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Abstract

The modified Cholesky factorization of Gill and Murray plays an important role in optimi-
zation algorithms. Given a symmetric but not necessarily positive definite matrix A, it computes
a Cholesky factorization of A+E, where E=0 if A is safely positive definite, and E is a diagonal
matrix chosen to make A+E positive definite otherwise. The factorization costs only a small
multiple of 72 operations more than the standard Cholesky factorization. We present a new algo-
rithm that has these same properties, but for which the theoretical bound on ||E || is substan-
tially smaller. It is based upon two new techniques, the use of Gerschgorin bounds in selecting
the elements of E, and a new way of monitoring positive definiteness. In extensive computa-
tional tests on indefinite matrices, the new factorization virtually always produces smaller values
of ||E || than the existing method, without impairing the conditioning of A+E. In some cases
the improvements are substantial. The new factorization has already been useful in optimization

algorithms.






1. Introduction

The modified Cholesky factorization was introduced by Gill and Murray [1974], and subse-
quently refined by Gill, Murray, and Wright [1981] (hereafter referred to as GMW81). Given a
symmetric, not necessarily positive definite matrix A € R***, it calculates a Cholesky (i.e. LLT,
or equivalently LDLT) factorization of A+E, where E is 0 if A is safely positive definite, and E
is a non-negative diagonal matrix for which A+E is positive definite otherwise. ‘When 4 is not
positive definite, there is an a priori error bound on how large £ can be as a function of A the
practical intent is that £ not be much larger than is necessary to make A+E positive definite.

The factorization uses only about n%/2 more operations than the normal Cholesky factorization,

3 ,
which costs approximately —’—’6—- each multiplications and additions.

The modified Cholesky factorization has become very important in optimization algo-
rithms. Its primary use is in line search methods for unconstrained optimization, where it is used
to generate a descent search direction when the Hessian matrix is not positive definite (see e.g.
GMW81). It is also used in line search methods for constrained optimization problems

(GMWS31), and in some trust region methods (Dennis and Schnabel [1983]).

This paper presents a new modified Cholesky factorization algorithm that is intended for
the same purposes as the current method. The new algorithm still costs only a small multiple of
n? operations more than the standard Cholesky factorization. it possesses a much smaller a
priori bound on the size of the diagonal matrix E, and in extensive computational tests, | |E ||
almost never is larger, and in many cases is considerably smaller, than that generated by the algo-
rithm of GMW81. In fact, when A is not positive definite, ||E ||« is usually close enough to
the negative of the smallest eigenvalue of A that the new algorithm may be a useful, inexpensive

way to estimate this eigenvalue.



The remainder of this paper is organized as follows. Section 2 contains a brief summary of
the motivation and uses for the modified Cholesky factorization in optimization algorithms. Sec-
tion 3 summarizes the goals of this factorization and the basic challenges that it presents, and sec-

tion 4 briefly describes the GMW81 algorithm.

In Section 5 we present the new algorithm. It contains two main novel features, the use of
Gerschgorin bounds in determining both the pivot sequence and the elements of E, and a new
two-phase strategy for determining when a matrix is not positive definite and needs to be per-
turbed. In Section 6 we present the results of an extensive computational comparison of the
behavior of the new and old factorizations on indefinite test matrices of dimensions 25 to 75.

Section 7 contains some brief conclusions.

Throughout the paper we consider the Cholesky factorization, i.e the factorization into
LLT, where L is lower triangular, as opposed to the LDLT factorization, where L is unit lower
triangular (ones on the diagonal) and D is a positive diagonal matrix. The conclusions of the
paper are true for either factorization. We use the Cholesky factorization because we believe it
makes the exposition simpler. We use the version of the Cholesky factorization that makes a
rank one change to the remaining submatrix at each iteration (analogous to Gaussian elimina-
tion), rather than the version that delays the changes to any element until it is in the pivot column
(analogous to Crout reduction). The use of the first version will be seen in Section 5 to be impor-

tant to our algorithm.



2. The Use of the Modified Cholesky Factorization in Optimization Algorithms

The modified Cholesky factorization was introduced by Gill and Murray [1974] in the con-

text of a line search method for solving the unconstrained optimization problem
minimize f :R* - R .
x€R*

Unconstrained optimization methods generally base each iteration upon the quadratic model of

f (x) around the current iterate x,
mG.+d)=fx)+Vf ) d+%dTH. d , 2.1

where H, is the Hessian matrix V2f (x.) or a symmetric approximation to it. If H_ is positive
definite, then the step d, = —H.1Vf (x,) is the minimizer of (2.1) and also a descent direction for
f(x), so that a satisfactory next iterate x, always can be found by choosing x, = x, +A.d, for
some A, > 0. If H. has one or more negative eigenvalues, however, then the model (2.1) is
unbounded below, and H. may be singular or the direction d, = —H;1Vf (x.) may or may not be
a descent direction for £ (x). In this case, Gill and Murray [1974] suggested calculating d, =
—(H,+E. Y 'Vf (x.) as the search direction, where H_ +E, is positive definite, and again choosing
X4+ = Xc +Acd. for some A, > O by a line search procedure. By standard convergence results, if
[1H. || is uniformly bounded above, ||E, || is bounded above as a function of |1H, |}, and
the condition number of H.+E, is uniformly bounded above, then the sequence of iterates gen-
erated by a standard line search method that uses such search directions will be globally conver-
gent in the sense that the limit of the sequence of gradients converges to zero. If E, = 0 when H,
is positive definite, and H, = V2f (x.), then the method will also be quadratically convergent in
the neighborhood of a strong local minimizer. (See Dennis and Schnabel [1983] for a summary

of these results.)



The algorithm of Gill and Murray [1974] for choosing E, satisfies all the aforementioned
conditions on E.. It also is very efficient in that it calculates either the Cholesky factorization of
H, if it is positive definite, or the Cholesky factorization of H,+E, otherwise, at barely a higher
total cost than a standard Cholesky factorization, without knowing a priori whether H, is positive
definite or not. For these reasons, it has become a standard technique in line search methods for
unconstrained optimization problems. A refined version of the algorithm that has performed very

well is given in GMWS81.

The modified Cholesky factorization is also used in some line search methods for seiving
constrained optimization problems (see GMW81) and in some trust region methods for optimiza-
tion (see Dennis and Schnabel). Shultz, Schnabel, and Byrd [1985] show how to construct
efficient and globally convergent trust region methods if a satisfactory lower bound on the most
negative eigenvalue A of H, is available. The methods described in this paper produce bounds

e r

that are satisfactory in this sense. We briefly discuss another possible use of our modified Chole-

sky factorization in trust region methods in Section 7.

3. Goals and Challenges of the Modified Cholesky Factorization

Given a matrix A € R"** that is symmetric but not necessarily positive definite, the objec-
tive of the modified Cholesky factorization is to construct a Cholesky (LLT) factorization of a
positive definite matrix A +E, where E is a non-negative diagonal matrix. More specifically, the
factorization has the following four goals : 1) If A is safely positive definite, £ should equal 0 ;
2) If A is indefinite, ||E ||. should not be much greater than —A;(A ), where A;(A ) is the most
negative eigenvalue of A; 3) A+E should be a reasonably well conditioned matrix, and 4) the
cost of the factorization should only be a small multiple of n2 operations more than the cost of

the normal Cholesky algorithm,



One obvious way to select E would be to find Ai(4), and, if Aj(4) < 0, let E equal
[-A1(A) +€]1, for some small positive €. This would satisfy the first 3 goals, but the expense of
finding the eigenvalues of a matrix exceeds the cost requirements specified in our final goal by at
least an order of magnitude. Thus the major challenge in developing a modified Cholesky factor-
ization is to satisfy the first 3 goals while not increasing the cost by more than O (n2). Among

other things, this implies that a one pass algorithm is essential.

There is a basic tradeoff in deciding upon the size of each of the diagonal elements of the
matrix E, as we now explain. Let the n+1—j x n+1—j principal submatrix remaining to be fac-
tored at the j* iteration, consisting of the current elements in rows and columns J through n, be

denoted

. oal
G a;
Aj = a ’

where a;eR is the current j* diagonal element, aje R*~/ is the current vector of elements in
column j below the diagonal, and A4;e R =/>(~)), (We will use the conventions that the sub-
scripts of the elements in the vector aj are i = j+1 through n, so that (a;); = Aj, i=j+1, - n,
and that A = A.) Then at the j* iteration, the normal Cholesky factorization algorithm computes
Ljj = oy, Lij = (a;)i/Ljj, i=j+1,- - - ,n, and (assuming the changes to the remaining elements
are not deferred)
~  a:aT

Ajg=Aj - _&,'L .

In the modified Cholesky factorization, the computations are instead Lj = W , Lij =

(aj),-/ij, i=j+1, -+ ,n,and

A

where §; is greater than or equal to zero and is the j* diagonal element of the matrix E. The

tradeoff between making 6; large or small leads to the following dilemma. If o, is negative and



qT
d; is chosen so small that ¢;+9; is barely greater than 0, then g{—féf- will be large, and A;,; will
VY

have large negative eigenvalues, implying that the elements of £ in some remaining iterations
will need to be large. On the other hand, if §; is large, then we have already added a large amount
to the diagonal. The challenge lies in adding the appropriate amount to the diagonal of A at the
appropriate time in the algorithm. This requires that the algorithm consider more information
than just the value of o in chosing ;. It will be seen in Sections 4 and 5 that considering the
values of a; as well as o; is sufficient to produce effective modified Cholesky factorization algo-

rithms in both theory and practice.

4. The Modified Cholesky Factorization of Gill, Murray, and Wright

GMW381 give a modified Cholesky factorization algorithm that is designed to satisfy the
four goals stated at the start of Section 3. Given a symmetric but not necessarily positive definite
matrix A € R™*, it computes an LDLT factorization of a matrix A+E, where E is a non-
negative diagonal matrix. In this section, we briefly review their method. To be consistent with
the remainder of the paper, we restate their algorithm in terms of the Cholesky (LLT) decomposi-

tion. This does not change any of the important properties of the algorithm that we discuss.

At each iteration, the algorithm of GMWS81 first selects the maximum (in absolute value)
diagonal element in the remaining principal submatrix A;, and pivots it to the top left position by
interchanging its row and column with the pivot (j**) row and column, respectively. Then, if A;
is now the permuted principal submatrix, with

o al
A,-:{aj{ AJ,J @.1)

where o; is the diagonal element in the pivot column and g; is the remainder of the pivot



column, the elements of the next principal submatrix A j+1 are computed by

N . al
Aj+l=Aj"'gj+aj : 4.2)

The value of 6; at each iteration is chosen to be the smallest non-negative number such that

Haj 112 _ a2

< <

0< ——-LW WS B,

where >0 is an a priori bound selected to minimize a worst case bound on HE || If 0j<0

and this value of §; is less than —20q;, then §; = —20; instead.

What remains to be described is the choice of 8. Let & =the maximum magnitude of the
off-diagonal elements of the original matrix A, and Y= the maximum magnitude of the diagonal
elements of A. Gill and Murray [1974] produce an error bound on | lE |1 as a function of B for

their algorithm, and show that it is minimized when B2 = & / Vn2-1. For that choice of B,

HE o2 (Vn2=1+(n=1)) & + 27, , 4.3)
or roughly
HE ||ws4n +2y 4.4

for moderate to large n. However this choice of B may cause positive definite matrices 4 to be
perturbed, so the selection of B is adjusted in order to avoid this. Gill and Murray [1974] also
show that the choice B > Vy guarantees that E = 0 for positive definite A. Thus their algorithm
assigns % to be the maximum value of ¥y, & / Vn2-1, or machine epsilon. If y> &/ Vn2-1, the

usual case, then the error bound for this adjusted B becomes
HE || < (n2+1)y+ 2(n—=1)E + Exy, 4.5)
which is larger than (4.3).

The modified Cholesky factorization algorithm of GMW81 has proven to be an effective

factorization in the context of optimization algorithms, and as will be seen in Section 6, does



quite a good job of fulfilling the four goals stated at the beginning of Section 3. (The cost of the
algorithm is approximately n2 comparisons, and O (n) arithmetic operations, more than the stan-
dard Cholesky factorization.) It should be noted that while the diagonal pivoting employed by the
algorithm of GMW81 does not affect the analysis described above, it is very important to its good
practical performance. In particular, on the test problems in Section 6, we found that |1E || for
the GMW381 algorithm was often several orders of magnitude smaller with pivoting than without
it.

There appear to us to be two important ways in which the algorithm of GMW81 might still
be improved. First, the bounds (4.3) and particularly (4.5), which are attained by the algorithm
for particular matrices A, are far from optimal, as will be discussed in Section 5. Secondly, the
results of Section 6 show that in practice, the value of ||E ||. produced by the algorithm is

sometimes many times larger than necessary. The new method described in Section 5 primarily

attempts to improve upon the algorithm of GMW81 in these two regards.

5. The New Modified Cholesky Factorization

Our modified Cholesky factorization algorithm incorporates two main new techniques.
The first involves using Gerschgorin Circle Theorem bounds to determine the elements in the
non-negative diagonal matrix E that is added to an indefinite matrix A in order to make it posi-
tive definite. The second is a new technique for assuring that one does not perturb an already
positive definite matrix, i.e. that E=0 if A is positive definite. In Section 5.1 we describe the
new technique that uses Gerschgorin bounds to decide how much to add to the diagonal, and
show that it leads to an improved upper bound on ||E |]. In Section 5.2 we describe the new
technique for assuring that a positive definite matrix is not perturbed, and show that unlike the

strategy of GMW81, it can be incorporated into a modified Cholesky decomposition algorithm



without causing the bound on ||E ||. to grow significantly. In Section 5.3 we describe our full
new algorithm, which integrates these two techniques, discuss its theoretical properties, and give

a simple example comparing it to the method of GMWS81.

5.1 Using Gerschgorin Circle Theorem bounds to determine the amounts to add to the

diagonal

In this section, we introduce our basic strategy for choosing a non-negative diagonal matrix
E such that A+E is positive semi-definite. (The exposition and theory are cleaner if we allow the
possibility that A+E is positive semi-definite; the changes to assure that it is strictly positive
definite are small in practice and theory, and are described in Section 5.3.) The strategy described
in this section may result in E having some positive elements even if A is positive definite; the

modifications we make to avoid this are described in Section 5.2.

The Gerschgorin Circle Theorem states that if A € R*** is a symmetric matrix with eigen-

values Mj< - - - SA,, theneach A; € {G(UG,U - - - UG, }, where

n

Gi=[Ai— 2 1Ay, A +: lAij 11 2 [Glow; ,Gup;] , i=1,"",n. (5.1.1)
Ji JZ
J

ﬁ,u

j#
Thus, since A—A,/ is positive semi-definite, an upper bound on the amount that must be added to
the diagonal of A to make A +E positive semi-definite is

Maxaddger 2 max (0, max (~Glow;}} . (5.1.2)
An objective of the new modified Cholesky factorization is to find E for which A +E is positive
semi-definite and for which we can guarantee

HE ||w < Maxaddger , (5.1.3)

at least in the case when we are not concerned about perturbing a positive definite matrix. This

bound is easily achieved as indicated by the following lemma and theorem. Note that since,
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using the notation of Section 4,
Maxaddger < v+ (n-1)§ , 5.14)

(5.1.3) is guaranteed to be stronger than (4.3).

Lemma 5.1.1. Let A € R** have the Gerschgorin Circle Theorem bounds G;, i=1, - - -, n given

- —|a al a5 —x(nm — ¢ aaTl
in (5.1.1). Denote A = [a A} , where 0eR, aeR" !, A e R-1x-1), Tet A = A ~ 5

have Gerschgorin Circle Theorem bounds G;, i=2, - - - ,n, where

Gi=[Aii—§; [Aij |, Ai +% A 11 2 [Glow; ,Gup;] , i=2,""",n.
7 72

Then if
§>max(0, |[a|];-0a] , (5.1.5)

GlgGl’i:‘z; Y (B

Proof. Note that (5.1.5) guarantees o+3 > 0, with equality possible only if @=0. If a=0, we may
assume that we set A = A so that the lemma is trivially true. For the remainder of the proof, we

assume 0+6 > 0.

Let us again use the convention that the subscripts of the vector a are i = 2 through n, so

that a; = A;1,i=2, - -+ ,n. Then we have

T
. ! ala; ,
rowi of A = rowi ofA -——&_—!_é— ,i=2,"",n .

Thus

T d (Jlalli=lail) |lai]
Al — Aj < . .
| [Aj; | fjé [Ai; | | S (5.1.6)

#

-

Also,
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Ai—Ay == .17

Combining (5.1.6) and (5.1.7), recalling that the term A;; = g; is present in G; but not in G;, and

using 82 ||a || 1~ =—Glow,, we get

Glow; — Glow; 2 1a,-;-Ji%{gg'ﬂ (5.1.8)
la; | la; |

= W(S'*'(a—”a ) = '&‘_—'_'5-(5+G10W1) 20,

i=2,--+,n. Similar calculations show that

G—up,--Gup; < —%%_(8+Glowl+2lail) 0.

Thus G;cG;. O

Lemma (5.1.1) shows that the choice (5.1.5) causes the Gerschgorin intervals to contract.
Thus it is almost immediate that if we make this choice with equality at each iteration of the

modified Cholesky factorization, we will satisfy (5.1.3).

Theorem 5.1.2. Let'A € R™ have the Gerschgorin Circle Theorem bounds (5.1.1), and let
Maxaddgcr be defined by (5.1.2). Suppose that at each iteration of the modified Cholesky fac-

torization, the remaining principal submatrix A; e R *+1=/>(+1-/) ig given by (4.1), (4;=A4),
5j = max{0, ”aj lh—aj} s $.1.9)

and Aj,; € R~/ is calculated by (4.2). Let E = diag{8,, - *,8,}. Then A+E is positive
semi-definite and (5.1.3) is true. Furthermore, if any diagonal pivoting strategy is used at each

iteration (i.e. rows and columns i and j are swapped for some i > ), (5.1.3) remains true.

Proof. The proof is almost immediate from Lemma 5.1.1. Let (G/);, i=j, - - - ,n denote the Ger-

schgorin interval obtained from row i of A j»and let (G/low); denote the lower bound of (G/);.
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From Lemma 5.1.1, the choice (5.1.9) assures that
(G/*ow); < (Gilow); , 1<j<isn . (5.1.10)
From (5.1.9), (5.1.10), and (5.1.2),
8; < ~G/low); <-Glow; < Maxaddgcr .

This completes the proof of the first part of the theorem. Since diagonal pivoting of a symmetric
matrix only permutes its Gerschgorin intervals but does not alter them, and since Lemma 5.1.1
and the above part of this proof make no use of the ordering of the Gerschgorin intervals,.the

theorem is unaffected by any diagonal pivoting strategy. [

Our algorithm makes one further modification to the strategy (5.1.9) for selecting ;. Itis
that we require the amount that is added to the diagonal at iteration j to be at least as great as the

greatest amount that has been added to the diagonal at any previous iteration. That is,
51' = max{0, [a; H]—-(Xj, 51'..1} . (5.1.11)

It is straightforward that Theorem 5.1.2 remains true with (5.1.11) in place of (5.1.9), because by

induction this choice still satisfies (5.1.3), and trivially it still satisfies (5.1.5).

The rationale for this modification is as follows. At any iteration, suppose d; given by
(5.1.11) is larger than that given by (5.1.9) i.e. max{0, [laj |]1—0;} < 8;j-;. Then the new
choice (5.1.11) doesn’t change the value of ||E ||. at this point in the algorithm, because 3 =
8;-1. It may cause subsequent values of §; to be smaller, however, because it results in a larger
;+3; and hence a smaller multiple of a;a] is subtracted from A, which means that Aj4 has
larger or identical eigenvalues than it would have using (5.1.9). This reasoning does not imply
that the final value of ||E || will be smaller using (5.1.11) than using (5.1.9), but it makes this
seem likely, and in practice the modification appears to be helpful in some cases and virtually

never harmful.
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The total additional work required by the modifications to the Cholesky factorization
described so far in this section is approximately n%2 additions, for the computation of | fa; ||1at
each iteration. In comparison, the additional work for the algorithm of GMW$1 is approximately

n?2 comparisons, because it computes [16j || e

Finally, as noted in Section 4, it is important in practice to use a diagonal pivoting strategy,
even though it does not affect the theoretical results given above. We could simply pivot based
on the maximum diagonal element, as is done by GMW81. However, recall that the amount we
add to the diagonal at iteration j will be at least the negative of the lower Gerschgorin bound of
the pivot row for that iteration. This suggests that we instead select as pivot row (and column)
the row (and column) for which the lower limit of the Gerschgorin interval is largest. If this Ger-
schgorin bound is positive, then we will not increase || E | |.. at this iteration, and the Gerschgo-

rin intervals will contract.

This pivoting strategy assumes that the Gerschgorin bounds for each remaining row are
available at each iteration. This would require a total of approximately n3/2 additional additions,
which is too high. An alternative is to pivot based on the estimates of the Gerschgorin bounds
that result from the proof of Lemma 5.1.1. If we let (g/); denote the estimate of the lower bound

of the Gerschgorin interval of row i of A;, then from (5.1.8),

&7+ = (@) + (@i | {1 -—Ls_';;_ ‘j"] i=jHl,

For the entire algorithm, this requires approximately n2%/2 each additional multiplications and
additions. To begin this process, the Gerschgorin bounds of the original matrix A must be calcu-
lated, which costs an additional n? additions. Thus the total costs of the modifications to the
Cholesky factorization discussed in the section are 2n2 additions and n%2 multiplications. The
approximate Gerschgorin bounds calculated by this strategy may be quite inexact, but they are
only used to determine pivot selection, and as we will see in Section 6, substituting them for the

exact Gerschgorin bounds does not significantly affect the performance of the algorithm.
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We should mention that the strategy for preserving positive definiteness that we discuss in

Section 5.2 will often cause the additional costs given in this section to be reduced considerably.

5.2 The Strategy for Not Perturbing Positive Definite Matrices

In this section we introduce our strategy for assuring that our modified Cholesky decompo-
-sition does not perturb an already positive definite matrix, while still guaranteeing that if the
matrix is not positive definite, then the amount that is added to the diagonal is not too large. The
strategy is quite simple. We divide our decomposition algorithm into two phases. In the first
phase, we apply the standard Cholésky decomposition (the version described in Section 3 where
we make a rank-one modification to the remaining submatrix at each iteration) for k20 iterations,
stopping at the first occasion that the next, k+1* iteration would cause any diagonal element in
the next remaining submatrix Ag4; to become non-positive. At this point we know that the
current submatrix Ag.y, as well as the original matrix A, is not positive definite. We then switch
to the second phase, where we apply the modified Cholesky decomposition algorithm described

in Section 5.1 for the remaining n—k iterations of the decomposition.

If the original matrix A is numerically positive definite, then this strategy results in the nor-
mal Cholesky decomposition being performed throughout. If A is not positive definite, then this
strategy results in the normal Cholesky decomposition being performed for £ € [0, n-2] itera-
tions, followed by the application of the modified Cholesky decomposition to A, which results
in the Cholesky decomposition of Ag,;+E for some non-negative diagonal matrix £. The overall
result is the Cholesky decomposition of A +E , where E is E augmented with zeroes in the first £

diagonal positions (modulo pivoting).

The crucial question is "how large is [1E || and hence ||E ||?". Section 5.1 gives a
bound for | |£f | | » that depends on the sizes of the elements of Ag4;. In Theorem 5.2.1, we show

that our two-phase strategy assures that no element in A,y has grown by more than the value of
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the largest diagonal element element in A. This in tum means that our decomposition still

achieves a good bound on || E || .. in terms of the original matrix A.

Theorem 5.2.1. Let A e R, and let 04 = max
{1Ai|,1<i<n},E=max{|A; |,1<i <j<n}. Suppose we perform the standard Chole-
sky decomposition as described in Section 3 for k& 21 iterations, yielding the remaining principal

submatrix Ag,; € R@%)%(#=%) (whose elements are denoted (Ag+1);j , k+1<i,j <n), and let y=
max (| (Aei | k+1Si<n yandE=max { | (Ags)ij |, k+1<i<j<n}.  Them if
(AesD)ii 20,k+1<i <n,theny<yand € <E+7v.

BC

Proof: Let A= CF

T
} ,where B € R¥* |C e R(n-k)xk || ¢ R(n-k)x(n—k)  After k iterations

of the Cholesky factorization, the first £ columns of the Cholesky factor L have been determined;

denote them by [ALI} where L € R¥** is triangular and M € R®-K)xk Then

B=LLT,C=MLT ,andF =M MT +A;;. (5.2.1)

From (5.2.1), Fi = || Myow i 1122+ (Ags)ii » k+1<i <n | so that from Fj; <y and (Ag4)i 20,
H Mrowi 1122<7. (5.2.2)
Thus for any off-diagonal element of A1, (5.2.1), (5.2.2) and the definition of & imply
| (Aks)ij | S | Fij = Myow i) Mrow )T | SE+7. (5.2.3)
which shows és§+y. Also for all the diagonal elements of A4, (Arsn)ii 20, (5.2.1) and the
definition of y imply

0<(Aps)ii SF; <. (5.2.4)
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which shows N}Sy and completes the proof. [

We note that the result of Theorem 5.2.1 is independent of the diagonal pivoting strategy
that is used. We also note, however, that the technique of proof of Theorem 5.2.1 actually shows
that the largest off-diagonal element in A, is at most equal to the largest off-diagonal in F plus
the largest diagonal in F', where F, as defined in the proof of Theorem 5.2.1, is the diagonal sub-
matrix of A that corresponds to A,;. Thus a pivoting strategy that uses the larger diagonal ele-
ments as pivots in the first phase will limit the growth in the off-diagonal of A j+1 €ven more than
is indicated by Theorem 5.2.1. Our phase one algorithm pivots the largest remaining diagonal

element to the top, and thus is likely to have this effect of further limiting element growth.

The possibility of incorporating this two-phase strategy into the method of GMWS$1 is dis-

cussed in the next section.

5.3 The Complete New Algorithm

We have now presented all the main parts of our new modified Cholesky decomposition
algorithm. An outline of the complete algorithm is given in Algorithm 5.3.1, and a fully detailed
description is given in Appendix I. To summarize, the first phase of the algorithm applies the
standard Cholesky decomposition, using a diagonal pivoting strategy that pivots the largest
remaining diagonal element to the top left. This phase ends when the next iteration of the stan-
dard Cholesky decomposition would cause any diagonal element in the remaining submatrix to
become non-positive. In the second phase, the modified Cholesky decomposition described in
Section 5.1 is applied to the remaining submatrix. This phase determines what to add to the diag-
onal at each iteration from the lower Gerschgorin bound of the pivot row, and pivots based upon

estimates of these lower Gerschgorin bounds.

Three additional, relatively minor features have been incorporated into Algorithm 5.3.1 to

guar. against the resultant A+E being singular or very ill-conditioned. First, the switch to phase
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Algorithm 5.3.1 -- Modified Cholesky Decomposition

Given A € R"*" symmetric and 7 (e.g. 7= (macheps)!?),
find factorization L LT of A+E, E 20

‘Y ma-xIAuI ’f"'l

1<i<h
(* Phase One, A potentially positive definite *)
While j <n do
Pivot on maximum dlagonal of remaining submatrix
If rmn {A; —é—l-—} <ty
JHIsi Ajj
then go to Phase Two
else perform j* iteration of standard Cholesky factorization and increment Jj
(* Phase Two, A not positive definite *)
k :=j -1 (* k = number of iterations performed in Phase One *)
Calculate lower Gerschgorin bounds of Az
Forj :==k+1ton-2do
Pivot on maximum lower Gerschgorin bound estimate
Calculate £j; and add to Aj;
(* Ejj =max{0,-Aj; +max{ ;1 [ A 1.TY} Eja,j-1 1 %)
update Gerschgorin bound estimates
perform j* iteration of factorization
complete factorization of final 2x2 submatrix using its eigenvalues

two is made when any diagonal element of the remaining submatrix would become less than T,

rather than less than zero as is discussed in Section 5.2. Here ¥ is again the maximum diagonal of

A, and 7 is a small constant (we choose T = (macheps)1?). This means we may perturb a positive

definite matrix if its condition number is greater than 1/t. Second, in phase two, to assure that

A+E is positive definite rather than positive semi-definite, we set (using the notation of Section

5.1) each
d; =max (0, —a;; +max{ ||a; |11,77Y}, 8j-1)

where the Ty term is new. This causes the bound (5.1.3) on | |E ||~ to increase a tiny bit, to
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IE |le € Maxaddger +717 . (5.3.1)

but in conjunction with the preceding change, allows us to bound the condition number of A+E.
Finally, at the final iteration of phase two, when only a 2X2 submatrix A,_; remains, we use a dif-
ferent strategy : we calculate the eigenvalues Ay, and A; of 4,_y, and 8,_; is chosen as the smal-
lest nonnegative number so that 8,-; = 8,3, the I, condition number of A,_; +8,-17/ < 1/1, and
Mio+08,-1 2 TY. This generally gives a smaller value of 8,-; than the Gerschgorin circle theorem

based strategy would, and in theory it is straightforward to show that

Op-1 = max{ 8,5 —Ay + max{

1 (A'lu ")"lo) ”C’Y} }

—T

< 1 1 Maxaddger + 2% 2 T (5.32)
since ~Ay, < Maxaddger and Ay =Xy, <2 (Maxaddger +7).

The theoretical properties of our full algorithm are summarized in Theorem 5.3.2.

Theorem 5.3.2. Let A, v, and & be defined as in Theorem 5.2.1, suppose we apply the modified
Cholesky factorization algorithm in Appendix I to A, resulting in the factorization LLTof A+E .
If A is positive definite and at each iteration, Lj; 2>1y, then E =0. Otherwise, E is a non-

negative diagonal matrix, with
|1 E ||e< Gersch + =4 (Gersch +7) (5.3.3)

where Gersch is the maximum of the negative of the lower Gerschgorin bounds of A that are

calculated at the start of Phase Two. If k=0 then
Gersch =Maxaddger < v+ (n-1) (5.3.4)
where Maxaddgcr is given by (5.1.1-2), otherwise

Gersch < [n —(k+1)] (Yy+E&). (5.3.5)
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Proof: Immediate from Theorem 5.1.2, Theorem 5.2.1, and equations (5.3.1-2). [

It is also possible to produce an upper bound on the condition number of A +E, of the same
sort that is provable for the GMWS81 algorithm. The key properties needed for this are that
[1E ||, and hence max{L; }, is bounded above, that min{L;} is bounded below (by \fF{), and
that |L;j| < L; for all 1$j<i<n. (The final property comes from diagonal pivoting and the
look-ahead property in phase one, and from the Gerschgorin bound strategy for choosing d; in
phase two.) The bound on the condition number that one can obtain is of mainly theoretical
interest, since it is exponential in #; the computational results of Section 6 show that the condi-

tion number of A+E is bounded above by about 1/t in practice.

We note that our two phase strategy could also be incorporated into the method of
GMWS81, and that this would result in a significant improvement in their upper bound on
[1E ||». This could be done by using the same two phase structure, and replacing our phase two
by their modified Cholesky decomposition. If this were done, their algorithm could simply
choose B2 = €/ m in phase two, rather than the maximum of this quantity and ?(where 5
and *} are defined as in Theorem 5.2.2) because it would know that it is dealing with a non-
positive definite matrix. Hence the resultant method would achieve the bounds (4.3-4) if it

switched to phase two immediately, and
HE |lw < 4(n~k)E+27 < 4(n—k) G+ +27

otherwise. This would be a significant improvement over the current bound (4.5), although it is

still inferior to (5.3.3-5).

Our new algorithm meets our goal of not significantly increasing the cost of the standard
Cholesky decomposition, which is about n3/6 each additions and multiplications. The additional
costs of the modified factorization are (n—k)? additions to calculate the Gerschgorin bounds of
Ag4+1 at the start of phase two, (where k is the number of iterations performed in phase one),

(n—k)%/2 additions to calculate the [, norms of the pivot rows during phase two, and at most
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(n—k)?*2 each multiplications and additions to update the Gerschgorin bounds during phase two.
In addition there is a small multiple of n~k additional work. (The strategy for precalculating the
new diagonal during phase one, in order when to determine when to switch to phase two, only
costs a small multiple of n operations as long as the precalculated values are stored and used
when phase one is continued.) Thus the total additional cost of the modified Cholesky decompo-
sition at most 2n? additions and n%/2 multiplications, in the case when phase two is started
immediately (k=0). In many cases in our experience, k is close to n so the additional costs are

very small.

We have not performed a rounding error analysis of our modified Cholesky factorization.
(To our knowledge, no such analysis has been performed for the method of GMW81 either.) It
seems likely to us that the factorization should have similar finite precision properities to the

standard Cholesky factorization (see e.g. Wilkinson [1961, 1963]).

Finally, we include a small worked example to demonstrate the performance of the new
modified Cholesky algorithm. Consider the matrix used by GMWS8]1 to illustrate their modified

Cholesky factorization,

Our new algorithm will proceed as follows. At the first iteration, no pivoting is performed in

phase one, and then the algorithm immediately switches to phase 2 because A 33 — -%—%— < 0. The

Gerschgorin intervals of A are
[.—2’ 4] 3 [—3) 5] and ["4, 6] .

The row with the maximum lower Gerschgorin bound is also row 1, so no pivoting is required in
this iteration for phase 2 either. The modified Cholesky algorithm then choses 8§ =2 = -(Ger-

schgorin lower bound of row 1), and after the elimination step,
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—12/3 73
A= [7/3 —-1/3] ;
and the estimated Gerschgorin bounds are unchanged. The algorithm now enters the final, 2x2

submatrix stage. The eigenvalues of A, are (-2.2196, 2.5538), so that &, =2.2196 and Stotal

=2.2196. Thus for the new algorithm,

E = 2 2.22
B )

and ||E ||« =2.22. This is 1% greater than the magnitude of the most negative eigenvalue of A
which is 2.2109. (If we had continued the Gerschgorin strategy for A, rather than use the eigen-

value strategy, 8, would be 2.67.)

Using the same matrix A , the GMW81 algorithm computes

2.77
E= 5.01 ,
2.24

with ||E ||.=5.01.

6. Computational Results

We have compared the performance of our new modified Cholesky factorization (Algo-
rithm 5.3.1 and Appendix I) to the algorithm of GMW81 on a number of indefinite test matrices.
The measures we used to assess the performance of the algorithms are the ratios

[1E |le/ |AM(A)], termed relative maxadd, which reflect how well me algorithm has satisfied
the goal of adding as little as possible to the diagonal of A, and the condition numbers of A+E.
We already know that the other two goals stated at the beginning of Section 3, low cost and not

disturbing safely positive definite matrices, are satisfied by both algorithms.
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We tested both algorithms on matrices of dimension 25, 50 and 75, with eigenvalue ranges
of [-1, 10000], [-1, 1], and [-10000, —1]. For each combination of dimension and eigenvalue
range, 10 matrices were created. Thus (the same) 90 test problems that were used to test each
algorithm. Each test matrix was created by forming the product 010203 D (Q10203)7, where

each Q; is a Householder matrix of the form

=7 - 2 T
Q=1 [IIWII ww}’

and each component of each w is randomly generated from a uniform distribution in the range
[-1, 1]. Each D is a diagonal matrix whose elements were randomly generated from a uniform
distribution in the desired eigenvalue range, with the exception that for the set of test matrices
with eigenvalue range [~1, 10000], one element of D was generated from the range [-1, 0], thus

guaranteeing at least one negative eigenvalue in the test matrices of that range.

The relative maxadds for the 90 tests of each algorithrn‘am shown in Figures 1A,C,E,
2A,CE and 3A,CE in Appendix II. In summary, the relative maxadds for the new algorithm
were always small, and sometimes considerably superior to those for the GMW81 algorithm,
although this algorithm’s performance was also good in most cases. The relative maxadds for
the new algorithm ranged from 1.06 to 2.5, and was below 1.71 for all but 5 of the 90 cases. The
relative maxadds for the GMW81 algorithm ranged from 1.6 to 77.8, distributed as follows
among the various groups of test matrices. For the matrices with eigenvalues in the [—1, 10000]
range, the relative maxadds ranged from 2.1 to 5.6. In the [—1, 1] eigenvalue range, the relative
maxadds were in the range 4.9 to 77.8, and in the final [-10000, —1] eigenvalue range the rela-
tive maxadds ranged from 1.6 to 5.1. Comparing on a problem by problem basis, the new algo-
rithm performed from 3.5 to 60.9 times better than the GMW81 method in terms of the relative
maxadd for the problems with the [-1,1] eigenvalue range, and from 1.3 to 4.2 times better for the

remaining test cases.
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Figures 4A-41 show the relative maxadds for the new algorithm only, to illustrate more
clearly how close ||E ||« is to —=Aj(4) for this method. Also included in Figures 4A-4I are the
results for a version of the new algorithm that differs only in that it bases its pivots at each itera-
tion of phase two upon the actual Gerschgorin bounds rather than their estimates. The additional
cost of calculating these bounds is about (n—k)?3/3, or at most n3/3, additional additions. The
results in Figure 4 show that pivoting on the exact Gerschgorin bounds leads to some improve-
ment in the size of relative maxadd, but we do not consider the improvements sufficient to war-

rant the extra cost in general.

The condition numbers of A+E for the two methods are given in Figures 1B,D,F, 2B,D,F
and 3B,D,F in Appendix II. Basically, both methods produced acceptably conditioned matrices
in all cases. The conditions numbers for the matrices produced by the new method varied from
10! to 108, whereas the condition numbers for the GMW81 method varied from 10! to 108, The
condition numbers for the new method are sometimes directly related to the final step of th;: élgo—
rithm, which, if it increases ||E ||, does so by the amount necessary to make the final 2x2 sub-
matrix positive definite with condition number T. In our test cases, the tolerance T was
(macheps)'3, or roughly 10752 on the Sun 3/75 used for these tests. This accounts for the condi-
tion numbers of almost 10° in all the cases where the final step increased ||E || Decreasing
this tolerance generally was found to decrease the condition number, usually without appreciably

increasing | |E || .

Interestingly, in the cases where the new algorithm produced the most significant improve-
ments in relative maxadds , the test problems with the [~1, 1] eigenvalue range, it also produced
much better conditioned matrices than the GMW81 algorithm. For this test set, the ratios of the
GMWS81 condition numbers to the condition numbers of the new algorithm were between 102 and
10* for n =25, between 10* and 10° for n =50, and between 10° and 107 for n =75. For the
other two eigenvalue ranges, the ratios of the condition numbers produced by the two algorithms

all varied by at most 2 orders of magnitude, with the condition numbers for the new algorithm
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consistently higher for the test problems in the [-1, 10000] eigenvalue range, and the GMW81

condition numbers usually higher for the test problems in the [-10000, —1] range.

Finally, Figures SA,B in Appendix II contain the test results for a different set of matrices
of dimension n =25 with eigenvalue range [—1, 10000]. The difference between these test
matrices and the ones used in figures 1A,B is that these matrices were created to have at least 3
negative eigenvalues, whereas the original test problems in the [-1, 10000] range were created
with at least 1 negative eigenvalue. What is interesting about the results of this new test set is
that on one particular matrix out of the 10, the new algorithm performs significantly worse than
the GMWS81 algorithm. (This phenomenon did not occur with the test sets of size 50 or 75 in this
range with 3 negative eigenvalues, so we have not included this data). The poor behavior
occurred when the algorithm was at the (n—4)* iteration, so we created a 4x4 matrix with similar

characteristics that illustrates the problem even more markedly.

The matrix

1890.3 -1705.6 —315.8 3000.3
—-1705.6 1538.3 284.9 -2706.6
-3158 2849 525 -5012
3000.3 —2706.6 -501.2 4760.8

L -

has eigenvalues -0.378, -0.343, -0.248, and 8242.869. The first few steps performed by the new

algorithm are as follows:

1. Interchange row and column 4 with row and column 1, because 4 4 4 is the maximum diagonal

element.

2
(As)) <0.

2. Switch to phase 2 because A3 3 — A

3. Calculate the lower Gerschgorin bounds {-1447.3, -3158.8, -1049.4, -3131.4}, and since

—Glows is the maximum value, interchange row and column 3 with row and column 1.
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4. Add (-Glowpivorrow) = 1049410 A .

At this point in the computation, the new algorithm has already added much more to the
diagonal than is necessary to make A positive definite. From this point on it doesn’t increase
|1E ||, O that the final value of ||E || is 1049.4. On the other hand, the GMW81 algorithm
produces ||E ||. = 1.03. This behavior occurs because, at the first iteration, the GMW81 algo-
rithm pivots on the maximum diagonal element and then adds nothing to the diagonal, which
after elimination results in a 3x3 submatrix all of whose entries have absolute value less than
0.52. This is guaranteed to then lead to a small ||E ||«. (Indeed, if our algorithm performed the
same first step as the GMW81 algorithm and then proceeded as usual, it would produce | |E ||«
= 0.665.)

The essential characteristic of this example is that A is equal to a large symmetric rank one
matrix plus a small indefinite matrix. Thus, if nothing is added to A ; at the first iteration, the
remaining submatrix after the elimination has very small elements, and ||E || is small. The
GMWS81 algorithm will usually outperform ours on matrices of this type. We have experimented
with modifications to our algorithm that perform well for this case, but all of them resulted in
degradation of our algorithm’s performance in other cases. Since the case only occurred once in

the 120 test cases discussed in this section, we would hope that it is not common in practice.

7. Summary and Conclusions

We have presented a new modified Cholesky factorization algorithm that does a good job
of meeting the objectives outlined at the start of Section 3. It is based upon two new techniques,
the use of Gerschgorin circle theorem bounds to decide how much to add to the diagonal, and the

use of a two phase structure to differentiate between positive definite and non-positive definite
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matrices. It costs at most 212 additions and n2/2 multiplications more than the standard Chole-
sky factorization, and its theoretical bound on ||E || is a factor of n lower than for the
GMW381 method. In computational tests on non-positive definite matrices, it virtually always
produces a smaller ||E || than the method of GMW81, and the conditioning of A +E is always
quite acceptable. On the class of test problems where the GMWS81 algorithm had the most
difficulty, those with eigenvalue range [-1,1], the decreases in ||E ||. and in the condition

number of A +F£ are both substantial.

In our éomputational tests, both our method and that of GMW381 virtually always produce
values of ||E || that are orders of magnitude smaller than the worst case theoretical bounds.
Empirically, this seems to occur because the matrix elements, and hence ||E ||, don't grow
nearly as quickly as in the worst case analysis. This disparity between theory and practice makes
it unclear whether the practical improvement of our method over the method of GMW81 is tied
to its theoretical improvement. We believe that it is, for two reasons. First, basing the amount to
add on the /1 norm of the pivot row rather than the /.. norm may cause us to add less, and second,
separating the two phases of the algorithm may allow us to add less in practice as well as save a

factor of n in theory. A more rigorous explanation would be useful.

We have not tested the effect of substituting our new modified Cholesky factorization for
that of GMW81 in optimization algorithms. The most common optimization test problems have
small n and few if any indefinite iterations, so probably there would be little effect on these. The
new algorithm might make a difference on problems where n is larger and there is some
indefiniteness. In our opinion, the biggest advantage of the new method for optimization pur-
poses is its improved theoretical bound on ||E || and the corresponding reduction in ||E ||
that has been observed in practice. These properties guard against overflows during the factoriza-

tion, and against steps (A +E )~1Vf (x) that are far too small.

In addition, the new algorithm leads to an easy implementation of trust region methods for

optirization, because ||E || is generally within a factor of 1.5 of the negative of the smallest
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eigenvalue A;(A) of A. By first calculating E, then replacing A with A+(||E || ) if E#0, and
then using the trust region method for positive definite matrices, one will usually get the solution
to the exact, possibly indefinite trust region problem without using any other special provisions
for dealing with non-positive definite matrices. We have already used the factorization success-
fully in this context. If there are other computational algorithms where a crude estimate of the
most negative eigenvalue of a matrix is useful, either by itself or as a starting estimate of some

iterative procedure, then this factorization may provide a good way to find it.

Finally, Dr. N. Gould of Harwell Laboratory, England, reports that our modified Cholesky
factorization has proven useful to him for a different reason than those discussed above. He is
using it in a large, sparse optimization code, where the linear system is solved by a multifrontal
method, and diagonal pivoting during the modified Cholesky factorization is unnecessary due to
the properties of the Hessian matrices. In this case, our method has the advantage that it doesn’t
require the full matrix to be known a priori, so that it may be assembled incrementally, with only
the front and the diagonals needed in storage at any given time. In contrast, in the GMW81
method, the entire matrix must be known during the initialization phase to calculate the terms y
and & in the notation of Section 3. Gould has implemented an unpivoted version of our factoriza-

tion in this code and reports very satisfactory performance.
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AppendixI -- Complete Modified Cholesky Decomposition Algorithm

Given A € R*** symmetric (stored in lower triangle) and 7 (e.g. 1= (macheps)/?),
find factorization L LT of A+E , E 20

phaseone = true
Y= max A |
j=1
(* Phase One, A potentially positive definite *)
While j <n and phaseone = true do
(* Pivot on maximum diagonal of remaining submatrix *)

i :=index of max A;
. . . } s‘ S" » -
if i #j , switch rows and columns i and jof A

. Al
Ifjggr;n {A; - —Af;—] <ty
then phaseone := false (* go to Phase Two *)
else (* perform jith iteration of factorization *)
ij = \/A—U- * ij overwrites Ajj *)
Fori:=j+1ton do
Lij = A ILj; (* Lij overwrites A;; *)
Fork :=j+1toi do
A,‘k = A,‘k —L,'j * ij
J=j+1
(* end Phase One *)

(* Phase Two, A not positive definite *)
If phaseone = false then
k = j —1(* k = number of iterations performed in Phase One *)
(* Calculate lower Gerschgorin bounds of Ar,; *)
Fori:=k+1ton do

gi=Ai= 3 1A 1= 3 14
J=k+l J=e+l
(* Modified Cholesky Decomposition *)
For j :=k+1ton-2do
(* Pivot on maximum lower Gerschgorin bound estimate *)
i :=index of max {g;}
jSisa
if i #f, switch rows and columns i and j of A
(* Calculate E; and add to diagonal *)

normj = f: | Aij |
i=j+]
3(* =Ej; *)=max{0,-Aj; + max{ normj, v} , Sprev }
if > 0 then
A/j = Aj,' +8
dprev =8 (* Sprev will contain ||E || ¥)
(* update Gerschgorin bound estimates *)
IfAj; # normj then

temp =1~ %1"1—
ji

fori :=j+1ton do
gi=g + IAij | * temp
(* perform jth iteration of factorization *)
same code as in Phase One
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(* final 2 X2 submatrix *)

) A,‘..l',‘_1 An,n—l
Mo . Ay = eigenvalues of Annel  Ann

& = max{0, -\, +7T* max { —1-—},‘-(7%—?\[0),7} ,oprev )

if & > 0 then
An—l,n—l = An—l,u—l +9
Ann = App +98
Sprev = &

Lu—l,n-l = VAA—I.An—l (* overwrites An—l,n—l *)

L»,n—l = An,n—l /Ln—!,n—l (* overwrites An,n-—l *)

La,x = (An,n —Ln,-12)" (* Overwrites A, ¥)
(* End Phase Two *)
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Figure 1 -- Performance of Existing and New Methods on 10 Indefinite Matrices with n=25
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METHODS: New Method

New Method with O(n**3) pivoting
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Figure 5 -- Performance of Existing and New Methods on a Test Set with 3 Negative Eigenvalues



