (t*bs 1#*bs ) into the four pieces ty=t*, t,=bsy, t3=r*, and t4=bs,.

For the first part of the “-Composition hypothesis, we must show that foralli € I:

Nm (1<m <4).[p;1ty, [p;i].
For m=2 and m =4, this is just the statement (i). For m=1 and m=3, we have t,, =1*, so we
must show [p;]#* [p;] (for all i € I'). Toward this goal, let i be some element of / and note
that by the Iteration Axiom it is sufficient to show that [p;]¢” [p;] for all natural numbers

h. We prove this by induction on 4 : For the base case ([p;12%[p;]1):

pit%; =p;1p; =p;p; =0.
For the induction step, assume [p;]¢% [p;] for some k. Also note that [p;]¢ [p;] follows
from the Addition Rule since:

t =bs 1+ bs, (by definition),

[pi1bs11p;] (by (1), and
pilbsa(pi] (by @)).

Combining [p;1¢" [p;] and [p;]¢[p;] with the Composition Rule yields [p;]¢#+1[p;],

which completes the induction.

For the second part of the -Composition hypothesis, we must show that for alli € I:
Am (1Sm <4).[pi1n [V, )]

But for any i e I, this follows immediately from (ii) — in fact we know that it must be valid

for eitherm=2 orm=4. O

5.4. Weak and Strong Fair Iteration
Guarded iteration, introduced by Dijksta [2], has the form:
DO
b 1—91
(]
b 2—> 59
oD

This is a loop where each iteration will execute one of the s; where the corresponding guard
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(b;) is true. When both the guards become false, the loop terminates. In general, the
number of directions could be more than two, but for clarity we’ll only handle the two-

direction case.

To define the meaning of the loop, it will be useful to use the abbreviations BODY for
(b151+b3sy), and b for bi+b,. Informally, BODY is one iteration of the body of the loop,
and b is the condition for continuing the loop. With these definitions, the meaning of the
guarded iteration will always have the following form:

(***)°+BODY*D,
The (- ) portion indicates the infinite computations, while BoDY*b indicates the ter-
minating computations. The (- - -) will vary, depending on the particular fairness assump-

tions that we choose.

In general, proving a program assertion about a DO—OD program requires partial
correctness ([p]BoDY*b [¢]) and TERMINATE(p, - -+ ). Partial correctness can be handled
in the same way as Section 5.2, so we won’t deal with that here. Thus, this section is con-
cerned with proving termination assertions of the form TERMINATE(p, ---) for various
forms of ( - - - ) which arise from different fairness assumptions about guarded iteration.

No Fairness Assumption: With no fairness assumption, the algebraic meaning of the

infinite part of the DO—0D loop is just BoDY=. Here’s the rule for proving its termination:

DO—0D Termination Rule: Let (/, <) be a well-founded set and for each i € I let p; be a
guard such that:
Forall k (1<k <2): [p;bi]si [j\éi p;l.

Also suppose that p implies i\e/I pi. Then TERMINATE(p, BODY).
Proof: Consider any i € I. Since [p;bi] s [j\éi pj] holds for both k=1 and k=2, we also
have [p;1b1s1+b2sy [j\éi p;], which is equivalent to:

[pi1BODY [V, ;1.

But this is just the hypothesis of the Infinity Rule of Section 4.5; therefore

TERMINATE(i \é’I Di, BODY). Since p implies i\E/ , Pis the needed result then follows from the

Consequence Rule. O
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Weak Fairness Assumption: The assumption of weak fairness forbids an infinite path
from ignoring a direction when the corresponding guard is always true at the choice point.
More precisely: for each direction k, an infinite path must either take direction £ infinitely
often or have by false infinitely often when the choice occurs. Algebraically, the weakly-
fair infinite paths are expressed as:

(BODY* (b151+b1b2) BODY* (Bboso4+b2b1))>.
Intuitively, a weakly-fair infinite path must execute direction 1 infinitely often, unless guard

b1 fails infinitely often — hence the subterm (b 1s1+b1b7). And similarly for direction 2.

Here’s the rule for proving termination of a DO—OD loop with the weak fairness

assumption. The rule is based on the Weakly-Fair Termination Rule of [5].

Weakly-Fair Termination Rule: Let (/, <) be a well-founded set and for each i € I let p;
be a guard such that:

(1) Forall k (1<k £2): [p;ibi]sk [pi], and

(ii) For some k (1<k <2): [p;bel sk [j\éi p;1, and p; by implies j\éi pj-
Also suppose that p implies i\é , Pi-

Then TERMINATE(p , BODY* (b 15 1+b 1b2) BODY* (b5 o+D b 1)).
Proof: We can show that the hypothesis of the *-Composition Rule (Section 4.5) is met, by
breaking (BODY* (bs1+b1b2) BODY* (bso+bob 1)) into the four pieces
11=BODY*,
t2=b1s1+b1by,
t3=BODY*,

I4=b2S2+B—2b1.

The remainder of the proof is similar to the previous Fair-WHILE Termination Rule. []

Strong Fairness Assumption: An alternate fairness assumption for a guarded iteration
is called strong fairness. Under this assumption, an infinite path must execute each branch
infinitely often, provided that the branch’s guard is true infinitely often. In other words, an
infinite path may eventually ignore a branch, provided that the branch’s guard is eventually

always false. Algebraically, the strongly-fair infinite paths can be expressed as:
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(BODY* (/ 151+ (E-lb 28 2)°°) BODY* (b 282+ (B_zb 1S 1)),
Intuitively, this expression says that a strongly-fair infinite path may execute a finite number
of iterations (BODY*), but eventually it must either execute direction 1 (b1s1) or go into a

loop where guard 1 remains false ((b b 52)>). And similarly for direction 2.

Program assertions about strongly-fair guarded iteration can be proved with the follow-

ing rule, based on the Strongly-Fair Termination Rule of [5].

Strongly-Fair Termination Rule: Let (/, <) be a well-founded set and for each i € I let p;
be a guard such that:

(1) Forall k (1<k <2): [p;bi]1si [p:].

(i1) Either [p;b1] 51 [j\éi pjl, and TERMINATE(p;, b1b7s7),

or [p;bjlsy [j\éi pj], and TERMINATE(p;, babisy).
Also suppose that p implies l,\e/ , Pie

Then TERMINATE(D , BODY* (b 15 1+(b 1D 252)*) BODY* (bso+(bob151)™)).
Proof: We can show that the hypothesis of the *-Composition Rule (Section 4.5) is met, by
breaking BODY* (bs 1+(b 152572)™) BODY* (bs+(bob151)™) into the four pieces
11 =BODY*,
12=b151+(b1basy)™,
t3=BODY*,

t4=b2S2+(l;2b 151>

The remainder of the proof is similar to the previous Fair-WHILE Termination Rule. [J

6. Semantic Completeness

We have given rules which are sufficient for proving program assertions for programs
of the forms:
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st WHILE b DO §

S+t WHILE b DO s 105 ) (Fair)
% : DO-OD loop

§ Weakly Fair b0—0D loop
IF b THEN § ELSE ¢ Strongly Fair D0—0D loop

Some of these rules are semantically complete. That is, it is always possible to prove pro-
gram assertions of a given form by using the corresponding rule. For example, the Addition
Rule states that [p]s+t [q] if and only if [p]s [q] and [p]¢ [¢q]. But in general, the rules
are not semantically complete. For example, it is quite easy to define an assertional s-ring
with an element s such that [1]ss [1] is valid, but there is no guard ¢ with both [1]s [¢]
and [¢q]s [1].

Ideally, we would like our rules to be semantically complete, since this guarantees that
the rules are as strong as possible. This section gives a condition for all the rules in this

paper to be semantically complete.

Completeness Theorem. Suppose that

(1) The Composition Rule is semantically complete, so that [p]st [r] if and only if
there exists some g with [p]s [¢] and [g]7 [r].

(ii) The Infinity Rule is semantically complete, so that TERMINATE(p , s ) if and only if
the hypothesis of the Infinity Rule is met.

(iii) The Boolean algebra of guards is a complete Boolean algebra, so that for any set

W of guards, VW exists.

Then the Iteration Rule and each of the rules of Sections 4 and 5 are also semantically com-
plete.

Proof: The proof consists of a sequence of lemmas, showing that the three conditions imply
that each of the indicated rules is semantically complete. These lemmas are given in the

remainder of this section. []

It is not hard to show that the hypotheses of the Completeness Theorem hold for the

the s-ring of strict relations; hence all the indicated rules are semantically complete when
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programs are represented by strict relations. In particular, the fairness rules are complete —
and the demonstration of that completeness comes from completeness of simpler rules. This

may be easier than the usual direct proof in [5].

For the remainder of this section, we will assume the hypotheses of the Completeness
Theorem, and use this assumption to prove the "sequence of lemmas" mentioned in the
Completeness Theorem’s proof. Prior to this sequence of lemmas, we will prove a few
results about useful guards called kernels and domains, which are guaranteed to exist by the

hypotheses of the Completeness Theorem.

6.1 Kernels and Domains

The third hypothesis of the Completeness Theorem is that the Boolean algebra of
guards is complete. Intuitively, this assures us that there are "enough" guards around. In

particular, it allows us to define guards called kernels and domains, as follows.

Definition. Let s be an element in an s-ring S where the Boolean algebra of guards is com-
plete. The kernel of t (denoted by KeR(s)) and the domain of s (denoted by powm(s)) are
defined by:

KER(s) =V{p € GUARDs | ps =0} and bom(s)=/\(p € GUARDg | ps =s}

In the s-ring of strict relations, a state d satisfies bom(s) provided that (d,e)e s for
some e. For any s-ring, KER(s) is always the complement of pom(s). This property and
other properties of kernels are summarized below. The theorems make use of the first and

third hypotheses of the Completeness Theorem.

Theorem 6.1.0 KER(s ) =DoMm(s ).
Proof: By the infinite DeMorgan Law, boM(s ) = V{p € GUARDg | ps =s}. But ps =s iff
ps =01in any s-ring. Therefore, bom(s) = V{F € GUARDg | ps =0}, which is just KEr(s ). OJ
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Theorem 6.1.1. ker(s)s =0 and boMm(s )s =s.
Proof: The first equality follows immediately from the Continuity Axiom and the definition
of kernels. The second equality follows from:
s = 1s = (KER(s )+DOM(s ))s = KER(s )s +DOM(s )s = 0+ DOM(s )s = DOM(s )s .
O

Theorem 6.1.2. st =0 if and only if s bom(z) =0.

Proof: Assume spoM(z)=0. Then by 6.1.1 we have sz =spom(t)t =0t =0. On the other
hand, assume sz =0. Therefore [1]sz[0], and by the first hypothesis of the Completeness
Theorem, there exists some guard ¢ such that [1]s [¢] and [¢]z [0]. For this value of ¢
the two assertions can be rewritten as:

(1) sg =0, and (2) gt =0.

From (2), we have that ¢ is below KER(z) in the Boolean algebra of guards, or equivalently
q is above pom(z). But recall that the order on the guards is the summation order, so there
exists some p such that §=p +pom(¢). Finally, since s7 =0, and the s-ring is zerosum-free,

this implies that s bom(z) is also 0. O

Theorem 6.1.3. KER(s?)=KER(s DoM(z)).
Proof:

KER(st) =V{p | pst =0} =V{p | pspom(t)=0} = KER(s DOM(?)).
The second equality is from 6.1.2. [J

Theorem 6.1.4. KER(s+t) = KER(s )KER(Z).
Proof: LetA ={p | ps =0} and B = {p | pt =0}. Then
KER(s+2) =V{p | p(s+t)=0} =V(ANB) = (VA)VB) = KER(s )KER(?).
The third equality is not valid for arbitrary A and B, but in this case it is allowed since A
and B are downward closed. [

Theorem 6.1.5. [KER(s*1)]s [KER(s*1)].
Proof: From 6.1.1 we have KeR(s*z)s*t=0. Since s* =gss* +1, this implies

KER(s*z )ss*t =0. From 6.1.2, this implies KER(s*?)s Dom(s*z)=0. This last equality is just
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[KER(s*t)] s [KER(S*r)]. OJ

6.2 Completeness of the Iteration Rule

We can now use kernels to demonstrate the completeness of the Iteration Rule:
Lemma 6.2. Assume the hypotheses of the Completeness Theorem, and that [g]s* [r].
Then there exists a guard p such that ¢ implies p, and [p]s [p], and p implies r.

Proof: Define p =ker(s*7). We will show that this choice of p meets the three require-

ments.

Step 1: Show that ¢ implies p.

We must show that g is below p in the Boolean algebra order. From [g]s* [r] it fol-

lows that gs*7 =0, and therefore ¢ is below V {q | gs*F =0} = KeR(s*F) =p.

Step 2: Show that p implies r.

From 6.1.1 we have ps*F=ker(s*r)s*F=0. Since s* =ss*+1, this implies
p (ss*+1)F =0, and from the zerosum-free axiom we must have pF=0. This occurs

only if p implies r in the Boolean algebra, which is the result we need.

Step 3: Show that [p]s [p].

We must show psp =0, which is done here:

PSP = KER(S*F)sp (Definition of p)
= KER(SS*F +F)Sp (s* =ss* +1)
= KER(F) KER(SS*F) S 6.1.4)

= KER(F) KER(s DOM(s*F)) sp  (6.1.3)

= KER(F) KER(SP ) S (Definition of p)
= KER(F)O (6.1.1)
=0 (Guard times 0 is 0)
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6.3 Completeness of the WHILE Rule

The semantic completeness of the WHILE Rule follows from the semantic completeness
of the Iteration Rule and the Infinity Rule.
Lemma 6.3. Assume the hypotheses of the Completeness Theorem, and that
[g]WHILE b DO s [r]. Then the following two conditions hold (where "or" is join in the
Boolean algebra of guards):

PARTIAL CORRECTNESS: There exists a guard p (the "loop invariant") such that ¢

implies p, and [pb]s [p], and p implies (b orr).

TERMINATION: There exists a well-founded set (I, <) and a guard p; for each i € /

such that:

(i) Foreveryiel: [p;b]ls [j\éi pjl,and

(ii) ¢ implies .V p;.
Proof:
[l WHILEb DO s [r] => [q] (bs)=+(bs)*b [r]  (Definition of WHILE)
=> [q1(bs)>[r] and [¢](bs)*b [r] (Addition Rule)
=> [q](bs)=[r] and [q](bs)* [borr]

By hypothesis (ii) of the Completeness Theorem, the first assertion in the last line implies
TERMINATION. By Lemma 6.2, the second assertion in the last line implies
PARTIAL CORRECTNESS. []

6.4 Completeness of the Fair-wHILE Termination Rule

Semantic completeness of the Fair-WHILE Termination Rule follows from the semantic
completeness of the Infinity Rule. The proof is omitted, since it is just a simplification of
the proof of Lemma 6.6.

Lemma 6.4. Assume the hypotheses of the Completeness Theorem, and that
TERMINATE(p , t*bs 1t*bs,), where t =(bs|+bs,). Then there exists a well-founded set

(I, <) and a guard p; for each i € I such thatp implies i\e/I p; and foreachi e I:
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(1) Forall k (1<k <2): [p;b]si [p;], and
(i1) For some k (1<k <£2): [p;b]si [j\éi pil.

O

6.5 Completeness of the bo—op Termination Rule

In this section, we show that the Do—0D Termination Rule is semantically complete for
proving termination assertions of the form TERMINATE(p , BODY), where BODY is defined as
b1s1+b,s,. Throughout the rest of Section 6, we will always take BODY to be defined this
way.

Lemma 6.5. Assume the hypotheses of the Completeness Theorem, and that
TERMINATE(p , BODY). Then there exists a well-founded set (7, <) and a guard p; for each

i € I such that p implies i\e/ i and foreachi e I:
Forall k (1<k <2): [p;br] sk [J,\éi pil.

Proof: By hypothesis (ii) of the Completeness Theorem, the assertion TERMINATE(p , BODY)
implies the existence of a well-founded set (/, <) and a guard p; for each i € I such that p

implies i\e/I p; and foreachi e I':
[pi1BODY [V, p;].

Since BODY=5b 151 +bys9, the addition rule states that this is equivalent to the two asser-
tions:

LUi]blsl[j\éipj] and [pi]b232[j\£ipj]-
And this is equivalent to the two required assertions:

[pibllsl[j\éipj] and [pin]SZ[j\éipj]-
O
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6.6 Completeness of the Weakly-Fair Termination Rule

This section shows the semantic completeness of the Weakly-Fair Termination Rule,

for proving termination assertions of the form
TERMINATE(D, BODY* (b5 1+b1b2) BODY* (boso+bob1)).

Recall that this is the form of termination assertion that is needed to prove termination of a
DO—OD loop under the weak fairness assumption.
Lemma 6.6. Assume the hypotheses of the Completeness Theorem, and that
TERMINATE(D , BODY* (b5 1+b1b,) BODY* (b,54+b,b1)). Then there exists a well-founded
set (/, <) and a guard p; for each i e I such that p implies x.\e/ , Pi and foreachi e I:

(i) Forall k (1<k <2): [p;bi]sk [p;], and

(i1) For some k (1<k <2): [p;by] sk [j\éi pil, and p; b implies j\éi pj.
Proof: By hypothesis (ii) of the Completeness Theorem, the assertion
TERMINATE(p , BODY* (b51+b1b2) BODY* (basa+bab 1) implies the existence of a well-
founded set (H,<) and a guard p; for each i € H such that p implies ié/H p; and for each
ieH:

[Pi1BODY* (b1s1+b1b2) BODY* (baso+hob 1) [V, pil.

We will use this well-founded set H to construct another well-founded set I which meets
the requirements of the lemma.
Let I =H x {1,2} be the well-founded set with an ordering defined by (j,m)<(i,n) if and
only if j <i or (j =i and m=1 and n=2). For each (i,n)e I, we define a guard p;, as fol-

lows:

Di1 = KER(BODY*7, j\éi pj)
DPi2 = KER(BODY*?} ;1)
where t1=>b151+b1by, and similarly for ry=b,5,+bob;. It remains to show that this
definition of the set / and the guards p;, meets the requirements of the lemma. We do this

in three steps, listed below.

Step 1: Show that p implies (i’n\ge ; Pin-

We know that p implies ié/H pi. Therefore, it is sufficient to show that for each
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i € H, p; implies p;,. Here is the proof, for an arbitrary i € H:

[p; ] BODY*1BODY*1, [j\éi p;l Given about p;

=> p;BODY*{{BODY*?, j\éi pj=0 Definition of Assertion

=> p;BODY*?DOM(BODY*?, j\éi pj)=0 (6.1.2)

=> p;BODY*t1p;1 =0 Definition of p;

=> p; DOM(BODY*?75;1) =0 (6.1.2)

=> p;Pi2=0 Definition of p;,

=> p; implies p;, Meaning of "implies"

Step 2: Show that for all (i,n) € I': there exists k such that [p;, b ] sk [U,m)\é(i’n) Pjm].

We show this only for n=2, since the case of n=1 is similar. For n=2, we can always

choose the value of £ to be 1, since then:

PioBODY*t1p;1 = 0 6.1.1)
=> piolt1Ppi1 = 0 (BODY* =BODY(BODY* )+ 1, and zerosum-free)
=> piob1s1Pi1 = 0 (t1=b151+b1by, and zerosum-free)
=> [piab1ls1[pii] Definition of Assertion

=> [pi2b1]s1[(l.m)\4 (m Pim]  Consequence Rule

Step 3: Show that for all (i,n) e I: and for k=1,2: [p;, br] 5k [Pin] .

We show this only for n=2, since the case of n=1 is similar. For both k=1 and k=2,
we have:
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[KER(BODY*?1D;1)] BODY [KER(BODY*#1;1)]  (6.1.5)

=> [pi2] BODY [p;2] Definition of p;,
=> [pial besi (il (by Sk is one term of BODY)
=> [piabi] sk [piol Associativity

These three parts complete the proof. [

6.7 Completeness of the Strongly-Fair Termination Rule

This section discusses the semantic completeness of the Strongly-Fair Termination

Rule, for proving termination assertions of the form
TERMINATE(p , BODY* (b 151+ (D 1b252)*) BODY* (boso+ (bab151)™)).

Recall that this is the form of termination assertion that is needed to prove termination of a
DO—OD loop under the strong fairness assumption.
Lemma 6.7. Assume the hypotheses of the Completeness Theorem, and that
TERMINATE(p , BODY* (b 151+ (b 1b252)) BODY* (bosq+(bob1s1)™)). Then there exists a
well-founded set (/, <) and a guard p; for each i € I such that p implies i\e/l p; and for each
iel:

(i) Forall k (1 <k <2): [p;bi]s [pi].

(ii) Either [p;b]s; [V, pj1, and TERMINATE(p;, bibaso),
or [p;bs]sa [j\éi pj] , and TERMINATE(p;, Ezb 151).

Proof: The proof is similar to that of Lemma 6.6, and will be included in a longer version of

the paper. [
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