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ABSTRACT

Parallel computers are having a profound impact on computational science. Recently
highly parallel machines have taken the lead as the fastest supercomputers, a trend that is
likely to accelerate in the future. We describe some of these new computers, and issues
involved in using them. We present elliptic PDE solutions currently running ar 3.8 gigaflops,
and an atmospheric dynamics mode! running at 1.7 gigaflops, on a 65536 processor com-
puter.

One intrinsic disadvantage of a parallel machine is the need to perform inter-processor
communication. It is important to ensure that such communication time is maintained at a
small fraction of computarion time. We analyze standard multigrid algorithms in two and
three dimensions from this point of view, indicating that performance efficiencies in excess of
95% are attainable under suitable conditions on moderately parallel machines. We also
demonstrate that such performance is not attainable for multigrid on massively parallel com-
puters, as indicated by an example of poor multigrid efficiency on 65,536 processors. The fun-
damental difficulty is the inability to keep 65536 processors busy when operating on very
coarse grids.

Most algorithms used for implementing applications on parallel machines have been
derived directly from algorithms designed for serial machines. The previously mentioned mul-
tigrid example indicates thar such “parailelized" algorithms may not always be optimal.
Parallel machines open the possibility of finding torally new approaches to soiving standard
tasks - intrinsically parallel algorithms. In particular, we present a class of superconvergent
multiple scale methods that were motivated directly by massively parallel machines. These
methods differ from standard multigrid merhods in an intrinsic way, and allow all processors
to be used at all imes, even when processing on the coarsest grid levels. Their serial versions
are not sensible algorithms.

T Presented to the Second International Suprenum Conference, Bonn.
* Research supported in part by DOE contract DE-ACO2-76ER03077, by NSF grant DMS-3619856 and
by NSF Cooperative Agreement DCR-84200944.
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1. INTRODUCTION

Supercomputers are the key to the simulation of a wide range of important physical prob-
lems. Such simulations typically require large numbers of degrees of freedom to provide
sufficient resolution, particularly when engineering accuracy, rather than simple qualitative
behavior, is required. In many cases one is currently limited by available computer resources,
rather than by an understanding of the underlying physics.

As an example, it is very desirable to simulate accurately the flow of air over a plane.
Current aircraft design strategy involves the use of wind tunnels. However wind tunnel testing
is limited with respect to aircraft size and Mach number, although extrapolations from smaller
scale models can overcome some of the limitations. Planned wind tunnel testing for the Boe-
ing 7J7 was greatly reduced thanks to advances in computational aerodynamics, substantially
curtailing 7J7 development time and, consequently, costs. But the computational techniques
now in use do not simulate the complete physics for the flow past the entire aircraft; they
model various aspects of the flow that, when combined, give guidance to the design, but not
answers. The major limitation is that as more of the piane is included in the simulation, the
numerical grids become larger, requiring more processing power and memory. The same
phenomenon is seen in oil reservoir simulation, in combustion studies, in weather forecasting
and wherever quantitative computations in three dimensions are performed.

Major advances in many of these areas are expected as SOOn as computer power increases
to about 100 Gilops. This would correspond to an increase of close to an order of magnitude
in resolution in each of the coordinate directions compared to current machines. Conventional
supercomputers with one or a few processors are limited by various factors, including the need
to dissipate energy in a small volume, effects of the finite speed of light, and bottlenecks
related to memory access. It is widely believed that parallel computers provide the only hope
of reaching this range of computer power. Furthermore, in most applications the cost per
megaflop is a relevant issue. Massively parallel computers provide economies of scale not
available to conventional computers larger than a PC. Parallel computers may be built from
lower cost technologies, because the individual processors need not be particularly powerful.

Because of these factors, parallel computers have been widely studied in recent years.
Substantial research has been accomplished related to these machines, including both theoreti-
cal advances, involving algorithm design, and computational experiments. Hardware advances
have reached the point where the fastest available supercomputers are now highly parailel
machines!, as we demonstrate in section 3. Furthermore, the combined efforts of many
researchers have demonstrated that parallel computing is feasible.

The one great disadvantage of a parallel computer, is that it is much harder to program
than a serial machine. Each processor must be assigned a distinct component of the work to
be performed, and substantial synchronization of the processors is then required in order to
ensure that the results from individual processors are merged appropriately. The difficulties of
programming parallel machines have spawned a whole range of new research areas for com-
puter science and are a primary reason why this area has been so dynamic in recent years.

In section 2 we begin by reviewing some of the parallel architectures that are currently
available or are under development. For further details on several of these architectures, and
especially for examples of applications such as partial differential equation solution on these
machines, we refer to our papersi-S. Section 3 provides an example of the extraordinary per-
formance attainable with current parallel machines applied to model problems (PDE solution).
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In section 4 we present an equally encouraging case study comparing performance of a real
application on a massively parallel machine and on a CRAY-XMP. In section 5 we give esti-
mates for the efficiency of multigrid methods on parallel machines. These lead to very satis-
factory efficiency levels when applied to moderarely parallel machines - we provide details for
the case of the SUPRENUM parallel computer. In contrast to the successes reported in sec-
tons 3 and 4, and indicated in section 5, section 6 reports on the difficulties inherent to mul-
tigrid and other hierarchial methods on massively parallel machines. Finally in section 7, we
describe a new class of multiscale algorithms which have been motivated by massive parallel-
ism, and which prove to converge at much faster rates than standard multigrid algorithms while
fully utilizing all processors.

2. SOME REPRESENTATIVE PARALLEL SYSTEMS

2.1. Classificaticn of Parallel Computers

Parallel computers may be broadly categorized in two types - SIMD or MIMD’. SIMD
and MIMD are acronyms for Single Instruction stream - Multiple Data stream, and Multiple
Instruction stream - Multiple Data stream respectively. In SIMD computers, every processor
executes the same instruction at every cycle, whereas in an MIMD machine, each processor
executes instructions independently of the others. The vector unit of a CRAY computer is an
example of SIMD parallelism - the same operation must be performed on all components of a
vector. Most of the interesting new parailel computers are of MIMD type which greadly
increases the range of computations in which parallelism may be effectively exploited using
these machines. However, this occurs at the expense of programming ease - MIMD computers
are much more difficult to program than SIMD machines. Many current designs incorporate
both MIMD and SIMD aspects - typically each node of an MIMD system is itself a vector
PIOCESSOr.

Another easy categorization is between machines with global or local memories. In
local memory machines, communication between processors is entirely handled by a communi-
cation network, whereas in giobal memory machines a single high-speed memory is accessible
to all processors. Beyond this, it becomes difficult to categorize parallel machines. There is
an enormous variety in the current designs, particularly in the inter-connection networks. For
a taxonomy of current designs, see the paper of Schwartz$,

While many interesting parallel machines involve only a few processors, we will concen-
trate in this paper on those machines which have moderate to large numbers of processors.
Important classes of machines such as the CRAY X-MP, CRAY-2 and ETA-10 are therefore
omitted from the subsequent discussions.

2.2. A Partial List of Multi-processors

There are at least 50 to 100 parallel computer projects underway at this time worldwide.
While some of these projects are unlikely to lead to practical machines, a substantial number
will probably lead to useful prototypes. In addition, several commercial parallel computers are
already in producton (e.g., ICL DAP, Deneicor HEP, Intel iPSC, NCUBE, FPS T-Series, Con-
nection Machine) and more are under development. One should also remember that the latest



-4 -

CRAY computers, (e.g. CRAY X-MP and CRAY-2) involve multiple processors, and other
vector computer manufacturers such as ETA Systems, NEC, Fujitsu and Hitachi have similar
strategies.

Table 1 lists a selection of the parallel computers under development. This is just a sam-

ple of the projects mentioned above, but covers a wide range of different architectures chosen
more or less at random.

Table 1: Some Parailel Computer Projects

ICL DAP Caltech Hyper-Cube
Intel iPSC hypercube NCUBE hypercube
Denelcor HEP-1 NYU/IBM Ultra-computer/RP3

Connection Machine CM-2 FPS T-Series
CRAY X-MP and CRAY-2 ETA-10

IBM 3096 Multiflow

Goodyear MPP MIT Data-flow Machines
BBN Butterfly Wisconsin Database Machine
SUPRENUM-1 IBM GF-11 and TF1

Paralex Pegasus Ametek 2010

Myrias 4000 Cedar Project

Flex Alliant FX-8

Sequent Balance Encore Multimax

CCI Navier-Stokes Machine  TERA

2.3. Machine Characteristics

In this section we will look briefly at the characteristics of a number of these machines.
The machines currently under development have a number of processors ranging between 2
and 65,536. The machines listed above vary greatly in local processing power. The Intel
iPSC has 128 processors, each essentially an IBM PC - inidally an 80286 processor, and in the
latest versions, an Intel 80386. The 512 processor GF-11 has 512 20-Mflop processors for a

combined peak rating of 11 Gflops. The 65,536 processor Connection Machine, CM-2, can
deliver at a peak rate of 24 Gflops on some 32-bit floating point operations.

HEP and TERA

The Denelcor HEP was the first commercial parallel computer. The HEP featured a
shared memory, with special access bits to provide for memory locking on every word. The
processors were pipelined units, each capable of executing a large number of separate instruc-
tion streams simultaneously. Each processor was rated at 10 Mips. The new TERA computer,
designed by HEP creator Burton Smith, will support 256 processors, each similar in many
respects to the HEP, and will provide up to 256 Gflops of computational power.



Intel iPSC

The Intel iPSC is the first commercial hypercube computer, and has been the most widely
available highly parallel computer in recent years. Built from 128 Intel 80286 processors, peak
computer power is under 10 Mflops, yet the iPSC was the basis for a large number of useful
experiments in parallel computing. The recently announced iPSC/2 computer is a second gen-
eration machine that provides greatly increased processing power and communication
throughput. Each node contains an 80386 microprocessor with up to 8 Mbytes of memory
(extendible to 16Mbytes with 64 processors). There are three available numeric co-processors:
an Intel 80387 co-processor (300 Kflops), a Weitek 1167 scalar processor (900 Kflops) and a
VX vector board (6 Mflops double precision, maximum of 64 nodes). Thus the top-rated sys-
tem has 64 nodes capable of 424 Mflops double precision and 1280 Mflops single precision.
Special communication processors allow message circuits to be established between remote
processors without intervention from intermediate processors.

Ametek

The Ametek 2010 is a new commercial machine based on a grid architecture. Individual
nodes consist of a Motorola 68020 (25 MHz) with a 68381 co-processor (150 Kflops). An
optional upgrade to the 68882 processor (215 Kflops) is possible. A further option provides
for a vector processing board based on Weitek chips, with a 20 Mflops performance. Peak
performance of a 1024 node system may be as high as 20 Gflops. Memory per node ranges
from 2 to 10 Mbytes. Maximum node memory is 8 Mbytes, with a further 10 Mbytes of
memory on the vector board. The most interesting feature of the machine is the message rout-
ing system which establishes poini-to-point communications between remote nodes. Each node
has a routing device that can support simultaneous transmission on four links at 20Mbytes
each, without interruptdon of intermediate computational processors. Communication is by
"worm-hole" connectivity rather than the usual store-and-forward, resulting in far greater per-
formance for long-range communication. In this communicatdon mode, a connection circuit is
first established between remote nodes, incurring a small startup cost, after which the message
is transferred in bit-serial fashion in a single operaton. Worm-hole communication provides
extremely fast long-distance communication, whereas a standard store and forward model
would incur large overheads due to the long path-lengths on a grid.

AMT DAP

The DAP was the first massively parallel single-bit computer, and has been widely used
for a range of scientific applications. Its current incamation as the AMT 510 attached proces-
sor, provides the capability to attach a 1024 processor DAP array to any VAX or SUN com-
puter. The 510 is a 32x32 array of processors, arranged as a two-dimensional grid and is
implemented in VLSI on 16 chips. Additional busses connect all processors on each row and
column and are used for broadcasts and other non-local operations. Up to 1 Mbit of memory
may be installed per processor, for a combined total of 128 Mbytes. The computer is SIMD,
and can execute at up to 60 Mflops, although boolean operations perform at up to 10 Gips.

Paralex Gemini and Pegasus
Paralex Research Inc. is developing a line of highly parallel local memory systems in the

supercomputer class. The initial Gemini product supports up to 1000 nodes with peak perfor-
mance up to about 2 Gips and 500 Mflops. The Gemini uses a hypercube to provide
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connectivity, and also features a high performance UNIX front end. The second generation
Pegasus machine, due in 1989, will support 512 nodes with 8 Gbytes of memory and will pro-
vide 25 Gips and 15 Gflops peak rate. This system will be based on the new SPARC technol-
ogy being licensed by SUN Microsystems. The follow-on Genesis system, planned for 1990,
will provide up to 2 THops (teraflops) of performance.

Connection Machine

The Connection Machine CM-1 designed by Thinking Machines, Inc., of Cambridge,
MA, has 65,536 1-bit processors, though this may be regarded as a prototype for a machine
that might have 1,000,000 processors. While designed primarily for artificial intelligence
work, this machine has proved to have potental applications to scientific computing applica-
tionsh3. The recently introduced CM-2 adds 2,000 Weitek floating point processors and 512
Mbytes of memory, to provide a powerful computer for numerical as well as symbolic comput-
ing. The CM computers are SIMD machines. Logic is supported by allowing individual pro-
cessors to skip the execution of any instruction, based on the setting of a flag in their local
memory. The CM machines are based on a hypercube communicaton network, with a total
communication bandwidth of order 3 Gbytes/sec. Communication is by worm-hole type rout-
ing. The system supports I/O to disks at up to 320 Mbyte/sec, and to frame buffers at 40
Mbyte/sec.

Connection Machine software consists of parallel versions of Fortran, C and Lisp. In
each case it is possible to declare parallel variables, which are automatically allocated on the
hypercube. Programs execute on a front end machine, but when instructions are encountersd
involving parallel variables, they are executed as parallel instructions on the hypercube. The
system supports the concept of virtual processors. A user can specify that he would like to
compute with a million (or more) virtual processors, and such processors are then similar to
physical processors in all respects except speed and memory size. A typical use is to assign
one virtual processor per grid point in a discretization application. This provides a very con-
venient programming model. Parallel global memory reference is supported using both regular
multi-dimensional grid notations (NEWS communication) and random access (hypercube)
modes.

Mpyrias .
The Myrias computer, built by Myrias Research Corp. of Edmonton, Alberta, will also
have 64K processors with § Gbytes of memory and a peak rate of 1600 Mflops. This machine
is definitely designed for scientific computing.

RP3 and Ultracomputer

The NYU/IBM Ultracomputer/RP3 projects connect large numbers of processors and an
equal number of memory banks through a complex switch. The systems are shared memory
computers, although individual local memories are supported too. The design scales up well to
at least 64K processors. The initial IBM configuration, the RP3, is a 64 processor machine,
with an option to extend to 512 processors, which is being built at IBM, with a peak process-
ing power of about 1 Gip and 500 Mflops (for 512 processors). Smaller prototypes with 8 10
16 processors are running at NYU, and are used for software development for the RP3.



SUPRENUM

The German SUPRENUM project involves coupling up to 256 processor clusters with a
network of 200 Mbyte busses. The busses are arranged as a rectangular grid with 16 horizon-
tal and 16 vertical busses. Each cluster consists of 16 processors connected by a fast bus,
along with I/O devices for communication to the global bus grid and to disk and host comput-
ers. There is a dedicated disk for each cluster. Individual processors can deliver up to 16
Mflops of computing power and support 8 Mbytes of memory. The very high speed of the bus
network makes this an interesting machine for a wide range of applications, including those
requiring long-range communicaton. No more than three communicaton steps are ever
required between remote nodes. ‘A prototype cluster containing 16 nodes is already in opera-
tion, and a full machine with 16 clusters will be available in 1989.

G¥-11 and TF1

The GF-11 is another IBM parallel computer, designed to perform very specific scientific
computations at Gflop rates. The GF-11 has 576 processors (including 64 backup processors),
coupled through a three stage Benes network which can be reconfigured at every cycle in 1024
different ways by an IBM 3084 control processor. Peak processing power of 11 Gflops will
allow previously uncharted computational regimes to be explored. The machine has been
designed primarily for solving quantum field theory programs and is not a general purpose
computer; in particular, very little software is available. It is an SIMD architecture but with
some flexibility in that the settings of local registers may be used to control the behavior of
individual processors.

FPS T-Series

The FPS T-Series is a message-based system built from off-the-shelf parts and with a
hypercube topology. Each node consists of an INMOS T400 Transputer, a microprocessor dis-
tinguished by its built-in communication facilities, which allow it to communicate efficiently
with up to 4 other transputers. The FPS T-series machines come in configurations ranging
from 16 to 16,386 processors. Each node has a Weitek floating point vector unit and 1 Mbyte
of memory. Peak processing speed per node is in the range of 16 Mflops. Since a transputer
has only 4 external connections, the multiple connections needed to support a 14-dimensional
hypercube and extermnal I/OC are obtained by multiplexing the available lines using a 1-to-<4
switch. An extremely attractive feature of the transputer is its low startup cost (of order a
microsecond) for initiating communication. A host of machines based on the Transputer are
being deveioped in Europe, most using the more advanced T800 Transputer, which supports
floating point computation as well as up to six communicaton links.

CCI Navier-Stokes Machine

The NASA sponsored Navier-Stokes Machine being built at Princeton University
involves an experiment with reconfigurable pipelines as well as parallelism. Up to 64 proces-
sors are supported with hypercube connections. Each node consists of a CPU, 32 arithmetic
processing units and 2 Gbytes of memory. Each of the arithmetic units may be specified to be
an adder, multiplier, etc., and connections can then be specified between them in order to
represent efficiently a pipeline to evaluate an expression. Reconfiguring the connections takes
only 50 nano-seconds. Since each arithmetic unit has a peak processing power of 20 Mflops,
the combined processing power per node is 640 Mflops. CCI Corporation plans to market a
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commercial version of the Navier-Stokes Machine.

Other Approaches.

A variety of other important architectures are also under development. These include
various dataflow machines (with bus, tree and grid structures), examples include the MIT
Tagged Token machine, the NTT Dataflow grid machine and the Manchester Dataflow
Machine. Another important class are the tree-structured machines (binary trees, trees with
sibling or perfect shuffle connections), examples of which are the Columbia University DADO
machine and the CMU Tree Machine. Because of the simplicity of the connections, nearest
neighbor machines, such as the MPP, and ring architectures, such as the University of
Maryland’s ZMOB (256 processors on a ring), are also popular designs.

3. A PERFORMANCE HIGHLIGHT: 3.8 GFLOPS PDE SOLUTION
Discretization of elliptic partial differential equations such as the equation

VEAVu =F @) |

by finite element or finite difference methods, leads 1 systems of equations with sparse
coefficient matrices. The fill-in of the matrix tends to follow diagonals and the bandwidth is
about dN'? or dN*?, for two or three dimensional space respectively, where N is the dimen-
sion of the matrix and 4 is the degree of the finite elements used for the discretization. Furth-
ermore, typically only O (1) diagonals have nonzero elements. We have developed a parallel
preconditioned conjugate gradient algorithm on the Connection Machine to solve systems of
equations with such coefficient matrix structures.

The Preconditioned Conjugate Gradient Method®13 finds the solution of the system of
equations Ax = f, to a specified accuracy € by performing the following iteration on the vec-
tor x, which has been appropriately initialized:

r = f - Ax

p = Br

loop
s = <r.Br>i<p Ap>
r =r-—s5-Ap

X = x+sp
rbr = <r . Br>
s = <r.Br>lold<r Br>
p = Br+syp
until converged

Here B is an approximate inverse of A , which is assumed to be positive definite sym-
metric, and <x,y> denotes the inner product of vectors x and y. The preconditioning operator
B can be effective in improving substantially the convergence rate of the algorithm!4.

We parallelize the algorithm by exploiting parallelism in every operaton of the iteration.
All of the vectors in the algorithm are allocated as CM parallel variables (pvars). For our
Poisson-like test problem with a 5-point discretization on a rectangle, the operation x — Ax is
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easily written using the NEWS grid addressing modes of the CM. For simplicity we have
chosen the pre-conditioning operator B to be the diagonal of the operator A. The other com-
munication intensive operations in the conjugate gradient algorithm are the several inner pro-
ducts of vectors which are required. These inner products perform at very high speeds on the
CM by taking advantage of the hypercube structure to evaluate the global sum. For full details
on the implementation, we refer to our papexj.

The performance of this algorithm for a two-dimensional PDE discretized with a five-
point formula on a 65,536 processor CM-2 is presented in Figure 1, where we have given
results for solution of equations on grids up to size 4096x4096. The four curves are for
different virtual processor ratos (VPR) . For each curve we have configured the CM as a
square grid of 65,536XVPR virtual processors. As can be seen, the highest performance is
attained with the highest VPR ratio - corresponding to fullest utilization of memory. The top
point on each curve is for a grid that fills the array of virtual processors, and thus corresponds
to full processor utilizaton. For grids that are smaller than the specified number of virtual pro-
cessors, some virtual processors will be inactive, resulting in decreased megaflop performance.
This explains the quadratic shape of the curves with increasing grid size (linear in the number
of grid points).

4. MASSIVE PARALLELISM VS HIGH-SPEED VECTORIZATION

An Implementation Case-study

As an example of the current capabilities of massively parallel architectures, we describe
the implementation of a standard two-dimensional atmospheric model - the Shallow Water
Equation - on the Connection Machine. These equations provide a primitive but useful model
of the dynamics of the atmmosphere. Because the model is simple, yet captures features typical
of more complex codes, the model is frequently used in the atmospheric sciences community 1o
benchmark computers!®. Furthermore, the model has been extensively analyzed mathemat-
cally and numerically®-17. We have recently implemented the shallow water equations model
on the Connection Machine, and compared the performance there with the CRAY-XMP.

4.1. The Shallow Water Equations
The shallow water equations, without a Coriolis force term, take the form

ou oH
— -lv+— =0,
at ox
av oH
ot dy
oP JdPu 9Py

where u and v are the velocity components in the x and y directions, P is pressure, { is the

* Joint work with R. Sato and P. Swarztrauber of the National Center for Atmospheric Research.
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v du
vorticity:  {=-— - -B— and H, related to the height field, is given by:
y
H=P+ @+ v%)/z . It is required to solve these equatons in a rectangle
a<x<b,c <y <d. Periodic boundary conditions are imposed on «, v, and P, each of
which satisfies f (x+b.y) = f(x+a,y), f x,y+d) = f (x,y+c).
A scaling of the equations resuits in a slightly simpler format. Introduce mass fluxes
U=Pu and V=Pv and the potential velocity Z={/P, in terms of which the equations reduce to:

ou oH

— =2V +—=0,
at ox

av oH
—+ZU +— =0,
ot ay

o w w

a*  ax  dy

4.2. Discretization

We have discretized the above equations on a rectangular staggered grid with periodic
boundary conditions. The variables P and A have integer subscripts, Z has half-integer sub-
scripts, U has integer and half-integer subscripts, and V has half-integer and integer subscripts
respectively.

Initial conditions are chosen to satisfy V-7 = 0 at all times. We time difference using the
Leap-frog method. We then apply a time filter to avoid weak instabilities inherent in the leap-
frog scheme:

F(”) =f(") + (f(ﬂ*l)_zf<")+f("“1))
where « is a filtering parameter. The filtered vaiues of the variables at the previous time-step

are used in computing new values at the next time-step. For a complete description of the
discretization we refer tol.

4.3. CRAY Fortran Implementation

The Fortran code implementing the above algorithm involves a 2D rectangular grid with
variables: w(i,j), v({@.j), p(i.)). z(.j), psi(i,j), h(i,j). There are three main loops, two
corresponding to the leap-frog time propagadon of various quantities, and one for the filtering
step. A typical code sequence, used in the updating of the U, V and P variables, is:
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do 200 j=1,n
do 200 i=1lm
unew(i+1j) = uold(i+1 j)+
tdts8*(2{ i+ 1 j+1)+z(i+1 j) *(cv(i+] j+1 )+cv(ij+1 )+cv(ij)
+eW(i+1,j))-tdesdx*(h(i+1j)-h(ij))
vnew(i,j+1) = vold(ij+1)-tdts8*(z(i+1,j+1)+2(i,j+1))
*eu(i+1 j+1)veu(ij+1)+eulij)+eu(i+l j))
~tdtsdy*(h(ij+1)-h(i,j})
pnew(iy) = pold(ij)-tdtsdx*(cu(i+1 j)-cu(ij))
-tdtsdy*(eWij+1)-cv(i,j))
200 continue

Each such loop is followed by code to implement the periodic boundary conditions. In
the above case, the corresponding boundary code takes the form:

do 210 j=1n
unew(l,]) = unew(m+1j)
vnew(m+1j+1) = vnew(l j+1)
prew(m+1,j) = pnew(1,j)
210 continue

do 215 i=1l.m
unew(i+1,n+1) = unew(i+1,1)
vnew(i,]) = vnew(in+1)
pnew(in+1) = pnew(i,])
215 continue

unew(l,n+i{) = unew(m+1,1)
vnew(m+1,1) = vnew(Il,n+1)
pnew(m+1,n+1) = pnew(1,])

Note that there are loops for both the horizontal and vertical boundaries, and in addition some
comer values are copied as single items.

4.4. Connection Machine Implementation

For the Connection Machine implementation, we specify that the the machine is to be
organized as a 2D rectangular grid of virtual processors, with one virtual processor (vp) per
grid point i,j. The grid variables u,v,p.z,2 are then allocated as Pvars - parallel variables.
The connection machine software automatically stores them according to the specified grid for-
mat.

The Connection Machine code corresponding to the main double loop given previously in
Fortran, is actually simpler than on the CRAY. To begin with, the loops actually disappear
from the code. This is because all global do loops are replaced by parallel operations. A
second simplification is that relative, rather than absolute, addressing is provided for. Because
of the local nature of the discretization equations, such relative addressing is far more
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convenient. The form of the CM code is then:

unew = uold + tdts8*(east(z) + z}*(east(cv) + south{east{cv)) + south(cv) + cv) - tdtsdx*(h - south(h))
vnew = vold - tdts8*(north(z) + z)*(north(cu) + cu + west(cu) + north(west{cu))) - tdtsdy*(h - west(h))

pnew = pold - tdtsdx*(north{cu) - cu) - tdtsdy*(east{cv) - cv)

Here north, south, east and west are specific relative addressing modes understood by the CM
software when dealing with rectangular grids. Note that no explicit communication routines
are evident, such as one would usually see in corresponding code for other hypercube proces-
sors. We have implemented the shallow water equations in two CM languages - C " and
*LISP. The C  code is essentially exactly as above, whereas the *LJ/SP version differs in
employing reverse polish notation in writing the expressions.

All boundary loops are replaced by parallel operations with processor selection. Basi-
cally we create boolean grid variables which record which processors lie on each of the four
boundaries of the rectangle. The boundary loops then take the form:

*when top_boundary
unew(l,col) = unew(m+1,col)
vnew(m+1,col) = vnew(l,col)

pnew(m+1,colj) = pnew(1,col)

The *when causes the following instructions to be executed only in processors where the
boolean parallel variable top_boundary is true. Note that while the copying operations are
executed only on the selected boundary processors, these operations take as long as if they
were executed on on all processors. This is a consequence of the SIMD nature of the CM.
These operations will in fact be particularly siow, since they are effectively gather-scatter
operations - data must be fetched from points at the opposite side of the grid, and are conse-
quently remotely and irregularly located within the hypercube.

There is an essential simplification that occurs in the case that the grid dimensions are
both powers of two. On a hypercube, power-of-two grids are periodic. Thus in such cases
the code for boundary copying may simply be omitted, and in fact we modified the translated
program to detect such cases automatically. This is in fact the only change we made in
translating the original Fortran program to *LISP, apart from the introduction of parallel vari-
ables and operators, and the coding of loops using processor selection.

4.5. Performance Results: CRAY-XMP/48 vs. CM-2

The CRAY-XMP4/8 performed at 560 Mflops with 4 processors on a 512x512 grid. The
corresponding performance on a single processor was 148 Mflops.

The CM-2 performed at 1,714 Mflops with 65,536 processors on a 2048x2043 power of
two grid. Measurements were actually made for a 512x1024 grid on an 8192 processor CM-2
and were scaled linearly to a full-size machine with 65,536 processors. We feel it makes most
sense to give performance figures for standard configurations of a machine, and clearly the
largest configuration is the most appropriate for supercomputer comparisons. From previous
experience, such scaling is entirely appropriate for the CM-2 provided that only nearest neigh-
bor communication is involved. Non-local communicaticn (as would occur on a grid whose
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dimensions are not powers of two) would not scale linearly, since longer range communication
is required on the larger machine.

In addition to being over three times faster than the four-processor CRAY, the CM-2 can
clearly handle much larger problems in memory than can the CRAY. Solving a 2048x2048
grid problem on the CRAY wouid necessitate recoding the whole problem to use a solid state
disk (SSD), and would result in much lower performance.

However the CM-2 has a severe disadvantage when processing a grid that is not a power
of two in each direction. For such grids, CM performance dropped by a factor of 2.4 due to
boundary effects. Some of the effect is simply due to SIMD inefficiency - having to keep all
non-boundary processors idle while processing the boundary points - but in fact the non-local
nature of the periodic boundary copying was the most serious factor. Particularly unpleasant is
the fact that copying of the single cormner points (see the end of section 4.3) takes as long as
the whole edges, due to the SIMD architecture, and is therefore extremely inefficient. Perfor-
mance for a Dirichlet or Neumann boundary condition would not have degraded to this extent
because of the local nature of such boundary conditions.

5. COMPUTATIONAL EFFICIENCY OF MULTIGRID

In many situations the most efficient algorithms for the numerical solution of large sparse
elliptic problems are the various multigrid algorithms!8-20, Recenty several efficient parallel
implementations of multigrid algerithms have been reported on both SIMD and MIMD parallel
computers>-»21-26. We present in this section an analysis of the computational efficiency of
moderately parallel computers when performing the muldgrid solution of partal differential
equations. In order to be concrete, we apply the analysis to the 256 processor SUPRENUM
architecture. The analyses given here need to be extended in various ways. For a much more
complete analysis of MG algorithms on parallel machines we refer to%7, For further references
on muitigrid behavior on various parallel architectures, and for new parallel multigrid
approaches, we refer to our paperst:3-6:23.28-36,

5.1. Analysis of 2D Multigrid Efficiency

Consider a two-dimensional muitigrid algorithm which requires performing relaxations,
projections and interpolations. We will distribute the problem over a set of processors by sub-
dividing the grids into rectangular subgrids, with one assigned to each processor. To be more
specific, we will assume that we are on an N =naxn grd, with n = 16 m, where m is a
powerof 2: m = 2!, and that the data are distributed in square blocks of size mxm to each of
256 processors. Assume further that each relaxation, interpolation or projection operator
involves R, [ or P arithmetic operations per grid point and 1 communication operation per
boundary point. Depending on the exact multigrid strategy used the amount of communication
involved in projection is often less than in relaxation, but we ignore this point. Finally we
assume that the tdme T (w) (in seconds) required to send w words of data to a "neighboring”
processor is represented by a linear relationship: T(w) = ot + Bw , where « represents the
start-up cost for communicating an arbitrarily short message, while  represents the incremental
cost per word for sending longer messages. We will denote by v the time (in seconds)
required to execute a typical elementary arithmetic operation, such as an add or a multiply.
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In order to minimize the overhead from communication startup, we will buffer all of the
boundary data from a side of a square, and then communicate it in one operation. Thus only 4
communication operations are required on each grid level for a relaxation, projection or inter-
polaton. The complete computational cost of a multigrid V-cycle, with v iterations performed
per grid level is then:

Teomp = (VR +P + 1)y (1+ U4+ 116+ ..) m*
=43 (VR +P +I)ym* ,
while the corresponding time spent in communication is:
Tromm = (V42) (AT (m) + 4T (m/2) + AT (m /4y + - - -)
=4 (v+2) (lae+ 1+ 12+ 14+ ---)mB)
=4 (v+2) o +2mB) .

The factor 2 in the final coefficient of 3 above should actually be 2 - 2, which is very close
to 2 as long as the number of muitigrid levels / is more than say 3. Similarly the coefficient
4/3 in T,,,,, should actually be 4/3 (1 — 4"), which is again very close to 4/3 for moderately
large /. ‘

We have assumed that the computational time per grid level is proportional to the number
of grid points - which will not be true when there are fewer grid points than processors. The
above formula for computation is therefore a good approximation only for machines with
moderate parailelism, or for multigrid cycles where the coarsest grids are not too coarse. Note
that vector nodes effectively increase the degree of inherent parallelism in the machine, requir-
ing increased processing time per grid point even when there are several grid points per pro-
cessor. We have also assumed above that communications in different directions cannot be
overlapped and that communicaton is not limited by the giobal band-width. If communication
in each of the four directions can be overlapped, then T_,,,, becomes 4 times smaller. It is
likely that for some machines the communication szarfup cannot be overlapped, whereas the
remainder of the communication can be. In that case the coefficient of 3 above would be 4
times smaller. However we do notr make this assumption in the following discussions.

With the above assumptions, the resulting computational efficiency is then given by:
E =T ! Toomp + Teomm) = 1/ (L Topmm)

comp
T,

=T comp

omm the ratio of communication time to computation time, satisfies:

_ 3 (vl a+2m B)

where 7.,,n

rC omm

(VR +P +I Yym*
For large problems, defined as those where m > [o/j, this reduces to:

E=1/[1+6\+)IVR+P+)-Bly-m™7] .

Thus the efficiency for large problems can be arbitrarily close to 1. We note that our definition
of large problem depends on the number of multigrid levels [, as well as on the message
startup cost . The reason is simply that even though coarse grids involve only a few points,
they still incur the same message startup cost as on a fine grid. Thus as the number of levels
increases, communicatdon inefficiency also increases unless the startup cost is negligible.
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5.1.1. A Concrete 2D Example

As an interesting test, we consider the above case for the current SUPRENUM machine
which has 8 Mbytes of memory per node, a startup cost & for communication of 400 ysecs,
and a per-word transfer cost B of about 1 psec. We will assume a computation rate of 8
Mflops, so that y= 1/8 psecs, and 8-byte floating point words. For relaxation of the simplest
variable coefficient 5-point PDE discretization we would have approximately 9 floating point
operations per point, and we assume that interpolation and projecticn are similar, so that
R =P =[=9. The largest problem that will fit comfortably on 256 nodes would have
N =64-10° grid points (two words required per point), so that m = 512. It follows that the
number of levels [ would be 9. The ratio /o[ is then about 3600 so that the problem is not
"large” as defined above. Inserting the above numbers into the expression for r,,,,, we obtain:

E=1/[1+ 35400 +2:512-1)-8/9/ 512% ] = 955 ,

which indicates a very efficient solution. Since the term [« is more than three times as large
as 2m we see that even for this large problem, communication is still dominated by the
startup costs. Thus if overlapping of the data transmission were allowed on different channels
(without overlapping of the startup cost) there would be only a small improvement in
efficiency. Similarly a substantially slower data transfer rate than 1 word per usec, or
equivalently some saturation of communicadon bandwidth, could be tolerated with little
decrease in efficiency. Clearly decreasing the communication startup cost ¢ and/or using fewer
multigrid levels [ will be the best ways to improve efficiency for this problem. The latter
approach may result in an increased number of iterations however. One possibility is to switch
to a different solution strategy at a certain level - for example to transfer data to a single pro-
cessor and use a direct solver there. Note that these estimates have also ignored the difficulty
of using all processors, or of attaining full efficiency from vector nodes, when processing on
coarse grids.

5.2. Analysis of 3D Multigrid Efficiency

Practical problems of interest are more likely to be three-dimensional than two-
dimensional, which qualitatively changes the above estimates. In the three dimensional case
we obtain for a distribution of a cubic grid of N = nxnxn points into cubic blocks each of

size mxmxm, with m :-2‘,
Toomp = VR +P +1) (1+ 18 + 164+ ) ym’

=8/T VR +P +1)ym° ,

while the corresponding time spent in communicaton is;
T = (VH2) (6T (m>) + 6T (m*4) + 6T (m¥16) + - -+ )
=6 (Wv+2) o+ (1 + 14+ 116+ - )mB)
=6 (v2) o+ 413 m™B) .
We have again assumed that the computational time per grid level is proportional to the

number of grid points - a reasonable approximation only for moderately parallel machines or
for grids that do not become too coarse. We have also assumed again that communications in

different directions cannot be overlapped and that communicaton is not limited by the band-
width. If communication in each of the six directions can be overlapped, then T, becomes
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6 times smaller, while if communication transmission alone can be overlapped, then the
coefficignt of B becomes 6 times smaller. While the latter is a possibility for SUPRENUM, we
do nor assume that in the following analysis.

The resulting computational efficiency is then given by:
E = Toomp ! Teomp + Teomm) = 1/ (L# Topmm) s

T

=T comp *

where r comm

comm the ratio of communication to computation, satisfies:

_ 21(vD)(Loek 413 m?B)

B 4(VR +P +{ Yym 3

For large problems, defined now as those where m > T/, this reduces to:
E=1/[1+7VR)VR+P+) By -m™] .

rcornm

52.1. A Concrete 3D Example

As an interesting test, we consider the three-dimensional case for the current SUPRE-
NUM machine which has 8 Mbytes per node, a startup cost ¢ for communication of 400
usecs, and a per-word transfer cost 3 of about 1 psec. We will assume a computation rate of
8 Mflops so that y = 1/8 [seconds. For relaxation of the simplest variable coefficient 7-point
PDE discretizadon we would have approximately 13 floating point operations per point, and
we assume that interpolation and projection are similar, so that R = P =/ = 13. The largest
problem that will fit on 256 nodes would have N = 128 - 10° grid points (two words required
per peint), so that m = 80 at most. It follows that the number of levels would be around 6.
The ratio /oUf is then about 2400 so that the problem is nor "large" as defined above. The
efficiency is found from the expression for r,,,, to be:

E =1/[1+2V4 (6400+4/3-80%1) -8/13/80° ] = 9355 .

Note that these estimates have ignored the difficulty of using all processors, or of attaining full
efficiency from vector nodes, when processing on coarse grids.

5.2.2. Comparison of 2D and 3D Efficiency

Note that while the behavior of the efficiency £ as a function of m for the "large" three-
dimensional case above is similar to that for the "large” two-dimensional case, the asymptotic
efficiency in three dimensions is actually much worse for the same number of grid-points since
m is related to the number of grid points N by m = VI6 N Y2 in two-dimensions, but by
m = 1/6.35 N in three dimensions. Since the maximum number of points N is hardware
limited by the available memory, it appears to be much harder to achieve high efficiency for

the three-dimensional case.

However this conclusion is nor applicable to the current SUPRENUM machine, primarily
because the largest problem that can be solved is not "large” as defined above for either two or
three dimensional problems. This fact dramatically alters the efficiency of the two-dimensional
problems, with less effect on the three-dimensional case, resulting in more or less comparable
efficiencies for the two cases for the largest problems that will fit on SUPRENUM. This is in
turn traced to the fact that communication startup costs dominate the communication costs in
two-dimensions, but not in three dimensions. The reason is that in three dimensions so much
data is transferred en masse per processor that the startup cost is now less than a quarter of the
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total communication cost, whereas it constitutes over three quarters of the total communication
cost in two-dimensions.

It follows that for three dimensional problems there is less advantage to reducing the
number of grid levels or the communication startup cost, while there is a great advantage to
overlapping the data transmission part of communication in different directions, even if com-
munication startup is not overlapped. In fact, if communication transmission is overlapped
(reducing the effective size of 3 correspondingly), then the three-dimensional efficiency rises to
97.64% as against 96.23% for the two-dimensional case.

Note that we have discussed above the case of the simplest discretizations of variable
coefficient problems. Efficiencies for the constant coefficient Poisson equation discretized on a
rectangular grid would be somewhat worse, because there is then relatively less computation
per communicaton. However the vast majority of real applications involve local numerical
computations that are substantially more complex than those involved above. Such computa-
tions can be expected to perform at higher efficiencies than those we have estimated. As an
example, the solutions of hyperbolic equations encountered in many fluid flow problems
require very large amounts of numerical computation to be performed before a communication
is required.

6. MULTIGRID ON THE CONNECTION MACHINE

The two previous sections have indicated substantial successes for the implementation of
PDE solutions on the Connection Machine. We will now see that for certain hierarchial algo-
rithms there are fundamental obstacles to using massive parallelism. The case in point is the
implementation of a standard multigrid algorithm on the CM-2. The impiementation for the
CM-1 is described in detail in® and we summarize the main ideas here. The CM-2 implemen-
tation follows exactly the same strategy.

As a test problem we solve the five-point discretized Poisson equation for a rectangular
grid, using modified Jacobi relaxation on each grid level. Points of the finest grid are assigned
to distinct virtual processors. Coarse grid points are allocated to the same processor as their
corresponding fine grid point. See Figure 2 for a clearer description of the grid relationships.
This simplifies the interactions between grid levels, while somewhat increasing the cost of
coarse grid iterations, since coarse grid-points are physically far apart. However, much more
serious is the fact that on coarse grids it is impossible to keep all processors active. In the
extreme case of a 1x1 grid, the efficiency can be at most 1/65536.

We present performance curves measured for multigrid on the CM-2 in Figure 3. The
bar chart shows the megaflops generated in solution as a function of the number of grid levels
utilized. As the number of levels increases, Mflops drop dramatically as expected - most pro-
cessors are sitting idle most of the time. The case of one grid level is simply solution by
relaxation, and gives a very high Mflops rate since all processors are used at all times Thus the
multigrid algorithm cannot be said to be very efficient on the CM. Despite this, multigrid is
still a substantial benefit as indicated by the curve of solution time in the same figure - the
solution time drops steadily with increasing numbers of grid levels, despite the poor overall
efficiency. In the following section we present a more highly parallelizable class of multiscale
methods which avoid the difficulties encountered with standard multigrid. For these methods
the bar chart in the figure stays essentially horizontal and at the height corresponding to
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Figure 2: Relationship of grid poinss at different multigrid levels. Each fine grid point
is assigned to a different virtual processor. Course grid points are assigned to the same
processor as the corresponding fine grid point, as shown by dotred lines.
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relaxation, and the solution time curve drops far more steeply as we will see.

7. NEW MULTISCALE ALGORITHMS'

In the previous section, however, we have seen the difficulty with multigrid on massively
parallel machines. In the extreme case of the coarsest grid, only a single processor is actually
doing anything useful. As a result the observed computational time is substantially longer than
one might have expected from the equivalent serial algorithm. Algorithmically, parallel mul-
tigrid is an O (log N), rather than an O (1) solution method.

We describe now an algorithm which we will call PSMG (Parallel Superconvergent Mul-
tigrid)®, that takes a step towards solving this problem. The new algorithm still requires
O (log(N)) parallel operations for solution, but the constant multiplying the log(¥) is much
smaller than before because of more rapid convergence of the solution which therefore requires
less iterations to reach a desired level of accuracy. This is accomplished by solving many
coarse grid problems simultaneously, combining their results to provide an optimal finer grid
approximation. No extra computation time is involved (if N processors are available) since the
extra coarse grid problems are solved on processors which would otherwise have been idle.

We state a rigorous convergence criterion for PSMG, which gives a remarkably sharp
estimate of the rate of convergence for the case of constant coefficient operators. For example,
in some cases an upper bound for the multigrid convergence rate is within a few percent of the
suprenum of the two-grid convergence rate taken over all grid sizes, even for V-cycles with
only one smoothing operation performed per grid level. In some situations PSMG reduces to
an exact (direct) solver. Numerical examples involving elliptic operators on rectangular grids
are also presented. We will deal for simplicity with periodic boundary data. For a complete
exposition, including proofs and numerical results, we refer to our papers5:34.

7.1. The Basic Idea

Consider a simple discretization problem on a 1-dimensional grid. Standard multigrid
techniques work with a series of coarser grids, each typically obtained by eliminating every
other point of the previous grid. The error equation for the fine grid is then projected to the
coarse grid at every second point, the coarse grid equation is solved approximately, and the
error is interpolated back to the fine grid and added to the solution there. Finally a smoothing
operation is performed on the fine grid. Recursive application of this procedure defines the
complete multigrid procedure!8.20,

The basic idea behind PSMG is the observation that for each fine grid there are two
natural coarse grids - the even and odd points of the fine grid. (For simplicity we assume that
periodic boundary conditions are enforced). Either of these coarse grids could be used at any
point to construct the coarse grid solution, and both would presumably provide approximately
equivalent quality solutions. Multigrid traditionally uses the even points at each grid level.

* Joint work with Paul Frederickson, Los Alamos National Laboratory.
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An alternative multigrid coarse grid - the odd points.

Why not try to combine both of these coarse grid solutions to provide a fine grid correction
that is better than either separately? This should be possible since in projecting from the fine
grid, the odd and even points receive slightly different data in general, and thus each represents
slightly complementary views of the fine grid problem to be solved. Thus it ought to be possi-
ble to find a combination of the two solutions that is significantly better than either separately.
It would follow immediately that such a scheme would converge faster (fewer iterations) than
the corresponding standard multigrid scheme. As a concrete example, if the combination of
coarse grid solutions is simply the arithmetic average of the two standard coarse grid interpola-
tion operators, then the algorithm would converge at least as well as the usual multigrid algo-
rithm since the convex combination of two (iteration) operators has norm bounded by the
larger of the norms of the two operators.

Note that on a massively parallel machine the two coarse grid solutions may be solved
simultaneously, in the same time as one of them would take - we assume here that the number
of processors is comparable to the number of fine grid points. As will be seen below, both
coarse grid problems are solved using the same set of machine instructions. Consequently the -
algorithm is well suited to SIMD parallel computers, as well as to MIMD machines. On
machines with more modest mumbers of processors it may still make sense to switch from stan-
dard MG to PSMG at grid levels such that the the number of grid points is less than the
number of processors.

The idea outlined above extends naturally to multi-dimensional problems. In 4 dimen-
sions, 24 coarse grids are obtained from a fine grid by selecting either the even or the odd
points in each of the d coordinate directions. The fine grid solution is then defined by per-
forming a suitable linear interpolation of all 2% coarse grid points. This procedure is repeated
at every grid level.

Suppose we are required to solve a discrete algebraic equation AG7 = f on a rectangu-
lar grid G& with grid spacing or scale h; = 27%h. We assume that the operator A® has
natural scale 4, as would be true for a difference operator on G©. we introduce a spectrum
of operators Ab), 1=0,1,--- L,each defined on all of G& and of scale h = 27 h. Starting
from an initial guess © on G we construct the residual

r =f 4Dy = 4D, e

u-u ,
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where u# is the exact solution and e is the error. We will use the residual to construct an
improved solution # of the form:

, u=u+F® ,
where F&) is a linear operator on G%. This results in a new error
¢ =0-u=0-FY4%%, ,
and a new residual
r=a®e =0 -aAWFYy, .

Convergence of the above procedure will be guaranteed provided that
117 —ADF®) |1 <e<1. The PSMG algorithm will be defined by defining the iteration
operator F @ (denoted M @ below) in terms of the multiscale operators AD,

As is usual in multigrid approaches we arrive at the recursive PSMG algorithm by first
introducing a two-grid algorithm. The solution of the error equation ABe =1 is equivalent to
the solution of the original equation A(L,)u = f. In the two-grid PSMG algorithm, we approxi-
mate the error e by the exact solution e of the coarse scale equation:

At = 4

Note that since 4 ¢~V is by fiat defined on all of G*, it follows that the error equation is being
solved on the fine grid, which may be regarded as the union of a set of coarse grids. For
example, in the 1-dimensional case the above equation is solved on both the even and odd
subgrids. It is for this reason that we prefer the name multiscale rather than multigrid as a
description of the algorithm. Having said this, we will lapse frequently in the sequel into the
more familiar use of the word coarse grid rather than coarse scaie! In such cases the term
coarse grid will be understood to mean the grid G% viewed as a union of coarse grids.

Next we will combine the multiple coarse grid solutions defined by ¢ into a fine grid
correction ¢ by applying a linear combining transformation (interpolation) of the form:

”

e = Qa‘)e’ ,

where the operator Q @) remains to be specified. This leads to an improved fine grid solution:

U =Uu-+e

The final step involves a smoothing operation on the fine grid:
sm®a’, £y,
¢ -sPa®h " + sYr

with a corresponding iteration operator SE =1 —s®ig@) By suitably choosing A2 Q(L )
and ¢ ), the above procedure should lead to convergent solutions. In particular our strategy
will involve choosing pairs Q(L), s© which optimize the convergence rate of the algorithm for

given A @),

We note that the two-grid PSMG algorithm may be deécribed in the form:

eD =2 =TV = ¢ =TYah e |

s
u

with the decrease in residual given by:
rD o= " =g -aBPTYy
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where the two-grid iteration operator T = 174D is determined by:
7 = s® 4 a _S(L)A(L)) Q(L)A(L'IH
We define the two-grid convergence rate < .of this iteration procedure as the quantity:
T = sup 11TO
L
Clearly © provides an upper bound on the convergence rate per iteration of the two-grid
method on any grid.

We obtain the full PSMG algorithm by recursive application of the two-grid algorithm
described above. The corresponding error correction then takes the form:

e = MDD, = (I _M(I)A(l))e ,

where the multi-grid iteration operator M® = 1-M P4 D is determined by:

MO =50+ q -sPa®) oM™ | =1, .- 1,
with M = 497 The corresponding residual reduction operator is given by:
I —AO® _ a __A(I)S(I)) a _A(I)Q(I)M(l-l)) o l=L, - 1

We define the multigrid convergence rate of this procedure as the quantity:
w = sup | IMP1]
IL ‘
Clearly | provides a bound on the convergence rate of PSMG on any grid. Furthermore
bounds on the convergence rate L will be derived that are extremely sharp.

7.2. Muiltiscale Convergence Rates

In this section we present an upper bound on the convergence rate of the PSMG algo-
rithm, valid for the special but important case of translation invariant grid operators AYD 1o
motivate the bound, we rewrite the above recurrence relation for M) in the form:

MO =T - O _ Oy MO | M@=

In the case that all operators are translation invariant, each operator may be represented as mul-
tiplicatdon by a function m¢ >(k), T(I)(k) or Sa)(/c) in frequency space, and the above recurrence
then applies to these functions for each wave-number &. We conclude that | MO < TR
where

o= sup max I TO%) 1 /7 (1 - maxISP%) - TOw)17] .
k l 1
While this bound is the basis for rigorous proofs of convergence, we also use it to create
a numerical method to optimize the convergence rate. The bound u’ is a function of the
operators s and Q(I). By performing a numerical non-linear optimization procedure we
attempt to chose the best possible S and Q. We give some examples in the following section,
referring to® for complete details.
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7.3. Application to Poisson’s Equation

In order to complete the description of the algorithm it is essential to define the operators
0% and $U used for interpolation and smoothing. In this section, we describe how to choose
0 ® and S in an optimal way for the special case of an operator which has translation invari-
ant coefficients. We will illustrate the ideas for the Poisson equation discretized on a periodic
rectangular grid G*) of N = nxn points, n=2", which we label with the index i = (i, i,),
0<iyiy<n. We will use two discretizations of the negative Laplacian —A in our analysis.
The first of these is the standard five-point discretization defined by

(As(l)u)[ = hl‘z ( 4ui - U. 1 - U

i-e1

= 2L—I

ivel T Hieh T Hied )

where eil are integer vectors of length 4, in the coordinate directions in index space, or
alternatively by the familiar five-point star notation:

-1
AP =n -1 4 a1
-1

The second discretizadon we will study is the more accurate Mehrstellen discretization
represented by the nine-point star

—1 —4 -1
AP = ©6ny |~ 20 «
1 4 -1

Similarly, we will choose the operators Q(l) and S to be defined by simple symmetric three
parameter nine-point star operators (with appropriate scale length):

911 91 911 S11 S1 Sy

1 1 2
Q() - ql qo ql N S() = hl SI SO Sl
1 91 91 1 51 S

For simplicity, we take the parameters ¢; and s; to be independent of the scale parameter /.

Since all of these operators are translation invariant, they are diagonalized by the discrete
Fourier transform. The analysis of the PSMG algorithm then becomes particularly convenient.
To get an improved convergence rate we have also used a 25-point star operator to define Q:

d22 912 92 912 922
912 911 91 911 912
Q = 19, 91 90 91 42

912 911 91 911 912

92 912 92 912 92
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7.3.1. Five-point Convergence Rates

For the case of the five-point discretization with nine-point star S and @, optimization of
the above bound u* leads to a rigorous multigrid convergence rate bound of approximately
2115 (with a corresponding two-grid rate of .1486) for the case of V-cycles with one smooth-
ing per iteration level. The optimal S matrix in this case is defined by the parameters

q0=25, ¢,=125, ¢q;=.0625 .
50=.311393, 5,=0761886, §11=.0249449 .
Improved results are obtained with a 25-point star Q, where we obtain a multigrid con-
vergence rate of .0831 (with two-grid rate of .0632) for the parameter choice:
q4=.391397, ¢,=.111803, q,=—.0413862,
q1,=0625, q17=.00659854, g,,=.00603699,
5¢=.322645, §5,=.0857152, 51;=.0308174 .

7.3.2. Mehrstellen Convergence Rates

Convergence rates for the Mehrstellen discretizaton are dramatically sharper. With
nine-point star ¢ and S operators, we obtain a multigrid convergence rate bound uf of .02754
(with two-grid bound of .02609) for single-smoother V-cycles. This bound is obtained with Q
as in the five-point case and the choice:

5¢=3059,  s,=0464891,  5,=.0156655 .

By combining a 3x3 S operator, a 5x5 @ operator and the Mehrstellen operator, we have con-
structed a PSMG scheme for the Poisson equation which has a two grid convergence rate T of
.00434 and has .00446 as an upper bound on its multigrid convergence rate p.*. The
corresponding optimal parameters are:

q=341997, ¢,=0972999,  g,=-0175355,
q=0625,  q,=0138501,  go=—00546389,
54=337042, 5,=0629468,  s,,=.0245344 .

Faster convergence rates may be obtained by using more than one smoothing operation
per level. For example, by using two smoothing steps per level, we obtain a multigrid conver-
gence rate bound u' of .0013, for which the optimal parameter choice is:

q,=339308, q,=.0976648,  g,=.0168118,
q,=0625,  q.,=0136676, q,,=—00551516,
5¢=351804, 5,=0739205,  5,,=.0322007 .
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