Some Learnability Results for Analogical Generalization *
Clayton Lewis

CU-CS-384-88

—N
| — L—' 1
(g_y University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

* This research was supported by the Personnel and Training Research Programs, Psychological Sciences Division, Office of Naval
Research, under Contract No. N00014-85-K-0452, Contract Authority Identification No. 702-009. Approved for public release;
distribution unlimited. Reproduction in whole or part is permitted for any purpose of the United States.

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

Some Learnability Results
for Analogical Generalization

Clayton Lewis

CU-CS-384-88 January 1988

Department of Computer Science
Campus Box 430

University of Colorado,

Boulder, Colorado, 80309

This research was supported by the Personnel and Training Research Programs, Psychological Sci-
ences Division, Office of Naval Research, under Contract No. N00014-85-K-0452, Contract Author-
ity Identification No. NR 702-009. Approved for public release; distribution unlimited. Reproduc-
tion in whole or part is permitted for any purpose of the United States.

Some Learnability Results for Analogical Generalization

Clayton Lewis
Department of Computer Science and
Institute of Cognitive Science
Campus Box 430
University of Colorado
Boulder CO 80309
(303) 492 6657
clayton at boulder on csnet

January 13, 1988

Topic keywords: concept learning, analogical reasoning, theoretical analysis

Abstract.

Progress has been made in characterizing formally the capabilities and performance
of inductive learning algorithms. Similar characterizations are needed for
recently-proposed methods that produce generalizations from small numbers of
analyzed examples. I consider one class of such methods, based on the analogical
generalization technique in Anderson and Thompson's PUPS system. It might

appear that some to-be-learned structures can be learned by analogy, while others are
too chaotic or inconsistent. I show that this intuition is correct for a simple form of
analogical generalization, so that there are learnable and unlearnable structures for
this method. In contrast, I show that for PUPS-style generalization analogical
structure can be imposed on an arbitrary system (within a broad class I call command
systems.) It follows that the constraints on the PUPS-style method lie not in any
structural condition on a to-be-learned system but rather in obtaining the knowledge
needed to impose analogical structure.

Acknowledgments.
This research was supported by the Office of Naval Research, Contract No.

N00014-85-K-0452. I am grateful to John Anderson and David Haussler for useful
discussions.

Learnability analysis and analysis-based generalization methods.

Formal analysis of inductive learning mechanisms has succeeded in determining

the applicability and performance of various learning alogorithms to various classes
of learning tasks (Angluin and Smith 1983; Valiant 1984; Haussler 1987; Kearns, Pitt,
and Valiant 1987). Such characterizations are not yet available for recently-proposed
methods, including explanation-based learning (Mitchell , Keller,and Kedar-Cabelli
1986, De Jong and Mooney 1986), analogical generalization (Anderson and
Thompson 1986), and synthetic generalization of procedures (Lewis 1986), which rely
on having an analysis of to-be-generalized examples that includes some indication

(different for different methods) of why the example belongs to the concept.

These methods, which can be called analysis-based methods (Lewis, in press), do not
fit directly into the framework used to characterize inductive methods, because the
input to the generalization process includes information other than the identity of
the examples themselves. Further, the generalization process has access to
background information not associated with individual examples, such as the
domain theory used in explanation-based generalization. Nevertheless, as a start on
learnability analysis for these methods one can ask whether these methods are
applicable to arbitrary concepts, or whether some concepts are learnable using a

given analysis-based method while others are not.

Analogy-based learning might work for some systems and not for others.

This paper aims to investigate this issue for one class of analysis-based methods:
analogical generalization. Intuitively, it may appear that the nature of analogical

generalization is such that it is applicable only to concepts satisfying some kind of

regularity or consistency conditions.

To investigate this intuition I will consider a single kind of to-be-learned concept,

which I will call a command system. A command system consists of a collection of

objects called commands, each of which has an associated object called a result.
Learning a command system requires being able to supply a command which is

associated with a specified result.

While I will discuss only command systems, the formal structure I describe is much
more general. Any system which can be described by pairs of associated objects, for
example sentences and meanings, or programs and functions they compute, can be

subjected to the same analysis I give here.

To apply analogical generalization to the task of learning a command system we will
attempt to generalize a single example of a command-result pair in such a way as to
allow us to supply the commands that are paired with any other result. Intuitively, it
appears that this approach will work for some command systems, which I will call
analogical, but not for others, whose structure would be too chaotic and inconsistent.
I'will show that this intuition is correct for a very simple form of analogical

generalization, but not for a more powerful (and plausible) form.

A general framework for modificational analogy.

Analogy can be used in more than one way to solve generalization problems. In

structure mapping (Gentner 1983) the analogy A : B :: C: X is solved by determining
the relevant relationships between A and B and imposing them on C and X. The
unknown X is determined by the requirement that it satisfy these relationships to C.
Anderson and Thompson's (1986) PUPS system uses a different approach, which I

will call modificational analogy (Lewis, in press). Here X is constructed by modifying

B. The modification to apply is determined by finding a modification than

transforms A into C. I will use modificational analogy in this discussion.

How does one apply modificational analogy to learning a command system? If crisa

command, and rq is its result, and we wish to obtain a new result ry, we proceed as
follows. We find a modification m, drawn from some specified class of functions, for

which m(r) =ry. We then produce ¢y = m(cq). The system is analogical if for any

pair [c1,r1], and any new result ry, the c; we construct in this way has ry as its result.

Thus we can learn an analogical system from a single example pair.

On the face of it it appears that some command systems are analogical in this sense,

and others, perhaps most, are not.

Simple substitution analogy works for some systems but not for others.

The modificational analogy scheme just described behaves differently for different
classes of modification functions. Suppose commands and results are sequences of
words from some vocabulary, and that the permitted modifications are simply
substitutions that replace words by other words. It is easy to see that some command

systems are analogical under this scheme while others are not.

Consider first a system containing the pairs [delete eggplant, remove file

eggplant] and [delete broccoli, remove file broccoli]. Given the first pair as an

example, substitution analogy can correctly determine the command that has as
result "remove file broccoli”: the substitution that transforms "remove file
eggplant” to "remove file broccoli" just replaces "eggplant" by "broccoli”.

Applying this substitution to "delete eggplant” produces "delete broccoli”, which

is the correct command.

Now suppose the system contains the pair [delete eggplant, remove file
eggplant], as before, but also contains the pair [delete carrot, remove file

broccoli]. Substitution analogy now fails to produce the correct command for the

result "remove file broccoli". The process just described gives the command

"delete broccoli", as before, rather than the correct form "delete carrot". So this

second command system is not analogical under substitution analogy.

Simple substitution analogy is too limited.

Simple substitution analogy fails to capture many situations in which intuitively

satisfying analogies can be found. Consider a command system with the pairs
[delete e, remove file eggplant], [save e, backup file eggplant], [delete b,

remove file broccoli], and [save b, backup file broccoli]. Suppose that the first
three of these pairs are presented as examples. It seems that the command to backup

broccoli should be derivable from the others by analogy, but simple substitution is

inadequate to do this.

There is more than one way to attempt to derive the correct command, but all fail in
the same way. If we try to use [save e, backup file eggplant] as our base example,
we find that mapping "backup file eggplant” to the desired "backup file

broccoli” requires substituting "broccoli” for "eggplant”. But "eggplant” does not
occur in the command "save e", so the substitution cannot be carried out. Similarly,
starting from the pair [delete b, remove file broccoli] leads to the vain attempt to

substitute "save" for "remove" in the command "delete b".

Pupstitution extends simple substitution.

Anderson and Thompson (1986) developed an elaboration of substitution which gets
over this obstacle. Their idea is that an analogy like that we have been considering
requires a representation of examples that includes not simply the surface forms of

objects but also an interpretation of their parts. For example the representation of the

command "save e" could include, as a kind of annotation, the information that "e"
is "the first letter of eggplant”. If the substitution of "broccoli" for "eggplant"

is applied to this elaborated representation, we see that "the first letter of

eggplant” becomes "the first letter of broccoli". We have background

knowledge that this is not "e" but "b", so we conjecture that the desired command is

"save b" instead of "save e".

This extended form of substitution, which I will call pupstitution, after PUPS,
Anderson and Thompson's production system that incorporates it, requires a more
complicated description than simple substitution, since it requires interpretations of
parts of objects, and a supply of background knowledge, in order to work. The
following account is based on Anderson and Thompson's (1986) scheme but deviates

from it in detail and terminology.

Pupstitutions operate not on sequences of words but rather on more complex

structures, which I will call interpreted structures. An interpreted structure contains

a sequence of words, but also may contain interpretations of these words,
individually or in groups. Formally, an interpreted structure is a sequence of

components. A component is either a sequence of words or a pair consisting of a
sequence of words and an interpreted structure. For example, the command "save
e" discussed above could be represented by an interpreted structure whose first
component is the word "save", and whose second component is a pair consisting of
the word "e" and the interpreted structure which has one component, the sequence
of words "the first letter of eggplant”. We can write this structure out as (save,

[e, (the first letter of eggplant)]). Figure 1a shows a diagrammatic

representation that may be clearer.

This definition permits interpretations or parts of them to be assigned further

interpretations (though I will not need to do this in the present argument.) For

[e]
Gthe first letter of eggplantD

Figure 1a: An interpreted structure shown diagrammatically.

example, the interpreted structure associated with "e" in this example could instead
have three components, "the", a pair consisting of "first" and "position used to

abbreviate names of files", and the sequence of words "letter of eggplant". The

more complex interpreted structure incorporating this further interpretation we can
write as (save, [e, (the, [first, (position used to abbreviate names of files)],

letter of eggplant)]). It is shown diagrammatically in Figure 1b.

([cave] [&])

[the| [first] |letter of eggplant]

N

position used to abbreviate names of files)

Figure 1b: A nested interpreted structure.

The sequence of words found in the top components of an interpreted structure is

called the content of the structure. The content of either example in Figure 1 is just

"save e".

The transformation that a pupstitution carries out on an interpreted structure is

specified by an ordinary substitution, which I will call the base substitution of the

pupstitution, indicating that certain words are to be replaced by others, and by

background knowledge, a collection of pairs of sequences of words. The first object in

a background knowledge pair will be called an instance, and the second object will be

called the interpretation. For example, background knowledge could include the pair

[b, the first letter of broccoli].

A pupstitution transforms an interpreted structure into an ordinary sequence of
words. It operates component by component, as follows. If the component is an
ordinary sequence of words the base substitution is applied to it. If the component is
a pair, the pupstitution is applied to the interpreted structure in the pair, producing
a sequence of words. This sequence of words is looked up in background knowledge.
If it appears in background knowledge as the interpretation of a pair, the instance of
the pair replaces the original component. If no such pair is found the result of the
pupstitution is undefined. (Various dispositions are possible, including leaving the
original component unchanged, or, as Anderson and Thompson 1986 do, invoking
analogical generalization to construct an instance of the desired interpretation. What

choice is made does not affect the present argument.)

The above operations produce a sequence of words for each component in the
original interpreted structure. These sequences are simply concatenated to give the

result of the pupstitution.

Iillustrate this process by applying a pupstitution whose base substitution replaces
"eggplant” by "broccoli”, and whose background knowledge includes the pair [b,
the first letter of broccoli], to the structure (save, [e, the first letter of

eggplant]). The component "save" is unaffected by the base substitution. Processing

the component [e, the first letter of eggplant] entails applying the pupstitution

to the structure (the first letter of eggplant). Its sole component is an ordinary

sequence of words, so I simply apply the base substitution, getting the sequence "the

first letter of broccoli". The pair [b, the first letter of broccoli] occurs in
background knowledge, so the original component [e, the first letter of

eggplant] is replaced by "b". So the resulting sequence of words is "save b".

We can now use pupstitution to solve analogies in command systems. We first

associate an interpreted structure with cq and r{. We do this in any way we wish, as

long as the content of each interpreted structure agrees with the object with which it
is associated. These associations embody the analysis of the example needed to

support the generalization process. We now define a pupstitution (if there is one)

which will transform the structure associated with rq into ry. We then apply this

pupstitution to the structure associated with c1. We propose the resulting sequence

of words as ¢y. Figure 2 shows the entire process applied to the "backup file

broccoli” example discussed above.

cl: "save e"

r1: "backup file eggplant"

r2: "backup file broccoli"

Interpretation of c1: (save, [e, (the first letter of eggplant)])
Interpretation of r1: (backup file eggplant)

Background knowledge for pupstitution: [b, first letter of broccoli]

Base substitution for pupstitution: "broccoli" for "eggplant”

Pupstitution carries interpretation of r1 to r2, and carries

interpretation of c1 to "save b", as required.

Figure 2: Using pupstitution to construct a command.

10

Pupstitution analogy can always be made to work.

I now return to our central concern, determining what constraints govern the
applicability of analogical generalization. For simple substitution analogy we saw
that some command systems are analogical but others are not. What is the situation
for analogies using pupstitution? Given appropriate interpretations of commands
and results, and appropriate background knowledge, any command system

whatsoever can be generalized from a single example, under pupstitution.

Let{... [¢;, r;] ...} be any command system. Suppose we are given as an example that
the result of ¢4 is rq, and we are asked to determine what command will produce
any other result, say rj For each i we select some unique key word k;, and we
construct the background knowledge {...[c;,command k;]... [r;,result ki] ...}.We
assign the interpreted structure ([c{,command k4]) to ¢4, and the structure
([r4,result ky]) to rqy. We construct a pupstitution whose base substitution

replaces kq with kj. This will suffice to transform our interpretation of rq to . If

we now apply this pupstitution to our interpretation of ¢4 we obtain Cj as we
require. So this command system, about which we assumed nothing, is analogical.
Figure 3 applies this method to the inconsistent "delete carrot" example which I

showed was not analogical under simple substitution analogy.

This formal argument may well be unsatisfying, because the required background
knowledge transparently includes complete knowledge of the command system. But
similar situations can occur in realistic cases of analogy. Suppose we are confronting

a desk calculator for the first time. We are shown that pressing the key marked +

11

cl: "delete eggplant”

r1: "remove file eggplant”

r2: "remove file broccoli"

Interpretation of c1: ([delete eggplant,(command word1)])

Interpretation of r1: ([remove file broccoli,(result word1)])

Background knowledge for pupstitution:
[delete carrot, command word?2],

[remove file broccoli, result word2]
... plus other pairs ...

Base substitution for pupstitution: "word2" for "word1"

Pupstitution carries interpretation of r1 to r2, and carries

interpretation of c1 to "delete carrot”, as required.

Figure 3: Application of pupstitution to inconsistent command system.

makes the calculator divide. We have background knowledge that + is the sign
conventionally associated with division. We conjecture, by analogy, that the + key
makes the calculator add. Lacking the background knowledge about arithmetic signs,
or failing to relate this knowledge to the calculator, we would be unable to

determine what key to press. With this knowledge, appropriately linked to the
calculator, we can. The calculator is analogical just if we know and use the right

background knowledge.

A more fanciful, but still possible, case is the following. Pat is learning to use a new
command language on a computer. On being shown an example of a command and
its result, Pat notes the remarkable fact that the command, and a description of its

result, occurred in consecutive lines of a nursery rhyme learned years ago.

12

Given a new result to obtain, Pat notes that a description of this result also appears
in the rhyme, and tries the command mentioned in the previous line. It works.
Knowing the rhyme, and seeing its connection to the system, has allowed Pat to use

an analogy to solve a novel problem.

The point of this example is that for any system whatever that Pat might wish to
learn, there exists some rhyme that would allow the system to be learned in this
same way. If Pat knew the rhyme, and applied it in the right way, the system would

be analogical.

Constraints in analogy lie in getting and applying background knowledge.

Our earlier discussion of analogy using simple subsitution confirmed the intuition
that some structures are analogical, that is, generalizable by analogy, while others are
not. But the conclusion for pupstitution is that analogical structure can be imposed
on any command system, no matter how seemingly chaotic or inconsistent.
Therefore the constraints on generalization by analogy using pupstitution cannot lie
in the structural requirements of analogy: under pupstitution, structures in
themselves are neither analogical or not, as they are under simple subsitution.
Rather, any constraints on the applicability of generalization by pupstitution must
lie in the process of obtaining the needed background knowledge, and seeing its
application to the system at hand. In the terms of the nursery rhyme example, how
does Pat come to know the right rhyme? Given the rhyme, how can Pat reliably
determine the relationship between the rhyme and the system? After all, Pat may
know many rhymes, and even many rhymes in which commands and outcomes
appear in different associations. The pursuit of constraints on analogical

generalization must shift to these questions.

13

References.

Anderson, J.R. and Thompson, R. (1986). Use of analogy in a production
system architecture. Paper presented at the Illinois Workshop on

Similarity and Analogy, Champaign-Urbana, June, 1986.

Angluin, D. and Smith, C.H. (1983) Inductive inference: Theory and methods.
Computing Surveys, 15, 237-269.

DeJong, G. and Mooney, R. (1986) Explanation-based learning: An alternative

view. Machine Learning, 1.

Gentner, D. (1983) Structure mapping: A theoretical framework for

analogy. Cognitve Science, 7, 155-170.

Haussler, D. (1987) Bias, version spaces, and Valiant's learning framework. In P.
Langley (Ed.) Proc. Fourth International Workshop on Machine Learning, Los
Altos, CA: Morgan Kaufmann.

Kearns, M., Li, M., Pitt, L. and Valiant, L. Recent results on boolean concept learning.

In P. Langley (Ed.) Proc. Fourth International Workshop on Machine Learning,
Los Altos, CA: Morgan Kaufmann.

Lewis, C.H. (1986) A model of mental model construction. In Proceedings
of CHI'86 Conference on Human Factors in Computer Systems. New York:
ACM, 306-313.

14

Lewis, C.H. (in press) Why and how to learn why: Analysis-based
generalization of procedures. Cognitive Science. (Earlier version available as
Technical Report CS-CCU-347-86, Department of Computer Science, University of
Colorado, Boulder CQ.)

Valiant, L.G. (1984) A theory of the learnable. Communications of the ACM,
27,1134-1142.

UNCLASSTFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188
1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE Approved for public release;
’ distribution unlimited
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
CU-CS-384-88
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL § 7a. NAME OF MONITORING ORGANIZATION
(If applicable) L. .
University of Colorado Cognitive Science Program
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Department of Computer Science Office of Naval Research (Code 1142PT)
CB 430 800 N. Quincy St.
Boulder, CO 80309-0430 Arlineton, VA 22217-5000
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL [9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
PP N00014-85-K-0452

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT

ELEMENT NO. { NO. NO. ACCESSION NO.

61153N RR0O4206 FR04206—0C R702-009

11. TITLE (Include Security Classification)
Some Learnability Results for Analogical Generalization

12. PERSONAL AUTHOR(S)
Clayton Lewis

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [15. PAGE COUNT
Technical FROM TO 88-1-16 14

16. SUPPLEMENTARY NOTATION

17. COSAT!I CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Concept learning, analogical reasoning,
05 08 theoretical analysis

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Progress has been made in characterizing formally the capabilities and performance
of inductive learning algorithms. Similar characterizations are needed for recently-
proposed methods that produce generalizations from small numbers of analyzed examples.
I consider one class of such methods, based on the analogical generalization technique
in Anderson and Thompson's PUPS system. It might appear that some to-be-learned
structures can be learned by analogy, while others are too chaotic or inconsistent.

I show that this intuition is correct for a simple form of analogical generalization,
so that there are learnable and unlearnable structures for this method. In contrast,
I show that for PUPS-style generalization analogical structure can be imposed on an
arbitrary system (within a broad class I call command systems.) It follows that the
constraints on the PUPS-style method lie not in any structural condition on a to-be-

learned system but rather in obtaining the knowledge needed to impose analogical
structure.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
Bg uncLAsSIFIED/UNLIMITED [] SAME AS RPT. [DTIC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL 22p TELEPHONE (Include Area Code) | 22¢. OFFICE ZYMBOL
Susan Chipman (202) 696-4318 ONR 1142CsS

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

