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Abstract

ENCOMPASS i3 an environment that supports software development using formal techniques similar 0
the Vienna Development Method (VDM). In ENCOMPASS, software can be specified using the
PLEASE family of executable specification languages. PK/C++ is the latest member of the PLEASE fam-
ily. PK/C+=+ differs from its predecessor by having C++ rather than Ada® as its base language, by having
an operational as well as declarative semantics, and by being based on flat rather than standard Prolog.
Using PK/C+, software components are first specified using a combination of conventional programming
languages and predicate logic. These abstract components are then incrementally refined into components
in an implementation language. Each refinement is verified before another is applied; therefore, the final
components produced by the development satsty the original specifications. PK/C++ specificatons may
be used in proofs of correctness. They are also executable: therefore, initial specifications can be validat-
ed and rednements can be verified using testing-based techniques. We believe the use of PK/C++ will
enhance the development process. In this paper, we give an overview of ENCOMPASS, describe
PK/C++ in reasonable detil, and give an example of development using the language.

1. Introduction

In most cases, the efficient production of software remains an elusive goal. One of the most important prob-
lems is quaiiry; many of the systems produced do not satisfy their purchasers in either functionality, performance or
reliability. We consider a system correct if it satisties its users in all the above criteria. Depending on the moda! of
sottware development used, the software quality problem can be subdivided in a number of ways. Inidalily, a svs-
tem exists only as an idea in the minds of its users or purchascrs. In our model, the first step in the development
- process is the creation of a specification which precisely describes the properties and qualites of the software 10 be
constructed [137. Unfominatcly, current methods do not guarantee that the specificadon correctly or completely
describes the customers’ desires. A specification is vaiidated when it is shown 10 correctly state the customers’
requirements [13]. It has been suggested that protoryping and the use of executable specification languages can

enhance the communicadon between customers and deveiopers (43]; providing prototypes for experimentation and
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evaluation should enhance the validation process. In general, the specification need not be executable; it must be
translated into an implementation. Depending on the method used for translation, the exact relationship between the
specification and implementation may be unknown. An implementation is verified when it is shown to satisfy its
specification [13]. Many techniques can be used to certify this relationship including testing [23], technical review

[12], and formal methods [19].

One solution to the verification problem is VDM (the Vienna Development Method) [4,9,17]. VDM sup-
ports the top-down development of software specified in a notation suitable for formal verification. In this method,
components are first written using a combination of convenﬁonal programming languages and predicate logic.
These abstract components are then incrementally reﬁﬁed into components in an implementation lang\iage. VDM
alone can not ensure the production of correct software; most simply, it does not address the validation problem.
Also, VDM relies exclusively on formal methods, while many feel that no one method alone can ensure correctness.
Despite these problems, VDM is used in industrial environments to enhance the development process [4,24,30]. In
these situations, formal specifications serve xﬁostly as a wol for precise communication, and the major impact on
methodology is that more time is spent on specification and design. However, the methods do prove useful in prac-

tice. VDM could prove even more useful if it was applied more formally and supported by automated tools.

ENCOMPASS [33, 36, 38,40] is an integrated environment which supports incremental software development
in a manner similar to VDM. ENCOMPASS extends VDM with the use of executable specifications and testing-
based verification methods. It automates these techniques and integrates them smoothly into the traditional life-
cycle. In ENCOMPASS, software is specified using a combination of natural language and the PLEASE
[34,35,39] family of wide-spectrum, executable specification languages. PLEASE specifications may be used in
proofs of correctness. They are also executable; therefore, initial specifications can be validated and refinements
can be verified using any combination of testing, peer review and formally-based techniques. ENCOMPASS is an
environment for the rigorous [17] development of programs; parts of a project may use detailed mechanical

verification while other, less critical parts may be handled using less expensive techniques.

Our approach to executable specifications has changed dramatically since we began our work. Our initial
vision was of a purely declarative specification language and an extaemely intelligent translation system that would
automatically produce Prolog procedures from predicate logic assertions. Qur experience has led us to believe that

this is not a realistic approach in the short term. Therefore, the latest member of the PLEASE family, PK/C++
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(Please Kemnel on C++), differs from its predecessor by being based on C++ rather than Ada, having an operational
as well as declarative semantics, and being based on flat (unification but no backtracking) rather than standard Pro-
log. We feel these changes will significantly enhance its use as a practical specification vehicle. Being based on
C++ rather than Ada makes the power of object-oriented programming available. Having an operational as well as
declarative semantics allows the programmer to hand optimize PK/C++ specifications for improved execution. Bas-
ing our execution strategy on flat rather than standard Prolog allows much simpler and somewhat more efficient

implementation techniques to be used.

In the rest of this paper we describe ENCOMPASS and PK/C++ ini more detail. In section two, we give an
overview of ENCOMPASS, including a brief summary of VDM ar-1d a description of our previous work on execut-
able specifications. In section three, we describe PX/C++ in more detail; specifically, the problems we encountered
in our previous work and the corrective actions taken in PK/C++. In section four, we give an example of software
development using PK/C++, including: producing a formal, but non-executable, specification of a function; produc-
ing a prototype for the same function using the logic prégramming features of PK/C++; optimizing the executable
specification; and verifying that the optimized and original specifications are equivalent. In section five we describe
the current status of the system and the issues which have arisen so far in the implementation of PX/C++, and in

section six we summarize and draw some conclusions from our experience.

2. ENCOMPASS

ENCOMPASS is an en{zironment to support a formal development method similar to VDM (5, 6, 18, 33-40].
In ENCOMPASS, the general approach is to address the validation problem using executable specifications and to
address the verification problem using a combination of formal, testing, and peer review techniques. We can better

understand ENCOMPASS after looking at VDM in more detail.

2.1. YDM

VDM (the Vienna Development Method) supports the construction of software using stepwise refinement and
notations suitable for formal verification [1,3,4,9,16,17,24,30]. In VDM, software is first specified using a com-
bination of conventional programming languages and assertions written in first-order, predicate logic. To increase
the expressive power of these specifications, the high-level types set, list, and map are added to the language.

Abstract components specified with predicate logic assertions are then incrementally refined into components in the



implementation or base language. The refinements are performed one at a time, and each is verified before another
is applied; therefore, the final components produced by the refinment process satisfy the original specifications.
Since each refinement step is small, design and implementation errors can be detected and corrected sooner and at
lower cost. VDM alone can not ensure the production of correct software. First of all, it does not address the vali-
dation problem. Secondly, it relies exclusively on formal methods although many widely used languages are not

formally verifiable. Many feel that no one method alone can ensure the production of correct software [10, 11, 27].

Despite these problems, VDM is used in industrial environments to enhance the development process
(4,24,30]. In this type of environment, the method is not typically applied in all its formality. Assertions are writ-
ten using operations and prédicates which may not be precisély defined. Veﬁﬁcadon conditions are generated
without the aid of automated tools and proved informally using a peer review system. In these situations, formal

‘ specifications serve mostly as a tool for precise communication, and the major impact on methodology is that more
time is spent on specification and design. However, the methods do prove useful in practice. Automated tools could
enhance VDM both by easing application of the method and by reducing the number of errors. Many feel the cost
of these tools is justified, and environments to support VDM are being constructed [2]. We feel that the time is ripe
for the construction of environments which partially automate formal development methods, and that these environ-

ments will eventually prove useful in industrial settings.

2.2. ENCOMPASS

ENCOMPASS (33, 36,38, 40] imegrafes a number of tools, methods and data structures to support incremen-
tal software development in a manner similar to VDM. ENCOMPASS supports a phased or waterfall life-cycle
[13], extended to allow the use of executable specifications and VDM: a separate phase is added for user validation,
and the design and implementation processes are combined into a single refinement phase. In ENCOMPASS, a
development progresses through the phages: planning, requirements definition, validation, refinement and system

integration. For a more detailed discussion of the ENCOMPASS lifecycle see (33,34, 38].

In the requirements definition phase, software is specified using a combination of natural language and the
PLEASE [34,35,39] family of wide-spectrum, executable specification languages. At the end of requirements
definition it is not known if the software requirements specification correctly and completely states the customer’s

needs and desires. The validation phase attempts to show that any system which satisfies the specification will also



satisfy the customers. If not, then the requirements specification should be corrected before the development
proceeds. To aid in the validation process, the PLEASE specifications can be used as prototypes in interactions with
the customers. These prototypes may be subjected to a series of tests, be delivered to the customers for experimen-
tation and evaluation, or be installed for production use on a trial basis. We feel the use of prototypes will increase

customer/developer communication and enhance the validation process.

In the refinement phase, the PLEASE specifications are incrementally transformed into conventional imple-
mentations. The reﬁnement phase can be decomposed into a number of steps, each of which consists of a design
transformation and its associated verification phase. Each design transformation creates a new speciﬁcétion, whose
relationship to the original is unknown. Before further refinements are performed, a veriﬁcatién phase must show
that the refinement is correct. In our model, verification is accomplished using a combination of testing, technical
review, and f-onnal methods. PLEASE prototypes can be used to verify the correctness of refinements using testing
techniques. Most simply, the prototype produced from a PLEASE specification can be used as a test oracle against
which implementations can be compared. In a more complex situation, the prototypés produced from the original
and refined specifications can be run on the same data and the results compared; this method gives significant
assurance that a refinement is correct at low cost. PLEASE specifications also enhance the veriﬁcation of system
components using proof techniques; for the purpose of formal verification, the refinement process can be viewed as

the construction of a proof in the Hoare calculus [15,19].

ENCOMPASS supports the rigorous [17] development of programs. Although detailed mechanical proofs
are not required at every step, the framework is present so that they can be constructed if necessary. Proof tech-
niques may be used that range from a very detailed, completely formal proof using mechanical theorem proving to a
development annotated with unproven verification conditions. Detailed, mechanical verification may be used on
parts of a project, while other, less critical parts may be handled using less expensive techniques. Our experience so
far leads us to believe that the complete, mechanical verification of large programs will be prohibitively expensive;
however, inexpensive methods can certify a large percentage of the verification conditions generated during a
development. By eliminating these trivial verification conditions, the total number is reduced so that those remain-
ing can be more carefully considered by the development personnel. In ENCOMPASS, some modules of a system
may be developed using PLEASE and IDEAL, while others are developed using conventional techniques. This

flexibility allows formal methods to be used only on the most critical portions of the system where the increased



expense is justified.
ENCOMPASS provides support for all aspects of this development paradigm including simple tools for

configuration conarol [18] and project management [S]. Many of the tools in ENCOMPASS are independent of the

language used for development, but others are specific to PLEASE.

23. PLEASE

ENCOMPASS is founded on the PLEASE (34,35,39] family of wide-spectrum, executable specification
languages. The design of these languages is a compromise between a number of conflicting goals. First, to increase
their practical application the specifications must support the construction of software using cpnvendonal program-
ming languages. Second, to enable the construction of high quality software we must be able to incrementally refine
PLEASE specifications into formally ‘veriﬁcd implementations. Unforwmnately, there is a éonﬂict bétwcen the first
and second goals. Most conventional languages were not designed with program verification in mind: therefore,
they conwin constructs for which no simple formal semantics have been developed. Although PLEASE uses the
syntax of the iniplememarion language, the constructs do not necessarily have identical semantics. The semantics of
PLEASE constructs are defined using Hoare calculus proof rules [38]. When PLEASE is used within an encapsu-
lated environment, special tools manipuiate and display the abstract syntax in a format suitable for humans. Pro-
grams with the desired behavior are automatically created in the implementation language from the PLEASE

abstract syntax trees.

The third design requirement is that PLEASE rriust allow the specification of software using pre- and post-
conditions written in predicate logic; the more powerful the specification method, the better. Fourth, the language
must allow the rapid, automatic construction of executable prototypes from these specifications; the prototypes
should be as efficient as possible. Unfortunately, there is a conflict between the third and fourth goals. A fairly
powerful specification method would use pre- and post-conditons written in the full first-order, predicate logic. A
resolution theorem prover for first-order logic could be used to construct prototypes; however, the performance of
these prototypes would be very poor. The emergence of logic programming as a technology, most notably Prolog
(8], suggests that these techniques may provide a gocod compromise. Although in one scnse not as powerful as full
first-order logic, Prolog allows much more efficient implementation echniques to be used. By restricting the

specifications to a logic with an efficient, Prolog-style implementation, reasonable specification power is combined



with implementation efficiency.

We have designed and implemented a number of logic-based executable specification languages during the

course of our research, and our approach has undergone significant modification.

3. PK/C++

The latest member of the PLEASE family is PK/C++ (Please Kernel on C++). We have two major goals for
the language. First and foremost, we want to produce an executable specification language practical enough that we
can develop significant software using the methods vwe have described. Second, we want to in\}estigate how execut-
able, logic-based specifications and VDM-style development methods interact with object-orienéed programming,
With these goals in mind, we have made PK/C++ differ from its predecessor by being based on C++ rather than
Ada, having an operational as well as declarative semantics, and being based on flat (unification but no backtrack-
ing) rather than standard Prolog. Although the use of C++ does not alter our fundamental approach, it is significant

for its addition of object-oriented programming to our research.

We developed the initial version of PLEASE using a Pascal derivative [35]. Later, we felt that the lack of
advanced separate compilation facilities and overloading was limiting our progress and we began using Ada {41] as
the base language [34,39]. The choice of Ada proved successful for a number of reasons, the most significant being
the existence of a large body of work on the Ada-based specification language ANNA [20,21]. PLEASE/Ada may
be considered a subset of ANNA specifically chosen to support VDM. Recently, we have come to believe that an
object-oriented language would expedite our research: therefore, C++ [32] was chosen as the new base language.
We hope the contrast between Ada generics and C++ inheritance will provide some interesting insights. Also, at a
more pragmatic level, the more "open" implementation of C++ may eliminate many of the minor crises we experi-
enced in developing PLEASE/Ada (for example, using C++ we can inspect or modify the intermediate code or

binaries produced by the system while in some Ada systems this is not possible).

3.1. Operational Semantics

PK/C++ also differs from its predecessors in having a well defined operational semantics. Our initial vision
was of a purely declarative specification language and an extremely intelligent translation system. The specification
would contain pre- and post-conditions written in "pure” Prolog which a knowledge-based translation tool would

automatically transform into Prolog procedures, ordering clauses and adding "cuts" as appropriate. Our experience



has led us to believe that this is not a realistic approach in the short term. We believe it is too difficult for a transla-
tor to construct a prototype with reasonable efficiency and chances of termination from a purely declarative
specification. We feel it is necessary to allow the programmer to control the order in which clauses are evaluated in
a manner similar to Prolog. In PK/C++, the programmer has control of the evaluation order; therefore,

specifications can be hand optimized to increase performance.

For example, Figure 1 shows the PLEASE/Ada specification of a component to compute the factorial of a
natural number.  This specification defines a package facrorial, which provides a procedure by the same name. In
PLEASE/Ada, procedures are defined using pre- and post-conditions which are designated by in(...) and out...)
reépectively. The pre-condition for a procedure specifies the conditions the input data musf satisfy before procedure
execution begins. The pre-condition for factorial is true; the type declarations for the parameters give all the
requirements for the input. The éost-condition for a proceaure states the conditions the output data must satisfy
after procedure execution has completed. The post-condition for factorial is is_fact(x,y); the predicate is_fact must
be true of the parameters to factorial after execution is complete. The predicate is_fact is not pre-defined; it was
developed as part of the factorial specification. The definition of is _fact states that X factorial is equal to ¥ if X

equals zero and Y equals one, or if X minus one factorial is equal to 77 and ¥ equals T7 times X (in other words,

package factorial pkg is

—-—: pradicata is_fact( X,Y : in out natural ) is true if
- Tl : natural ;

-—: bagin

-—: X=0and ¥ =1

-2 or

—-—— is_fact (X-1,Tl) and ¥ = T1 * X

--: end is_fact ;

procedure factorial{ X : in natural ; Y : out natural )
--| whera in( true ),
- out ( is_fact(X,Y) ) ;

’

end factorial pkg ;

Figure 1. PLEASE/Ada specification of factorial procedure




is_facyX,Y)istrue if X =0A Y=1)V (X-1)! = TIA Y = TI*X)).

In PLEASE/Ada, the evaluation order for clauses in predicate definitions was not defined: it was assumed the
translator would use heuristics to reorder the clauses for correct execution if necessary. In practice, this proved
unrealistically difficult; small changes in the original specification could produce dramatic changes in the viability
of the prototypes produced by the translator. For example, reordering the last clause of the is _fact definition to read
Y =TI * X and is_fact(X-1,T1) would produce a non functional prototype. We feel the only practical, short term
solution to this problem is to provide a well defined operational semantics for the language. For example, Figure 2
shows the equivalent PK/C++ specification of factorial. In PK/C++ the operational semantics are well defined: the
clauses in the predfcate are considered in a left to right, top to bottom order as in Prolog. Therefore, the brogram—
mer can control the execution to achieve reasonable performance; however, it does add to his task in writing the

specification. The ordering problem has not been eliminated, but now it is the programmer’s problem.

3.2. Flat vs Standard Prolog

The final difference between PK/C++ and its predecessors is that it is basecnl on flat rather than standard Pro-
log; by "flat” we mean Prolog with unification but no backtracking (this reduces the search to a flat tree or list). This
approach allows much simpler and somewhat more efficient implementation techniques to be used. It is similar to
the techniques being used to develop very efficient concurrent logic programming implementations for systems or

kernel languages [29]. In this approach, we are trading off logical compieteness for simplicity; in a simple sense,

pradicata is_fact ( naturals X , naturals Y ) {
natural T1 ;
raturn( X == 0 && Y ==
i

is_fact(X-1,Tl) && Y == T1*X
)oo}
void factorial ( natural& X , naturals Y Y {
pra( true ) ;
post( is_fact(X,Y) ) ; }

Figure 2. PK/C++ specification of factorial function




the semantics are the same. We can view the execution of a Prolog procedure as the search for a tuple of the
corresponding relation deducible from the contents of the data base. If the procedure succeeds, then the tuple it
finds is in the relation. If the procedure fails then we know nothing; a tuple might exist, but Prolog was unable to
find it. These statements both hold true for flat Prolog, but there will be more tuples that flat Prolog can not find
because it will not backtrack to explore all the possibilities. However, the use of flat Prolog has allowed us to con-

struct a very simple and efficient prototype implementation of PK/C++.

For example, consider the following PLEASE/Ada definition of the predicate permutation:

-—: predicate permutation( L1, L2 : in out natural_list ) is true if
- Front, Back : natural list ;

--: bagin

- Ll = (] and L2 = []

- or

- L1 = append(Front,cons (hd(L2),Back)) and

— permutation (append (Front, Back),tl (L2))

The definition states that two lists are permutations of each other if both of the lists are empty, or if the first element
in the second list is somewhere in the first list and the remainder of the two lists are permutations of each other.

This predicate definition can be translated into the following Prolog procedure which will function as a generator:

permutation (L,,L,) ¢

eq(Ly, [1) ,eq(Ly, [1).
permutation (L, L,) «

eq (L, Temps) ,

hd (L, Temp,) ,

cons (Temp,, Back, Temp,) ,
append (Front, Temp,, Temp;) ,
append (Front,Back, Temp,) ,
t1(L,, Temps) ,

permutation (Tempy, Temps) .

In other words, this procedure can be used to generate all the permutations of a list in sequence using backtracking.
In PLEASE/Ada this is a very executable specification; it can also be used to check if two lists are permutations of
each other. The same specification in PK/C++ is easy to read, and still useful for communication, but is not execut-
able in any useful way. It can not in general be used to determine if two lists are permutations of each other, and it
will not generate all the permutations of a list in order. However, if it returns frue the values of L7 and L2 will be

permutations of each other; it will just not return true very often. However, the elimination of backtracking

10



dramatically simplifies the implementation of the language. In logic programming, variables are set to values during
the unification process. With backtracking these "assignments” may have to be undone; therefore, more compli-

cated data structures are required than when backtracking is not present.

To clarify our model further and show how PK/C++ specifications enhance the development process, we will
consider an example of software construction. We will follow the development through requirements definition,
validation of the specification using a PK/C++ prototype, a refinement optimizing the performance of the prototype,

and verification of the optimization.

4. An Example of Software Development

Assume that a customer needs a component which sorts a list of integers. The component should take a possi-
bly unsorted list as input and produce a sorted list that is a permutation of the original as output. In the requirements
definition phase, the customer discusses his needs with the systems analyst and a requirements specification is pro-

duced. Along with other documentation, this specification might contain a component specified in PK/C++,

4.1. Specifying a Component

Figure 3 shows the PK/C++ specification of such a component'. The specification defines a function sort,
which takes two arguments: the first is a possibly unsorted input list, the second is a sorted list produced as output.
The specification defines the predicates permutation and sorted, as well as giving pre- and post-conditions for the
function. The pre-condition for sort is simply true; the type declarations for the parameters give all the require-
ments for the input. The post-condition for sort states that the output is a permutation of the input and the output is
sorted. The definition of permutation states that two lists are permutations of each other if both of the lists are
empty, or if the first element in the second list is somewhere in the first list and the remainder of the two lists are
permutations of each other. The definition of sorted states that a list is sorted if it is empty, or if it has one element,

or if the first element is less than or equal to the second element and the remainder of the list is sorted.

In PK/C++, predicates are specified using Horn clauses: a subset of predicate logic which is also the basis for
Prolog [7,8]. This approach allows a simpler implementation than for full Prolog; however, there are drawbacks.
For example, in pure Horn clause programming there is no way to specify the falsehood of formulae: for example,

the fact that a list containing the elements 2, 1 (in that order) can never be sorted. The solution used in Prolog is the

'In PK/C++, as in C++, Il, && and == are the symbols for logical "or", "and" and equality respectively.
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pradicate sorted( list& L ) { return(
L == emptylist
I
tl(L) == emptylist
I
hd (L) <= hd(tl(L)) && sorted(tl(L)) ); }

pradicate permutation( liste L1 , list& L2 ) {
list Front, Back ;
raturn( Ll == emptylist && L2 == emptylist
|1 :

Ll == append(Front,cons (hd(L2),Back)) &&
permutation (append (Front,Back),tl (L2))
)i} :
void sort( listé& L1 , list& L2 ) {

pra( true } ;
post (-permutation(Ll,L2) && sorted(L2) ) ; }

Figure 3. Declarative specification of sort function

closed world assumption: if a fact is not provably true then it is assumed to be false?. We believe the closed world
assumption is fundamentally unsuited for use in incremental software development. In such a situation, each step in
the development will add more information to an incomplete knowledge-base; therefore, it is not valid to assume a
statement is false simply because it is not yet provable. At present the only way to specify negative information in

PK/C++ is to define a new predicate which is by convention the negation of the original; for example, not_sorted.

It is unclear if the code in Figure 3 is better viewed as requirements, specification, or design. It certainly
states requirements that the software must satisfy; however, in one sense the specification has already constrained
the possible implementations to those using a function with two lists as arguments. This is an example of a general
problem (or feature) of VDM-style techniques; in such methods the specification, design and implemenm'tion phases
are fused together into a single refinement process. Actually, the methods are constraining only if we adopt a very
simple and completely formal approach to their application. For example, the specification in Figure 3 could be
refined into a piece of in-line code which performed an in-place sort on an array; however, the mathematics required
to formally verify this refinement are far beyond those currently implemented in ENCOMPASS. We view the

above scenario as a further argument for rigorous, rather than rigidly formal, software development. While many

% Unfortunately, the closed world assumption may cause inconsistencies for full first-order logic [25].
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situations can now be handled with formal techniques, real software development still provides many situations

which are not easily handled in this manner.

After the requirements specification has been created, it must be validated. The systems analyst can discuss
the specification with the customer and obtain test data and expected results for the system. This process can be
enhanced with the use of a PK/C++ prototype. Unfortunately, the specification in Figure 3 is not executaple in any
useful way. Specifically, it can not be used as a prototype for the sort function: taking L7 as input and producing L2
as output. In PLEASE/Ada the equivalent specification is executable using a "generate and test” paradigm; permu-
tation generates all the permutations of LI in order until sorted rates one as acceptable. This will not work in
PK/C++ because there is no backtracking to automatically generate all permutations in sequence. However, we can

easily write a PK/C++ specification which will serve as a prototype.

4.2. Prototyping the Specification

For example, Figure 4 shows a PK/C++ specification which implements an insertion sort algorithm. The pre-

pradicata insert_in_sorted_order( type& E , list& L1 , listg L2 ) {
list L3 ;
raturn( L1 == emptylist && L2 == cons (E, emptylist)
I
E <= hd(Ll) && L2 == cons(E,L1l)
I
insert_in_sorted_order(E,tl(Ll),L3) && L2 == cons(hd(Ll),L3)
Yo}

pradicata insertion_sorted( list& L1 , list& L2 ) {
list L3 ;
raturn( L1 == emptylist && L2 == emptylist
!
insertion_sorted(tl(Ll),L3) &&
insert_in_sorted order (hd(L1),L3,L2)
)i}
void sort( liste& L1 , listg L2 ) {

pre( true ) ;
post( insertion_sorted(L1l,L2) ) ; }

Figure 4. Executable specification of sort function

13



condition for sort is stll true, but now the post-condition is insertion_sorted(L1,L2); in other words, the predicate
insertion_sorted must hold for L1 and L2. The definition of insertion_sorted implements a recursive insertion sort.
We can read this as: if LI and L2 are both the empty list then return true, else if the tail of L] insertion sorts to L3
and inserting the first element in LI in L3 produces L2 then return frue, else return false. The predicate
insert_in_sorted_order is true if L2 is the result of inserting £ into LI while maintaining the sorted order. The
definition of insert_in_sorted_order uses a sequential search to insert £ in the correct location. This specification of

sort is usable as a prototype and in fact is reasonably efficient, insertion sort being an O(n?) al gorithm.

The prototype contains no conventional assignment statements; the equality predicate (==) subsumes their
function and is more amenable to machine reasoniﬁg. The value of L2 is set in the unification proceduré (used to
implement equality in PK/C++). For example, if sort is called with L1 set to the empty list then L2 will be set to the
empty list in the unification procedure called fro_m the first line of inserdén_sorred. In theorem proving, the most
general unifier of two formulae is a set of (text) substitutions which when applied to both make the formulae identi-
cal. For example, the most general unifier of f{X) and f{1) is [1/X], read as "substitute / for X". Unification in Pro-
log in not an exact implementation of this process; for example, there is no most general unifier for f(X) and X, but
in Prolog these two terms can be unified to create a recursive data structure. Unification in PK/C++ is like

unification in Prolog, so its semantics are not those used in theorem proving [31]; however, in practice this has not

been a problem.

Although we have produced a usable prototype, we have not solved all our problems. First, we do not know
the precise relationship between the specifications in Figure 3 and Figure 4. Although this is an interesting problem
from an intellectual point of view, and can be addressed using formal techniques, in practice it need not be con-
sidered. In practice, we can verify the equivalence between Figure 3 and Figure 4 using peer review, and since the
insertion sort specification is written using predicates and pre- and post-conditions, it can be used as the formal
specification in further development. However, before development continues we must be sure the customers are

satisfied. The prototype should first be checked for correct execution on the acceptance tests compiled earlier. If it

performs correctly in these instances then it can be delivered to the customers for evaluation?. If the prototype does
not perform correctly then we know the specification is invalid and it must be revised and re-validated before the

development continues.

3 We note that no amount of testing can guarantee the correctness of the specification.
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4.3. Optimization of the Prototype

Assume that the customers are satisfied with the function of the prototype, but are somewhat concerned about

the performance - especially on large inputs®. To improve performance in this respect, the specification can be
rewritten to implement an O(n Ig n) sorting algorithm. For example, Figure 5 shows a PK/C++ sort specification
which implements a quicksort algorithm. The specification contains two predicates: partition, which divides L into
two sub-lists Low and High so that all the members of Low are less than or equal to the selected element and all the
members of High are greater; and quick_ sorted, which uses partition to implement the quicksort itself. To sort the
input list, partition is called to divide the input list into two sublists which are then sorted recursively and combined

to form a sorted permutatibn of the original.'

The performance of this prototype will be quite good, although not as good as a C++v program written using

arrays instead of lists. Our general approach to optimization involves two steps. Before investing substantial time

predicatae partition( type& E, list& L, lists Low , lists High ) {
list Temp ;
raturn( L == emptylist && Low == emptylist && High == emptylist
I
E <= hd (L) && partition(E,tl (L), Temp,High) && Low == cons (hd (L) , Temp)
I
partition(E,tl (L), Low, Temp) && High == cons (hd (L), Temp)
)i}

pradicata quick_sorted( liste L1 , listg L2 Yy {
list Low, High, Slow, Shigh ;
raturn( L1 == emptylist && L2 == emptylist
I

partition(hd(Ll),tl(Ll),Low,High) &&
quick_sorted(Low, Slow) && quick_sorted(High,Shigh) &&
L2 == append(Slow,cons (hd(L1l), Shigh))

)i}

void sort( list& L1 , lists& L2 ) {
pre( true ) ;
post ( quick_sorted(L1l,L2) ) ; }

Figure 5. Optimized executable specification of sort function

* Data on the actual performance of this prototype appears in section 5.2.



in hand optimization of code, we believe that the actual performance of the system should be measured and the per-
formance bottle necks determined. Only after this has been accomplished should detailed hand optimization begin.
In other words: code that doesn’t run much doesn’t have to run fast. For many parts of the system PK/C++ proto-
types will provide adequate performance. For system components which are genuinely performance critical hand
coded C++ functions can be used. We believe that PK/C++ specifications are even easier to read than pure C++

code (a debatable claim) and that they are much more amenable to machine reasoning techniques [37].

‘We have now produced a sort prototype- with increased performance. However, before we continue we must

certify that the optimized and original specifications are equivalent.

4.4. Verifying the Refinement

A number of different methods may be used to show that the optimized specification is equivalent to the origi-
nal. In the most informal case, either inspection of the original and optimized specifications by a senior designer, or
a peer review process might be used. A more rigorqus approach might run the original and optimized prototypes on
the same test data and compare the results; this method gives significant assurance at low cost. in the most rigorous
case, mathematical reasoning would be used. ENCOMPASS provides tools to support the construction of formal
proofs of correctness. For example, ISLET [33] is a syntax-directed program/proof editor, similar to [26], in which
the refinement process is viewed as the incremental construction of a proof in the Hoare calculus [15,19,22].
ISLET provides commands to add, delete and refine constructs; as the specification is transformed into an imple-
mentation (and the proof is constructed) verification conditions are automatically generated. These are first algebra-
ically simplified and then subjected to a number of simple proof tactics; if these fail, input is generated for TED, a
general purpose proof management system [14]. Unfortunately, at present ISLET is not robust enough to be used in

major development efforts.

More practically, we can certify the equivalence of the original and refined specifications using a combination
of testing and peer review techniques. We feel peer review is an important component in the verification process;
many refinements can only be assessed in the context of experience. Fof example, consider a refinement in which
the list-based specification of sort is transformed into one which takes arrays as parameters. From a formal
viewpoint, this situation is difficult as we are transforming a potentially infinite data structure (list) into a finite data

structure (array), thereby introducing error elements (index out of bounds) which may not have previously existed.
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We carl use testing techniques with the normal mapping between lists and arrays, but we should now test boundary
conditions. Also, we must decide how big to make the array; as the validated specification used lists, the users may

use extremely large inputs. At present, we feel situations such as this can best be addressed by a senior designer.

Once the design transformation has been verified, the new specification may be refined further and the process
repeated untl an implementation is produced. This then is the ENCOMPASS development paradigm: describe the
system using an executable specification language, validate the specification by creating a prototype, and then refine

the specification into an implementation.

5. System Implementation and Status

The ENCOMPASS environment has been under development since 1984; a prototype implementation of
ENCOMPASS for PLEASE/Ada has been running under Berkeley UNIX® on Sun workstations since 1986. The
prototype is written in a combination of C, Csh, Prolog and Ada and supports the construction of software using the

A Verdix Ada Development System [42]. PLEASE/Ada and ENCOMPASS have been used to develop a number of
programs, including specification, prototyping, and mechanical verification. The current irr;plementau’on of
PLEASE/Ada is based on the UNSW Prolog interpreter [28]. The Prolog interpreter and Ada program run as
separate processes and communicate through pipes’. This implementation is somewhat expensive; for example, on
a Sun 2/170 there is a five CPU second overhead to start the Prolog interpreter, but this is incurred only once durin g
program execution. A procedure call from Ada to Prolog costs about forty milliseconds excluding parameter
conversion. As an example of actual performance, the prototype produced from a sort specification equivalent to
the one in Figure 3 can process a list of leng;h four in an average of .9 seconds and a list of length five in an average
‘of 4.7 seconds. This poor performance is due both to the use of an exponential algorithm and the poor implementa-

tion of PLEASE/Ada. PK/C++ demonstrates dramatically increased performance relative to its predecessor.

5.1. Implementation of PK/C++

PK/C++ has been under development since the Spring of 1988. The current implementation is based on C++
version 1.2.1 and runs under both System V UNIX and Berkeley UNIX, on both AT&T 3b2s and Sun workstations.

The architecture is extremely simple; no compiler or pre-processor for the language is used. The system consists of

UNIX® is a trademark of AT&T Bell Laboratories.
*Pipes are a buffering mechanism implemented in UNIX.
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a number of predefined classes which are linked in with all PK/C++ programs. These classes include definitions of
the VDM types, such as ser, lisz, and map, as well as code to implement operations required for all types, such as
unification, run-time type checking and error handling.

Figure 6 shows a simplified version of the class hierarchy for these routines. The root of the tree is the class
Type; all object classes used in PK/C++ specificadons must be descendants of Type. This hierarchy is easily exten-
sible; new object classes can be added as descendants of Type, thereby inheriting the unification, type checking and
error handling routines implemented there. For example, a stack can be seen as a list with restricted operations; ele-
ments can only be added or removed in the first posfdon. We can model! this reladonship by adding a dass Stack as
a class derived from List in the PK/C++ hierérchy. The Stack class uses the member functions and data structure of
the List class to implement the new type; Stack defines a new set of cperations for its public interface and elects to
not propagate the list operations-not valid for stacks to this interface. The Stack class must al$o be assigned a type -

' ag and provide functon bodies for the virtual functions equality (==) and assignment (=); by deing so, the type-

checking and unification code defined in the base class Type can be reused without modificaton.

Many desirable features of our implementation are due to the use of C++ virtual and/or overicaded functions

and operators o provide polymorphic routines. In C++, built in operators whose first operand is a class object can

‘[nre'g:'eir

Figure 6. Simplified class hierarchy for PX/C++ support routines




be overloaded so that the compiler calls a user-defined routine. In fact, a number of user-defined routines can be
supplied for an operator, each of which takes a different type as its second argument. Function names can also be
overloaded in this manner. In addition, both operators and functions can be declared to be virtual, which permits
the routine to be declared (but not necessarily implemented) in the parent class. Classes derived from this parent
may provide an implementation for these routines. Instances of derived class objects can then be passed about as
base class types, and when a base class virtual function is applied to the object the system determines at run time the
correct derived class routine to call. If none is defined in the derived class, then the routine defined in the base class

will be called.

* For example, we declare the assignment operator (:) as vifmal in the base class Type, taking an object of class
Type as its second argument. Therefore, we can write a single assignment statement to assign any object derived
from Type to ;‘my other object derived from Type without knowing how to perform the assignment. Each derived
class supplies an implementation of "operator =". Since the second argument is a base type, we require the routine
to check ing type at run dme and generate an error if the type is not appropriate. This permits our type hierarchy to
be extensible: new types can be added without requiring any changes to any of the implementations of "operat-or ="
already in place. Alternatively, we could have defined multiple versions of the virtual assignment operator in the
base class, each taking a specific second derived type as an argument. In this case we would not need to make an
explicit run time type check on the second argument, but we would sacrifice extensibility of the type hierarchy: any
new type to be added would require a new virtual operator = to be added 1o the base class, and modifications to be

made to all the classes which need to process this new type. In PX/C++, we elected to follow the former approach.

By taking this approach, we have strived to maintain strong type checking while permitting the use of "gen-
eric” routines. For example, an issue arises in the List class as to how 10 specify the type of objects contained in the
list. We have written the List code to operate on objects of class Type, but with the requircmcnt that lists be homo-
geﬁeoﬁs. This allows the same code to be used to m:mipuiate lists with any element type in the PK/C++ hierarchy;
however, extra measures must be taken to provide type safety. For example, unless run-time type checking is per-

formed by the List class member functions, using this setup it would be possible to append a list of lists o a list of

integers. OQur present approach uses additional data swructures to provide structural type checking®. For example,

the type designator for a List of Integers is itseif a list smucture containing the two tags "list” and "integer”, and the

¢ While C++ uses name typing for classes, our use of swucmurai typing allows us to have "generics" without needing to per-
form an instantiadon for cach new type.
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type designator for a List of Lists of Naturals is a list structure containing the three tags "list”, "list" and "natural”.
The type designators for objects are checked before operations are performed: for two lists to be appended, their

type designators must be equivalent.

Another implementation issue is the choice of references or pointers as arguments to and return values from
functions on objects. In C++, a program variable can be defined as being a reference 10 an object of a particular
type. References must be assigned a value upon declaration, and become an alternate name for that object. Once
initalized, a reference cannot be changed; any operators applied to the reference act on the object referenced. (The
address-of operator (&) will return the address of the object being referenced, not the address of the reference
iself.) By passing arguments to functions and predicates. by reference, we get the same efficiency as by passing an
explicit pointer to the object, without requiring the use (and visibility) of pointers in our implemenmu’qn. This
allo‘;vs the function to cha.nge the value of the argument passed to it, which is essential for us to provide unification
in predicates. None of the functions in the interface of classes in the type hierarchy take pointers to types as param-
eters; all either pass‘ the parameter by reference or value. We wish to avoid the use of pointers in our client code
since we want the user to think at a higher conceptual level while producing a specification; the use of references
permits us to do this. The user normally has access to the "address-of” ’opemtor (&), but if we wish, we can over-
load it to force control to pass 1o our own routne, which could then print a message and terminate execution, effec-

tdvely eliminating the use of pointers with our data types.

C++ also provides a reasonably elegant implementation of the notions of logical variable and unification. In
PK/C++, program variables are equivalent to universally quantified variables in the logic used for annotations. In
other words, a PK/C++ annotation says that a formula must hold true for ail possible values of the program vari-
ables; at a panicularvpoinc during execution, the program variables hold particular values which must satisfy the
annotations. A PK/C++ logical variable, on the other hand. represents an existentially quantfied varable in the
annotation logic. In other words, there must exist a value for each logical variable that satisfies the annotations.
Using this view we can see the "execution” of post-conditions as the search for values of the logical variables which
satisty the given formulae. The only thing missing is a way to set program variables to reflect the results of this
search. In PK/C++ we provide an explicit operation to transform a program variable into a logical variable so that it

can be set in an annotation. For example, the output variable of the sort function must be a logical variable so that



the post-condition can set it to an appropriate value,

Logical variables and unification are implemented in the Type class so that this code can be reused in all des-
cendant classes. Logical variables are implemented using a ser bit: if the bit is set then the object represents a pro-
@ variable and has a value; if it is not set then the object is a logical variable and can be instantiated during
unification. To implement unification, each object contains a unify field which is a pointer to an object of the same
type. We can view unification as the construction of equivalence classes of variables; when two variables are
unified their equivalence classes are merged. In PX/C++, the equivalence class of a logical variable is implemented
as a circularly linked list using the unify field; when two variables are unified these lists are merged. We can view
- the unification of a constant to a variable as assigning the value to all variables in the equivalence class. In PX/C++,
when a logical variable is unified with a value, the valug is assigned to all the variables in the equivalence class
using the virtual function deﬁried for that data type, and their ser bits are turned on. - Thus they will be treated as

constants from then on for the purposes of unification, until their ser bits are turned off.

. To fully implement PK/C++, features other than logical variables and uniﬁcazion are needed. . First of all,
predicates must be impiemented. In PK/C++, predicates are implemented as C++ functions which return either true
or false. The formulae used in predicate definitions have the standard C+- operational semantics; except for the ==
symbol which in PK/C++ stands for unification. The formulae used to define predicates in PX/C++ may contain
recursive calls to other predicates; these calls have the standard C++ semantics. Pre- and post-condidons are imple-
mented as simple functions which take formulae as arguments. As C++ uses eager evaluauon, the formulae are
invoked (and return (rue or faise) before the functions are called. Pre and post simply check that the {ormulae
returned (rue and raise the appropriate excepton if necessary. In PK/C++ lists are implemented using pointers and
all storage is allocated on Lhé heap. This use of pointers is hidden in the implementation, and is not visible to users

of the classes.

5.2. Performance of PK/C+-

One of the major goals for PX/C++ was an implementation efficient enough that reasonably large systems
could be prototyped using the language. Although we believe the performance of PK/C++ is sull far below its ulti-
mate potential, we are pleased with the current implementation. From the timing data we have gathered we can

show that PX/C++ prototypes run about two orders of magnitude faster than in the PLEASE/Ada system, but stll



two orders of magnitude slower than hand coded C programs. For example, Figure 7 and Figure 8 show execution
times for the PK/C++ sort specifications given in this paper, as well as for a hand coded C program which performs
an in-place quicksort on an array. The insertion sort and quicksort executable specifications as well as the quicksort
progfam were run on lists of lengths 10 through 100 by increments of 10, and from lengths of length 150 to 500 by
increments of 50. Both of the executable specifications used lists of integers, while the quicksort implementation
used arrays of ints. Both data strucm:e§ were initialized with (pseudo) random sequences of integers’. Each of our
"average” cases was determined by using ten different data sets of each length, with eagh sort being run ten times to
better measure execution time for each run. The results of these one hundred runs for each length were then nv‘er-
aged to get the daw point entered in the table.” Our worst case for each specification was determined using lists in
srictly decre;sing reverse order. Ten runs were made for each list length, with the average value of these ten runs
entered in the table.‘ For each length, Lﬁe same data that was used in the avérage quicksort specification example

was 2also used in the C program.

6. Summary and Conclusions

ENCOMPASS is an environment to support a formal development method similar to VDM (5,6,18,33-0].
In ENCOMPASS, the general approach is to address the validation problem using executable specifications and to
address the verification problem using a combination of formal, tesung, and peer review based techniques.
ENCOMPASS supports a traditional lifecycle, extended to allow the use of executable specifications and formal
methods similar to VDM. In ENCOMPASS, software is specified using a combination of natural language and the
PLEASE [34,35,39] family of wide-spectrum, executable specification languages. PLEASE specifications can be
incremenually refined into conventional implementatons using IDEAL, an environment for programming-in-the-
small which supports verificaton using peer review, testing or proof techniques. ENCOMPASS is an environment
for the rigorous [17] development of programs; parts of a project may use detailed mechanical verification while

other, less critical parts may be handled using less expensive techniques.

Our approach o exccutable specifications has changed dramatically since we began our work; PK/C++
(Please Kemnel on C++) is the latest member of the PLEASE family. PK/C+ differs from its predecessor by being

based on C+= rather than Ada. having an operational as weil as declarative semantics, and being based on flat rather

" We used the UNIX drand library routine, which employs a linear congruential algorithm with 48-bit arithmetic to produce
non-negative douk;le-preg:_@;_iqn ﬂpadngpoim values uniformiy distibuted over the interval (0.0,1.0). These values were then
multiplied by a constant to produce the range of integers used in the sorting examples.
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CPU time in seconds
List Insertion Sort Quicksort Quicksort
Length | (Executable Spec) | (Executable Spec) | (Implemented)
average | worst | average | worst average
10 04 .06 .09 A3 .00040
20 12 24 20 A4 .00095
30 26 S1 33 92 .0015
40 A4S 91 A6 1.39 .0022
50 .70 142 61 2.43 .0029
60 1.01 2.02 76 3.45 .0035
70 1.37 2.75 91 4.64 .0042
30 1.78 3.59 1.07 6.02 .0049
90 2.28 4.54 123 7.37 .0057
100 - 2277 5.60 141 9.32 .0064
150 6.19 12.5 227 7| 213 . .010
200 10.9 223 3.19 39.6 014
250 17.0 364 4.1 62.6 .018
300 25.2 53.0 5.1 91.1 .023
330 35.2 73.0 6.2 126. .027
400 47, 96. 72 - 032
430 60. 123. 8.2 - .036
500 74. 153. 9.3 - 041

Figure 8. Run times of the executable specifications and C program

than standard Prolog. We feel these changes will significantly enhance its use as a practical specificauon vehicle.
PK/C++ allows a procedure or function to be specified using pre- and post-conditions, a data type to have an invari-
ant, and an implementation to be completely annotated. PX/C++ specifications may be used in proofs of correct-
ness. They can also be executable; these prototypes can enhance the development process in a number 6f ways.
Prototypes can increase’ the communication between customer and developer, thereby enhancing the validation pro-
cess. PK/C++ prototypes can be used in experiments performed to guide the design process. Prototypes produced
from a PX/C++ specification and its refinement can be run on the same test data and the results compared; this

method can give significant assurance thar a refinement is correct at a low cost. Since PK/C++ has an operational as



well as declarative semantics, the programmer can hand optimize PK/C++ specifications for improved execution.

We have completed a prototype implementation of PK/C++; it is written in C++ version 1.2.1 and runs on
both AT&T 3b2s and Sun workstations. Basing our execution strategy on flat (unification but no backtracking)
rather than standard Prolog allowed much simpler and somewhat more efficient implementation technfques to be
used. Being based on C++ rather than Ada makes the power of object-oriented programming available. C++
classes and inheritance allow us 1o implement generics while retaining strong type checking and permiuing extensi-
bility. However, we are not sure our use of run-time structural typing is the final solution to the problem. Although
we do not believe the current implementation demonstrates the full potendal of the language, we are pleased with its
performance. “The execution data we have gathered shows that PK/C++ runs about two orders of magnitude faster
than PLEASE/Ada, but is stll two orders of magnitude slower than a C++ implementation. We feel we can
improve itsv performance with further researéh. We believe that the use of methods similar to those based on

PK/C++ specifications will enhance the design, development, validation and verification of software.
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