An Example of Formal Specification as an
Aid to Design and Development

Mark Terwilliger, Mark J. Maybee and Leon J. Osterweil

CU-CS-399-88 May 1988

%University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

An Example of Formal Specification
as an Aid to Design and Development

Robert B. Terwilliger
Mark J. Maybee
Leon J. Osterweil

Department of Computer Science,
University of Colorado,
Boulder, CO 80309-0430

Abstract

In this paper we describe an experiment which supports the hypothesis that formally specifying a system
after a prototype has been created can enhance the development process. We conjectured that describing
an existing system using a small number of well understood concepts could increase understanding and
enhance communication between project members. We performed an experiment to verify this conjecture
using software constructed by the Arcadia project: a consortium developing software environment techno-
logies including "process programming" [19]. At the beginning of the experiment, a prototype require-
ments building system had been developed and was undergoin g redesign and extension. Over the course
of three months, the developers met with a specification expert and a formal description was written using
PLEASE [23], an Ada®-based executable specification and design language which supports formal
methods similar to VDM. Formal specification enhanced the development process by helping the
developers to clarify the architecture of the system, separate their concerns, and discuss possible
modifications.

1. Introduction

Traditional methods do not ensure the production of correct software. It has been suggested that formal

specification can enhance the software development process [7,28]. Typically, it is proposed that such
specifications should either be written before the production of a prototype, or should be executable and also serve
as an initial implementation. We believe that formal specifications can enhance the development process in a
number of ways. Specifically, we believe that further development can be enhanced by creating a formal
specification after a prototype has already been constructed using traditional techniques. We believe that the pur-
pose of prototype development should be to facilitate the acquisition of knowledge about the nature of a problem
domain or solution approach. That being the case, it seems clear 0 us that describing the prototype and the nature
of experiences with it more precisely should yield correspondingly more precise and valuable knowledge and
insight. It should also increase understanding and enhance communication between project members. Post-

prototype formal specification can in this way enhance the remainder of the development process by helping to clar-

Ada ® is a trademark of the US Government, Ada Joint Program Office.
This research was supported in part by NSF grant CCR-8705162.

ify system architecture, separate concerns, and provide an "intellectual test bed” for the discussion of changes. In
this paper, we describe an experiment performed in the context of the Arcadia project which supports these

hypotheses.

The goal of the Arcadia project is to experimentally develop superior software environment technologies, one
of which is process programming [19]. Advocates of process programming claim that software processes such as
requirements specification, design, and testing are themseclves software; therefore, they should be. specified,
designed, and coded. They further believe that process programs should be interpretable by software environments.
Thus the Arcadia project is attempting to develop process programs and devise environment architectures capable of
interpreting them. Towards this end, Arcadia is developing a series of process programs and supporting environ-
ments using a cycle of prototype development, evaluation, and migration. The first phase of this activity is the crea-
tion of a prototype process program for the entire software lifecycle called BOPEEP (But One Prototype End to End
Process-program). The initial phase of BOPEEP has focussed on the creation of REBUS, a prototype REquirements
BUilding System. These prototypes are intended to be used as vehicles for providing important early knowledge
about key software processes and languages in which they might be programmed. Hence we conjectured that the
use of formalization to describe these prototypes and their components would increase the knowledge acquisition

effect of the prototyping activities.

In explaining REBUS and process programming in general, we found informal descriptions to be inadequate.
While natural language facilitates the formulation and transfer of general concepts, its ambiguity makes precise
communication difficult. We felt we could better analyze the complex issues involved in process programming with
the aid of formal descriptions. For systems already constructed, programming language code might serve as a com-
plete, formal description. However, such descriptions often lack abstraction and rigor. Code is written to efficiently
utilize machine resources rather than to communicate new ideas. We believe that rigorous higher level descriptions
of these systems can increase our understanding of the issues involved. With this in mind, we have attempted to

describe some of our key activitics using formal methods similar to VDM.

VDM (the Vienna Development Method) supports the top-down development of software specified in a nota-
tion suitable for formal verification [2,6,13]. In this method, components are first written using a combination of
conventional programming languages and predicate logic. A procedure or function may be specified using a pre-

condition, which states the properties that the inputs must satisfy, and a post-condition, which states the relationship

of inputs to outputs. Similarly, an abstract data type may be specified with an invariant defining the acceptable
states and pre- and post-conditions for the operations. To increase the expressive power of specifications, the high-
level types set, list, and map are added to the language. In VDM, specifications are incrementally refined into pro-
grams in an implementation language. VDM is used in industrial environments [3,18,20] and seems to prove use-

ful in practice; environments to support the method are now being constructed [1].

In one sense, VDM-style specifications can be written in any language which supports predicate logic annota-
tions. For example, ANNA [14,15] is an annotated version of Ada. PLEASE [22,23,26] is a subset of ANNA
specifically designed to support formal methods similar to VDM. In PLEASE, the types set, list, and map are pre-
defined and annotations are restricted to Horn clauses: a subset of predicate logic which is also the basis for Prolog
[4,5]. PLEASE specifications can be used in proofs of correctness; they can also be transformed into prototypes
which use Prolog to "execute” pre- and post-conditions. PLEASE specifications are effectively exploited by
ENCOMPASS [21,24,25], an environment which extends VDM with executable specifications, knowledge-based
tools, and testing-based verification methods. At present, ENCOMPASS is not robust enough to be used in major
development efforts. However, the PLEASE language is stable, and can be used independently of the tools

developed for its support.

In the fall of 1987, we performed an experiment in which a high-level design for REBUS was written in
PLEASE. At the beginning of the experiment, a prototype version of REBUS had been developed and was under-
going evaluation aimed at redesign and extension. We conjectured that describing the system using a small number
of formally defined concepts could increase understanding, enhance communication between project members, and
maximize the knowledge acquired though the prototyping activity. Over the course of three months, the developers
met with a specification expert and the formal description was created. We found that formal specification
enhanced the development process by helping the developers to clarify the architecture of the system, separate their

concerns, and discuss possible modifications.

In the rest of this paper we describe this experiment in more detail. In section two we describe the experi-
mental process more completely, including an overview of the original REBUS prototype and the issues raised dur-
ing the specification process. The discussion centers around the whileboard, a mechanism for controlling the
interactions between multiple programmers. In section three we present the formal specification of REBUS; it con-

tains four parts: the object manager, the whiteboard, REBUS itself, and a skeleton of the entire specification process.

Finally, in section five we summarize and draw some conclusions from our experience.

2. An Experiment in Formal Specification

In the Fall of 1987 at the University of Colorado, a prototype version of REBUS had been under construction
since the preceding summer by a team of three graduate students. The prototype served as a focal point for integrat-
ing a number of pre-existing research efforts. It encorporated both an object-oriented database system [9-12] and a
relational language [8] among its major components. Its major objectives included improved understanding of the
nature of the requirement specification process and of the linguistic mechanisms needed to support its effective
description by executable code. After a four month period of very rapid prototyping, it was decided that a review of
the design would enhance further development; we believed that the developers’ current perspectives might have
been too heavily influenced by implementation considerations. It was suggested that the construction of a formal
specification/design could prove to be interesting as well as an aid in future development. By creating an abstract
representation of the system, we believed that the underlying issues and concepts would be separated from the

implementation. Therefore, over a period of three months, formal specifications of REBUS were written in

PLEASE.

During the experiment, weekly meetings were held between a senior graduate student and a faculty member
serving as the specification expert. In these meetings, the student presented the goals and design of REBUS to the
expert, who questioned the student in order to clarify concepts and devise formal representations for the design.
The development of the specifications did not proceed at a uniform rate. Periods of discussion and thought would
result in important insights and new formal representations; these would be followed by the rapid generation of
specifications. At the beginning of the process a month passed before the specification expert’s knowledge of the
project was sufficient that any formal representations could be generated. During the second month many insights
were reached and the bulk of the specifications were written. An initial version of the specifications were presented
to the Arcadia group at the University of Colorado as soon as they were completed. During the third month the

specifications were carefully reviewed, discussed, and put into their present form.

To better understand the issues raised and resolved during the experiment, we will consider the REBUS proto-

type in more detail.

2.1. The REBUS Prototype

REBUS is a requirements building system developed by the Arcadia group as part of BOPEEP, a prototype
process program implementation. REBUS attempts to show that requirements specification development can be
viewed as a programming activity by developing a system that implements a process program for requirements
specification. In REBUS, a requirements specification is viewed as a2 DAG composed of requirements specification
nodes, each of which may have artributes of various types. Nodes may have relations between them, and both
nodes and relations may have to satisfy certain constraints. In REBUS, the requirements specification process con-
sists of creating and modifying nodes, relating nodes to one another and forming larger aggregates, analyzing

groups of nodes to see if they satisfy constraints, and coordinating the efforts of multiple developers.

More specifically, in REBUS a requirements specification is an instance of the type Reqts Spec, which is a
DAG of nodes, each of which is of type Reqts_Elt. Objects of type Regts Elt are records whose fields (attributes)
are of various types, some of which are more familiar (for example, string or integer) and some of which are more
esoteric (for example, predicate or dataflow sequence specification). Reqts_Elt objects may have relations between
them which are specified in the language APPL/A [8]. APPL/A relations specify constraints that Reqts_Elt objects
must satisfy and provide mechanisms to trigger appropriate actions when these constraints are violated. Develop-
ment of an object of type Reqts_Spec is therefore a process of creating, evaluating, relating, and altering Reqts Elr

objects.

The REBUS prototype, then, implements a process program for requirements specification; this program con-
sists of a number of concurrent sub-processes. For example, each person on a project is expected to specify dif-
ferent sub-requirements, and thus may have a different path of execution through REBUS. This requires different
bindings for different sub-processes. The main REBUS process describes the various requirements software
objects, atiributes, and relations, as well as controlling the ways in which sub-processes can interact. Tasks such as
creation, analysis and modification of nodes are represented by coordinated sub-processes; these tasks are con-
current, but may require synchronization at certain points. For example, analysis of a node should be suspended or
disallowed while it is undergoing modification. High level direction of these tasks, and the coordination of the peo-
ple to whom their execution is bound, is effected by the highest level of REBUS, which is viewed as the actual pro-
cess program, while the lowest-level sub-processes, or possibly their operations, are considered to be the analogs of

conventional tools.

n

In REBUS, the actions of independent sub-processes are coordinated using the whiteboard, a communication
and coordination mechanism derived from the blackboard concept [16,17]. The REBUS whiteboard was designed
specifically to coordinate multiple developers are engaged in the parallel creation of a software object whose parti-
tions may be inter-dependent; requirements development for example. In our concept, a whiteboard holds a group
of objects, each of which is in a particular state. The state of an object summarizes much of the information avail-
able about it; for example its consistency, stage in the lifecycle, work status, and completeness. Objects are moved
from state to state to reflect changes in their underlying status. The whiteboard provides access to the objects it
holds only through certain operations, the most notable of which modify the object or change its state on the white-

board. Access and modification permissions may vary with the object, state and user.

To gain a deeper understanding of the whiteboard concept and how it evolved during our experiment, we now

describe the whiteboard as it was originally implemented in the REBUS prototype.

2.1.1. The Original Whiteboard Model

Figure 1 shows a simplified version of the Whiteboard package specification as it appeared at the beginning of
our experiment. The package implements an abstract data type (ADT), instances of which are whiteboards with
persistent states. Thus, the package provides an interface to a persistent data store, the elements of which are white-
boards. A whiteboard stores and manipulates objects called items, each of which represents the state of a unit of a
requirements specification object. whiteboard items can be thought of as messages for communicating the state of
objects amongst independent processes. In this implementation, there are only three states of interest; therefore, a
whiteboard consists of three lists of items: the items currently posted, and thus requiring attention; the items
presently locked by a user; and the list of completed items. Posted items are indications of work remaining to be
done. As new work is generated, corresponding items are "posted"” to the whiteboard. Users select items on which
to work by examining the posted items and "locking” them. The list of locked items is actually a list of lists: one for
each user working on the project. Locked items represent work in progress. Locks are exclusive so there is no pos-
sibility of conflicting changes to the same item. The list of completed items represents work that has reached some
reasonable standard of thoroughness and consistency. REBUS automatically subjects items on the completed list to
checks for internal consistency and, if the appropriate conditions are not met, automatically re-posts the incorrect

items.

package Whiteboard is

- create, open or close a whiteboard

procedure create whiteboard (Name : in string)
function open_whiteboard (Name : in string } return WB_handle ;
procedure close_whiteboard (Ident : in WB_handle) ;

o access an item on the whiteboard

function item (Board : in WB_handle ; Id : in item id) return WB_item ;

’

- get an itemlist off a whiteboard

function itemlist (Ident : in WB_handle) return IL_handle ;
function locked_itemlist (Ident : in WB_handle) return IL handle ;
function completed itemlist (Ident : in WB_handle) return IL handle ;
- manipulate an itemlist

procedure get_ item (Index : in out IL handle ; Item : out WB_item) ;

function end of items(Index : in IL_handle) return Boolean ;

- post, lock, delete or complete an item

;;ocedure post_item (Board : in WB_handle ; Contents : in string) ;
procedure repost_item (Board : in WB_handle ; Id : in item_id Yy
procedure lock item (Board : in WB_handle ; Id : in item id) s
procedure unlock_item (Board : in WB_handle ; Id : in item_id y

procedurae delete item (Board : in WB_handle ; Id : in item_id)
procedurae complete item (Board : in WB_handle ; Id : in item_id)

end Whiteboard;

Figure 1. Simplified Version of Original Whitcboard Header

The Whiteboard package provides four types of operations: operations to create, open and close a whiteboard;

operations to access items on the whiteboard; operations which manipulate lists of items; and operations to move

items between lists on the whiteboard. The second and third groups of operations are distinguished because it is
possible to access items without manipulating lists of items. All operations take parameters of two basic types:
names, text strings used to refer to objects; and handles, which provide more direct and machine-efficient access to
objects For example, consider the operations to create, open and close whiteboards. The procedure
create_whiteboard causes a new whiteboard to be created in the persistent data store with a specified unique name.
The function open whiteboard returns a handle to the pre-existing named whiteboard. The procedure

close_whiteboard notifies REBUS that the user is done with the whiteboard accessed by the indicated handle.

Other operations manipulate lists of items. The function itemlist returns a handle to the list of posted items on
the whiteboard referenced by Ident, while the functions locked_itemlist and completed_itemlist return handles to the
lists of locked and completed items respectively. The procedure ger item updates the itemlist handle, returning
copies of successive items on an itemlist when called repeatedly, and the function end_of items retums true when
the itemlist handle references an empty itemlist. The function item provides random access to the items on a white-
board; given a handle to a whiteboard and a unique identifier for an item it returns a copy of the item. Finally, con-
sider the operations to move items between lists on the whitcboard. The procedure post_item creates a new white-
board item containing Contents, and places it on the posted list, while the procedure repost_item transfers an item
from the completed list to the posted list. The procedure lock_item locks the specified item by moving it from the
posted list to the locked list, and the procedure unlock_item unlocks an item by moving it from the locked to the
posted list. Lastly, the procedure complete_item takes a locked item and places it in the completed list, while the

procedure delete_item removes an item from the whiteboard.

After the senior student had presented and explained these operations to the specification expert, discussion of

the underlying issues began in earnest.

2.2, Issues Raised by the Specification Process

The first question to arise was how to specify the persistent data store using PLEASE. One solution was sug-
gested by the original package specification; persistence could be specified by declaring the stored objects as static
variables local to the Whiteboard package. As in the original specification, the package would provide operations to
create, access, and modify the whiteboards in the store. Unfortunately, we found that this solution makes the

specification of concurrency constraints difficult; the effective unit for concurrency control is a single whiteboard,

not the entire collection. The concurrency constraints can be specified simply if all operations on a whiteboard are
serializable [27]. The serializability of operations can be casily modeled if each whiteboard is represented as a
Unix process, or Ada task, with local variables used to store items. Each whiteboard must be able to accept requests
to access or modify its contents. We found it easy to model this as message passing; other processes interact with a
whiteboard by sending a request message and waiting for a reply. Since a process has only one thread of execution,

only one message can be processed at a time.

While this representation makes serialization of whiteboard operations, and thereby specification of con-
currency constraints, simple, it leaves some unanswered questions regarding the persistence of whiteboards. If each
whiteboard is a process with local variables for its state, then persistence is determined by the lifetimes of processes.
To create a new whiteboard a process must be invoked and to destroy a whiteboard a process must be terminated.
Fortunately, these situations can be provided for by defining a manager for the whiteboard type. The whiteboard
manager is itself a process, which controls a sub-process for each whiteboard in existence. Requests to create, open,

or close whiteboards are handled by the manager.

The next issued to arise was the meaning of a name, and how it differed formally from a handle. In the proto-
type version of REBUS, the meanings of these two things were driven by implementation concerns. Handles were
implemented as actual pointers to linked lists of items, and item_ids were implemented as indices into an array of
items. Arbitrary items could be accessed by using the item function. An item could be on two whiteboards simul-
taneously, requiring concurrency control on the item level. Names were not unique identifiers for whiteboards,
merely convenient labels which could be bound to new whiteboards as needed. There was no control over the cir-
cumstances under which the binding of a name to a whiteboard could change. The same name could refer to dif-
ferent whiteboards at the same time but for different users, and to different whiteboards at different times for the

Same user.

These characteristics had not been specified or even contemplated. Rather, they emerged from the implemen-
tation. Understanding of these characteristics came as the result of grappling with the need to formalize what had
been implemented. This understanding caused some dismay and a strong desire to specify and build a conceptually
cleaner version of REBUS. In the formal specification, names and handles are both unique identifiers for white-
boards. Each whiteboard has only one name, and the same name refers to the same whiteboard for all users in all

situations. Handles are issued by the appropriate manager on an open and are necessary 10 invoke operations on an

object. To make the efficiency aspects of handles explicit, they are formally specified as pointers.

Once these issues had been raised and resolved, formal specifications of REBUS were quickly generated. We
also noted that REBUS was then easier to understand and explain. We believe this is leading to a cleaner notion of

the requirements specification process.

3. Formal Specification of REBUS

The formal specification of REBUS centers on four components: an object manager, the whiteboard, the
REBUS interface, and a top-level showing how the components are combined and interact. The specification does
not completely define the objects created and used by REBUS or the policies used to control their development;
however, it does define certain minimal characteristics of these objects and the mechanism used to implement these
policies. Thus the specification is intended to be sufficiently general that it is reusable. Parts of it are fixed while
others are parameters. While REBUS mandates certain methods and mechanisms, such as the use of a whiteboard,
instances of REBUS can be created to support different policies and object types. For example, the object manager
is defined in such a way that it may be instantiated to manage objects of any type. In REBUS, we instantiate a
manager for requirements objects. The whiteboard is also generic in that a whiteboard may be created for any kind
of item. REBUS itself is generic in that instances can be created for different types of objects and to implement dif-
ferent management policies. To understand the specification in detail, we will first examine the object manager

package.

3.1. The Object Manager

Figure 2 and Figure 3 show the PLEASE specification for the object manager. Its specified as a generic pack-
age with parameters to specify the type of objects to be managed, the history information to be kept for each object,
and the policies to be used for management. The specification exploits Ada generic packages, which is particularly
appropriate as REBUS is written in Ada, but was also found to be semantically appropriate as well. In Ada, a gen-
eric construct is instantiated with an actual set of parameters to produce a usable component. In our specification,
an Instance of manager pkg implements an object manager using a task called manager. In Ada, tasks have
independent threads of execution and may contain variables private to the task. Inter-task communication is accom-
plished with rendezvous at entry points. When one task calls an entry point and another task accepts the call a ren-

dezvous occurs and the two threads of execution are merged unti] the call completes. In our specification, the object

10

type object_rec is record

Name ¢ name_type ;
Object : obj_handle ;
Info : info_type ;
end record ;

type operation_type is (create,destroy,open,close) ;
L]

@
L]

generic

type obj_handle is access object_type ;
~—: with predicate is_initial object(Object : in out obj_handle) ;

type info_type is private ;
—-=: no_info : constant info_type ;

--: with predicate is_okinfo (Old_info : in out info_type ;
- User : in out user type ;
- Op : in out operation_type ;
- New_info : in out info_type)
-—: with predicate can create (User : in out user type ;
- Name ¢ in out name type) ;
~-: with predicate can_destroy(User : in out user_type ;
- Object : in out object _rec) ;
——: with predicate can_open (User : in out user type ;
- Object : in out object_rec) ;
~—: with predicate can_clecse (User : in out user type ;

-—: Object : in out object_rec) ;
package manager pkg is
task type manager is
L

end manager ;
type manager_handle is access manager ;

end manager_pkg ;

Figure 2. Specification of generic manager package

manager task has an entry for cach operation it provides; other tasks can call the manager to create a new object,

destroy a pre-existing object, open an object for further manipulation, or close an open object.

11

For the purpose of specification, the manager task has a virtual state consisting of a set of object records.
Each item of type object_rec has three fields: the name of the object, a pointer to the object, and the information on
the object’s history being kept by the manager. The specification of the set of object records incorporates an invari-
ant stating that no two names refer to the same object, and no two objects have the same name. The invariant makes
use of predicates which are defined elsewhere. In PLEASE, predicates are similar to Boolean functions and are
used to specify logical properties. For example, the predicate member(ElmtSet) is true if Elmt is currently a
member of Set. In PLEASE, a predicate definition syntactically resembles a procedure and may contain local type,
variable, function or predicate definitions. Predicate definitions describe acceptable tuples in a format which has a

simple translation into Prolog procedures.

The parameters used to instantiate manager ~_pkg define the properties of the resultant manager. The types
object_handle and object_type and the predicate is_initial_object define the objects to be manipulated by the
manager. For example, is_initial_object defines the initial or "empty” instance of object_type;
is_initial_object(Object) is true only if Object is "empty". The type info_type, the constant no_info, and the predi-
cate is_okinfo define the history information to be kept for each object. For example,
is_okinfo(Oldinfo,User,Op.Newinfo) is true only if Newinfo is the correct history information for an object which
had history Oldinfo before User performed Op. The predicates can_create, can_destroy, can_open, and can_close

define the policy implemented by the manager.

The manager uses a simple mechanism to implement the policy: each entry has a pre-condition, which must
be true for a rendezvous to begin, and a post-condition, which states the conditions which must hold when the ren-
dezvous is complete. In the specification, the state before execution begins is denoted by in(...), while the state alter
execution has completed is denoted by out(...). For example, the pre-condition for create states that there is no
record for an object called Name' and that User has the proper permissions. The post condition for create states that
an initialized object called Name has been created with the proper history information. Similarly, the pre-condition
for destroy states that there is an object with the specified name and User is authorized to destroy it. The post-
condition for destroy states that the object has been deleted from the set of object records?. As manager pkg is gen-

eric, managers can be created which implement different policies using the same mechanism.

! cnot is a closed world not, which in this case is acceptable.

* Since Obj0 is a constant, it must be the same in the input and output states,

12

task type manager is

-=: Objects : set of object_rec ;

-] where for all Objl,0bj2 : object_rec =>

-—] member (Objl,Objects) and member (Obj2,Objects) and

- (Objl.Name = Obj2.Name or Objl.Object = Ob3j2.0bject)
-] => Objl = Obj2

-=: 0Obj0 : constant object_rec ;

entry create(User : in user_type ; Name : in name_type) ;
-—| where in (cnot member((Name,_,_),Objects) and can_create (User,Name))
-] out { is_okinfo(nc_info,User,create,(Info:info_type))
- and is_initial_pbject((Obj:object_handle)) and
-1 Objects = insert((Name,Obj,Info),in(Objects}} Yy

’

entry destroy(User : in user_type ; Name : in name_type) ;
--| where in (Obj0.Name = Name and member (Obj0,0Objects) and
-=—| can_destroy (User,Cbj0)),
-1 out (Objects = delete (Obj0,in (Objects))) ;
entry open(User : in user type ; Name : in name_type ; Handle : out obj_handle) ;
—-—| where in (Obj0.Name = Name and member (Obj0,0bjects) and
- can_open (User,0bj0)),
- out ((Obj:object rec).Name = Name and
- Obj.0Object = Obj0.0bject = Handle and
=} is_okinfo(ObjO.Info,User,open,Obj.Info) and
-] Objects = insert(Obj,(delete(ObjO,in(Objects)))) Yy o

entry close(User : in user_type ; Name : in name_type) ;
-=| where in (Obj0.Name = Name and member (Obj0,Objects) and
| can_close (User,0bj0)),
- out ((Obj:object rec) .Name = Name and Cbj.Object = Obj0.0bject and
-] is_okinfo(ObjO.Info,User,close,Obj.Info) and
~-—| Objects = insert(Obj,(delete(ObjO,in(Objects)))) Y,

’

aend manager ;

Figure 3. Specification of generic manager

The object manager ultimately controls the objects produced and used in the requirements specification pro-

cess; however, users must access these objects through a whiteboard.

3.2. The Whiteboard

Figure 4 and Figure 5 show the PLEASE specification of the whitcboard. Like the object manager, the white-
board is specified as a generic package. Paramecters (o the package define the type of objects to be manipulated

using the whiteboard, the states these objects move between, the history information to be kept for the objects, and

13

type item_type is record
Object : obj_handle ;
State : state_type ;
Info : info_type ;
end racord ;
type item_set is set of item type ;

type operation_type is (add, move, remove, getobjects) ;
e s @
generic
type obj_handle is access object_type ;
type obj_set is set of object_handle ;
type state_type is (<>) ;
type info_type is private ;

--: no_info : constant info_type ;
—--: with predicate is_okinfo (Old_info : in out info_type

- User : in out user type ;
-—: Op : in out operation_type ;
—-=: State : in out state_type ;

- New_info : in out info_type) H

—-—: with predicate can_add (User : in out user type ;
- Object : in out obj_handle H
-—: State : in out state type) ;
—-=: with predicate can_move (User : in out user type ;
-—: Item ¢ in out item type ;
- State : in out state_type) ;
—--: with predicata can_remove (User ¢ in out user_type ;

Item : in out item type) ;
~—: with predicate can_getobijects(User t in out user type ;

State : in out state_type) ;

package whiteboard pkg is
task type whiteboard is
® & @

and whiteboard ;
type whiteboard handle is access whiteboard ;

end whiteboard pkg ;

Figure 4. Specification of generic whiteboard package

the management policics to be followed. As in the case of the object manager, an instance of the whiteboard pack-

age implements a whiteboard as an Ada task with an entry for each operation provided. In the specification, the

14

whiteboard task has a virtual state consisting of a set of items. Each item contains a pointer to an object, the current
state of the object and some history information. An invariant specifies that there can be only one item for any

object. The whiteboard task provides four entries: add, move, remove and getobjects. Each entry has a pre-

task type whiteboard is
--: Items : item set := {} ;
== where for all I1,I2 : item _type =>
- member (Il,Items) and member (I2,Items) and
- Il.0bject = I2.0bject -> Il = I2 ;

-=: Item0 : constant item type ;

-—: entry predicate is_state(Object : in out obj_handle ;

- State : in out state type) ;
entry add(User : in user type ;
Cbject : in obj_handle ;
State : in state type) ;
--| where in (cnot member((Object,_,_),Items) and
- can_add (User,Object, State)),
-~ out (is_okinfo(no_info,User,add,State,(Info:info_type))
- | and Items = insert((Object,State,Info),in(Items)) Yy
entry move(Usex ¢ in user_type ;
Object : in obj_handle ;
State : in state type) ;

--| where in (Item0.0Object = Object and member (Item0, Items)

- and can_move (User, Item0, State) Y,

- cut (is“okinfo(ItemO.Info,User,move,State,(Item:item_type).lnfo)
- and Item.Object = Item0.Object and Item.State = State

-]) and Items = insert(Item,(delete(ItemO,in(Items)))) Yy

entry remove(User : in user_type ; Object : in obj_handle) ;
--| where in (Item0.Object = Object and member (Item0, Items)
| and can_remove (User, Item0))y,

- | out(Items = delete (Item0,in(Items))) ;
entry getobjects(User t in user type ;
State : in state_type ;

Sobjects : out object_set) ;
--| whare in (can_getobjects (User, State)),
- out (for all Item : item type =>
- | member (Item, Items) and Item.State = State ->
-=| member (Item.Object, Sobjects)) ;

end whiteboard ;

Figure 5. Specification of whitcboard task

condition stating the conditions necessary for the operation to be invoked and a post condition stating the require-
ments for successful execution. The operation add puts a pre-existing object onto the whiteboard while remove
takes an object off. The operation move puts on object already on the whiteboard into a different state while getob-

Jects allows the user to examine all the objects in a certain state.

To be precise, users do not access the whiteboard directly, but only interact with the system through the

REBUS interface.

3.3. REBUS Interface

Figure 6 and Figure 7 show the specification of the REBUS interface. Like the object manager and white-
board, the REBUS interface is specified as a generic package. Parameters to the interface package specify the type
of objects to be manipulated, the states these objects move between, the history information to be kept by REBUS,
the management policies to be followed, and the analyses that can be performed by the user. Like the object
manager and whiteboard, an instance of the REBUS interface package implements REBUS as a task containing an
entry for each operation provided to the user. In the specification, the REBUS task has a virtual state consisting of a
set of records, each of which contains a pointer to an object as well as history information. An invariant specifies
that there can be only one record for each object. In the specification, the interface provides five operations: create,
edit, move, getobjects and analyze. The operation create allows the user to create a new object while edit allows
objects to be modified. The move command transfers an object to the specified state; when an object is created its
state is not defined, so move must be used to initialize the state. The get_objects operation allows the user to exam-
ine all the objects in a particular state, while the analyze command may be used to invoke an analyzer on a set of

objects.

The object manager, whiteboard, and REBUS interface (as well as the users) are the principal elements in the
specification process. We can now examine how these elements are combined and interact.
3.4. The Specification Process

Figure 8 shows a skeletal specification of the requirements specification process. The process contains multi-
ple users who create, modify and combine objects to construct complete specifications. The objects are controlled
by an object manager and the users interact via the whitcboard. The objects used by, as well as the policies used to

control, the process are specified separately from the structure of the process and the mechanism used to implement

16

type node_type is record
Cbject : obj_handle ;
Info : info_type ;
end raecord ;
type node_set is set of node_type ;

type operation_type is (create,edit,move,get_objects,analyze) ;

genaric

type obj_handle is access object_type ;

type obj_set

type state_type is (<>) ;

type info_type is private ;

is set of obj_handle ;
-—: predicate is_initial_object(Object : in out obj_handle)

—-=: no_info : constant info_type ;
(Old_info : in out

—-—: with predicate is_okinfo

—-—: User in out
- Op in out
—-—: State in out
——: New_info in out
——: with predicate can_create (User : in out
-—: with predicate can_edit (Userx in out
- Node in out
—=: with predicate can_move (User in out
- Node in out
—--: State in out
--: with predicate can_get_objects(User : in out
- State in out
type analyzer name is (<>) ;

analyzers : array (analyzer name) of analyzer type ;

——: with predicate can_analyze(User

type analysis_type is privatae ;

Analyzer

—~—: with predicate is_okanalysis (Objects

package rebus_pkg is
¢ ® O

end rebus_pkg ;

Analyzer
Analysis

in ou

in out analyzer_name
in out analysis_type) ;

’

info_type
user_type

operation_type

state_type
info_type

user_ type)
user_ type
node_type)
user type
node_type
state_type)
user_type
state_type)

in out user_type
in out analyzer name)

t obj_set

Figure 6. Specification of generic rebus package

)

PN

’

’

17

task type rebus is

-=-: Nodes : node_set := {} ;
- whaere for all N1,N2 : node_type =>
-] member (N1, Nodes) and member (N2, Nodes) and

- Nl.Object = N2.0Object -> N1 = N2 ;
--: N1,N2 : constant node_type ;

entry create(User : in user_type ; Object : out obj_handle) ;
-~| where in (can_create (User)),
-=| out (is_okinfo(no‘info,User,create,a,(Info:info_type)) and
== is_initial_ node (Object) and
- Nodes = insert((Object,Info},in(Nodes)) Yy o

entry edit(User : in user type ; Object : in obj_handle) ;
--| where in (N1.0bject = Object and member (N1, Nodes) and
- can_edit (User,N1)),
- out (is_okinfo(Nl.info,User,edit,_,NZ.Info) and
- N2.0bject = Object and

- Nodes = insert (N2,delete (N1, in (Nodes)))) ;
entry move(User ¢ in user type ;
Object : in obj_handle ;
State : in state_type) ;

~-| where in (N1.Object = Object and member (N1, Nodes)

- and can_move (User, N1, State)),

== out (is_state (Cbject, State) and N2.0bject = Object and
- | is_okinfo(Nl.Info,User,move,State,NZ.Info) and
| Nodes = insert(NZ,delete(Nl,in(Nodes})) Yy

entry get objects(User : in user type ;
State : in state type ;
Sobjects : out obj_set)
--| where in (can_get nodes (User, State)),
il out (for all N : node_type =>
- member (N, Nodes) and is_state (N.Object, State) ->
- member (N.Object, Sobjects)) ;

entry analyze(User ! in user type ; Sobjects : in obj_set ;
Analyzer : in analyzer name ; Analysis : out analysis_type) ;
--| where in (can_analyze(User,Analyzer) Y,

- out (is_okanalysis(Sobjects,Analyzer,Analysis)) ;

end rebus ;

Figure 7. Specification of rebus task

18

task body specification is

—=- Specification of types

type object_type is ... ;

type state_type is ... ;

type obj_info is ... ;

type whiteboard info is ... ;

type rebus_info is ... ;
LN 2N J

—-- Specification of policy predicates
pradicata can_create_node ()
predicate can_destroy node(...) ;
predicate can_open node (...)
predicate can_close node ()
L 2R N J

-- Specification of users (who can invoke rebus)
task type user is

end user ;
Users : array(user names) of user ;

package obj_pkg is new manager_ pkg (eoo) 2
package wb_pkg is new whiteboard pkg(...) ;

package rbs pkg is new rebus_pkg (o0)
object_manager : obj_pkg.manager ;
whiteboard : wb_pkg.whiteboard ;

begin
whiteboard ; ——- start the whiteboard,
object manager ; - object manager,

for I in user names loop
User (I) ; - and users
end lcop ;

end specification ;

Figure 8. The specification process

the policies. To describe the specification process we must first define the type of objects from which the

specification is to be created, the states that these objects can be in, and the history information to be kept for objects

19

at each level of the system. This is accomplished by the types object_type, state_type, obj_info, whiteboard_info,
and rebus_info respectively. Next, we specify the policies to be followed during the specification process. These
policies are defined by the predicates can_create_node, can_destroy_node, can_open_node, can_close_node, etc.
These predicates are then used in the instantiation of the object manager, whiteboard and REBUS interface. It is
interesting that some policies can be conveniently described at any of the three levels (object manager, whiteboard
or REBUS interface), while others may be easily specified only at a particular level. Finally we describe what

actions the users can perform and when. This is accomplished by the task type user.

The formal specification of REBUS is now concluded. We have not completely defined all of the objects
created and used by REBUS or the policies used to control their development. However, we have defined certain
minimal characteristics of these objects and the mechanisms used to implement these policies, as well as showing
how they could be completely defined. We can view the specification as a process program specification: parts of
the process are fixed while other aspects are parameters. We can see this as static process programming: while
REBUS mandates certain methods and mechanisms, such as the use of a whiteboard, instances of the system can be
created to support different policies and object types. We feel the creation of this specification has greatly increased

our understanding of REBUS and the requirements specification process.

4, Summary and Conclusions

We believe that formal specification can enhance the software development process in a number of ways.
Specifically, we believe that software development can be enhanced by creating a formal specification after a proto-
type has already been constructed using traditional techniques. We have performed an experiment which supports
this hypothesis in the context of the Arcadia project, an effort to experimentally develop superior software environ-
ment technologies. One of Arcadia’s current goals is the creation of REBUS, a REquirements BUilding System. In
REBUS, a requirements specification is viewed as an attributed DAG which may have to satisfy certain constraints.
In REBUS, muitiple developers interact via objects stored on the whiteboard, a communications and coordination

mechanism.

In the Fall of 1987, a prototype version of REBUS had been constructed and was undergoing redesign and
extension. We conjectured that describing the system using a small number of formally defined concepts could

increase understanding and enhance communication between project members. Over the course of three months,

the developers met with a specification expert and a formal description was written in PLEASE, an Ada-based,

wide-spectrum, executable specification and design language which supports formal methods similar to VDM.

Several issues surfaced during construction of the specification, including persistence and concurrency control for

whiteboards, as well as the meanings of names and handles. Construction of the formal specification enhanced

further development by helping the developers to clarify the architecture of the system, separate their concerns, and

discuss possible modifications. We feel the use of similar methods can enhance other software development efforts,

5. References

L.

2.

10.

11

12.

13.
14.
15.

16.

17.

18.
19.

20.

21.

Bjomer, D., T. Denvir, E. Meiling and J. S. Pedersen, ‘*The RAISE Project - Fundamental Issues and Requirements”’, RAISE/DDC/EM/1,
Dansk Datamatik Center, 1985.

Bjomer, D., “*On The Use of Formal Methods in Software Development’’, Proceedings of the 9th International Conference on Software
Engineering, 1987, 17-29.

Bloomfield, R. E. and P. X. D. Froome, ““The Application of Formal Methods to the Assessment of High Integrity Software’’, JEEE
Transactions on Software Engineering SE-12, 9 (September 1986), 988-993.

Chang, C. and R. C. Lee, Symbolic Logic and Mechanical Theorem Proving, Academic Press, New York, 1973.
Clocksin, W. F. and C. S. Mellish, Programming in Prolog, Springer-Verlag, New York, 1981.

Cottam, L D., ““The Rigorous Development of a System Version Control Program’’, JEEE Transactions on Software Engineering SE-10, 3
(March 1984), 143-154.

Gehani, N. and A. D. McGettrick, eds., Software Specification Techniques, Addison Wesley, Reading, Massachusetts, 1986,

Heimbigner, D., Stanley Sutton, Jr. and L. J. Osterweil, ‘*APPL/A: A Language for Managing Relations’”, Report No. CU-CS-374-87,
Department of Computer Science, University of Colorado at Boulder, 1987,

Hudson, S. and R. King, ““CACTIS: A Database System for Specifying Functionally-Defined Data’’, Proceedings of the Workshop on
Object-Oriented Databases, September 1986, 26-37.

Hudson, S. E. and R. King, ‘‘Object-Oriented Database Support for Software Environments’®, Proceedings of the ACM SIGMOD
International Conference on Management of Data, May 1987, 491-503.

Hudson, S. and R. King, ‘*The Cactis Project: Database Support for Software Engineering’’, JEEE Transactions on Software Engineering,,
June 1988.

Hudson, S. and R. King, **Cactis: A Self-Adaptive, Concurrent Implementation of an Object-Oriented Database Management System’’,
ACM Transactions on Database Systems, 10 appear.

Jones, C. B., Systematic Software Development Using VDM, Prentice-Hall, Englewood Cliffs, New J ersey, 1986.
Luckham, D. C. and F. W. Henke, ““An Overview of Anna, a Specification Language for Ada’’, [EEE Software 2, 2 (March 1985), 9-22.

Luckham, D. C., D. P. Helmbold, S. Meldal, D. L. Bryan and M. A. Haberler, ‘““Task Sequencing Language for Specifying Distributed Ada
Systems, TSL-1"", Report No. CSL-TR-87-334, Computer Systems Laboratory, Stanford University, July 1987.

Nii, H. P., *‘Blackboard Systems: The Blackboard Model of Problem Solving and the Evolution of Blackboard Architectures”’, The Al
Magazine 7, 2 (Summer 1986), 38-53.

Nii, H. P., **Blackboard Systems: Blackboard Application Systems, Blackboard Systems from a Knowledge Engineering Perspective’, The
Al Magazine 7, 3 (Conference 1986), 82-106.

Oest, O. N., “*“VDM From Research to Practice”’, Information Processing, 1986, 527-533.

Osterweil, L. ., *Software Processes Are Software Too”’, Proceedings of the 9th International Conference on Software Engineering, 1987,
2-13.

Shaw, R. C., P. N. Hudson and N. W. Davis, “‘Introduction of A Formal Technique into a Software Development Environment (Early
Observations)”’, Software Engineering Notes 9, 2 (April 1984), 54-79.

Terwilliger, R. B. and R. H. Campbell, “ENCOMPASS: an Environment for the Incremental Development of Software’, Report No.
UIUCDCS-R-86-1296, Dept. of Computer Science, University of Hlinois at Urbana-Champaign (also to appear in the Journal of Systems
and Software), September 1986.

Terwilliger, R. B. and R. I. Campbell, “PLEASE: Executable Specifications for Incremental Software Development’, Report No.
UIUCDCS-R-86-1295, Dept. of Computer Science, University of Illinois at Urbana-Champaign (also to appear in the Journal of Systems
and Software), September 1986.

Terwilliger, R. B. and R. H. Campbell, ““PLEASE: a Language for Incremental Software Development’’, Proceedings of the 4th
International Workshop on Software Specification and Design, April 1987, 249-256.

24,

26.

27.
28.

Terwilliger, R. B., ‘‘An Example of Knowledge-Based Development in ENCOMPASS"", Proceedings of the Third Annual Conference on
Artificial Intelligence & Ada, George Mason University, October 1987, 40-55.

Terwilliger, R. B. and R. H. Campbell, ‘‘An Early Report on ENCOMPASS’*, Proceedings of the 10th International Conference on
Software Engineering, April 1988, 344-354.

Terwilliger, R. B., ‘‘PLEASE: a Language Combining Imperative and Logic Programming"’, SIGPLAN Notices 23, 4 (April 1988), 103-
110.

Ullman, I. D., Principles of Database Systems, Computer Science Press, Rockville, Maryland, 1980.
Proceedings of the 41h International Workshop on Software Specification and Design, April 1987,

