ACTOR GRAMMARS
D. Janssens and G. Rozenberg

CU-CS-407-88 August 1988

Department of Computer Science
Campus Box 430

University of Colorado

Boulder, Colorado 80309

ACTOR GRAMMARS

D. Janssens
Dept. WNIF, University of Limburg, L.U.C.,

Universitaire Campus, B-3610 Diepenbeek, Belgium

G. Rozenberg
Insticuce for Applied Mathematics and Compucter Sciznce
Rijksuniversitait Leiden,

Niels Bohrweg 1, PB 9512, 2300 RA Leiden, The Necherlands

ABSTRACT Actor systams are a model of massively parallsel syscems based on

asynchronous message passing. This paper presencs a formalism for actor systems in
the <framework of graoh grammars. To this aim actor grammars are introduced,
motivactad, and i1llustractad by examples. Some of cthe basic properties pertinenc to

grapn transformations in actor grammars are discussead.

Kev words : massive parallelism, acctor systams, handle rewriting, actor grammars.

CONTENTS
Incroduction

1. Preliminariszs

[}

Actor systems
3. Actor vocabularies and configuracion graphs

&. Structured transformations and their composicion

wn

Actor grammars

()

Relationship co the approach from [JRE7]
7. Examples of structursd transformations

8. Discussion

INTRODUCTION

The term "actor system" rafers to a model of concurrent computation. It is
based on asynchronous message passing and it has been introduced in [H77] and
(HB77]. Most of the par?rs on actor systems present them in a racher informal way
(see, e.g., [(H77], [HB77], (L8l] and (T83]), although thers are .:a.lso papers

providing a formal framework (see, e.g., [C3Ll] and [A86]).

The aim of this paper is to present a formal framework for (a version of)
actor systems, which 1s based on the use of graph grammars., One of the basic

decisions to be made in setting up such a framework is the choice of a suitable

T -

representation of a configuration (a "snapshot”) of an actar syscem. It seems
racther natural to rsprasent a: configuracion by‘a graph. Hence to each configuration
correspends & graph and to a ceomputaction in an actor systam corresponds a graoh
transformation.’ Since grapn grammars provide an elegant way to describe such
transtormations (ses e.g., (ENRR87], (E87] and (R87]), we use them to model the
dynamic behaviour of actor systams. In particular, we introduce a new kind of graph
grammars, called actor grammars, that are tailored £for the modeling of actor
systems. The central nocion discussed in this paper is the notion of a structured

transformation in an actor grammar, which formalizes a computation in an acter

systam. Throughout the paper we motivats our cholce of wvarious componentcs of actor
grammars and we investigats the fundamencal properties of structured
transformations.

The paper is organized as follows.
The basic mathematical terminology and notation is given in Section L.
In Section 2 we provide a short introduction to actor systems.

In Section 3 we introduce the notion of an actor vocabulary and of 2

ES S

configuracion graph. The former is needed to provide the supply of idencifiers and

. ~ - 3 i
values needed in the actor syscem cousiderasd, and the latter formalizss a "snapsnhotC

of the systam.

In Section 4 we introduce a methodology for the formal crzatment of che
graph grammars we need in this paper, define the notion of a structuresd
transformation, and investigace basic properties of strucctursd transformatiomns.

In Section 5 we introduce the notion of a primicive evenc transformaction,
which 1s a structured transformation that corresponds to an event in an actor
sysctam. Then we define the noction of an actor grammar, and we prove that structured
transformations in actor grammars lesad from configuraction graphs to configuracion
graphs.

In Section 6§ we explain the relacionship between the formalism given in this
paper and the .one given in (JRE7].

Section 7 supplies examples of structured transformacions and the operations
defined on them.

We conclude the paper by a short discussion, in Section §.

1. PRELIMINARIES

In this section we recall some basic notions and terminology concerning

graphs and sets. This allows us to set up a notation suitable for this paper.

Sets and relations

(1) For a sec X, IdX dencces the idenctitcy relation omn X; for sets X,Y, X-Y
denctas the difference of X and Y. The number of elements of a finice sec X
is denotad by # X.

(2) Let A, B be sets and let RCAXx 3. Then R-l denocas the inverse of R, and, for
each subset C of A, R(C) = {(y =3B Ichera exiscs an x €C such that (x,y) €R}.
I£ C= (%), then we writa R(x) instead of R{(C). The domain and the range of‘R
ara denocad by Dom(R) and Ran(R), respectively. Hence Dom(R) = R'l(B) and
Ran(R) = R(A).

(3) Let A, B and C be sets, lec RCAXB and lec SCB3xC. Then S 0R denotas the
composition of R and S (firsc R, then S).

(&) A relazionm R C A X B is injecrive iZ, for 2ach b € B, # R-l(b) < 1;
R is surjecrcive 1f Ran(R) = B.

(5) IR CAXBand R C A’X B', wherea AN A’ = J, then R 8 R' = R U R'.

(6) A relation R € A X B is called a parcial funcrion if R‘l is injeczive. It is

called a funczion 1f, moreover, Dom(R) = A.

Graphs
Let I and A be finites sets.
(1) For a finite set X, the sec of A-labeled edges over X, denotad by Zdges(X,a),

is the sez T x A x X.

(2) A (Z,A)-labeled grapha is a system g = (V,E,$) where V is a finitzs set (called
the set of nodes of g), E ¢ Edges(V,A) (called the sec of edges of g), and ¢ is
a funccion from V inte I (called the node-labeling funccion of g). For a
(Z,4)-labeled grapn g, its set of nodes, its sec of edges and its node-labeling

function are denotad by ¥d(g), Ed4(g) and ¢g, raspectively.

(3) Let g and h be (Z£,A)-labeled graphs.

<o

(3.a) h is a subgraph of g if Nd(h) < Nd(g), Ed(h) C £4(g) and ¢h is the restriction

of ¢ _to ¥d(h). For a subgraph h of g, g-h denocas the graph
g :

(Nd(g)-Nd(n), Ed(g) n Edges(Nd(g)-4d(h), 4), ¢'), where ¢’ 1s the restriczion

of $_ to Nd(g) - Nd(h).

Q

(3.b) is an asugmencacion of h if h is a subgraph of g such that Nd(h) = Nd(g)

a9

(i.e. g may have mors sdges than h). The class of all augmencations of h is
denotad by Aug(h).

(3.¢) The graphs g and h are disjoint if Nd(g) N Nd(h) = @.

(3.d) Let g and h be disjoinc. Then g @ h is the (Z,A)-labeled gravh
(Nd(g) U Nd(n), £d(g) U £d(R), B 8 4,).

(4) Letc g be a (Z,A)-labeled graoh.

(&.a) The source funcrion of g is the function sg from Ed(g) into Nd(g) defined by
sg(a,é‘,b) = a, for each (a,§,b) € Ed(g). The targec funccion of g is the
function tg from £d(g) into ¥Nd(g) defined by ¢ (a,§,b) =b, for each

(=4
(a,d,b) € Ed(g). The edge-labeling funcrion of g 1is the function ¥ from
, g
Ed(g) into A, defined by ¢g(a,5,b) = §, for each (a,&,b) € Ed(g).

(4.b) The edge-universe of g, denaotad by £un(g), 1s the set Edges(Nd(g),A). Noce
that Zun(g) depends on the choice of A. This should not lead to confusion :
whenever talking about graphs cthroughout this paper, we explicitly indicace
the alfabets I and A involved.

(4.c) The grapvh g is discrece if Zd(g) = §.

(4.d) Let & € A. A §-handle of g is a subgraph h of g such thac ¥d(h) = (x,y) and
Ed(h) = ((x,8,y)), for some x,y € Nd(g) where x » y (i.e., a §-handle is a
subgraph consisting of two distinect nodes and a § - edge connecting them).

(4.e) Let v € Nd(g) and § € A. The S-Sp;n of v in g, denoced by Sg(v), is the set

(e € Fd(g) | sg(e) = v and ¢g(e> - §}.

(3) Let g and h be (Z,4)-labeled graphs, and let § : Nd(g) — Nd(h) be a function.
(3.a) ged dencces the funccion from Zun(g) inte Zun(h) defined by
fed(v,s,w) - (&(v), §, £€(w)), for each v, w &€ Nd(g) and each § € A.
(S5.b) 5& deniocas the unc;icn from Nd(g) X A 1inco Nd(h) x A defined by
§A(v,5) - (&(v),§), for each v € Nd(g) and esach § € A.

"

(5.¢) § is a node-label preserving function if, for each v € ¥d(g), ég(V) = ¢ ().
L

2. ACTOR SYSTEMS

Acrtor systems have been incroduced in [H77] and (HB77] as a model of
concurrent computation suited for describing the execution of programs on massively
parallel computars; a more formal creatmenc of actor systems is presentad in [C81],
[TSB]V and (A86]. In this paper we present a formal ffa.ﬁ;work for actor systams
based on graph rewriting. We sta.r‘: by discussing, in this section, the notions (and
intuitions behind them) of actor systams which determine our formal model.

The basic elements of an actor systam are acrors and messages. ACLOTS are
active objects which process messages, whers processing a message may rasult in
crszating new actors and/or sanding messages to ocher actors. Each actor has, at each

moment, a specific behaviour, wihich datermines how the actor resacts to messages

arriving at this moument. As a consaquence of processing a message an actor may
change its behaviour. Hence the behaviour of an actor at a given moment may be

viewed as a "local memory" of that actor; this local memory is unaccessible to all

other actors. On the ocher hand, the Wway an actor reacts Lo a pérticﬁlar message
depends onAthe information contained in the message. The behaviour of an acter (the
contancs of its local memory) will be represencad by its sctace and the informacion
contained in a message will be representad by its value.

All communications becween actors are realized by messages. -These
communications are asynmchrounous : when an actor sends a message to anocher actor, it
does not have to wait for an answer, but 1t can immediacely procsed to precess
another message. One does nét‘ make explicit assumptions about che ofder in which
messages arrive at their destinacion. The communicacion pattern bectween actors is
restricted by the assumpction that, at each moment, a given actor can Qend méssages
to a limited number of other actars only. If, as it is often done, one comﬁares an
actor system to a mailing syscem, then an actor can, at a given momenc, send
messages only to those actors of which it contains the mailing address. It is
assumed thac these mailing addrasses may be transmictad between actors by including

them in messages (thus dynamically changing the communicacion patterm). Hence boch,

actors and messages, countain mailing addresses of actors. The actors to which a

given actor or message contains a reference, are called the acquaincances of thac

actor or message.
In our formalism, the acquaintance-relacionship will be given explicicly,

separately from information about actor statas and message values. Comsequencly, our

description of both an actor and a message will contain two kinds of informacion : on

the omne hand, the actor stacs (in the case of an actor) or the message value (in che

case of a message), and, on the other hand, the acquaintances. In the case of a
message, our descripcion may also contain a (unique) descinacion aczor : the actor

to which the given message has been sent.

-

The processing of a message by an actor is considerad to be an "atomic
acﬁion" in the syscem; it és called an evenc. It is assumed thac several actors ﬁay
process their messages concurrently; however, each actor processes only one messages
at a time. The evenc consiscing of che processing of a message M by an actor A is
denotad by (M - A]. The processing of M by A, based on the behaviour of 4, is
somecimes raferrad to in the litsraturs as the execution of a scripc. Hence the
script specifies the actions to be taken when an actor A processes a message M,
taking into account the actor state of A and the message value of M. One or more of
the following actions may take place : (1) the actor stats of A may change, (2) the
set of acgquaintances of A may change, (3) new actors may be creatad, and (4) new
messages may be sanc.

If more than cne of theée actions take place, then their order is axbitrary.
The script describes how A changes (giving its wupdated actor state and

acquaintances), which new actors are crsated (giving, for each of chen,

N

3 actor

statz and its acquainctances) and which messages ares to be sent (giving, for each of
them, 1ts message value, its destination and its acquaintances). In the actor

- Iog

paradigm it is assumed thac, in computing the effect of the event [M - A], the
script uses only informaction that is "locally available" in M or A; more precisely,

the only "mailing addresses" chat may be used in specifying the acquaincances and

destinations of newly creatad actors and messages, and in updating the acquaintances
of the original aczor A, ares the addresses of (i) che actor 4, (1i) the
acquaintances of A, (iii) the acquaintances of ¥ and (iv) the newly creatad acctors
(the actors of (i) chrough (iv) are called the participants of che evenc [M - A]).

To distinguish becween the wvarious acquaintances of A and M, the scriptc uses

acquaintance names. We will assume that the set of acquaintance names is
partitioned into two disjoint subsets : the set of acror acquaincance names and the
set of message aguainrtance names. AcCtor acgquaintance names ars usad to distinguish
between acquaintances of actors, and % messags acquaintance names ars used o

distinguish between acquaintances of messages (message acgualntance names wers
called 'communicacion names” in [JR87]). Informally speaking (using cthe
theater-lika tarminology inictiaced already by che usage of terms like "accor and
"script"), acquaincance names distinguish between the different "roles® assigned o

(to be played by) the various acquaintances in the scripc.

i~

¢ is assumed that rcles
are uniquely assigned, and hence no ©wo acquainctances of an actor (or a message)
have rthe same actor acquaintance name (message acquainctance name, raspectively).

However, an actor A can be an acgquaincancsz of several actors or messages X,

XZ’ .. .,Kn. In this case, each of the Ki’s assigns its own acguaintance name o A.
Hence the assignmenc of names happens locally in each of the Xi’s. If ¥ is an actor
(or a message), B is ome of its acguaintances and B corresponds, with respect to X,
to the acquaintance name §, then B is called the §-acquaincance of X - this means
that 3 plays the "role" § in the script describing the behaviour of the actor X (or
the behaviour of the actor processing X, if X is a message).

We can now express the basic finiteness condicion about actor s;}stems that

we assume in this paper : it is assumed that theras are fixed finite sets of actor

statas, message values, actor acquaincance names and message acquaincance names for

the whole syscam.

The following example illustraces the way an actor systam oOperatas.

Example 1.

A
Lec IR be a finite subset of the real numbers and letc 811 &yt R-Randh : X ~1R be

functions. Lec £ : R -~ R be defined by f(x) = h(gl(x),gz(x)). Fig. 1 illusctracas

how the compuctation of the wvalue £(x) may be organized in an actor systam - the

computation is carried out in four sctages.

(2)

(3

(&)

The computacion is iniciaced by sending a message M to an actor F, which is

"specialized"” in computing £. M concains the argument, ¥, and a rafarence to the

actor C to which the ressult of the computaction has to be sent. In I's scripc

this rasference is designated by che message acquaintance name “"rasultc-To” -

hence C is the "result-zo" - acquaintance of M.

As a ressult of processing M, T creatas chrse new actors Gl’ G, and H. Thesa
- Lo -

are specialized in compucing g,, g, and h, respectively. Morsover, messages M

¥

and M, ars sent Cto Gl and G2 respectively. Boch M, and M, contain x and the
e — .

"rasulc-to" - acquainctance of both M, and MZ is H. C becomes the “"customer” -

acquaintance of H (lacer H will send its resulc to ics customer-acquaintance).

respectively, and send messages M, and M, ,

a 2 ol 1
Gl nd G2 process M, and M 3 A

L 2’

containing che values g, (x) and gz(}:), raspectively, to H.

[=n
(43
[

H processes M3 and MA' computsas h(gl(x),gz(x)), and sends the result to

"customer"-acguaintance, i.a2., to C, in a message MS.

dast m

‘y
F H resuir-to

1

custamer

Nmccoepenmmmmd
]

%fcmer

Figure 1.

i

G} Gz

E desr@

zix

Above we gave an Informal descripcion of an actor systam and the way it

operaces. In order to get a formal description we will proceed as follows.

(1) First, we will define the notion of a vocadulary for an accor system - chis

(2)

3

will simply formalize the global supply of all actor scates, all message
values, all actor acquaintance names, and all message acquaintance names in
the systam.

Then we define the noction of a configurarcion graph (for che given vocabulary)

Finally, we formalize the way cthat configuration graphs are transformed into

each other. In order ta do so we will use a (specific kind of) graon
’ x (=2

grammar, called acror grammar.

3. ACTOR VOCABULARIES AND CONFIGURATION GRAFPHS

In chis section we define the notions of an actor vocabulary and a
configuration graph. An actor vocabulary formalizes che global supply of all
actor statas, all message values and all acquaincance names in an aczor systam.

On the ocher hand, a configuracion grapa is a (node and edge labeled, directad)

graonh that formalizes an inscantaneous description (a snapshoc) oL an acctor

systam. Befora we give the formal definitions, we list the wvarious ;lements of
such an Instancanecus dascription and %e indicata how each of them i1s reprasenctad
in the corxresponding configuracion- graph.

(1) The basic elements of an aczor system ars actors and messages. Hence an
instancaneous descripcion should specify the secs of actors and messages
prasenc at a given momenc. In a coanfiguracion graph, actors and messages ars
rsprasentad by nodes : to each actor and o each message corrsstonds i node.

(2) At each momenc, each actor 1s in & certain actor stata and each message
contains a certalin message wvalue. In a configuracion graph, actor statas and
message values ara represencad by node labels. We assume chac the sets of
node labels corresponding to acTaor statas and message values, respectively,
are disjoinc. Hence one can distinguish nodes corresponding to acctors from
nodes corresponding to messages by their labels.

(3) At each moment, each actor (or message) X concains a set of malling addresses
of actors (callad the acguaintances of X). The fact that an actor A is an
acquaincance of X is represenced in a configuration grapn by a direcced edge
from che node corrasponding to X to the node corresponding Co A.

(4) At each moment, each acgquaintance of an actor (or a message) X corresponds o
a certain acquaincance name. Acquaintance names are reprasenced by edge
labels in a configuracion graph : 1f A is the §-acguainctance of X, then chere

is a 6-labeled edge from <the node corresponding co X t©o the node

corresponding Co A.

(3) At each moment, each message has at most one destinacion actar. Hencs we
allow messages thact have no destinacion - such a situation arises when an
actor tries to send a message to 1ts §-acquaintance at a moment when 1t has
no §-acquaintance. Noca that messages without a destination were not allowed
in [JR87]. We refar to Section 6 for a discussion of this point. In a
configuration grapvh, desctinations are indicated by edges labeled by che
"specizl symbBol” @ : 1f A is the descinaction of M, then there is a Z-labeled

edge from the node corresponding to M to the node corresponding to A.

The nocion of an actor vacabulary is defined as follows.

Definition 1. An accor voczbulary i1s a 4-tuple (A,M,A0,M0), where A, M, AQ
and MQ are finite sets such that ANM =7, AQNMQ = F and ¢ € MQ. C

For an actor vocabulary S=(A,X,AQ,MQ), the sets A and M are called the sec
of acror sczacas of S and the ser of message values of S, respectively. The sects
AQ and MQ are called the sec of acror acguaincance names of S and the ser or
message acquaintance names off §, raspectively. Also, A, M, AQ, and MQ are

denotad by' AS, M, AQS, and M.QS, respectively. Furcthermors, the sec of node
>

lapbels of S, demnotad by Z is the set A, U M_, and the sec of edge labels of S,

S S

An S-graph is a (Ig,A.)-labeled graph. For

SJ
denotad by AS’ is the sec AQS U MQS.

an S-graph g, the sec of acctor nodes of g, denoted by 4cc(g), 1s the sec

{(v & Nd(g) Iq’:g(v) = AS) and the serc of message nodes of g, denotad by ﬂsg(g), is
g .
the sec (v € Nd(g)]¢g<v) s M)
The noticn of a configuration graph is defined as follows.
Definition 2. Lec S be an actor vocabulary. An S-configuracion grapi is an

S-graph g such thact

(1) Ed(g) < (Msg(g) X MQS X Acc(g)) U (decz=(g) X AQS X Acr(g)), and

(2) for each v € ¥d(g) and each § € AS’ # Sc(v) < 1.
Qo

Example 2.

Lec S be the acctor vocabulary (4, M, aQ, MQ), where

3), M - {ml, o, m3}, AQ - (e, B, v} and MQ = (¢, 7, 2). Then the

f Fig. 2 is an S-counfiguration graph.

ag
[
M

e
o
o

Throughout the paper we use the £ollowing convencions for the picrorial
rapraesencation of S-graphs.
(1) Actor nodes ares drawn as boxes and message nodes ars drawn &s circles,

(2) The identity of a node is denocad inside the corrasponding box or circla.

[¢]

(3) The label of a node is denotad outside of che correponding box or circl

The class of all S-configuracion graphs is denoced by Conf(S). The following

tachnical result follows dirsccly from the definitiom.

Lemma 1.
(1) Lec g, g’ € Conf(S) be disjoinc. Then g @ g’ € Conf(S).

(2) Let g € Conf(S) and let h be a subgraph of g. Then h &€ Conf(S).

(3) Let g € Conf(S) and let (x, 2, y) € £d(g). Then, for each § &AS,

#F(§ (%) U é§ (7)) = 1. a

g g
Obserwve tchat, unlike in [JR87], we do not resquire thac, in a configuracion
‘graph, each message node has an oucgoing Z-adge - sae Sectiom 6 for a discussion of

this issue.

In this section we have described how an insctancaneous descripction of an

ok Cea

e

acmor systam can be reprasented by a grapk, called a configuracion graph. The
dynamic evolution of an actor system will be described in tarms of transformaticns
of configuration graphs (considerad in the next section). Graph grammars provide an
elegant way <o formalize chese transformaciocns. A parcticular oype of graph

grammars, called aczor grammars, will be introduced (in Section 5) for this purpose.

4. STRUCTURED TRANSTORMATIONS AND THEIR COMPOSITIONS

In this section we incroduce a mechodology for handling graph cransformaciocn
in che particular type of grapn grammars used in this paper. Since this mechodology
may be useful in a more general scudy of graph grammars, we will introduce itz
without specific referesnces to actor systams. In order to explain its main lines,
we first recall some basic notions from the standard approach for handling graph
grammars.

Within the standard approach (see;, e.g., [ENRR87]), a graph grammar consiscs
basically of two components : a £finite set of produccions and an embedding

mechanism. Roughly speaking, & graph grammar production is a pair = = («,3) of

graphs; a is called the lefrz-hand side of = and B is called the right-hand side of
n. The production (a,8) is "applied"” to a graph g by replacing an occurrence of «
in g (i.e., a subgraph of g isomorphic to «) by an isomorphic copy, 8’, of 4.

However, an obvious problem arises in doing so : how shéuld £' be =mbedded into cthe

remaining part of g; i.e., which edges should be established becween nodes of 3’ and

nodes of g-a ? For a given graph grammar these "embedding edges” ars devermined by

. et - Py

the embedding mechanism - usually, one may see these edges as being "inhericad!

from g. The situation is illusctraced by Fig. 3, where the embedding edges are given

by dotzad lines.

Loy]
1

The mechodology used in chis paper, however, 1s somewhat different. The

idea is that the productions of a grammar specify primitive transformactions, which

are considersd to be "valid", and thac one defines a number of operacions which,
when applied to wvalid transformations, yield wvalid transformactions. For each
transformacion, its initial graph and 1ts result graph are given explicitly,

together with a detailed dascription of the relationship becween the nodes of the
inizial graph and the result graph - therefors such a transformation will be called
a scruccured ctransformacion throughoutc this paper. One may view a structured

transformacion as a dascripcion of the effect of a rewriting process which, when

-

applied to its initial graph, yields its result graph. To rewrite a given graph g,
one has to use a structured transformation the inicial graph of whié:’n equals g -
such a structured transformation will be called applicable to g.

In this new methodology the embedding mechanism is incorporated in the
nocion of a sctructured transformation. The operations on structured transformations

are defined in such a way thac, when a new scructured transformacion d is

construcctad from existing omnes, the embedding mechanism of d is constructad from the

embedding mechanisms of the scruccturad transformacions d is builc from. AL the end

of this secrtion we explain how the "application to a grapa" of a stTuctured
transformation is described in our formalism, and we briefly discuss the notiocn of a
derivatcion in this contaxt.

= -

For a pair of finite alphabecs (Z,4), a (Z,4)-structured transformacion

consists of an initial graph and a result graph, cogecher with an "idencification

function” and an "embedding relacion”. The lacter two describe a relationship
between nodes of the initial graph and nodes of <the result grapi. More

specifically, the idencificacion function shows which nodes of the rassult graph ares
idencified with nodes of the initial graph - informally speaking, these are "old"
nodes, in contrast with "new” nodes which have been "creatad" in the transformation
process. Morsover, if a structurad transformation d is -"applied" to a graph (of
which che initial graph of d is a subgraph), then the identificacion funccion and
the embedding ralacion decarmine the set of embedding edges in the result graph.
The idencificacion function, on the one hand, shows how incoming edges ars
transferrad from nodes of the initial graph of d to nodes of the result graph of d.
The embedding ralation, on cthe ocher hand, specifies how outgoing edges of nodes of

the inmicial grapa ars transferred to nodes of the result graph. The neocilon is

formally defined as follows.

Definicion 3. Let I, A be finite sets. A (Z,A)-scrucrured cransrormation
is a 4-cuple d = (g,h,iden,Zmb), whers g and h are (Z,A)-labeled graphs, iden i1s an
injective partial functiom from ¥d(g) intce Nd(h), £fmd C (Nd(g) x &) X (Nd(h) X A),
and the following condition holds. |

For each x € Nd(g), v € ¥d(h), g, § € 4 and ¥ € Dom(iden) such that (x,u,7y) € Ed(g)

and (v,§) € Emb((x,u2)), (v,§,iden(y)) € Ed(h). a

For a (Z,a)-strucctursd cransiormation d = (g,h,iden,Zmp), g is called tche
inicial graph of 4, h 1is called the resulc grapA of d, iden is called the
identificacion funccion of d and Emd is called the embedding relacion of d. Alsc,
g, b, iden and EFmd ars deunctad by in(d), res(d), idend , and Embd , respectively.
In order to simplify our nocacion we will wrice Emd(x,u) racher than £ab((x,p)), for
X € Nd(g) and s € A. The class of all (Z,A)-structurad transformations is denotad by
T-(Z,A). Structured transformations d and 4’ are disjoinc if in(d) and in(d’') ars
disjoinc, and res(d) and res(d’) ares disjoinc.

The notiom of a (Z,4)-sctructured t:ansformatioﬁ is illustzzcsd by Example 3

- all examples of struccured cransformacions ars given in Seccion 7.

Remark 1. Iz is importanc to notice thac, £for a (Z,4)-struccturad
transformacion d = g,h,iden ,Zmo), its embedding relacicn Ezbd may contain

specificacions for cransfarring adges thac ars not prasent in g, meaning that thers
may exisc x € ¥d(g), v € ¥d(h) and u,5§ € & such cthat (v,§) € £mo(x,x), buc for mno
7 ede(g), (x,2,7) € Ed(g). On the other hand, there may be edges in g that ars noc
being cransferresd by Embd, meaning thac there may exist (x,s,y) € £4(g) sucnh thac,
for no pair v € ¥d(h), § € 4, (v,§) € Emo(x,u). Moreover, edges with targets noC in

the domain of idend are not transferrasd.

Note tchat, for a (Z,A) strucrursd transformacion d, idend togather with Embd

define a ralacion becween the edge-universe of in(d) and the edge-universe of
raes(d), wnich shows how "poctancial" edges of in(d) are inheritad by (or teransfarred
to") res(d). Using this "edge-inheritance reslacion”, one can see how the actual
edges of in(d) ares inherited by res(d). This is formally defined as follows.
Definirion 4. Lec T, A be finite sets and lac d € Tr(Z,a). Then the edge-

inhericance rslacion of d is the relation Ima C Eun(in(d)) X Eun(res(d)) defined by

InA = {(((x,z,7),(V,§,w)) l (v,§) & Embd(x,p) and w = iden(y)).

For a (I,A)-structured ctransformacion d, its edge-inheritance relaction is

denotad by Im'zd.

Remari 2. Let T and A be finites sets and let d € Tr(Z,A).
Using the edge-inheritance relacion of d, the condition from Definiticn 3 can be
equivalencly scated as Im'zd(Ed(g)) C Ed(h). Nocte however that idend , together
wicth Emb, contain more informacion than J.':zjzd in the sense that, in general, chey

d

cannot be recoversd from Inhd. a

We move now to define operatioms which, when applied to (Z,4)-structursd

transformations, yield (Z,4)-struccursd transformations.

Cur .first operacion can be informally explained as follows. Let k be a
grapn and lsc d be a structured transicrmaction such that in(d) = k. For an

augmentation k’ of k, there exists a minimal (wich respect to the sec of edges of

;

the rasult rapn) structured cransformation 4’ such chat iaend, = idend ,

Embd, - Embd , res(d') € Aug(res(d)), and in(d’) = k’. Such a structursd transIor-

mation 4’ is formally defined as follows.

Definirion 5. Let T and A be finite sets, let d € Tr{(Z,a), and lec
g € Aug(in(d)). Then the g-augmencacion of d, denotad by dug(g,d), equals
(g,h,idend,Embd), whers h € Aug(res(d)) is such that E£d(h) = Ed(res(d)) v Inhd(Ed(g)).

c

It is easily seen thac the following lemma holds.

\

Lemma 2. Letc T and A be finits sets, lec d € Tr(Z,A), and let g € dug(in(d)).

-

Then 4dug(g,d) € T=(Z,a). a

[

A (T,A)-scruccured cransformation 4’ is an augmencaciom of 4 L

=

in(d’) € dug(in(d)) and d' = Adug(in(d’),d). For a (Z,A)-structurad transformation

d, the sac of all augmencations of d is denocad by Aug(d). Observe that Adug may bhe
considersd as an operation on (Z,4)-structured transformations. The notion of

augmencation is illustrated by Example 4.

Our second operaticn can be informally explained as follows. Let g be a

graph, and lec g, g9 be graphs such thac g = g, & &;- Lat dl’ d.z be structurasd

transformacions applicable to g

1+ &, raspectively. Then the concurrsnct composition
da -
of d, and dz is the (unique) structured ctransformaction applicable to g such thac,

when rastrictad to ic yields 4 and, whem restricted to g,, it yields d,..
51 1 ’ $2 2

Thus, intuicively speaking, cthe concurrent composition of d.1 and dz is the

structured transformation obtained by putting togecther dl and d.2 in such a way thac

‘they do not "intarfare” wich each ocher. Formally, it is defined as follows.

Definicion 6. Let I, A be finite sets and lec dw’dz € Tr(Z,A) be disjoinc.

Then the concurrent composition of ci1 and dZ’ denctad by dl ¢z d,, equals
(in(d,) 9 in(d,), res(d,) & res(d,), iden., & iden. , Emb 8@ Zmo .).
1 2 L 2 d, d, d.1 d,
P

i1l b

The notion of concurrenct composition is illustraced by Example 5.

that the concurresnt composition of two disjoinc

B

The Zcllowing rssultc shows

(Z,A) -strucrturad transformacions is a (T,A)-structured transformation.

fa}
%

J. Lec I, A be finits sets and lec dl’ d, € Tr(Z,A) be disjoint. Then

- 4
P

Proof. Lat £ = d, ¢cc d,. Then I[nhA. = (Inn 8 I Jz) U ‘(. U K,, where
L — 72 i Z c?..L 2 2

(((K,p,y);(v,5,w)) | x & ¥d(in(d])), v € Nd(in(d,)), v € Nd(res(d)),

'_]’(:
|

W & Nd(res(d,)), u,§ € A, (v,8) € Embd (x,2) and w = J.devz CY) and

(((x,8,7),(v,8,w) | x e Nd(in(d,)), y € ¥d(in(d})), v € Nd(rss(dz)),

7~
i

w & Nd(res(d,)), u,§ € AS, (v,§) & Embd (x,8) and w = idend (y))
2 1

Obviously, Kl(Ed(in(f))) -~ KZCEd(in(f))) = §. Hence from

Inhd (Ed(in(dl)) < Ed(res(dl)) and Ihhd (Ed(in(dz))) [Ed(res(dz)) it follows

2

S

Inhf(Ed(Ln(f))) C £d(res(£)). This proves the stactament of the lemma.
The following propercies are easily verified.

Lemmz 4. Let I, A be finits sets and lec dl’ 2 :1,

s

that d. and dZ are disjoinc, and f1 and £, ars disjoint.

(L) If fT & Aug(dl) and f2 e Aug(dz), then f1 cc f2 s Aug(d1 ce dz).

-

(2) d; ee &, = d, cc 4.

(3) Lec d3 € Tr(Z,A) be such that dw' dz and d3 ares palrwise disjoint.
(dp g2 dy) g2 dy = & ce (4, &2 4y

Qur last operacion is that of sequential compeosition.

is simple : L£ d, is a sctrucrcurad transrformation applicable to g

i
&

d is a structursd ctransformaction applicable to h and yielding Kk,

2
sequential composition of d, and dZ results by extending d1 by 4,

h

: 1t is applicable to g and yields k. It is

dy): z

Derinition 7. let Z, A be finite sets and let dl,d2 e Ir

res(dj) = in(d,). The sequenrial compositiom of dl and dZ’ denotad by dlﬂgg d2’

(7 a i idar Emp 0 Emf
equals \Ln(dl), hus(dz), Ldsnd70 -de“dl, zmod7 «madw).

The notion of sequential composition is illuscracted by. Example 6.

The following result shows thac the sequential composition

(T,A) -scructured transformations is a (Z,A)-structured transformacion.

(first 4

Then

then

-
i

ormally defined as follows.

r

thac

d £ fz € Tr(Z,A) be such

Its intuitive meaning

g and yielding h, and

PR

cile

then

(Z,A) be such thatc

oL

Lemma 3. Lec Z,

A be finize sets and let dl’ d2 € Tr(Z,A) be such that

in(dz) - res(dl). Then d.1 sa d2 e Tr(Z,a).

rooL. Lat £ = d1

Inh, o Ihhd = (((=,4,7)
2 1

and hence, Ina. = InA a8
bl d.
r4
of the lemma holds.

t 1s easily seen
Lemma §. Lec Z,

_thac in(dz) - res(d,) and

=

N
‘.l
p—g
—
h
n

(d) £g dp) 59 dy =~ d; 39

Hh
2]
g

. € Aug(d7) and L,

sg 4 It is easily verified that

5
(v, 8,w)) | (v,8) e Emb (Embdl(x,p)) and
w = iden

)

Hence, it follows from Remark 2 that the statamenc

2
(idendl<y))},

a

that the following lemma holds.

A be finite sets, and lec d7’d2’fl’f2 e Tr(Z,a) be such

).

izz(fz) = ras(t

1

€ A th £ £ .
€ ..ug(ciz), them L, sg 2, € Aug(d1 sq dz)

(2) Lec d, € Tx(Z,A) be such thac i:z(dz) - res(d7). Then

joint and 4, and £, ars disjoint, then

2 TE 4 ;£ 4

(3) 1= d; and Z, are & n 2 2

(d) 59 d,;) ce (£, sg £,) = (d; ec £;) sg (d, cc £,) =

The properties from Lamma 6 are illustrated by Examples 7, & and 9,
raspectively.

concurrentc

It is easily wverified chat che operacions of augmencacion,

composition and sequential composition "behave well" with respect to ilsomorphism.

The notions of a homomorphism and an isomorphism are defined as follows for labeled

gravhs.

Definicion 8. lez I, A be finite sects and lec g and h be (Z,A)-labeled

graphs. A homomorpaism from g inco h is a node-label preserving function

& : Nd(g) — Nd(h) such that fed(Ed(g)) C £d(h). A hnomomorphism § from g intse h is

. L - R A . .
an lsomorphism from g onco h if £ is a homomorpaism from h into g. a

If thers exists an iLsomorphism from g onco h, then g and h are isomorphic.

It is easily seen chat a homomorphism £ from g onto h is an isomorphism from g onto

By

h if and only if & is bijective and fed(Ed(g)) = Fd(h).

The notion of an Lisomorphism of scructured transformations is defined as

follows - it expresses the fact that two structured transformations differ only by

‘the choice of nodes for their initial and result graphs.

Definition 9. Let T, A be finite secs and lec d, d' € Tr(Z,A). A pair

(n,8) of isomorphisms (of (IZ,A)-labeled gravhs), 7
& . res{d) — res(d'), is an isomorpaism (of (IT,A)-structured transformatioms) from d

-1

cr s e 1] -1
onro 4d' 1f iden = £ 0 iden 6 o© and £, = 6 Emb o . |
ide 13 deﬂd n nd Zmd,, EA @0 4 (nA)

If d, d’ € Tr(Z,A) ars such that thers exists an isomorphism from 4 omto 47,

then we say that d and d’ are iscmorpaic. It is easily seen thac, if (n,§) : 4 - 4’

is an isowmorphism, then Inhd, - ((ned(e),sed(u)) [(e,u)] Inhd}.
The proverties of the following lemma obviocusly hold.

Lemma 7. Let Z, A be finite secs.
(1) Lec &, d', £, £ € Tr(Z,A) be such that thers exist funcciouns

n Nd(in(d)) — Nd(in(£)) and & : Nd(res(d)) = Nd(res(f)) such that (n,§) is

both an isomorphism from d onto £ and an iscomorphism from 4’ onte £’. Then

d’ € 4ug(d) if and only if £’ € dug().

(2) Lect dl’ dz, fl' fz € Tr(Z,A) be such thact dl' d2 are disjointvand £

disjoint. Let (ql, cl) : d.1 - fl and (nz, 52) : dz - fZ be isomorphisms. Then

1 fz are

- T 3 i peg £
(77l 8 Moy &y @ 52) is an isomorphism from d1 ce dz onto £, ec fZ‘
£ - - - i
(3) Lec dl’ dZ’ £ fZ € Tr(Z,A) be such thac res(dl) Ln(dz) and res(fl) Ln(fz).

Lac (n,v) d.1 - fl and (v,&) : dZ - fz be isomorphisms. Then (7n,8) is an
isomorphism from d, sg dZ onto fl sa fZ' a

We will define now the "most elemencary" strucrtured transformactions, called

node replacemencs, which correspond ta "rewriting processes” cthat are trivial in the
sense that no rewriting takes place. Moreover, the initial and resulc graphs of a

node replacement are discrste omne-node graphs. The noction is formally defined as

follows.

Definition 10. Let %, A be finits sets and lec d € Tr(Z,A).
d is a (Z,A)-node replacemenc 1f boch in(d) and res(d) are discrece one-node grachs
such that the following holds. Let N¥d(in(d)) = (v} and Nd(res(d)) = {(w}. Then

(@),

(L) éin(d)(v> = ¢res(d)

(ii) idend = {(v,w)), and,

(1ii) Emb = (((v,§),(w,8)) | § & a).

W}

d

The (Z,4)-unode replacement d such that ¥d(in(d)) = (v}, N¥d(res(d)) = (w} and

¢in(d)<v) = 1 is denotad by Nrep The class of all (Z,A)-node replacemencs

(v,w,2)"

is denotad by Nrep(Z,a).

(L

(3)

Remark 3. Letc Z, A be finites sects.

Lec g and h be (Z,A)-labeled graphs and lec v : g — h be an isomorphiéﬁ. Lacz
- F noi 5 -
Nd(g) {vl, vz s vk)‘ For each 1 & (1,...,k}, lec @g(vi) 21. Then

(g, b, 7, 7A) e Tr(Z,A) and, morsgover,

(g, h, v, v.) € dugliisep cc Nrep I

[#]

... cc Nrep

).
(v, 7(m) 2)
Notice that it follows from (1) and (2) of Lemma 3 chat the order in which the

concurrent composition is applisd to the node replacemencs Nrep<v S, 2.9 is
’ i’ i77L

irralevant; therafores we may writz the exprassion

cc ... cc Nrep wichout

Nrep ce Nre
(7 (n) 2)

Crv(o) 2 2 T g vy) =

parantheses.

x

For each (T,A)-labeled gravh g, the (I,A)-strucctured transformacion

(g, g, Id, ., Id.., s denctad by Icr
NO = Nd(g)v Na(g)xA> L Y g
For each d € Txr(Z,4), Icrfq(d) sg d = d sa I::*as(d) d. c

The class of (Z,A)-scrucctured transformations generatad by (builc from) a

given set of "primitive® (I,A)-structursd cransformations is defined as follows.

1

iniza sets and sz P be a setc oI

(2}

lLaec Z, A be

(Y

Definicion 1

(Z,A) ~structurad transformations. The class of (I,4,2)-sctrucrured cransiormacions,

denocad by Tr(Z,A,P), is the smallest subclass, X, of Tr(Z,a) such that

(L)

Nrep(Z,A) C X,

(3) for each 4 € X, A4ug(d) ¢ X,

(&) for each d, d’ € X such thac d and d’ are disjoint, d cc d’ € X, and

in(d’) = res(d), 4 sg 4’ € X.

(5) for each d, 4’ € X such thac

Example 10.

Lec T and A be the alphabects given in Section 7 and let d'l’ d, be the (Z,4)-

structurad cransformations from Example 3. Then the (Z,4)-sctructursd cransiormation
d,a given in Example 10 of Secztion 7 is a (2,A,P)-structurad transformation, whers

P = by = Nre
{dl’ d,). (Observe that d.6 £ Aug(Nr ?(v-,v az)

The following result shows chat the definition of Tr(Z,A,?) is compatible

11

wich our notiocn of an isomorphism of scructuraed transformations.

Lemma 8 Leac I, A be finirs secs and let d € Tr(Z,4,R). For each
£ € Tr(Z,a) isomorpnic with 4, £ € T=x(Z,4,P)
Proof. The scatesmenc follows from (1) of Remark 3 and (5) of Definition ll.

a

The particular type of gravh grammars we use in this paper is defined as

follows.

Definirion 12. Let Z, A be finite secs. A (Z,A)-grammar is a systam

(P,Inic), where P is a finita sec of (I,A)-structurad transformacions and Inic is a

a

~y

The c¢lass of (Z,A)-structured transformations correspouding to a given

(Z,A)-grammar is defined as follows.

Definition I3. et I, A be inica sers and lec G = (P,Inic) be a
(Z,A) -grammar. A G-scruccured transformacion is a (Z,4,P)-structursd transformacion

d such thac in(d) € Inic. et
The class of all G-structured transformations 1s denotad by Tr(G).

We conclude cthis sectiom by (1) relating the ctradicional notion of "applying
a production to a graph” To -our noticn of a structured transformation, and (2)

discussing che notion of a derivation.

(1) The notion of a sctructured transformaction d describes the effacz of a
transformacion process. An essential property of a transformaticn process
cransforming im(d) inco res(d) is that 1t may be "applied" to a graph g of whick
in(d) is a subgraph. Hence it is naturzl to ask how a structured transformation 4
can be applied to a graph g of which in(d) is a subgraph. In our framework such an
application would be described by a structursed transformation in wnich In(d) is
transformed intc res(d), and in which g - in(d) resmains unchanged. Formally, this

would be the structursd transformation Aug(g,(d cz Itrg in(d)))' This sicuation is

illuscracaed in Fig. &.)

Augle,(d cc Itr i)

g-/n{d)

Cnce we will have rslacsad che notion of "a production to the nocion of a
primicive event transformaction (see Section 3), the above explains how the
application of a production to a graph can be described in our framework. As a

mattar of fact, a primicive event transformacion is a special case of a structurad

transformaticn (ssee Definition 13).

(2) In <the standard approach to graph grammars, the noction of a derivation
formalizes (in quits a detail) how a rewriting process proceeds step-by-stap in
transforming ics inicial graph into its resulc graph. The notion of a structurad
transformation, introduced in this section, 1s weaker (contains less informacion)
than a derivacion : iz specifies the initizl and the ressult graphs qf a fem:i*:ing

process, together wich the relacionships becween nodes of these graphs needed Zor

the composition of sctructurad transformations, but 1t does not specify how the
rewriting process is realized.
If desirsd, cthe notion of a derivation can be defined in the framework

presenced here as follows,

Definition l14. Letc Z,A be finite sets and lec P C Tr(Z,A).

A (Z,A,P)-derivacion is a saquence dl""’dn' n = 1, of struccured transformacions

such thac

(1) for each 1 € (1,...,n}, di e Tr(Z2,A,P) and di e Aug(fi), whers £, € Tr(X,4,2) is

obtained by composing elements of P U Nrep(Z,A) using only che operation cc,

(2) for each 1 € (1,...,n-1}, res{(d.) = in(d. ,).]
L i+1
Observe <chat the =eslemencs dl,.,.,d.r1 cE a (Z,A,P)-derivaction as above
corraspond to scaps of a derivation in a classical sense. One can view a

(Z,A,2)-derivacion as a realizaction of the (Z,A)-sctructured txransformacion

d = d; sg ... 5g 4. Clearly, in general, che same d may be realized Dy ocher
(Z,A,P)-derivacicons. As a matzer of fact, it can be shown that the following holds.

Theorem 1. Lec Z, A be finits sets, let 2 ¢ Tr(Z,A) and lsc d € Tr(Z,4).

Then d € Tr(Z,A,P) if and only if thers exiscs a (Z,4,P)-derivacion d.,...,d_ such
o |98
that d = d, sgd, ... sgd. =
1 24 %y g

Since we ralate, in Secction S, the notion of a production to an element of

P, we get in this way an intarprectation of the usual noction of a derivation in our

framework.

The way (1) of Definition 14 was formulatad allows comcurrent composition oZf

several elements of P within omne step of the derivation. If one wants Co get an

-
[

analog of cthe classical sequencial notion of a derivation (where one production i
applied in onme derivation scep), then (1) would be replaced by :

(1') for each i € (1,...,n}), d, € Tr(Z,A,P) and di € dug(£.), where £.& Tr(Z,4,F) is

i
obtained by composing ome element of P with elements of Nrep(Z,a), using only

the operacion cc.

S. ACTOR GRAMMARS

In this section we use the methodology of the previous section o describe
the dynamic behaviour of actor systams. We define the notion of an actor grammar,
and consider the sat of struccturad transformacions associated with it. We start by
defining *primicive® struccturad transrormacions, called primitive aven
transtormactions, which formalize the not;on of an event (hencs, the execution of a
seripct in an actor sysctem). Primitive event transformactions ars the basic building
blocks for comstructing structursd transformations using the threse basic operations
introduced in Seccion &.

Befora we formally incroduce. primitive event cransformacions, we informally
describe their various components with the underlying interprecation in cthe
framework of actor systems. Lac d be a primicive event transformation describing an
event ¢ = [M - A] in an actor systam (i.e., the processing of a message Y by an
accor A). We do not assume that M is che only message or that A is the only actor in
the systam, hence we consider d as a building block of a "largsr” structurad

transformacion.

(1) The initizl graoh

All actors and messages differenc from M and A are not affected by the
event «. Hence, the nacurzl choice for the initial graph of d is =z ¢-handle
consisting of a node x corresponding to M, a node y corrasponding to &, and a Z-edge
from % to y. Since a ¢-handle is determined (up tc an iscmorpnism) by the labels of
i1ts nodes, in(d) is detsrmined (up ©o an iscmorphism) by the pair (m,a), whers m is

the message value of M and a is the actor stata of A. This reflects the fact tharc,

in processing a message by an actor, the actions to be taksn are decided "locally*,

ounlvy on the basis of the actor stace and the message value.

(2) The result graph

The result graph of d describes those actors and messages which are either
affected or created as the result of the event ¢, as well as the relacionships
becween them. Hence the nodes of ras(d) corresspond to (i) the actor A, (ii) the
newly cresacad actors, and (iii) the newly creatad messages. The corrasponding node
labels represent the uvdatad actor state-of 4, the initial actor sctates of the newly
creatad accors, and cthe messages values of the newly crsaced messages. Moreover, the
edges of res(d) describe which of thess actors and messages are acquaincances or

destinacions of each other. In our terminology this means that ras(d) is a

(%}
g1

configuracion graph. One of 1ts nodes will be the updactad reprasencation of A.

(3) The identificacion function

The identificacicon funcrtion describes which nodes of ‘res(d) may be
identified with nodes from in(d). Since the message M "disappears” as a result of
tha event ¢, idend is defined only on the unique actor node y of in(d). Moreover,

since incoming esdges of y reprasent references to A, all incoming edges of y must be

transfarred to the node idend(y) of ras(d).

(&) The embedding relation

The embedding relaticn of d describes how the script uses acgqualntance names
to transfer acquaincances from A and M to actors and messages corresponding to nodes

oL res(d). More specifically, lec z € Nd(in(d)), v &€ Nd(res(d)); let p and § be

acquaintance names. Let Z be the actor or message (i.e., A or M) corresvonding to z
and let V be the actor or message corrasponding to v. Then ((z,s),(v,8)) € Embd if
and only if the script says that the §-acquaincance of V (or the destinaction of VU,
if V is a message and § = £) is che up-acquaintance of Z.

Comsequently, the assumpcions about actor systems imply thac Embd(z,ﬁ) -
for each z € Nd(in(d)), and that the set of participants of (M - A] corresponds to
the union of (i) the set of nodes of ras(d), and (ii) the "curgoing neighbourhood"
of in(d), i.e., the set of targecs of edges that have cheir sources in in(d).

We mnow define formally the notiom of a primicive event transformation. For

)-structurad transformations, we writs

an actor vocabulary S and a sec P of (ES,A.
. -
(S) instead of -r(ZS,AS) and Tr(S,P) instead of Tr(ZS,AS,?).

Definicion 15. Lat S = (A, M, AQ, MQ) be an actor vocabulary and let

i

s a orimitive S-evenc cransrformacion 1if in(d) is a Z-handle and the

I

d

=(S). d

-

following condicions hold. Lew Nd(in(d)) = (x,y) and Ed(in(d)) = ((x,2,v)}).
(1) %2 € Msg(in(d)) and y € Acc(in(d)),
(2) res{(d) € Conrc(s),

(3 Dom(idend = {y} and idend(y) € Accz(res(d)),

(&) Embd is injective,

(3) for each ((u,z), . (v,§)) € Embd,
(3.1) p = g,

(5.11) (u,u) € ((x) x MQ) VU ((y} x aQ),

(5.1i1) (v,8) € (Msg(res(d)) x MQ) U (dct(res(d)) x AQ), and

(5.47) §_,_ gy (D) = 8. : a

Example 11.

Lez S be the actor vocabulary from EZxample 2. Then the structured transformacions

d, and da from Example 3 are primitive S-avenc transformacions.

i
-

It is easily verified chat the following technical result holds.

Lemma 9. Lec S be an actor vocabulary and let P be a set of primicive
S-event transformations. Let d € Tr(S,P). Then
(L) Dom(idend) 2 4cc(in(d)).
(2) Idend C (Acz(in(d)) X Acc(res(d))) U (Msg(in(d)) X Msg(res(d))).

(3) Emb ., is injective. a

d

We ars ready now to define the notionm of an actor grammar.

paes

Definition 16. Let S be an actor vocabulary. A (ZS , AS)~grammar G= (P I[nic)

is an S-acrzor grammar if each p € P is a primitive S-evenc transformacion. a
Zxample 12,
Let § be the actor vocapbulary from Example 2, lec dl’ dA’ d. . be che structurasd
B

transformations from Example 3 and Example 10 and let g be cthe S-comfiguracion gratn

from Example 2. Then ({dl, d,},(g})) is an S-actor grammar and d 4 e Tr(G).

[

In our formal framework, scructured cransformations of actor grammars model
computacions of actor systems. More pracisely, they describe the way such a
computacion changes the configuration of the system, by ctransforming the
configuration graph that describes this configuracion. Obviously, the result of
such a transformation should again be a configuration graph. The next rasult shows

that this is indeed the case.

Theorem 2. Let S be an actor vocabulary and lec G = (P,Inic) be an S-actor

grammar. Then, for each d € Tr(G), res(d) € Conf(S).

Proof. Lec S = (A,M,3Q,MQ). For an S-graph g, let Allowy denote the set
@

(Msg(g) x MQ) U (Acc(g) x AQ). A scrucctured transformacion d & Tr(S) will be called

a well-bDehaved structured transformacion if

We
Pl

22

It

(L)

—~
3
-~

(3

(4)

(3)

It

) € Allow and

(1) Embd(Allowin res(d)’

(d)
(ii) for eaéh ((=,8),(v,8)) Embd such thact pin(d)(x) - G, 5:es(d)(v) - g,

show cthat the following two propositions hold for each d € ITr(S,P).
d is a well-behaved structursd transformacion.

if in(d) € Conf(S), then res(d) &€ Conf(s).

is easily seen cthac the statamenc of the theorem holds if P2 holds for each

Tr(S,2), because Inic C Conf(S) and, for each d € Tr(G), in(d) € Inic.

-

To show that Pl holds for d, consider the following cases.

d € ¥Nrep(S). Then, obvicusly, d is well-behaved. B
d € P Iz follows easily £rom Definition 15 thac d is well-behaved : the
conditciocns (i) and (ii corraspond to (5.1ii) and (S.iv) of Definicion 13,

respectively.

d € Aug(d’), Zor some d' & Tr(S,?) such that 4’ is well-behaved.
. - g

Then £mo (Allow. C Allow . because Emp, = Emb , .

- ghe= Ln(d)> = res(d)’ d d

fe! har 1 ' Fmr h ot =
On the other hand, lec ((x,u),(v,§)) & Emb be such thact “in(d}<x) g.

ollows £from u.

ix 1)

)(X) = J and in(d) € Aug(in(d’))

Then (v,§) = ambd,(x,p). Ic in(d
s ol ince ' ois v -bet , - t follows
cthac #in(d’) g and, since d’ 1is well-behaved sres(d’)<v> 3 It follo

from the injectivi of Emrf aa of Lemma 9) and Lo (x) chac
nje ity of Zmo, (s (3) ;xm(c>() a

§) = and hences, that d is well-behaved.
res(d)<) 2 !

d = dl cc dz, for some dT’ d, € Tr(S,P) such thac dl and dZ are

h

2
disjoint and well-behaved. It esasily follows from Definition 6
that d is well-behaved.

d = d, sg for some dl' d2 € Tr(S,P) such that in(dz) = res(d,),

d r
2
and dl and d2 are well-behaved. It easily follows from Definicion 7

that d is well-behaved.

follows from (1) through (5) chat Pl holds for each d € Tr(S,P).

6. RELATIONSHIP? TO THE APPRCACH FROM [;TR871.

Initially, this paper was intended as the "full version® of [JR87]. However,
during the work om the current paper we have changed the notion of a configuration
graph and, quite considerably, the wmethodology of defining derivations and

structurad transformations in actor grammars.
(1) The notion of a configuracion graph.

In [JR87], each message node of a configuracion graph was requirsd to have
an oucgoing ¢-edge. Hence we did not consider actor systams in which 1t 1is
possible to send messages which do not have a destihacion actor_’ It curns out ‘ehac
changing the notion of a configuration graph in cthe way we did it in this paper can
be considered as merely a tachnical convenience. One can prove thac, for each actor
grammar G, thers exists an actor grammar G such cthac the class of all G-scructurad
transfcrmacions equals (under a suitable coding) the class of all G-structured
transformations such that their initial and resulc graphs are configuration graphs
whers each message has a desctinmacion. The proofiis somewhat invelved and for this

reason we present it in a separata, forthcoming paver (see [JR 88]).
(2) The mechodology for defining derivacions and scrucctured transformacions.
In [JR87] we used the "standard appreoach” towards graph grammars and the

derivacions in them : first we defined the (concurrsnt) applicacion of productions

to a number of disjoint occurrences of their left-hand sides in a graph, yielding a

(81

direct derivacion step. Then we defined a derivation as an itaracion of direc
derivation staps. In defining a direct derivation step we distinguished clearly
between a replacement (of the left-hand side by the right-hand side) and an

embedding (of che right-hand side in the rest of the graph).

() To show that P2 holds for d, assume thac in(d) € ConI(S). Considar the

following cases.

(L) & € Nrep(S). It is easily seen that res(d) € Conrf(S).

(2) d € 2. Since d is a primitive S-eventc transformation, res(d) € Conf(s).

(3) d € 4ug(d’), for some d’ € Tr(S,P) such that P2 holds for 4'. It follows from

(2) of Lemma 1 thac in(d’) € Conf(S), and, since P2 holds £or d4d',

res(d') = Conf(S). Now lec & = (v,§,w) & £Ed(res(d))-£d(res(d’')). Then

=

o~

e & Inhd(Ed(in(d))). Since, for each (x,uz,y) € Ed(in(d)), (x,z) € Allow, in(d)"

=

and d is well-behaved, (v,§) € Allow;es(d>. It follows from (2) of Lemma 9 chac

(1) of Definition 2 holds for res(d).

To show that (2) of Definicion 2 holds for res{d), lec v € ¥d(res(d)) and

5§ & AS. If §*as’d)<r) C Ed(res{d’)), then the condicion holds bgpausa

res(d') € Conr(S). If, on the other hand, there exists an edge

g2 £ Srns(d)<v) - Ed(res(d')), wnere e = (v,§,w), then thers exists an edges

u = (x,s,7) € Ed(in(d)) such that e € Inbd(u). Morsover, it follo from the

injectivicy of Embd and in(d) € Conf(S) that there exisTs at mest omne edge

= in(d uch th 5) a
€ Ed(in(d)) such that Ores(d)<v) N In“d(u) = J. Hence
((v)y = {e ince Inh, = Inh,, and
Ina, (,J(in{(d)) n o (d)\w) {e}. Sinc 1nd zaa, nd
‘und,(”d(kr(d))) € Ed(res(d’)), it follows from e ¢ Ed(res(d’)) thac

@ Ed(in{(d’")), and hence, pin(d')(x> = G, Since d’' is well-behaved,

(- 24 2 - . lud i3 o finitdi 2
5res(d’)ﬁv) ag. enc Srcs(d)<v) (e} We conclude that (2) of Definition

holds for res(d), and hences, that P2 holds for d.
(&) 4 = dl cz dz, for some dl’ d.2 € Tr(S,P) such cthat P2 holds for d1 and dzw
Since in(d) € Conf(S), it follows from (2) of Lemma 1 thatc
in(dl), in(dz) € Conf(S). Hence res(dl), res(dz) € Conf(S) and, by (1) of
Lemma 1, res(d) € Conf(S). Hence P2 holds for d.
(5) d = d, sag d2' for some dl’ dz € Tr(S,P) such that P2 holds for dl and d,. Since

res(d,) = in(d,), P2 holds for d.

It follows from (1) through (5) thac P2 holds for each d € Tr(S,P). This compleces

the proot. d

In the prasent paper, however, we investigate actor grammars via the notion
of a structurad transformaciom. In this approach the "productions” of a grammar ars
a priori given, "primitive” structured ctransformatiocns, which play the role of
basic building blocks. The class of all structured transformations corresponding to
a given grammar is bﬁilt from these basic building blocks and from node replacements

by the operations of augmentation, concurrant composition and sequencial

composition.

It is easily verified that che notion of an actor grammar as presentad in
[JR87] is equivalenc to the nocion of an actor grammar as presentad in chis paper

for a given actor grammar G, each G-structurad transformacion may be realized as a

' G-derivation (as defined in Definmiczion 14) using the properties from Lemma 4 and

Lemma 6. It is easily seen that a G-derivation corrssponds t©o a sequence of dirscc

derivation staps in [JRE7].

In [JR87] it is shown (Property 2) that the effsct of applying productions

to disjoint subgraphs of a given configuration graph does not depend om tle

-

insctruccive o

e e e

particular order in which omne apvlies these productions. It 1is

noctice that this proverty 1s expressed in the currsnc paper by (3) of Lemma 6.

-+

7. EXAMPIES OF STRUCTURED TRANSFORMATIONS

In all examples in this section we use fixed alphabets I and A, whers
Eud M —A - - - L
I-AUM A=23QUM, A= (a,3,,85), ¥ (my,my,mq}, 8Q = (a,58,7] and

MQ = (o,7,2).

For the pictorial representation of a (T,A)-structured transformation we use

the following convencions

(1) The upper half of the figure rspressncs the initcial graph and cthe lower half
rapresents the rasult graph.

(2) The idencificacion function is represencad by doctad lines.

(3) If, in the represencation of a (Z,4) -stzuctured cransformacion 4, Embd(x,p) is

not explicicly specified, for some x € Nd(in(d)) and some z € A, then it is

assumed thac Embd(x,p) = .

(4) For each of the (Z,A)-structured transformacions d”dZ""dTA given in this

section we writa Embi instaad of Embd

fe

Example 3.

dl’d7’d3'da as below ares (T,A)-structured transformations.

Emd, (v),9) = ((vs,7), (75, 7))
Ezb, (vy,2) = (75,0)

Embl(vz,ﬁ) - (va,c:)

Embz(\r},a) - (vg,a)
Embz(v3.f) - ((Vsya'),(‘?g,ﬂ)}
Embz(va,a) - (Vg,v)

EMZ(VS’r’) - (vg,ry), for each n € A

Zmp, (vy,9) = (Vg,a)
Emb&(vyr) - ((Vé,c?),(vg,ﬁ)}

Emb, (v, ,@) = (V9 v Y)

<2
4
!
|
|
]q
133
T
'VT

Example 4.

Lat dS’dé’d7 be as below. Then d3 = Aug(dl), d6 e Aug(dz) and d7 € Aug(d3).

(91}

&)
)=
[
o
o]

Emb_. = Emb
3

bacdh
Pon- o ~1
> [4¢)
AN
tat
Yo
oy m
> [AY)

I

- ZmD
2

Emb,

£

Emb, = Emb

Example 5.

For d, as below, d8 = d, cec d,.

8 1 €%
m, 3,

z f
Y4 Y2

m, 32 Lo g 23
() ’

Vs vy, i‘ Vg - | v‘7

| | .
di \ X I

; ? \ L ; —

31 3 7

Figure 12

Emb8<v170) - ((‘7- 77) ¥ (\7.3 Yr) }

Emba (VZ ,x)

[]
N
d
L)
W
S~

Emb8<vz,ﬁ) = (v,
Embg(v3'”) - (v
Emb, (vy,7) = ((vs,a),(vg,ﬁ))
Embg (v, ,a) = (Vg 1)

&, (3 - £ t € a
Embg(vs, 1) (vg,n), for each 7

Example 6.

For d

9 and d10 as below, d9 - dl sa dZ and le - d2 sa d3.

Figure 13.

10 °

Figure 14,

Emblo(v3,7') - {(vll'r)'<v14'7))

Emblo(vS,v) - (Vlz,a)

Example 7.

Let dll be as below. Then dll - d6 sa d7 and dll € Aug(dlo). Since

d6 e Aug(dz), d7 e Aug(d3) and d10 - dz sa d3, this illuscrates (1) of Lemma S.

11 ¢

Ty
-

|
H
(1]
s
L

Embll - Embl

Example 8.

Let d12 be as below. Then d17 - dg sa d3 - dl sa le' Since d9 - d1 sa d2 and

le - d2 sa d3, this illustcrates (2) of Lemma 3.

12 ¢

¢V
Vi3

Ta 3
Bu |

Vi
[
gt
H
[
.»_-l
[9))

Emb, (v ,@) = ((v)5,a@), (vy1,7), (7, 7))

Example 9.
Lat d13 be as below.
Then dyj = dy e dy; = (d) 59 dy) go (dg s d) = (d; cg dy) sq (4, eg ;).

This illusctraces (3) of Lemma 3.

13

Figurs 17.

Embl3(v3,c) = (vl3,5)

Example 10.

Lac dl& be as below.

Then dla € Aug((d5 sa ds) cc d&) ce Nrep<xl'x3,m3) cc Nrep(xz’XA'az), where da

is isomorphic with 4,.
4

14

Figure 18.

Emb14<v1'°) - ((V8,7),(V6.a),(vg,ﬁ)} Emb14<w2,a) - (w5,7>

& Z = L - R s 7 il X 7 Lor each e A
1 (:,B) (‘9 H)) a0 /, (!) (- 17) ’ n
) 4 - 2 r + » 7 ’ A

fodiig -
5mﬂ14(w1")

{(w3,a>,(w5,5))

8. DISCUSSION

The aim of this paper was to introduce actor grammars as a formalization of
actor systems. Since configurations in actor systems may be seen as graphs, and the
dynamic evolution of actor systems may be seen as a transformation process of
graphs, graph grammars seem to be quite' suitable to formalize actor systems. We
hope that this point was well-illustrated in our paper, where basic notions of actor
grammars were motivated by basic notions of actor systems. In this way, some of the
_basic properties of structured transformations we have investigated express basic

properties of the dynamic evolution of configurations in actor systems.

Initially, this paper was intended as the "full wversion" of [JR87].
However, during the work on the current paper we have changed the notion of a
configuration graph and, quite considerably, the methodology of defining derivations
and structured transformations in actor graﬁzmars. The relationship between the two

papers was discussed in Section 6.

The approach to graph grammars introduced in this section is similar to the
algebraic approach to derivations of type-O phrase structure grammars based on
X-categories (see, e.g., [H66],[B74]). Viewed as morphisms in an X-category,
derivations of a type-0 .gram.mar can be composed sequentially (by the wusual
composition of morphisms) and concurrently (by the X-operation on morphismé). The
main law of an X-category is the one corresponding to (3) of Lemma 6. Clearly,
before one can use the X-category formalism for graph grammars, an additional
operation is needed : augmentation. It remains to be seen whether the methods used

in X-category theory can be generalized to graph grammars.

Clearly, a lot of work remains to be done in order to understand the

relationship between actor grammars and actor systems and, in particular, in order

35

to understand the usefulness of actor grammars in providing a workable formalism for

dealing with actor systems. Here are some natural lines of research to be pursued

to this aim.

(L

(2)

(3

(&)

Technical properties of structured transformations should be investigated ;
also, the notion of a derivation as a stepwise realization of a structural
transformation should be better understood.

The relationship of actor grammars to other models of concurrency, such as,
e.g., Petri nets (see e.g.,[BRG87]), should be investigated.

The notion of a process in an actor system should be defined in the framework of
actor grammars. Here, the existing knowledge on processes in graph grammars

(see, e.g., [K87]) can be quite useful.

As discussed before, in this paper we have introduced a novel methodology for

formalizing rewriting processes in graph grammars. It is certainly worth to

pursue this line of research and investigate the usefulness of this methodology

in the framework of graph grammars.

Acknowledgement The authors are indebted to J. Engelfriet and G. Leih for comments

on the previous version of this paper.

REFERENCES

(A868]

(B74]

(BRG87]

[ce1]

(E87]

[ENRR87]

[H68]

(H77]

(HB77]

(JR87]

(JR88]

(K87]

[L81]

G.A. Agha, Acrors : A Model orf Concurrenc Computaction in Discribuced
Systems, M.I.T. Press (1986).

D.B. Benson, Semantic Preserving Translacions, Mach. Syst. Theory 8,
105-126 (197&4).

W. Brauer, W. Reisig and G. Rozenberg, eds., Advances in Pecri Necs
1986, I and II, Lecture Notes in Computer Science 234 and 233,
Soringer Verlag (1987).

W.D. Clinger, Foundacions of Acror Semancics, Ph.D. Thesis,
Massachusects Inscitute of Technology (1981l). Available as technical
r2port 633, M.I.T. AI Lab.

H. Ehrig, Tucorial Incroduccion to the Algebraic Approach of Graph
Grammars, in [ENRR87], 3-14.

H. Ehrig, M. Nagl, G. Rozemberg and A. Rosenfeld, eds., Grapa Grammars
and cheir Applicarcion to Compurer Science, Lecture Notas in Compuctar
Science 291, Springer Verlag (1987).

G. Hotz, ELindeucigkeir und Mehrdeucigkeit Formaler Sprachen, EIX 2,
235-246 (1966).

C. Hewitz, Viewing Control Strucrurass as Pacrerns of Passing Messages,
Journmal of Artificial Incelligence 8, (1977), 323-364. »

C. Hewit= and H. BRaker, Laws for Communicating Parallel Processes,
IFIP-77, Toronto (1977), $87-992.

D. Janssens and G. Rozenmberg, Basic Nocions.of Acror Grammars @ A
Graph Grammar Model for Actor Compuracion, in (ENRR87], 280-298.

D. Janssens and G. Rozenberg, The Destimacion - Nermal Form for Actor
Grammars, in preparaciomn.

H.J. Kreowski, Parallelism and Concurrency in Grapa Grammars, Bullecin

of the EATCS, 235, 63-79 (1987).

H. Lieberman, A Preview of Act 1, tachnical report 625, M.I.T. AL lab
(1981).

G. Rozenberg, 4n Incroduccion to the NLC Way of Rewriting Graphs,-in
[ENRR87], 55-66.

D. Theriault, Issues in che Design and Implementacion of ACT 2,

technical report 728, M.I.T. Al lab (1983).

