NoPumpG: Creating Interactive Grahpics
With Spreadsheet Machinery

Clayton Lewis

CU-CS-372-87

=
!% I I
— | | University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

* Supported by NSF NYI#CCR-9357740, ONR #N00014-96-1-0720, and a Packard Fellowship in Science and Engineering from the
David and Lucile Packard Foundation.

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

NoPumpG: Creating Interactive Grahpics
with Spreadsheet Machinery

Clayton Lewis

CS-CU-372-87 August 1987

Department of Computer Science
Campus Box 430

University of Colorado,

Boulder, Colorado, 80309

This research was supported by the Air Force Human Resources Laboratory and the Institute of Cog-
nitive Science.

1

NoPumpG: Creating Interactive Graphics with Spreadsheet Machinery

Clayton Lewis

Department of Computer Science and
Institute of Cognitive Science
Campus Box 430

University of Colorado

Boulder CO 80309

(303) 492 6657

ABSTRACT.

The spreadsheet has made computing power widely accessible to nonprogrammers.
By adding a small number of new concepts to the basic spreadsheet framework
NoPumpG makes it possible to create interactive graphics, including animation, of
the sort seen in physics and geometry tutorial demonstrations, without
programming. While not as powerful as some other systems of this kind, NoPumpG
appears to offer a favorable balance between power and conceptual simplicity.

ACKNOWLEDGEMENTS.

My ideas about spreadsheets, and the desirability of extending them, were strongly
influenced by Robert Balzer, Gerhard Fischer, Thomas Green, Donald Norman, and
Gary Olson, who participated in a workshop on new approaches to programming in
Boulder in 1986. The discussion here owes much to their insights. Andreas Lemke,
David Kieras, Jakob Nielsen and Beth Richards have made useful suggestions about
the work. I thank the Air Force Human Resources Laboratory and the Institute of
Cognitive Science for financial support.

INTRODUCTION.

Programming is difficult to learn, slow, and effortful. Many people who need and
want computer support beyond that provided by canned applications are unwilling
or unable to invest in programming skills. Those who do program find progress
slow and many potentially attractive applications are never built. Where can we
look for ways to provide the flexible control of computing that programming
provides, at much less cost?

The participants in a recent workshop on new approaches to programming (Lewis
and Olson, in press) cited the spreadsheet as a success case worthy of attention:
spreadsheets are given major credit for the microcomputer revolution, by
permitting large numbers of nonprogrammers (indeed non-computer-users) to
develop and use their own customized applications. Horowitz and Munson (1984),
writing for software engineers, note that the spreadsheet has brought many new
users to computers and produced a large productivity gain.

The success of the spreadsheet has brought with it a number of extensions. Graphical

2

output from spreadsheets, in the form of business graphics, is common. Extensions
to provide access to database functions are provided in a number of systems. The
ASP system (Piersol 1986) is a spreadsheet which can operate on any Smalltalk data
object, including bit images. Van Emden, Ohki, and Takeuchi (1986) describe a
spreadsheet interface to logic programming. Lewis (1985) describes a spreadsheet
capable of manipulating approximate quantities and relationships.

The present paper describes extensions designed to permit a user to create, control,
and manipulate graphical objects using a spreadsheet framework. It aims to
capitalize on the empirically-proven success of the basic spreadsheet concept to bring
the creation of interactive graphics within the reach of nonprogrammers, and to
reduce the time and effort required to produce interactive graphics in traditional
programming approaches.

The design of these extensions has been guided by the following principles, intended
to reduce the conceptual overhead in using the resulting tool, while maximizing its
flexibility.

Add as little as possible to the basic spreadsheet paradigm. The market shows that
people can understand and use spreadsheets.

Provide low-level primitives from which larger structures can be built. Graphical
toolkits, such as Pinball Construction Set (Budge 1983), provide easy access only to
specialized graphical parts which can be used only (in this case) to build pinball
machines.

Strive to support a wide range of sample applications. The examples presented below
are drawn from a number of different domains, including geometry and physics.
Other possible applications, such as a simple flight simulator, have influenced the
design. Features have been added to the design when needed to support a sample
application, provided the features appear to be of general value and to be easy to
understand.

Don't try to do everything. The original spreadsheet represents a successful
compromise between simplicity and power, delivering much less power than
traditional programming but with much greater simplicity. In Gerhard Fischer's
phrase, the "subjective computability" of spreadsheets is often greater than that of a
traditional programming language, even if its "objective computability" is limited,
because people can understand what they are doing. In extending the spreadsheet
into new domains some problems may prove resistant to any sufficiently simple
approach, and should not be attempted.

The extensions are embodied in a prototype system, called NoPumpG. While the
interactions supported by the prototype are quite general in character, the practical
applications to which they are most suited are tutorial demonstrations that permit
students to view and manipulate physical or geometrical systems. A number of
turther extensions are contemplated that could produce a tool with other

applications, such as rapid development of user interfaces.

The presentation here will proceed as follows. First I describe the essential features of
the spreadsheet idea that provides the foundation for NoPumpG, and propose an
analysis of what makes the spreadsheet idea work. In extending the spreadsheet
most features, though not all, that figure in this analysis are preserved. Against this
background I describe the single most important of the spreadsheet extensions in
NoPumpG: the linkage between spreadsheet cells and graphical entities. I next
describe the NoPumpG prototype which implements this key extension and a
number of ancillary extensions. Each extension is then illustrated by examples
constructed using the prototype. Ithen compare NoPumpG with other systems with
similar capabilities, and consider limitations of and possible enhancements to the
design.

WHAT ARE SPREADSHEETS, AND WHY ARE THEY GOOD?

For our purposes a spreadsheet is a collection of cells, each of which can contain a
value and a formula. A formula refers to one or more other cells, and specifies how
to compute a value using the values of those cells as arguments. This computed
value becomes the value of the cell containing the formula. The value of a cell that
has no formula can be entered or edited by the user. When the value of any cell
changes, the values of any cells containing formulae referring to that cell are
recomputed. The values of all cells that have values are always displayed.

This simple scheme has a number of profound advantages. First, the
two-dimensional layout normally used for cells presents a familiar, concrete image
which can easily be related to paper spreadsheets that are in common use in many
tasks. This advantage is not exploited in the NoPumpG design, because paper
spreadsheets are not used in controlling interactive graphics.

The automatic propagation of changes permits the user to state dependencies among
quantities without being concerned with the manner in which these dependencies
are enforced. The user does not have to detect when changes occur, decide what to
do about them, or specify the order in which actions in response to changes will be
taken, all of which are essential concerns in conventional programming.

Since the spreadsheet user does not need to specify how changes are processed, many
of the concepts and mechanisms of procedural programming languages are not
needed. Users do not have to use and understand flow of control, parameter passing,
recursion, and similar difficult notions.

The fact that values are always visible (or can be made visible by simple operations
like scrolling), and that values entered by the user can be modified by the user at any
time, eliminates the need to pump data back and forth across an opaque barrier
separating user from program. Consider a program in a traditional language that
adds a series of numbers. Specifying the core dependencies between result and data is
quite easy, but much more must be written: input code is needed to pump the data

4

in, and output code is needed to pump the result out. Once data are in they are
inaccessible: if you want to be able to edit your input numbers without reentering all
of them you will need a more complex program than a casual user is likely to write.

None of this pumping code, to permit you to enter your numbers, see the result, and

edit the numbers if desired, is needed in a spreadsheet. The spreadsheet implements

a form of inter-referential i/o (Draper 1986) in which objects are shared between user
and system and can be seen and operated on by both. Avoidance of pumping code is
a key objective in NoPumpG, and contributes most of the name of the system (the

'G' is for 'Graphics'.)

Direct visibility and modifiability of data, combined with automatic updating, enable
spreadsheets to provide excellent immediate feedback to users on the effects of
changes to data or to formulae. In conventional programming reexecution of a
program, after a change to program or data, is often slow. Even in interpreted
systems overt user actions are required to make the reexecution happen. NoPumpG
exploits and extends the spreadsheet's strength in this regard to provide fast,
continuous, graphical feedback for user actions.

Thomas Green uses the term 'viscosity' to describe the difficulty or ease with which
one part of a large structure can be modified. In conventional programming
viscosity is often high: changing the kind of value a variable holds in one place
requires changes in other places, including perhaps its declaration; changing a loop
heading requires changes to the body (if an index variable is eliminated, for
example); adding a new procedure may interfere with access to existing procedures
(in a block structured language), and so forth. Spreadsheets have low viscosity.

A final advantage of spreadsheets over most conventional programming approaches
is in the treatment of aggregate operations like 'sum'’ or 'average'. In most
procedural languages since Fortran such operations must be described by the
programmer as a sequence of scalar operations, such as adding an individual datum
to a running total. This translation is unintuitive for novices and wastes time for
experienced users. In spreadsheets such operations can be specified directly as
applying to a group of cells. Such aggregate operations are not included in
NoPumpG; they have not been needed in the applications considered so far.

EXTENDING THE SPREADSHEET TO CONTROL GRAPHICS.

How can the characteristic strengths of the spreadsheet be extended to specify and
control interactive graphics? The key innovation is a bidirectional linkage between
certain cells in the spreadsheet, called control cells, and graphical entities. Consider a
line segment as an example of a graphical object. The four coordinates specifying its
end points are held in four control cells that are created when the line is created. If
the value of any of these cells is changed, the line is automatically redrawn
accordingly. If the line is moved, by a mouse movement, the values of the
corresponding control cells will be updated automatically to reflect the new
coordinates.

This picture is oversimplified in one respect. If a formula is placed in a control cell, it
is evaluated as usual in a spreadsheet, and the line is redrawn as just decribed. But if
an attempt is now made to move the line using the mouse, the coordinate
corresponding to this control cell will not change, since it is determined by its
formula, and the line will only move in such a way as to leave that coordinate
unchanged.

This simple extension to the spreadsheet paradigm produces a simple but expressive
tool for building graphical interactions, as illustrated below.

The NoPumpG prototype.

This extension, and a few ancillary extensions described below, have been
implemented in a prototype system for the Apple Macintosh using Turbo Pascal.
This prototype was used to produce all of the examples presented below. The
prototype uses a generally Macintosh-like interaction style to permit the user to carry
out the following operations.

Create and modify cells. Examples of cells can be seen in Figure 1. Each cell has a
name, an optional formula, and a value. When a cell is created the user provides a
name. Its initial value is zero and it contains no formula. The user can enter a new
value by clicking on the old value, provided the cell contains no formula, and typing
anew value. Formulae are entered by clicking on the formula portion of a cell,
selecting an operator from a pull-down menu, and clicking on one or more other
cells to act as the operands for this operator. A variety of arithmetic and

trigonometric operators are provided, together with some special operators described
below.

Since cells can quickly clutter the screen a simple means is provided to conceal and -
redisplay cells. Cells and graphical objects coexist in the same screen area, so the user
is permitted drag a cell to any desired location on the screen. Thus unlike cells in
typical spreadsheets, NoPumpG cells are not locked into a grid arrangement.

Create graphical objects. The prototype provides line segments, small bitmaps, called
'sketches', created using a simple bitmap editor, and fixed text strings. When any of
these is created control cells are created for it and automatically displayed. These cells
can be modified in the same manner as user-created cells. A line comes with four
control cells, one for each coordinate of each end. Sketches and text strings come

with two control cells, controlling the horizontal and vertical position of the object.
Additional control cells for these objects that determine their visibility are described
later.

Move graphical objects. The ends of a line, the middle of a sketch, and the beginning
of a text string are mouse sensitive. Placing the mouse cursor on any of these points,
and holding the mouse button down while moving the mouse, will send a request
to the object to move to follow the mouse. This request will be honored to the extent

File Edit Make Show &ps Clock K

%40 LILALOIRLALIL0L LR Cd
A EEARA L 7596 AL ERARARR

Torg Oet.x

orgtin
167 .00 z12 .00

Figure 1: A simple output device. The pointer moves horizontally to a position
determined by the cell IN. Normally these cells would not be left exposed to view.

6

that it does not conflict with formulae placed in the control cells for the point. If a
point has a formula in its X control cell, but none in its Y control cell, it moves
vertically but not horizontally when dragged. If an object is moved its control cells
are automatically updated.

Additional features of the prototype permit the user to delete objects, control the
visibility of graphical objects, and export and import objects. Where relevant these
additional features will be described below.

The implementation of the prototype follows a message-passing discipline, though it
is not written in an object-oriented language. Graphical objects respond to mouse
actions by sending update requests to their control cells. A cell will update itself if it
does not contain a formula. When any cell changes its value it notifies any other

cells or graphical objects that depend on it; these objects then reevaluate themselves.
Thus a line or other graphical object redraws itself when notified by any of its control
cells. A cell containing a formula evaluates the formula and replaces its old value
with the new result when notified by any of the cells that are arguments in its
formula.

Even though no special effort has been devoted to tuning the implementation, this
simple computational mechanism produces quite good performance on the
Macintosh. Responses to user actions are immediate, though sometimes jerky for
more complex structures. Animation, obtained as described below, varies in
smoothness with the number of moving or changing objects and the speed of their
motions. A simulation of an orbiting satellite, which permits the user to vary the
initial position and velocity of the satellite, produces an adequate depiction of the
motion as long as the speed of the satellite is not too great, and not too many cells
that must be updated as the satellite moves, such as those holding the X and Y
components of gravitational force, are kept visible on the screen.

Graphical output.

Figure 1 shows how graphical output from the spreadsheet can be accomplished in
NoPumpG. The pointer is a sketch, and the cells S1.X and S1.Y contain, and control,
its position. Since it is intended that the pointer move only horizontally the cell S1.Y
contains no formula (to protect it from inadvertent dragging it could be given the
dummy formula 'const'.) 51.X, which controls the horizontal position of the
pointer, is given a formula which makes it the sum of the cell IN, where the value
to be displayed is placed, and the cell ORG, which sets the origin of the pointer's
motion. Thus if IN is zero the pointer will appear at X coordinate ORG. The tick
marks and scale are fixed text strings dragged into position; the control cells for
them have been concealed. The value of IN could be modified by editing, or by
placing a formula in IN that calculates a value in terms of any other cells in the
spreadsheet. Whatever the value of IN is, the pointer will appear in the

corresponding position, because of the linkage between the control cells and the
sketch.

7

In this and most of the other examples to be shown, cells are left exposed on the
screen so as to show some of the formulae used. In practice, only cells whose values
are of interest to the user, or for which the user might wish to supply new values,
would be left visible. Thus in most applications of an output device like this one
none of these cells would be seen.

Figure 2 shows a more elaborate output device. The mercury is formed from three
lines tied together by formulae in their control cells. The cells L2.Y2 and 13.Y2 are
shown: the formula in the latter indicates that its value will always be just a copy of
the value of 1.2.Y2. Thus as line L2, forming the top of the mercury, moves up, the
upper end of line L3, forming the right side of the mercury, moves up with it. The
formula in 1.2.Y2 is similar to that used to compute the position of the pointer in
Figure 1. As the cell IN is changed the value of L2.Y2, which controls the position of
the top of the mercury, changes accordingly (the Y coordinate increases down the
screen.) Other formulae in cells not shown keep the pieces of the mercury tied
together as required.

The treatment of the parts of the mercury illustrates another effect of the linkage
between control cells and graphical objects: it is possible to set up constraints between
objects. By placing formulae in control cells that refer to other control cells, graphical
objects can be attached to one another, as shown here, or constrained to move in
concert. Parts of the same object can be constrained in the same manner. The sides of
the mercury are kept vertical by making the X coordinate of one end equal to the X
coordinate of the other.

The same principles can be used to produce other kinds of output devices. A needle
dial can be constructed by fixing one end of a line segment and computing the

coordinates of the other end as trigonometric functions of the input cell.

Graphical input.

Since control cells and graphical objects are linked bidirectionally, graphical input to
the spreadsheet can be contrived as easily as output. Figure 3 shows the indicator of
Figure 1 modified to act as a slide controller. Since cell S1.X now has no formula in it
the pointer can be dragged horizontally. To keep the pointer from straying vertically,
cell 51.Y is given the dummy formula 'const'. The formula in the cell OUT dictates
that it will contain as its value the distance between the pointer and ORG, wherever
the pointer is dragged.

Coordinated input and output.

Figure 4 shows an example drawn from Borning (1981). The outer lines in the first
panel form an arbitrary quadrilateral, while the inner lines connect the midpoints of
adjacent sides. The inner lines always form a parallelogram, not matter how the
quadrilateral is distorted. The second panel shows that this is so even when the
quadrilateral is made concave; this display shows the result of dragging one of the
vertices of the figure into a new position.

NoPUmph icedc—F—————————

100

02 y2
org-in
=04 55.00

013.y2
=L2.42
. 55.00

75 .00

Figure 2: A more elaborate output device. The cells shown on the right show how
the height of the line forming the top of the mercury, L2, depends on the value in
IN, and how the top of line L3, forming the right side of the mercury, is tied to L2.

0351.x oSty
const
177.00 Q5. 00
Oorg Fout
S 1. x—org
162.00 15.00

Figure 3: A simple slide controller. Since the control cell for the X coordinate of the
pointer, S1.X, contains no formula, the pointer can be dragged horizontally. The cell
OUT is updated automatically to reflect the position of the pointer.

= NoPump6 mmmqu

Figure 4: Two views of a quadrilateral with the midpoints of its sides connected. The

midpoint connectors are updated as the vertices of the figure are dragged, and always
form a parallelogram. -

NoPumpb

OL3. %1
=.2.x2
200.00
P
/ T3 g1
' \ =212
/’7 4

rd A 122.00
(=] o2 ‘ﬁ"-r-'J/
2.00 <¥H

.q-"‘-\-___-‘—.-‘-\—u
B1L6 .«
sxr o2
219 .50 - o oo
U6 .yt L2 . %2+L3 . %2 JL2 y2+.3.y2
syr /o2 429.00 i53.00
79 .30 :

Figure 5: Some of the cells used to build the structure in Figure 4. The cells in the
upper right illustrate how the lines forming the quadrilateral are tied together at the
corners. The cells in lower center show how the sums of the coordinates of the ends
of the sides are computed, and the cells in the lower left show how these sums are
used to compute the coordinates of the ends of the midpoint connectors.

This example is easy to construct in NoPumpG. The four lines of the quadrilateral
are connected by placing formulae like those shown in the upper right portion of
Figure 5 in the cells controlling one end of each line. Cells like those shown in the
lower portion of the figure contain formulae that compute the sums of the end
coordinates of each line. Dividing these sums by two produces the coordinates of
each midpoint, and formulae to this effect are simply inserted into the control cells
of four new lines, as illustrated in the left-hand portion of the figure. The
unconstrained line ends of the original quadrilateral can now be dragged at will, and
the coordinates of the midpoint connectors will be continuously recomputed, and
those lines redrawn, accordingly.

This example shows how a dynamic display, responding immediately to graphical
manipulations, can be constructed by using the linkage between control cells and
graphical objects in both directions within the same structure. Changes to the
position of the quadrilateral, controlled in the graphical domain, cause
recomputation within the spreadsheet, which in turn causes the midpoint
connectors to be displayed in new positions.

Animation by time-dependent positions.

Because graphical objects are redisplayed in response to changes in their control cells,
and the control cells can be given formulae which depend on arbitrary computations
elsewhere in the spreadsheet, animation can be obtained simply by permitting
formulae which are time-dependent. This is accomplished in NoPumpG by
including a CLOCK cell in the spreadsheet, whose value is automatically updated by
the system. Means are provided for stopping and starting the clock as desired. If a
formula in a control cell depends directly or indirectly on the clock, the
corresponding graphical object will move.

Figure 6 shows two snapshots of a simple example of this form of animation. The
cells controlling the position of the buttefly sketch, S1.X and S1.Y, contain formulae
which depend on the clock. The advance of the clock between the two panels of the
figure has caused the sketch to move down and to the right.

This form of animation can be used with more complex structures, since any objects
whose positions are related to an object that is tied to the clock will also be updated
automatically. For example, it would be easy to tie one vertex of the quadrilateral in
Figure 4 to the clock. As it moved (in whatever manner was specified) the
parallelogram would be automatically adjusted.

Note that this kind of animation is accomplished in NoPumpG without any further
extensions to the spreadsheet framework. Once a cell containing a clock is provided
animation becomes possible without requiring users to master any additional
concepts: the basic spreadsheet evaluation mechanism, together with the linkage
between cells and graphical objects, does the work.

XY OSt.y
clock mod @ clock mod b
71.00 46 .00
Oclock P 5
271.00 I =75
= NoPumpG —

.%5

G51.x 051y
clock mod a clock mod b
51,00 5500
P elock P CIS
291.00 100.00 75.00

Figure 6: Animation by time-dependent position. As the clock advances between the
two panels the values of the control cells for the position of the butterfly, S1.X and
S1.Y, are updated, causing the butterfly to move down and to the right. The Y
coordinate increases downwards.

Integration.

In many physical systems it is not possible to specify the positions of objects as
simple functions of time, because these functions are determined dynamically.
Consider an object which is to move with a velocity determined by a user-adjustable
control. Since the settings of the control and how they change are not known in
advance it is not possible to express the position of the object as a simple function of
time.

One approach to this problem would be to express the new position of the object at
an instant as the sum of its old position and its current velocity, scaled in an
appropriate way. But placing a formula of this kind in a spreadsheet leads to an
immediate loop: the position depends directly on itself.

To deal with this problem NoPumpG provides an integral operator. If F is a cell
placing the formula [F dt in another cell C produces the following behavior. When
the clock is started, and has the value zero, the value of C is set to zero. When the
clock is updated the value of C is augmented by the product of the time since the last
update and the current value of F. Even though F is an argument in the formula for
C, Cis not updated when F changes but only when the clock is updated.

This integral operator makes it easy to specify the motion of objects in a physically
reasonable way. Figure 7 shows a demonstration of the motion of a mass suspended
by an elastic cord. The position of the mass is expressed in a physically meaningful
manner as the sum of an intitial position and its integrated velocity, where the
velocity is obtained by integrating the acceleration, and the acceleration is the
quotient of the mass and the total force on the weight. The total force is the sum of a
gravitational force and a force produced by the spring, and so on. The parameters of
the model, including the mass and the spring constant, can be varied, even while it
is running, simply by placing new values in the associated cells. The demonstration
can easily be elaborated by providing graphical controllers, like that shown in Figure
3, with which to vary these parameters.

Animation by visibility control.

While time-varying positions can accomplish animation adequately in many
situations, some motions are too complex to be conveniently described in this
manner. Figure 8 shows two views of a butterfly in flight. Describing the transition
between these views in terms of the motions of smaller graphical objects would be
tedious, and would tax the performance of the system.

NoPumpG deals with this problem by permitting different views of an object to be
displayed cyclically in the same location, producing animation by the succession of
images. Doing this requires only one new feature: additional control cells that
determine whether a graphical object appears on the screen or not. Figure 9 shows
these cells and their use in animating the butterfly. In the first panel the control cell
S1.V, which controls the visibility of sketch 1, has the value 1, while 52.V, which

NoPumpb

O =0
1=
0.00 55T g m
0 0 +
= Ho+y 50.00
S1.y-s0 150.00 =
150.00 -0.04 g
EQO
Of g 0.10
okt 150,00 oy
- 2}
~5 . 00 *
gQrm
4,30
Otot Oq Oy Oy
f gtf = tot f/m fa dt Ju dt
~1.10 -0.02 0.00 0.00

Figure 7: A simulation of a mass suspended from an elastic cord. The formulae in
the cells show how the position of the mass is specified from basic physical
principles, with the force due to the cord calculated on the left, the force due to
gravity on the far right, and the change in position due to these forces at the bottom.
The control cell S1.Y, which determines the vertical position of the mass, contains a
value obtained by adding the change in position to an initial height of the mass.
When the clock runs the mass oscillates up and down because of the time integrals
in some of the formulae.

NoPumpb

Figure 8: Two views of a butterfly in flight.

CEEY]
1.00
cfock+e
114.00 GEZI® 052 u
5 clock mod p| {t+1 mod p
£ .00 0.00
2.00
=]ock
113.00
= —— NoPumpb
Gy é z
0L+
1.00
clock+el
125.00 TS o 6520
5 clock mod p| |t+1 mod p
P .00 .00
2.00
O lock
114.00

Figure 9: Showing how animation can be obtained by alternating the views shown
in Figure 8. The cells S1.V and S$2.V control the visibility of the two views. The
formulae in these cells are tied to the clock in such a way that they are displayed
alternately as the clock advances.

A 2

source changes more recently. If the cell is a control cell (see below) the lc op takes
one cell as an argument. The value of the lc will be either the value dictated by the
position of the associated graphical object, as for an ordinary control cell, or the
value of the cell selected as the argument, whichever has been updated more
recently. If lc is used in an ordinary cell it takes two cells as arguments and its value
is the value of whichever of these has been updated more recently. Lc can be used to
get some of the effects produced by true contraints. For example, to tie two control
cells together so that they are equal but either can be updated by dragging, place an Ic
in each with the other as argument. This is shown in the demo "or lines", where it

is used to keep the ends of two movable lines aligned. The if op takes three
arguments. The first argument is tested. If it is positive the value is the second
argument; otherwise it is the third argument. The ?= op has value 1 if its operands
are equal and zero otherwise.

4 Lines. To create a line select Line from the New menu. A line comes with 5 cells,
called control cells, four of which hold the coordinates of its ends, while the fifth
determines whether the line is visible. They have names indicating what coordinate
they control. The ends can be dragged. If one of the control cells for the line has a
formula in it that coordinate cannot be changed by dragging but will be determined
by the formula. For example, if you use the eq op to make the second y coordinate of
a line equal to the first y coordinate, the line will be constrained to be horizontal.
The first end can be dragged in any direction, but the first end can only be dragged
horizontally.

5 Text. To create a piece of text select Text from the New menu. The cursor will
change to a text cursor, inviting you to click a location on the screen where you wish
to type. Type in the desired text. You can backspace to correct mistakes. Typing is
terminated whenever you make your next mouse selection (hitting Return or Enter
has no effect.) You get three control cells with your text, two of which contain (and
control) the coordinates of the beginning of the text string. You can use these to
move the text, tie it to another object, etc. Text can be dragged if the mouse is placed
near the beginning of the text string.

5 Sketches. A sketch is a little picture created by editing a bitmap. To create one select
Sketch from the New menu, and click the location on the screen where you wish the
sketch to appear. An editing window will appear on the screen, showing a grid, each
cell of which represents a bit in the sketch. To permit you to make a series of related
sketches the grid will be initialized to the last sketch you made (or loaded from disk.)
Click the mouse to flip a bit on or off. Dragging will flip a series of bits on or off
depending on what happened to the cell in which the dragging started. That is, if you
wish to turn a series of bits on by dragging you must begin the drag in a cell that is
off, and vice versa. A box to the right of the editting grid shows you what your
picture will look like on the screen. When you are satisfied, click the go away box on
the editing window. Sketches have two control cells which can be used to move
them, tie them to other objects, and so forth, and a third which controls whether the
sketch is visible. Sketches can be dragged if the mouse is placed near the point
corresponding to the center of the editting grid.

A 3

6 Pens. A pen object, which is shown as a "V" on the screen, can leave a visible trace
when it moves. It has x and y control cells, and a third which controls whether the
pen is down: a positive value in this cell means that the pen is down and will leave

a trace; other values mean pen is up and no trace will be left. The pen can be dragged,
for freehand drawing, or it can be made to move by dependence on the clock or other
cells whose value is changes. The traces left by pens can be erased by selecting erase
ink on the Edit menu.

7 Clock. There is a clock cell provided by the system. Use the Clock menu to start,
reset, and stop it. You can obtain animation by using the clock as an argument in a
formula that computes a coordinate of a line or other object. The demo "bird" shows
this.

The clock is implicitly used by the | operator. When the clock runs, the cell with the |
operator is updated by adding the product of the clock time since last update and the
current value of the argument cell. This implements an approximation to the time
integral of the argument cell. For example, if you create a cell containing the velocity
of an object (possibly controlled by a graphical controller) the [op can be used to
calculate the position of the object. This is shown in the demo "igtst".

8 Visibility control cells. Besides animating things by giving them time-dependent
positions, you can devise frame-sequence animation by using the visibility control
cells of a group a related sketches. To do this you put all the sketches at the same
position, but arrange things so that only one is visible at a time in sequence. The
demo "butterfly" shows this: there are two pictures of the butterfly shown
alternately.

Lines and text as well as sketches have these visibility control cells. In each case the
associated object is displayed only when the visibility control cell is positive.

9 Deleting objects. Cells can be hidden using their go-away box, and other objects can
be hidden using their visibility control cells. But you may want to get rid of
something entirely, especially if you intend to export your work, as discussed below.
Delete on the Edit menu lets you click on an object to delete it. The object will refuse
to go away if it has something else depending on it or on one of its associated control
cells, or if it is the clock.

Note: The way dependencies are determined is crude; you won't be allowed to delete
something if its control cells depend on each other. You can deal with this by editing
the formulae in these cells to remove the dependency.

Note: Deleted objects will still show up in the Show menu, but will not be enabled.
Try to ignore them.

10 Getting rid of everything. Selecting New on the File menu flushes all work so you
can start afresh.

11 Exporting and importing work. The current contents of the system can be stored
on disk by selecting Save as from the File menu, or by responding yes when you are
asked whether you want to save what you have before quitting. Work can be
reloaded by selecting Open, which will cause what you load to replace what you
have, or Merge, which will add what you load to what you have. The dialog is rocky;
someday it will be more Mac-like.

You can Merge in the same material as many times as you wish. Thus you can save a
useful subassembly and then merge it into later work as needed.

Nothing is done about making names unique, so if you do merge in several copies
be prepared to find that you have several objects with the same name.

12 Stopping work. Choose Quit from the File menu. You'll be given a chance to save
what you've.done on the way out.

13 Housekeeping. When new cells are created, or hidden cells revealed, they may
overlay other cells, creating what looks like garbage. You can usually sort things out
by moving one of the cells off of the others. To minimize this effect new cells are
created in an area at the bottom left of the screen in such a way that you can create
five cells before getting overlap. It is a good idea to move cells out of this area, or
hide them, as soon as convenient. A similar approach is used for lines, so it is a good
idea to drag a new line away, or otherwise change its position, before creating too
many other ones.

It may also happen that you find it impossible to drag an object that overlaps others.
What is happening is that your mouse click is being handled by some object that
itself won't move. If you are really stuck you may have to edit some control cells to
break the impasse.

10

controls sketch 2, is zero. Objects are visible just when their visibility control cells are
positive, so sketch 1 is shown and sketch 2 is not. In the second panel the clock has
advanced, and the contents of the visibility control cells has changed so that sketch 1
is hidden and sketch 2 is shown. This alternation continues as the clock runs. The
position control cells for the two sketches have the same values, so the sketches
alternate in the same position on the screen.

Concurrent processes.

As the clock advances, any objects whose positions depend on the clock are updated
automatically by the system. Simultaneously, dragging by the user is detected and
any resulting changes in the display are made. As a result no special techniques are
needed to model situations in which several activities, including user input, are
going forward concurrently.

Handling bidirectional relationships in a simple evaluation model.

The machinery described so far has an important limitation most easily seen by
considering a position control cell for an object. If this cell has a formula it can
change the position of the object, but the object cannot be dragged by the user to
provide a new value for the cell. If the cell has no formula the object can be dragged
but the cell cannot change the position of the object. Thus a single graphical object
can provide input to the spreadsheet, or output from it, but not both.

An example drawn from Borning (1981) illustrates the problem. Suppose we wish to
illustrate the relationship between Celsius and Fahrenheit temperatures. A natural
way to do this would be to provide two thermometers, like that shown in Figure 2,
but arranged so that we can drag either mercury column to a new level, and have
the other column move to the equivalent level on the other scale. We cannot
accomplish this with the features so far described, because the level of the mercury is
either determined by a formula, in which case we cannot drag it, or draggable, in
which case it cannot be adjusted by the spreadsheet in response to changes in the
other thermometer.

Borning's ThingLab solves this problem by using a more powerful kind of constraint
than that supported by the basic spreadsheet machinery. ThingLab constraints are
specifications of relationships among quantities or objects, together with
mechanisms for modifying these entities so as to satisfy those relationships. These
modification methods can change any of the entities in the constraint. In the
thermometer example the mercury columns are constrained to be equal, but in
contrast to what happens in a simple NoPumpG model this constraint would be
satisfied by moving the other column whenever the user modifies one column.

NoPumpG deals with this problem with one added feature, which does not require
any modification of the simple spreadsheet evaluation mechanism. The L.C
operator, standing for 'last changed', works as follows. If LC is used in a formula in
an ordinary cell it takes two other cells as arguments. The value of the formula is the

11

value of whichever argument has more recently changed. If placed in a control cell it
takes just one cell as argument, with the results of dragging the associated object
playing the role of the second argument. Thus a control cell with an LC operator in
its formula will respond to dragging as if it contained no formula, but will also
respond to changes in its argument cell.

Figure 10 shows how the temperature conversion problem is dealt with using the LC
operator. The formulae in the cells show how 1.2.Y2, which controls the position of
the top of the mercury in the thermometer on the left, can be set either by dragging
or by a temperature computed (ultimately) from the position of the mercury on the
right. Similar arrangements provide for the mercury on the right to move when the
mercury on the left is dragged, or to be dragged itself.

Abstraction.

In building structures of any complexity, abstraction, the ability to identify and reuse
substructures, is essential. Subroutines in conventional programming languages are
a good example of abstraction, as are class definitions in object-oriented
programming. NoPumpG supports abstraction through its export and import
facilities. At any time the content of a model being built in NoPumpG can be stored.
Any stored model can then be retrieved and merged with the current model. By
repeating this merge operation many copies of a stored model can be incorporated in
the current model.

The thermometers in Figure 10 where built in this way starting with the
thermometer in Figure 2. It was not necessary to repeat the work of tying the pieces
of the mercury together, or building the scale.

This abstraction facility serves NoPumpG's commitment to minimizing the
proliferation of concepts. The idea of copying is familiar and concrete, and does not
require such additional concepts as the distinction between classes and instances, as
may be required in other approaches.

On the other hand, not all repeated operations can be abstracted using just copying.
Suppose one is building a structure in which a large number of text strings are to be
tied to a like number of sketches, in pairs. For one pair this is done by placing
appropriate formulae in the control cells of the text string. There is no way to use
copying to avoid the necessity of performing this operation manually for each pair.

A further limitation of simple copying is that changes to a substructure are not
automatically reflected wherever the substructure is used. If an improvement were
made to the thermometer in Figure 2 corresponding changes would have to be made
to each copy of it in Figure 10. In more complex abstraction schemes this problem is
dealt with by separating the definitions of objects from instances of the definition.
Changing the definition of the thermometer would change any instances
subsequently created from it. The example in Figure 10 could be handled by
reinstantiating the definition each time the model is set up for execution. Since this

O 2 yz HL2.y2
e of o e ot f
110.00 =0~ 507 52.00
Boi o Ord f
org—in 0 0 org-L2.y2
110.00 53 .00
celsius fahrenheit

= Ut f-32

tf-32/421.3 rd f-c32

20.00 36.00

Figure 10: Coupled thermometers. When either mercury column is dragged the
other registers the corresponding temperature on its scale. The LC operators in the
two cells L2.Y2, which control the heights of the mercury, permit these heights to be
controlled either by dragging or by a calculation driven by the height of the other
column. The calculation that drives the Celsius thermometer can be traced in the
cells shown. The Fahrenheit mercury has been dragged to an absolute height of 62,
which corresponds to a scale reading of 68°, as shown in the cell RD F. This
Fahrenheit scale value is converted to Celsius in the cells TF-32 and IN. The
resulting Celsius value of 20° is converted to an absolute height of 110 in the cell OI
C, and this value determines the height of the Celsius mercury in the cell L2.Y2 at
upper lett. If the Celsius mercury were to be dragged this value of 1.2.Y2 would be
replaced by the result of the drag, and a similar computation, not shown, would
adjust the Fahrenheit mercury.

12

cannot be done using simple copying NoPumpG pays a price for using a conceptually
simple abstraction scheme.

COMPARISON WITH OTHER APPROACHES.

How does NoPumpG, with its spreadsheet foundations, compare with other systems
with similar application goals? I group other systems according to their central idea,
or at least the central idea that seems most important in comparing their treatment

- of graphics with NoPumpG's. I will emphasize the way in which a programmer
must specify and control interactive graphics in each system, with secondary
attention to the interface provided to an ultimate end user.

Procedural languages.

CMU Tutor (Sherwood 1985) produces graphics by executing procedural commands
embedded in a language designed to support tutorial interactions. Procedural
languages do not normally support creation and modification of graphics by direct
manipulation, but CMU Tutor implements an elegant linkage between programs
and their output that provides some of the benefits of direct manipulation. The
program instructions that draw graphics contain specifications of points in the
graphics output area. If one of these point specifications is selected for editing, and
then the mouse is clicked somewhere in the graphics area, the clicked point replaces
the previously specified point. The same machinery can be used to add new point
specifications to a program, so the code that produces a drawing can be produced
largely by clicking points in the output area.

While this innovation gives it some important advantages over other procedural
graphics system, CMU Tutor is still a procedural language. Users must organize the
presentation of material, and interactions with the user, in procedural form.

The Boxer system (diSessa, 1985; diSessa and Abelson, 1986) provides an innovative
and economical conceptual framework in which diverse operations including text
editing and programming can be performed. As in CMU Tutor, the expressive
medium for graphics in Boxer is a procedural language, but some important facilities
are added. The Boxer language supports moving entities called sprites which have
speed and heading attributes. Since sprites move autonomously according to their
heading and speed attributes, animations involving multiple objects moving at once
can be obtained in a natural way.

Programming by Rehearsal (Finzer and Gould, 1984) is a simplified object-oriented
programming system in which objects (called performers, in a theatre metaphor for
programming) are controlled by messages (called cues). While message-passing
permits a more convenient style of programming for many problems than standard
procedural languages, the language is still procedural at bottom in that the response
of an object to a message is specified as a procedure. The programmer must specify
the order in which actions occur in response to a message.

13

Programming by Rehearsal includes an elegant method for easing the burden of this
procedural programming on people not accustomed to it. Rather than writing out
code to specify how an performer should respond to a cue, the programmer can put
the system in an observation mode and then demonstrate manually how the
performer should respond. The system captures the actions in the demonstration
and writes the corresponding code automatically.

Simple procedural approaches are ill suited to describing highly dynamic situations
in which one or more objects are in motion and user actions or other operations
must be catered for simultaneously. The difficulty is that the programmer must
indicate how control is to be distributed among several activities, such as moving an
object or watching for user input. Boxer deals with this problem with its sprite
mechanism, which makes it possible to specify the behavior of different sprites and
leave it up to the system to manage them. Programming by Rehearsal uses a form of
multiprocessing in which user actions can spawn new processes. In both cases new
concepts are needed to adapt the procedural framework to handle concurrent
activities; no new concepts are needed in NoPumpG's spreadsheet framework.

Constraint systems.

Borning's ThingLab (1981) permits graphical interactions to be programmed without
specifying procedures directly. While ThingLab is implemented in an
object-oriented, and hence procedural, framework, once a suitable collection of
primitive objects has been defined a programmer works with objects whose
behavior is specified in terms of constraints that they and their parts obey, rather
than in terms of responses to messages. As mentioned earlier, constraints in
ThingLab are relationships that the system will enforce as objects are moved or
changed, together with methods for enforcing it. For example, the midpoint of a line
segement is constrained to lie on the segment equidistant from its ends, no matter
how the segment is moved or stretched.

ThingLab's primitives include objects whose behavior cannot be replicated in
NoPumpG. For example, elements are provided which can be graphically connected
on the screen by direct manipulation. These can be used to build dataflow diagrams
or models of electronic circuits.

Borning (1986) describes extensions to the original ThingLab to permit constraints to
be specified graphically, rather than by writing SmallTalk code, as in the original. In
some applications this method works in a manner similar to NoPumpG. For
example, the midpoint constraint can be expressed by showing how the coordinates
of the midpoint can be computed from the coordinates of the ends of the segment,
much as in NoPumpG. However, constraints in ThingLab are ordinarily
bidirectional, in that changes to either of two mutually constrained obijects affect the
other, not unidrectional as in NoPumpG. Having defined the midpoint of a segment
one could move the midpoint, and the system would respond by changing the
segment in some way so as to maintain the constraint between midpoint and
segment. In NoPumpG the natural way of defining midpoint would result in a

14

midpoint that could not be moved but would always be determined by the current
position of the line segment. The bidirectional constraint could be constructed using
the LC operator, but this would be considerably more complicated than the
unidirectional one.

Duisberg (1986) describes how constraints involving time can be used to produce
animation. The principle is the same as employed in NoPumpG: if the position of
an object is made to depend on time the object will move. This avoids the
perplexities of specifying concurrent activities procedurally. The embodiment of this
idea is more sophisticated, and complex, in Duisberg's system than in NoPumpG,
however. A class of specialized objects, called responses, is provided; these generate
streams of screen update events which the implementation interleaves to produce
smooth animation.

Together with these extensions, ThingLab offers much more functionality than
NoPumpG. This difference in functionality represents an expected tradeoff between
power and complexity. Some of ThingLab's greater power comes from additional
primitives, constructed at the SmallTalk implementation level. Analogous
extensions to NoPumpG would be possible (and probably desirable), but would
increase the complexity of the system.

ThingLab's notion of constraint is a powerful one, but more complex than the
simple notion of computation that NoPumpG inherits from the spreadsheet. To
specify constraints users must write SmallTalk code, or, if their problem is within
the scope of the graphical method for building constraints, must deal with some
more sophisticated notions than are involved in NoPumpG, such as anchoring an
entity to keep it from being changed during constraint satisfaction, or merging two
objects to form a new one that is subject to the constraints specified in each original
object.

Smith's Alternate Reality Kit or ARK (1986, 1987) provides a constraint-like
mechanism for controlling the movement of simulated physical objects. Objects
called 'interactors' are provided that, when turned on, produce influences on and
interactions among other objects. For example, a 'gravity' interactor produces
attractive forces between objects; users can turn off this interactor, or modify it, to see
the effect of various forms of gravitational forces on the movement of objects.

ARK is implemented in and provides access to SmallTalk, and uses a
message-passing model of computation in addition to the constraint-like facility
provided by interactors. Means are provided to simplify this side of the system, so
that users can drive simulation models using simple pushbutton and slide controls.

It is not clear what kind of programming is required to create new objects,
interactors, and the like in ARK, so a direct comparison with NoPumpG is difficult.
It does appear that some features of ARK would be difficult to provide in NoPumpG.
For example, a mouse-controlled hand is used in ARK to pick up and move objects.
The hand imparts velocity to the object, so that it is possible to throw objects across

15

the screen using the mouse. It is conceivable that a somewhat similar effect could be
contrived in NoPumpG but it would be complicated and unnatural: there is no
apparent way to determine just when an object starts and stops being dragged.

On the other hand, some of the objectives of ARK can be achieved in NoPumpG
with its simpler conceptual framework. It is not difficult to set up gravitational
attractions between objects, for example, and permit a user to experiment with
different force laws; the same approach used in the example in Figure 7 works quite
well. But one objective of ARK is to make physical laws concrete by representing
them as visible objects, the interactors, that can be placed in a space or removed. It
would be difficult to bundle NoPumpG's alternate gravity specifications in such a
neat way.

Dataflow.

Hookup (Levitt 1986) is a system primarily intended for control of a music
synthesizer, that incidentally supports interactive graphics with about the same level
of conceptual complexity as NoPumpG. Hookup allows the user to build a dataflow
diagram whose nodes are drawn from a collection of primitives that include slide
controls, clocks, sprites, x-y graphs, storage devices, and others. By interconnecting
these nodes by direct manipulation the user can specify (for example) that the X
coordinate of a sprite will be the value of a clock, and that its Y coordinate will be
provided by a slide control. An auxiliary input to a sprite selects one of a number of
prepared views to be displayed at the sprite's current position, so animation by
alternation of views is easy.

As it stands, Hookup does not provide primitives at as low a level as NoPumpG, so
less flexibility is provided. For example, there is no line segment primitive, so
building animated linkages is not possible. On the other hand, Hookup provides a
variety of specialized nodes whose function cannot easily be replicated in
NoPumpG, including push buttons, which produce transient signals, and nodes
which respond to such signals by starting clocks, by storing or deleting data, and the
like. There appears to be no reason why Hookup could be extended to provide the
level of primitives that NoPumpG offers, while retaining these additional features.

If Hookup were extended in this way, the two systems would offer interesting
competing metaphors. Hookup's dataflow metaphor, in which nodes communicate
by sending values along paths, in the much the way electronic components do,
might or might not be as readily comprehensible to nontechnical users as
NoPumpG's spreadsheet model. On the other hand, the spreadsheet model may or
may not be extensible to deal with events like button-presses in as natural a way as
the dataflow model.

LIMITATIONS AND EXTENSIONS.

As I'have said, NoPumpG aims to provide broad functionality while adding as little

16

as possible to the conceptual framework of the spreadsheet. It is inevitable that the
resulting design, like the spreadsheet itself, will solve some problems poorly or not
at all. In this section I will take stock of NoPumpG's deficiencies, and consider what
might be done to remedy them. In some cases, to be considered first, it appears that
simple extensions to the implementation, not requiring much in the way of new
conceptual overhead, should suffice. In other cases it is not clear what should be
done, or whether any sufficiently comprehensible extension is possible.

Some simple extensions.

Additional graphical primitives. Some form of parametrized curve should be
provided in the same manner as line segments. Provision could easily made to
permit such curves to have indefinitely many parameters (and hence control cells.)

Pens. In many problems it would be useful to show a visible trace of the motion of
an object, or to display a function graphically. Pens could be provided as primitives,
with control cells for position and for pen-up or pen-down. Means would be needed
to erase the traces produced by the pens.

Text ifo. NoPumpG's current text objects are fixed and so cannot be used to permit
the user to enter text or to display text computed from other information. Enhanced
text objects could be provided whose value would be held in a control cell. The text
would be editable, if this cell contained no formula, or would be computed if the cell
contained a formula. Appropriate operations on text, such as concatenation, would
be needed.

Graphical operations. Tying the ends of two line together by placing formulae in
control cells is workable but tedious. A purely graphical shortcut could be provided
by which pointing at two points would cause formulae to be placed in the control
cells for the coordinates of the first point (say) that copied the values of the
corresponding cells for the second point. Similar graphical operations could be
provided that would place formulae in such a way as to locate one point in a given
position relative to another, or to fix a point in place by placing the 'const' operator
in its control cells.

Access to the mouse. If NoPumpG were to be useful as a tool for building user
interfaces it would need to support a much wider range of mouse actions. As itis,
the mouse can be accessed only when the user chooses to drag an object: actions like
clicking a button, or simply moving the mouse without depressing the button,
cannot be handled. It would be possible to provide cells which always contain the
position of the mouse, and the state of the mouse button. This would make possible
more flexible use of the mouse, though using such low-level information would be
tedious. Determining whether the mouse was on a particular object when the button
was pressed, for example, would be possible but complicated. Higher-level support
for some common operations would be desirable. For example, one might associate a
new control cell with a sketch that would toggle between one and zero when the
mouse was clicked on the sketch.

17

More difficult issues.

Aggregates. NoPumpG has not inherited from spreadsheets the desirable ability to
specify operations like 'total' or 'average' on groups of cells. Although this could not
be done in just the usual way, since NoPumpG's cells are not placed in a grid of rows
and columns, means could be provided to allow the user to select a group of cells as
an argument.

There are deeper issues in handling aggregates for which the basic spreadsheet
mechanism provides no solution, however. How would one cause a new cell to be
added to an aggregate at runtime (for example, when reading data from a file)? How
would one refer to such a cell once it was created? Some spreadsheets provide a
macro language that can deal with these matters, but as discussed further below
these languages add a great deal of procedural machinery to the basic spreadsheet
paradigm. It is possible that such problems should be avoided by permitting
aggregates of data to appear as values of single cells, rather than as scalar values
situated in a group of cells, but such an approach may be difficult to understand.

Andreas Lemke has pointed out that some of these same issues arise in NoPumpG
in connection with graphical objects. How could one create a new line segment
dynamically? How would one refer to its control cells? One could imagine an
operator with suitable arguments that would build a new line or other object, with
specified position and with specified formulae in its control cells, and another that
would permit new formulae to be constructed and inserted in specified cells. But

this machinery would involve many concepts alien to the basic spreadsheet
framework.

Relative copying of formulae. Spreadsheets provide a very useful shortcut by
permitting formulae to be copied from cell to cell in such a way that the arguments
in the formula are adjusted to suit the context into which the copy is placed. This
exploits the fact that cells are placed in a regular array, so that the relative position of
a formula and any cell to which it refers is well defined. If a formula refers to a cell
one place to the right and two up, a copy of it will refer to the cell in the same
relative position to the copy. This relative copying saves a great deal of work if (as
often happens) several groups of cells are related computationally in the same way,
for example, if several rows of a table are to be totalled at the end of each row.

NoPumpG cells are not placed in a grid, so this facility cannot be provided in a
straightforward way. It might be possible to permit the user to group cells into local
grid arrangements on the screen, and permit relative copying between cells so
grouped.

Collisions. Many problems involve detecting and responding to collisions between
objects, such as a ball and a wall, or two simulated vehicles. Such interactions can be
handled in NoPumpG in simple cases, but not easily. There are two aspects of the
problem. First, determining when a collision occurs involves tedious computation

18

with coordinates. Second, taking action when a collision is detected is a special case
of handling an event, to be discussed more generally below.

The first problem, determining when a collision occurs, could be given some
high-level support, but the most useful feasible form of such support is not clear. In
principle every primitive could have a control cell whose value would be one if the
object overlapped any other object and zero otherwise. This would be
computationally expensive, and would still leave it up to the user to determine
what object had been hit. Another approach would be to provide a specialized
primitive, a bumper, with controls cells indicating whether a collision is occurring
and an angle representing the orientation of the contour being struck. This would
make it easier to produce some common interactions, like bounces. Distinguishing
barriers from background scenery would require further machinery.

Events. more generally. Suppose a problem requires a change in behavior when a
button is pressed, or a collision occurs, that persists after the button is released or the
collision ends. In the simplest spreadsheet model such behavior is impossible:
formulae can have different values when the button is down from when it is up,
assuming the state of the button is reflected in some cell, but when the button goes
back up these formulae will revert to their former values.

NoPumpG already has two ways to get around this apparent restriction. First,
suppose some cell contains the integral of the button state cell, and suppose the
button state is zero when the button is up and one when it is down. If the button is
pressed the integral will become positive, and stay positive even after the button is
released. Thus formulae which depend on this integral can change their output
permanently when the button is pressed.

NoPumpG provides an if-then-else operator which can be used to produce this
desired latching behavior in a more straightforward way, as pointed out by David
Kieras. This operator takes three arguments. It examines the value of its first
argument, and chooses the value of its second or third argument as its value
depending on whether the value of the first argument is positive or not. Suppose
the cell BUTTON_BEEN_PRESSED contains the formula IF BUTTON STATE
THEN 1 ELSE BUTTON_BEEN_PRESSED. Whatever the initial value of this cell, it
will become 1 and stay 1 when the button is pressed. The apparent loop in this
formula is harmless because BUTTON_BEEN_PRESSED only propagates an update
notice to itself when its value actually changes, which happens only once when the
button is pressed. More elaborate formulae, involving more cells, can be used to
perform more complex operations like storing the value of the clock whenever an
event occurs.

These features of NoPumpG make it possible to handle events, without added
concepts in the language, but the treatment is unnatural and clumsy. A version of
Hookup's approach, in which specialized primitives are provided which respond to
event signals, might be preferable, despite some added conceptual overhead. For
example, a SNAPSHOT operator with two arguments could be devised whose value

19

would be the value of its first argument at the last time at which its second
argument changed from nonpositive to positive. The button latch would just be
SNAPSHOT 1 BUTTON_STATE, and a device to note the time at which an event
occurred would be SNAPSHOT CLOCK EVENT.

Connectable components. While the NoPumpG user can construct objects out of
cells, lines, and other primitives, and then interconnect these objects by placing
appropriate formulae in the cells, there is no graphical way to accomplish this
interconnection. The kind of dataflow diagram that one can construct in ThingLab
or Hookup can be built statically in NoPumpG but cannot be built or modified
dynamically without manually manipulating formulae.

A start could be made towards providing the desired functionality by supplying new
primitives called (say) 'connect-in' and 'connect-out'. A connect-out object would
behave just like an ordinary cell, internally, but would appear as a distinctive icon

on the screen. A connect-in object would have an associated cell to contain its value,
which would be the value of a connect-out object to which the connect-in object is
connected by a line segment on the screen. By moving line segments around

different connections of connect-in and connect-out objects could be made. The
treatment of connect-in objects that are not connected to any connect-out object
would have to be determined. One approach would be to give each connect-in object
a default value that it assumes whenever it is not connected.

While this facility would be a step forward, and would permit simple dataflow
diagrams to be built dynamically in NoPumpG, it is not adequate for all situations.
Some interconnections of objects require several cells to be linked between the same
two objects, which would require several connections to be placed manually in this
scheme. It appears that a more general solution would require the ability to
encapsulate and place under simple graphical control arbitrary actions, including
placing numbers of connections and entering new formulae. I consider this general
issue next.

More powerful abstraction. As mentioned above, NoPumpG's sole abstraction
mechanism permits the user to export objects and reimport copies of them. This
allows the internal structure of objects, like the thermometer in Fig 2, to be specified
once and used many times. However, it does not permit the work of interconnecting
objects to be specified once and used repeatedly, nor does it permit operations like
interconnection to be placed under the control of simple user actions.

One approach to this problem would be to incorporate a procedural language in
NoPumpG in which operations like formula entry could be specified. A device like
that used in Programming by Rehearsal might be used to shield the user from
detailed knowledge of this language.

Even with this shielding, such an approach would represent a major departure from
NoPumpG's philosophy of hewing as close as possible to the spreadsheet
computational model. While spreadsheets often provide a macro language which is

20

in this spirit, such a language does not use the basic spreadsheet execution model,
and involves the same difficult issues of control flow, use of variables, and the like,
as standard programming languages. For example, users of the macro facility in
Microsoft's EXCEL spreadsheet (Microsoft, 1985) may encounter these notions:
dereferencing, goto, input, and return (with and without a returned value).

Another direction to explore, which might require less of a departure from the
spreadsheet model, or at least less traffic with procedural language, would be the use
of analogy. It might be possible to permit the user to indicate two groups of objects
and ask the system to modify the second so that it resembled the first. If two objects
in the first group were connected in a particular way, as indicated by formulae in the
two objects referring to parts of the other, the system would place analogous
formulae in corresponding objects in the second group. This can be seen as an
extension of the idea of relative copying discussed above. How correspondences
between objects in the two groups should be established is not clear; one approach
would be to rely on relative position, as suggested for relative copying.

Even if this abstraction-by-analogy is workable there remains the problem of placing
such operations under the control of simple user actions, like clicking an icon with
the mouse. If objects were provided which could take as their value designated
groups of other objects, an operator could be devised which would take as arguments
two such groups and an object which would produce an event signal (a change of
value from nonpositive to positive, as suggested earlier). When the event signal was
received the operator would adjust the second group by analogy with the first.

It remains to be seen whether a design along these lines is possible. If it is, it would
then have to be determined whether the conceptual complexity thus introduced
would pay its way, or whether its inclusion would increase only what is in principle
possible in NoPumpG rather than what users actually do.

CONCLUSION.

NoPumpG builds on the basic concepts of the spreadsheet to provide flexible support
for interactive graphics and animation. The main added concept is that of a
bidirectional linkage between graphical objects and cells in the spreadsheet.
Additional features, the presence of a clock in a spreadsheet cell, cells whose values
control the visibility of graphical objects, an integral operator, and an operator which
permits a cell to reflect values from more than one source, increase the power of
NoPumpG without adding many new concepts. The resulting system is simpler

than, but also less powerful than, other systems with similar goals. Like the
spreadsheet itself, NoPumpG aims to provide broad, but not unlimited,

functionality, and natural interaction, on a very simple conceptual foundation.

This design goal is open to challenge. It may be that in the long run users will benefit
more from systems that are less minimal conceptually, and provide a good setting in
which to learn about procedural concepts like recursion, or about complex data

structures, or about message passing, or constraints. But two arguments can be made

21

against this. First, market success demonstrates unequivocally that people at large
“have embraced the spreadsheet despite its limited power and flexibility. In practice,
spreadsheets deliver more computing power than apparently more powerful
frameworks that are more difficult to understand and use. Second, our
understanding of computation generally is too immature to permit us to make
reliable judgements about how people "should" think about computation. Any of
today's programming paradigms may seem inappropriate in the future, as more and
more disposable computational power, possibly organized into massively parallel
systems, becomes commonplace.

22

REFERENCES.

Borning, A. (1981) The programming language aspects of ThingLab, a constraint
oriented simulation laboratory. ACM Transactions on Programming Languages and
Systems, 3, 353-387.

Borning, A. (1986) Defining constraints graphically. In Proc. CHI'86 Human Factors
in Computing Systems, New York: ACM, 137-143.

Budge, B. (1983) Pinball construction set (Computer program). San Mateo, CA:
Electronic Arts.

diSessa, A.A. (1985) A principled design for an integrated computational
environment. Human-Computer Interaction, 1, 1-47.

diSessa, A.A. and Abelson, H. (1986) Boxer: A reconstructible computational
medium. Communications of the ACM, 29, 859-868.

Draper, 5.W. (1986) Display managers as the basis for user-machine communication.
In D.A. Norman and S.W. Draper (Eds.) User Centered System Design: New
perspectives on human-computer interaction. Hillsdale, NJ: Erlbaum, 339-352.

Duisberg, R.A. (1986) Animated graphical interfaces. In Proc. CHI'86 Human Factors
in Computing Systems, New York: ACM, 131-136.

Finzer, W. and Gould, L. (1984) Programming by rehearsal. Byte, 9,187-210.

Horowitz, E. and Munson,].B. (1984) An expansive view of reusable software. IEEE
Transactions on Software Engineering, SE-10, 477-487.

Levitt, D. (1986) Hook Up: An iconic, real-time data-flow language for
entertainment. Unpublished technical note, MIT Media Lab.

Lewis, C.H. (1985) Extending the spreadsheet interface to handle approximate
quantities and relationships. In Proc. CHI'85 Human Factors in Computing Systems,
New York: ACM, 55-59.

Lewis, C.H. and Olson, G. (in press) Can psychology lower the barriers to
programming? To appear in Proceedings of the Second Workshop on Empirical
Studies of Programmers, Ablex.

Microsoft (1985) Microsoft EXCEL: Arrays, Functions, and Macros. Bellevue WA:
Microsoft.

Piersol, K.-W. (1986) Object oriented spreadsheets: The Analytic Spreadsheet Package.
OOPSLA 86 Proceedings, ACM, 385-390.

23

Sherwood, B.A. (1985) An integrated authoring environment. Proc. IBM Academic
Information Systems University AEP Conference.

Smith, R.B. (1986) The alternate reality kit. In Proceedings of 1986 IEEE Workshop on
Visual Languages, Washington, DC: IEEE, 99-106.

Smith, R.B. (1987) Experiences with the alternate reality kit: An example of the
tension between literalism and magic. In Proc. CHI'87 Human Factors in Computing
Systems, New York: ACM, 61-67.

van Emden, M.H., Ohki, M., and Takeuchi, A. (1986) Spreadsheets with incremental

queries as a user interface for logic programming. New Generation Computing, 4,
287-304.

A 1
USING THE NOPUMPG PROTOTYPE

Clayton Lewis

Department of Computer Science and
Institute of Cognitive Science
Campus Box 430

Boulder CO 80309 USA.

A technical report on NoPumpG, of which this is an Appendix, is available from the
author.

The NoPumpG project has been supported by the Air Force Human Resources
Laboratory.

Comments, suggestions, and reports of related work are eagerly solicited. Please pass
the software on to any interested people. Every conceivable disclaimer applies to the
software: it is a very rough draft!

1 Getting started. Double click the NoPumpG icon. An information screen will
appear. Press RETURN to begin work. Select Merge from the File menu to bring in a

demo from the disk. Most of the demos do something when you start the clock,
using the Clock menu.

2 Cells. To create a cell, select cell from the New menu. You will be prompted for a
name. Cells have three fields: name, formula, and value, displayed as a stack of
boxes. To move a cell drag in the name field. To edit a formula (or put one in where
there is none) click on the formula field. This will enable the Ops menu. Select an
operator (see below). If an argument is needed the cursor will change to a cross. Click
on the cell you want for an argument. If more arguments are needed the cursor will
stay as a cross until you click on enough other cells. Note that the prototype does not
support nesting of operators. To build up formulae with more operators you will
have to create additional cells. Also, constants cannot be entered as parts of

formulae. You must create a cell and put the desired number in it. To edit the value
of a cell click on the value field. You will be prompted for a new value. To hide a

cell click on its little go-away box in the name field. To bring a hidden cell back select
its name on the Show menu.

3 Operators. Most of the operators are straightforward. Here are descriptions of the
odd ones. The eq op just indicates that this cell's value will be the same as that of the
argument cell you click. The const operator locks in the current value of the cell. The
value cannot be changed, by editing or by moving an associated line, until the const
operator is removed. The null op puts in an empty formula. The [op approximates
the time integral of its argument cell; see discussion of clock below. The lc operator is
a feature which permits a cell to be updated in either of two ways. The name stands
for "last changed", meaning that the cell takes its value from whichever input

