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Abstract: Our goal is to build cooperative computer systems to augment human intelligence.
In these systems the communication between the user and the computer plays a crucial role.
Knowledge-based systems make special demands on human-computer communication, but
they also provide new unique opportunities to enhance this communication. To provide the
user with the appropriate level of control and a better understanding, we have to replace
human-computer communication with human problem-domain communication, which allows
users to concentrite on the problems of their domain and to ignore the fact that they are using
a computer tool.

Construction and design Kits are system components that represent steps towards human
problem-domain communication. A construction kit is a set of building blocks that models a
proeblem domain. The building biocks define a design space (the set of all possible designs that
can be created by combining these blocks). Design kits go beyond construction kits in that they
bring to bear general knowledge about design (e.g., which meaningful artifacts can be con-
structed, how and which blocks can be combined with each other) that is useful for the desig-
ner. Prototypical examples of these systems (especially in the area of user interface design)
are described in detail and the feasibility of this approach is evaluated.
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1. Introduction

In today’s world, the construction of complex systems is limited not only by what is technologically
feasible but also by what is desirable and manageable by humans. Theories and methodologies from
cognitive science are an important source of knowledge about and insight into the construction of
user-centered systems [Norman, Draper 86; Fischer, Kintsch 86]. Research in cognitive science should
help us both to understand our own human nature and to conduct our practical affairs. it should provide
the scientific basis for cognitive engineering, that is, for a cognitive approach to the design of human-
computer systems.

Many aspects of human-computer systems have not kept pace with the dramatic progress in hardware
technology. In particular, it is difficult for even the expert - let alone the novice and occasional user - to
take advantage of the available computational power to use the computer for a purpose chosen by
hirm/herself. Most computer users feel that computer systems are unfriendly, uncooperative and that it
takes too much time and effort to get something done. They feel dependent on specialists, and they
notice that “software is not soft”; that is, the behavior of a system cannot be changed without reprogram-
ming it substantially. Casual users find themselves in a situation similar to instrument flying: they need
releamning lessons after not using the system for a while. We claim that systems fail primarily because
their communication capabilities are insufficient.

In this paper we will first characterize research efforts in human-computer communication by articulating
some problems. We will describe different approaches and determine the specific challenges and unique
opportunities that knowledge-based systems create for human-computer communication. Human
problem-domain communication will be seen as a major step towards increasing the conviviality of com-
puter systems. To achieve conviviality [Fischer, Lemke 87], construction kits and design kits (seen as
instances of intelligent support systems) are needed. We will describe in detail some of the design kits
that we have constructed over the last few years. Finally, we will evaluate our experience and discuss
potential future work.



2. Human-Computer Communication

We believe that the term user interface should be replaced by human-computer communication because
communication between humans and computers requires more than tacking another layer of software
onto a computer system.

We are concerned with a new class of computer systems that support cooperative problem solving and
provide aavice, criticism, and explanation. In these systems the boundaries between the user interface
portion and the application system become much less clear than in traditional systems. Knowledge-
based systems are the most promising approach o improve human-computer communication because
successful communication is based on knowledge structures common to both human and computer
[Fischer 83a].

In the following sections we look at some of the general problems in human-computer communication and
at some approaches that have been used to solve them.

2.1 Problems of Human-Computer Communication
Designers of communication processes between humans and computers are challenged by a large num-
ber of requirements. They must:
e help break the complexity barrier (e.g., by supporting dynamic unfolding and user- and task-
specific fiiters);

s help break the utifity barrier, defined as the ratio of value to effort expended (either by in-
creasing the value of a system or by decreasing the effort needed to learn and use it);

e give control to users when they need or desire it; do things automatically when users do not
want o be bothered;

e promote human problem-domain communication; mirror the abstractions of the application
domain, thereby reducing the transformation distance between task descriptions by the
domain expert and their representations as computer programs; mental models must be
developed in the context of human problem-domain communication.

o take advantage of modern hardware and basic software capabilities; for example, use
screens as a two-dimensional world that can be edited (direct manipulation);

e support active exploration (e.g., undo and redo operations).

Knowledge-based systems pose special problems and at the same time offer great possibilities for
human-computer communication. The more intelligent and autonomous a system is, the harder it is to
understand and the more important become issues of reliability, comprehensibility, and trust in the
system’s performance [Chambers, Nagel 85].

Many knowledge-based systems are built under the assumption that the user has a well defined problem
that the system is supposed to scive. This assumption has led to strongly system-controlled advisory
dialogues (e.g. in the MYCIN system [Buchanan, Shortliffe 84]) that provide little help in problem definition.
Frequently, however, users want to understand the nature of their problems incrementally and solve them
in cooperation with a system [Woods 86]. This requires better communication capabilities than most
systems traditionally have offered.

Empirical evidence (failed attempts to build fully automatic systems, e.g. in machine translation; see
[Winograd, Flores 86]) has shown that for many domains, a symbiotic, cooperative system architecture is
more adequate and promises greater success than an autonomous one. For symbiotic, cooperative



systems, a human-computer interaction subsystem is an absolute necessity. It is our belief that in many
ways partially autonomous systems pose greater design challenges than fully autonomous systems. The
two agents have to keep each other informed about their decisions and actions, and one of the central
questions is: who is in control when there is a conflict of opinion? Knowledge-based systems develop
their “own will,” which may be viewed as an encapsulation of their designers’ will and understanding of
the situation.

These observations provide the rationale for one of the major research topics for the future: how to bring
knowledge-based systems and human-computer communication together to construct systems that are
useful and usable. Knowledge-based systems have considerable amounts of domain knowledge, most of
which is represented explicitly; they therefore meet the important requirement for intelligent human-
computer interaction that not all information has to be communicated explicitly [Fischer 83b]. This advan-
tage over systems that are not knowledge-based must be exploited.

To overcome some of these problems, we have developed qualitative design criteria for human-computer
systems (for a more complete list see [Fischer 84]):

1. The limiting resource in human processing of information is human attention and com-
prehension, not the quantity of information available. Modern information and communica-
tion technologies have dramatically increased the amount of information available to in-
dividuals. This can be illustrated with an example from modern aircraft design [Chambers,
Nagel 85]: there are 455 separate warnings on a Boeing 747. We need instruments that
not only display but also prioritize information before presenting it to the crew to avoid an
information overload.

2. The limitations and structure of human memory must be taken into account in designing
human-computer communication. Pcople have limited short-term memories. The way
people recognize information is different from the way they recall memory structures. This
distinction is relevant, for example, to judging the advantages and limitations of different
interaction models, such as comparing a command-based interface to a menu-based inter-
face. Our intelligence has become partially externalized, contained in artifacts as much as
in our head: the computer is in one sense an artificial extension of our intellect, invented by
humans to extend human thought processes and memory.

3. The efficiency of human visual processing capabilities must be utilized fully. Traditional
interfaces have been one-dimensional, with a singie frame on the screen usually filled with
lines of text. New technologies allow us to take advantage of human visual perception
through the use of multiwindow displays, color, graphics, and icons. To exploit these pos-
sibilities, we have constructed a user interface construction kit (see section 4.2 and Figure
4-2) and components of a “software oscilloscope’ [Boecker, Fischer, Nieper 86].

These qualitative design criteria can be used to provide some global guidance for the construction of
better human-computer communication possibilities and have played a crucial role in the development of
the systems described in this paper. A drawback of them is that they are not prescriptive enough to
indicate how we can and should proceed within the context of a specific system design.

2.2 Approaches to Human-Computer Communication

User Interface Management Systems (UIMS). UIMS [Olsen et al. 84] provide graphic primitives and
tools for specifying dialogue structures (ATNSs, context free languages). They are reasonable approaches
to problems in which there is only a limited information exchange and a strong separation between user
interface and application system. The kinds of problems we try to solve (e.g., building intelligent support



systems like help, documentation and explanation systems) have convinced us that a strong separation
between interface and application is a limiting factor. A user interface should have extensive access to
the state and actions of the application system, and the user should be able to influence the behavior of
the application.

Natural Language Interfaces. Because of the asymmetry between human and computer, the design of
the interface is a problem not only of simulating human-to-human communication but of engineering
alternatives in the domain of interaction-related properties [Bolt 84]. We do not have to use natural
language for every application; some researchers claim that in many cases it is not the preferred mode of
communication [Bates, Bobrow 84; Robertson, McCracken, Newell 81]. In natural language interfaces,
the computer is the listener and the human the speaker. The listener's role is always more difficult
because the problem must be understood from the speaker’s description. Our work has been primarily
guided by the belief that the user is more intelligent and can be directed into a particular context. This
implies that the essence of user-interface design is to provide users with appropriate cues. Windows,
menus, suggestions lists, forms, and so on (see Figure 4-2) provide a context that makes the machine the
speaker and the human the listener, thereby allowing the user’s intelligence to keep choosing the next
step.

Currently there exists a front-end fallacy in human-computer communication. An appropriate interactive
behavior is assumed to have been accomplished when some off-the-shelf natural language front end is
tacked onto an existing system. Many human-computer systems, however, have to perform more sophis-
ticated functions than answering requests for factual information; for example, they must help users for-
mulate their problems and assist in cooperative problem solving. These tasks require more elaborated
data models and knowledge representations [Williams et al. 82] and additional types of reasoning.

Rather than building systems that can analyze ever more complex sentences involving increasingly dif-
ficult semantic concepts, a main objective of natural language interface research should be to understand
the processes of intention communication and recognition well enough to enable a system to participate
in a natural dialogue with its user [Winograd, Flores 86]. Assuming we had a natural language interface
to UNIX [Wilensky et al. 84], we probably would be unpleasantly surprised if our question “How can [ get
more disc space?” were answered by “Type rm *”, which deletes all files in a directory, even though this
command would solve the problem as stated. The problem in human-computer interaction is not simply
that communicative troubles arise that do not occur in human communication, but that when they do
arise, there are not the same resources available for their detection and repair.

Direct Manipulation Interfaces. Natural language interfaces are based on a conversation metaphor,
whereas direct manipulation interfaces are based on a world metaphor [Hutchins, Hollan, Norman 886]. In
a conversation metaphor the user must translate intentions into expressions that the interface inter-
mediary can understand. In a world metaphor the user can be directly engaged with the objects of the
world (see Section 4.1). A real world metaphor can be exploited to make systems easier to learn and
understand. However, problems occur in direct manipulation when recurring operations and processes
need to be described.

Human Problem-Domain Communication. Most computer users are not interested in computers per
se, but they want to use the computer to solve problems and to accomplish their tasks. To shape the
computer into a truly usable and useful medium, we have to make it invisible and let users work directly



on their problems and their tasks.



3. Human Problem-Domain Communication

Human problem-domain communication provides a new level of quality in human-computer communica-
tion because it permits us to build the important abstract operations and objects of a given application
area directly into the environment. This implies that the user can operate with personaily meaningful
abstractions. In most cases we do not want to eliminate the semantics of a problem domain by reducing
the information to formulas in first-order logic or to general graphs. Whenever the user of a system can
directly manipulate the concepts of an application, programs become more understandable, and the dis-
tinction between programmers and non-programmers vanishes.

3.1 Modeling Problem Domains

Many large software systems are built as monolithic systems, completely implemented in a general pur-
pose programming language. Human problem-domain communication requires to build one (or more)
levels of intermediate layers of more problem-oriented building blocks (Figure 3-1). An architecture of this
kind provides good support for programming methodologies based on redesign (modifying the original
design) and reuse (recombining the intermediate abstractions to form a different system; for details about
reuse and redesign see [Fischer, Lemke, Rathke 87]).

programming
language component system
level level level

a) monolithic
design:
new systems
are based on general-purpose programming language

b) censtruction =
Kits: > b~
creating S_/,.»/'
intermediate o
abstractions s

c) redesign: : %
an existing system o
Is modified by b l
replacing -

components =
o]

d) reuse: . é
existing components sre
reused to form new, E] %
independent systems

Figure 3-1: Modeling problem domains with application-oriented abstractions

Human problem-domain communication requires environments which support design methodologies
whose main activity is not the generation of new, independent programs, but the integration, modification,



and explanation of existing ones [Winograd 79]. Just as one relies on already established theorems in a
new mathematical proof, new systems should be built as much as possible using existing parts. In order
to do so, the designer must understand the functioning of these parts. An important question concerns
the level of understanding necessary for successful redesign: exactly how much does the user have to
understand? Our methodologies (differential programming and programming by specialization based on
our object-oriented language ObjTalk [Rathke 86]) and support tools are steps in the direction of making it
easier to modify an existing system than to create a new one. Inheritance is important for redesign
because it enables objects that are almost like other objects to be created easily with a few incremental
changes. Inheritance reduces the need to specify redundant information and simplifies updating and
modification by allowing information to be entered and changed in one place.

Our experience developing a construction kit for user interface design (see section 4.2) indicates that the
development of the right kind of abstractions (and their embedding into inheritance hierarchies) is a
difficult process which takes time and which has to proceed in an evolutionary fashion driven by the
development of application systems based on these abstractions.

3.2 Intelligent Support Systems
Systems, which make an attempt to model many different problem domains will be large and complex in
order to provide all the necessary abstractions (examples are the LISP machines and our WLISP program-
ming environment; for a quantitative assessment see [Fischer, Lemke 87]). The abstractions,
represented in the case of WUSP by more than 200 ObjTalk classes, comprise stable intermediate parts
for development of user interfaces. The large number of classes in WLISP is, however, a mixed blessing.
The advantage is that in all likelihood a building block or set of building blocks that either fits our needs or
comes close to doing so already exists and has already been used and tested. The disadvantage is that
they are useless unless the designer knows that they are available. Informal experiments [Fischer
87] indicate that the following problems prevent designers from successfully exploiting the potential of
high functionality systems:

« designers do not know about the existence of needed objects (either building blocks or

tools);

» designers do not know how to access objects;

* designers do not know when to use these objects;

« designers do not understand the results objects produce for them;

e designers cannot combine, adapt and modify an object for their specific needs.

Unless we are able to solve these problems, designers will constantly reinvent the wheel instead of taking
advantage of already existing tools.

in highly complex systems, communication between humans and computers cannot be restricted to the
construction of nice pictures on the screen, and the beauty of the interfaces must not overshadow the
limited functionality and extensibility of some systems. The “intelligence” of a complex computer system
must contribute to its ease of use. Truly intelligent and knowiedgeable human communicators, such as
good teachers, use a substantial part of their knowiedge to explain their expertise to others. In the same
way, the “intelligence” of a computer should be applied to providing effective communication. Equipping
modern computer systems with more and more computational power and functionality will be of little use
unless we are able to assist the user in taking advantage of them. Empirical investigations [Fischer,
Lemke, Schwab 85] have shown that on the average only a small fraction of the functionality of complex



systems such as UNIX, EMACS or LISP is used.

In Figure 3-2 we illustrate a system architecture that we have developed in response to our design
criteria. We have constructed a number of prototypical systems of the outer ring including a documen-
tation system [Fischer, Schneider 84], help systems [Fischer, Lemke, Schwab 85], critics [Fischer 87] and

design kits.

Yisualization
Components

Documentatio

Explanation
Components

Analysis
System

Figure 3-2: From interactive to intelligent systems



4, Construction Kits

A construction Kit is a set of building blocks that models a problem domain. The building blocks define a
design space, i.e., the set of all possible designs that can be created by combining these blocks. The
building blocks in our systems are organized as inheritance networks in an object-oriented architecture,
which provides for components on multiple levels and facilitates the extension of the set of available
blocks. Simon [Simon 81] demonstrates that the evolution of a complex system proceeds much faster if
stable intermediate parts exist.

We have studied and built construction kits in many domains [Fischer, Boecker 83; Fischer, Lemke,
Rathke 87] to gain a deeper understanding of design processes and to increase the conviviality of com-
puter systems through human problem-domain communication. In the following sections, we will briefly
describe some examples and we will indicate how the problem of adding new elements to a construction
kit can be addressed.

4.1 The PinBall and Music Construction Kits

The PinBall and Music Construction Kits (two interesting programs for the Maclntosh from Electronic Arts;
see Figure 4-1) provide domain-level building blocks (bumpers, flippers; staves, piano keyboard, notes,
sharps, etc.) to build artifacts in the two domains of pinball machines and musical composition. Both
kinds of systems reduce learning processes by exploiting the user’'s knowledge c¢f the problem domain.
Users can interact with the system in terms with which they are already familiar; they need not learn
abstractions peculiar to a computer system.

Our empirical investigations have shown that these systems come close (within their scope) to our notion
of human problem-domain communication. Users familiar with the problem domains but inexperienced
with computers had few problems using these systems, whereas computer experts unfamiliar with the
problem domains were unable to exploit the power of these systems. Most people considered it a very
difficult (if not impossible) task to achieve the same results using only the basic Macintosh system without
the construction kits.

Persons using the systems do programming, but the programming consists of constructing artifacts in the
domain and not of writing statements of a programming language. Our subjects had a sense of ac-
complishment in using the construction kits, because they were creating their own impressive version of
something that works, yet is not difficuit to make.

Evaluating the Pinball and Music Construction kits as prototypical examples against our objective to
enhance human problem-domain communication, we have identified the following shortcomings:

1. The two systems eliminate programming errors below the domain level, but they do not
assist the user in constructing interesting and useful artifacts in the application domains.
The pinball construction kit allows users to build sets in which balls get stuck in certain
corners and certain devices can never be reached [Hutchins, Hollan, Norman 86]. To assist
users in constructing truly interesting objects, design kits are needed;

2. The space of modeled abstractions is not extensible by the user;

3. It is unclear how generalizable the framework (consisting of spatial organization and com-
bining functionality in simple ways between the parts, e.g., associating sound with a
bumper) is to other problem domains.
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Figure 4-1: Screen images from the Pinball and Music Construction Kits
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4.2 WLISP: A Construction Kit for User Interfaces

Over the last several years, we have developed wLisp [Fabian 86; Boecker, Fabian, Lemke 85], an
object-oriented, knowledge-based construction kit for human-computer communication, and a large num-
ber of associated tools and intelligent support systems for exploiting this kit effectively (Figure 4-2). In
contrast to pinball machine design, it was (and still is to some extent) unclear what the right abstractions
in user interface design are. The WLISP system currently consists of over 200 classes representing
abstractions about different kinds of windows such as super-windows, paned windows, menus, icons,
gauges, etc.. The inheritance network is still changing and indicates our growing understanding about the
domain of two-dimensional interfaces.

connect to object {(evaluated): toplevel
slot (not evaluated): border-size

(ask me cluster move:)

(689 368>

: Cask me cluster mova:)

(631 848)
3: (ask me cluster move:)
(693 829>
4

IDENTIFIER: ME = <S l
. HOQXZDNI'RLSC&LE)OHE.

| 2O [1€
VVYYY
’

additions. mss
deskits.mssz
draft. mss

end fas. aux

end fas.err

end fas. inp
endtas. log
endfas.nss
endfas . nss. BAK
endfas.otl
ftinal.mss
inherit.bin
out line.mss
Principles. nss gt —
rules.bin —N

suiss.nss /USERS/CS/ANDREAS
wlisp.bin
ulisprc,bin
wlisprcsheet-1.bi

/| process-uindous: fent: mini

| /1/T"Hor izontal-Scale™]

: { ]; [/]"Hor TzontalScale"]

"] THE-SCREEN: background: patterns/thin object piridd
| automatic break-uindou? No

toplevel: font: mini

1 emacs-uindou: font: mini

Type of directory editor: cd-dired-uwindouw

| pE

4 0o 1t and save confiaquration in -/ wlispreci}

Figure 4-2: The WLISP programming environment

Using wiisp, the “human-computer communication design question” is answered by providing ap-
propriate building blocks that suggest good designs. The object-oriented system architecture is highly
flexible and enhances the reusability of many building biocks. In creating new human-computer com-
munication capabilities the designer may use existing objects either directly or with minor modifications
and can thereby rely on standard and well-tested components.

4.3 FINANZ: A Financial Planning Kit

FINANZ [Rathke 86] is an advanced financial planning system extending the spread sheet paradigm (see
Figure 4-3). It differs from ordinary spread sheet programs in that the relationships among the form fields
are represented by internal knowledge structure that bear knowledge about the application domain.
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Figure 4-3: The financial planning system FINANZ

The main characteristics of FINANZ are (for details see [Rathke 86)):

» In its basic configuration it can be used as a regular spread sheet system. From there it can
be gradually augmented 1o a knowledge-based system without loosing its basic supportive
way of interaction.

¢ It is embedded in a window based direct manipulation environment that makes it easy to
specify operations among the form fields. Multiple forms can be displayed and operated on
at the same time. Operations between form fields are selected from a menu.

e The system can be augmented to incorporate knowledge about the domain to which it is
applied. Relationships among the form fields are expressed by internal knowledge struc-
tures, which can be modified to serve the needs of the application.

¢ Internal knowledge structures are used to generate context dependent explanations on the
fly. These explanations reflect the domain specific knowledge as well as the current state of
the dialogue.

The capabilities of the systems are based on ObjTalk [Rathke 86]. Concepts about the application
domain, the user and the dialogue are represented as active objects that communicate by message
passing. Their behavior is described in classes, that form a hierarchy among which knowledge is in-
herited. By specifying dependencies among the form fields the user generates internal knowledge struc-
tures that not only maintain the consistency but are also used to provide context dependent help. The
specification of the dependency structures requires little programming knowledge because it is done
using direct manipulation techniques. Fields that take part in a new relationship are pointed at with the

mouse.
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4.4 WFORMS: An Electronic Forms Kit

Forms are a generally useful user interface tool. The WFORMS kit, a facility of wLisP, provides specialized
abstractions for designing electronic forms (Figure 4-4). The general organizational model is a hierarchy
of alternating vertical and horizontal structuring elements called blocks and lines. The primitive elements

are different types of fields that support the display of text and the input of values by selecting alternatives
with the mouse, pop-up-menu selection, or typing.
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Figure 4-4: The WFORMS electronic forms kit

4.5 ZOO: Graphical Support to Construct New Elements for a Construction Kit

200 [Riekert 86], implemented in WLISP and ObjTalk, provides graphical support (Figure 4-5) for construct-
ing new domain-dependent abstractions without being forced to go down to the ObjTalk or even the LisP
level (a possibility which we indicated was missing from the Pinball and Music construction Kits). 1t is a
menu-driven system in which design support is given through the organization of menus similar to the
suggestion list in WIDES (see Section 5.1).
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5. Design Kits

Powerful construction kits are complex systems containing many different components that can be com-
bined in many ways. In the domain of user interface design, WLISP provides a large number of abstrac-
tions. They are a prerequisite, but good user interface components do not guarantee by themselves that
they are used at the right place and in the right way. Tools are needed to aid in making design decisions,
carry out low-level details, analyze or criticize intermediate versions, and visualize their structure. These
tools incorporate knowledge which goes beyond what went into the design of individual components.
Specifically, they have additional domain knowledge to aid in the design of reasonable artifacts. Design
kits are steps in this direction.

Currently, the use of wLispP (Section 4.2) requires considerable expertise on the implementation level (i.e.,
how do | achieve a desired system behavior?) as well as on the domain level (i.e., which user interface
technique should be used?). This expertise has to be acquired through an extended learning and ex-
perimentation period. To reduce this delay, we have constructed a number of design kits to support the
modification and construction of new systems from sets of predefined components. In contrast to simple
software construction kits (e.g., the Pinball and Music Construction Kits described previously), which
present the designer with the available parts and operations for putting them together and which allow to
run the resulting system, design kits give additional support. They incorporate knowledge about which
components fit together and how they do so, and they may serve as a critic that recognizes errors or
inefficient or useless structures. They are able to deal with multiple representations of the design includ-
ing drafts, program code, and graphical representations. Design kits constrain the problem space, leav-
ing beginners with fewer choices by providing defaults and grouping the available functions.

Design kits considerably reduce the amount of knowledge a designer has to acquire before useful work
can be done. This is especially important if the design environment contains many special purpose
components and if each of them is used rarely, even by a full-time designer.

The following two sections describe two design kits for specific areas of the WLISP construction kit. WIDES
is a design kit for basic characteristics of window types, and TRIKIT is a design kit for graph display and
edit tools.

5.1 WIDES: A Window Design Kit

Because almost all modern user interfaces are window-based, one of the major tasks of user interface
design is the definition of a suitable combination of window types. Many current window systems and
user interface tool kits offer a wide variety of components such as text, graphic, and network windows and
editors, and controls like menus and push buttons. The goals of WIDES are:

1. to provide a level of abstraction above the object-oriented implementation of these com-
ponents,

2. to reduce the knowledge required to use the components,

3. to make their use more effective by preventing errors and suggesting the ‘“right” com-
ponents to use,

4. to support the acquisition of expertise in using these tools.

WIDES provides a safe learning environment in which no fatal errors are possible and in which enough
information is provided in each situation to ensure that there is always a way to proceed. The design kit
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allows its users to create specific window types for their applications.

In the following we will give an example of the use of WIDES and discuss its merits and shortcomings.

Description of wiDES. The initial state of the system is shown in Figure 5-1. It is a window with four
panes:

® a code pane that displays the current definition of the window type,

¢ a menu of suggestions for enhancements of the window type,

e a history list, and

= a menu of general operations.

window-class renew: ,',{some_window~-class
(superc ,basic-window))

suesw

simplity: makKe=-an~instance:
name-it: undo:
add~-buttons: save-on~-file:
add-title: st :
add~border:
associate-icon:

Figure 5-1: Initial state of WIDES

Winuow=-ciass renew: test-windo
(superc ,basic-window))

simplify: Bake-an-instance:
add-buttons: undo:
add-title: save-on-file:
add-border: e i
associate-icon:

. named: test-uindou

Figure 5-2: An instance of the current window definition
has been created

Selection of the name-it: entry of the suggestions menu makes the system ask for a name for the
window type to be built. Selection of the make-an-instance: item of the operations menu creates a
window that is an instance of the type and that corresponds to the current definition in the code pane.
This definition describes a very basic type of window (the white rectangle in Figure 5-2); there is no
border, no title bar yet; just a rectangular white area. Nevertheless, this window has a set of properties
that are inherited from its superclass basic-window. It reacts on mouse clicks by showing the
window-menu, a menu with operations like move and reshape.

Selection of add-title: and add-border: produces the state of Figure 5-3. Two superclasses,
border-mixin and title-mixin, have been added to the definition; and a new instance shows a
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border-size: T make-an-instance:

Y
specify-title: undo:
simplify: save-on-file:
add-buttons: A ey
associate-icon: - 1. named: test-uindou

2. title added
3. border addad

Figure 5-3: Title and border have been added to the window type

default title, some_test-window, and a default border size of two pixels.

The suggestions menu changes its contents. [f, for instance, add-title: has been executed, it is
replaced by specify-title, which would not have been meaningful before having a title. The system,
in giving its suggestions, adheres basically to a tree-like regime. Once a key decision like having a title
has been made, its menu item is replaced by suggestions for more detailed descriptions. This feature
provides the user with some guidance about reasonable next steps, eliminates illegal operations, and
reduces the information overload of too many options.

§S renew: test-window
border-mixin ,title~mixin ,basic-window)

operations.

y-hborder-size:
specify-title: undo:
simplify: save-on-file
add~buttons: .
associate-icon:

Figure 5-4: Specification of the title

The next figure (Figure 5-4) shows a modification that requires user input.  Selection of
specify-title: causes a dialogue window to pop up, which prompts the user for an expression to be
used as the title of the window. Figure 5-5 shows that the input has been added as a default for the title
slot.

If specific inputs are required, we cannot expect the user to know what the legal inputs are. Therefore, as
in Figure 5-5 in which the user associates the window with an icon, a menu of alternatives is displayed
(see the pop-up menu at the bottom). Figure 5-6 shows a window and an icon of the selected type
(document-icon).
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WINGOW-C1ass renews 1est-w1nqow
(descr (title (default “Messages"}))

associate-other-icon: BaKe~an-instance:

specify-horder-size: undo:

simplify: save-on-file:
add-buttons: e

2 . : Test~ul
2. title added

3. border added

wWwindow-tound=icon
tm-window-hound-icon 4.5defauh value of title specified

. default icon type associated

V- program-icon
form~-icon
document-icon

Figure 5-5: Association of a different icon to the window

(askK window-class renew: test-window
(descr (partner-icon

(default (ask document-icon instantiate: (view-of = ,seif)))

(title (default "Messages')))

suggestions - : s
assoclate-other~icon: maKe-an-instanc
specify-border-size: undo:
simplify: save-on-file:
add-buttons: i

. : st-uindou
2. title added

3. border acded
4. default value of tirle specified
5. default icon type associated
6. icon type changed to: document-icon

Figure 5-6: The window and its associated icon

An even more complex modification is demonstrated in Figure 5-7. Windows can be associated with
buttons such as those in the upper right corner of the WIDES window. Clicking a button with the mouse
causes a message to be sent to the window. Selecting add-buttons: adds the default set of the two
right-most buttons (for ki1l and refresh) in the title bar of the messages window. Additional buttons
can be defined by selecting add-more-buttons-to-title-bar:. This command causes two menus
to pop up for selecting a button icon and an associated message. The selection of the message is shown
in the figure. The new buiton in the messages window depicts a coffin for the function of burying or hiding
the window. Both menus have, in addition to selecting one of the listed choices, the option of choosing
an item not listed in the menu by name.

The save-on-file: operation may be used to save the final definition for later use.

Discussion. Although not much code is being generated by the system because it can use many high-
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(methods
(default-title-buttons: =)>=)
(cons ‘'(buttons/bury bury:)
,'(default-title-buttons:))))

class renew: test-window

(descr (partner-icon
(defauit (ask document-icon instantiate: (view-of = ,self)))
(title (default "Messages")))

ixin ,window-icon-mixin

suggestions oo e s e
add-sore-buttons-to-titie-bar: saKe-an~instance:
add-buttons-to-right-margin: undo:
associate-other-icon: -on-file:
specify~-border-size: e G
simplify:

sav

named: YTest-uindow

2. title added

4. detaul 3. t;ordtr; adde}d fied

. detault value of title specifie

message = 5. defaulr icon type associated

6. icon type changed to: document-icon
7. buttons added to title bar

bgupload:
bury:
==icopy&move:
Kill:
move-out:

move:

newshape:
PSAAAA

Figure 5-7: Adding a button to the title bar

level building blocks (see the code panes in the various stages of the design process), WIDES represents
a significant advantage for the user. In order to construct a new window type, it is no longer necessary to
know what building biocks (superclasses: e.g., titleimixin) exist, what their names are, and how they
are applied. It is no longer necessary to know that new superclasses have to be added to the superc
description of a class. Also, WiDES has knowledge about the correct order of the superclasses, what
types of icons are available, and the way an icon is associated with a window.

WIDES does not support direct editing of the generated code in the code pane. Analyzing arbitrary
program code is generally hard because the code level is more powerful than WIDES. WIDES may not be
able to recognize features of the code and accordingly adapt its behavior.

User interface techniques like prompting and menus make it easy to experiment with window construc-
tion. The system makes sure that errors are impossible. Although these techniques do not guarantee
that users always understand what they are doing. In the present system, a test subject could not tell the
difference between the add-title: and specify-title: suggestions before actually trying them.
The name add-title-bar: probably would have been more appropriate than add-title:. Similarly,
the pop-up menu of available icon types does not show what the icons look like and it should be replaced
by a pictorial menu.

On the other hand, we claim that it is not appropriate to invest too much in making sure that the desired
result is achieved with the first try. The system is intended to support an experimental style, and the
undo : operation should make it easy to step back and retract a decision in order to proceed differently.
So far, the UNDO feature has not been implemented, and the question is whether a simple stack-oriented
scheme or a selective UNDO of operations further back in the history can be implemented. To support the
full use of an UNDO, the system needs a network to take care of dependencies; for example, removing the
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title bars of a window implies that the buttons have to be removed, too.

The current implementation makes it difficult for a novice to see which modifications of the definition were
caused by an action. Highlighting the modifications caused by the last action is a possibility. It should
also be possible to point at a piece of the code and obtain an explanation of its function as well as the
user action that created it. How can these selections be done? What if the user selects a piece of code
that does not correspond clearly to one feature?

Informal experiments with novices have shown that the class - instance abstraction gap is a problem.
The code window shows the window class, whereas the windows created by make-an-instance: are
its instances. A modification of the class (e.g., @ modification of a default) does not automatically affect its
instances. Properties cannot be specified as immediate values but must be specified as defaults or
methods inherited by instances. If the user, experimenting with an instance of the window type, changes
the local value of a parameter (e.g., the title) so that it no longer corresponds to the default, then a
change of the default in the class has no consequences for existing instances.

The system in its current form is almost too small to be practical. The created window types do not have
much functionality and represent only a framework which has to be augmented by more ObjTalk code.
Still, users found it exciting that, with some menu selections, real code could be produced. The system
also achieves the goal of being a learning tool. It provides a good first impression of the concepts and
structure of the domain of constructing window types.

5.2 TRIKIT

A very common user interface problem is the display and modification of hierarchical and network struc-
tures. Application systems that deal with rule dependency graphs (Figure 5-18), concepts of a domain of
expertise (for explanation purposes), goal trees, or inheritance hierarchies in object-oriented languages
are examples in which this problem occurs.

Our response to this problem was to build a design kit for graph display and edit tools. Figure 5-8
illustrates its usage. The application programmer, who is an expert for the application system but not for
building user interfaces, sets and adjusts parameters of a generic tool, TRISTAN, and specifies the links
between it and the application. The result of the design process is a new, application-specific tool for
displaying and editing a network data structure.

The system has been used to build the following applications:

¢ ObjTalk inheritance hierarchy editor,

¢ UNIX directory editor (see Figure 5-9),

¢ Subwindow hierarchy display,

» A project team hierarchy,

¢ EMYCIN rule dependency display (see Figure 5-19).

Application Domain of TriKit. Many computer programs use data structures that can be viewed as
graphs. The nodes are data items that are interconnected by lines representing a semantic relationship
between them. In this section we will use the example of a hierarchical file system, which may be
displayed as in Figure 5-9. Here the nodes are directories and files which are the leaf nodes. The lines
represent the membership relation between files and directories, which can themselves be members of
other directories. Each of the nodes is a data structure with properties like name, creation time, owner,
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uses application-specific
graph editor

Tristan
Design Kit

application uses
programmer

knows

{ application | [ Tristan |

Figure 5-8: Usage of TRIKIT

protection, and size. There are operations to retrieve pieces of the graph (e.g., list~directory) and
to create and delete nodes and lines.

<some directory=hierarchy-window) = . =

A
A
Er——— e stk

tools. 1

Figure 5-9: A hierarchical file system display

Also, the user must be able to refer {o particular nodes of the structure, either by a name relative to some
“current node,” by an absolute path name specifying the way from a root of the hierarchy, or by some
other description. Conversely, a screen representation must be defined for the nodes. This represen-
tation might be just the name of the node or the name plus some of the properties, such as owner or size.
If there are multiple types of nodes, different representations may be desired (e.g., directories and files in
Figure 5-9).

The Generic Graph Display/Editor. TRIKIT is based on TRISTAN [Nieper 85], a facility of wLisp for build-
ing direct manipulation display and editing systems for graph structures. TRISTAN supports the following
operations:

¢ selective display of parts of the graph including a node specified by name, immediate

children or parents of a node, and a whole subhierarchy of a node (possibly to a certain
depth),

» gutomatic layout planning,

e manual layout modification by constrained moving of nodes,

¢ highlighting of nodes, and

e editing the graph structure by creating and removing links and nodes.
TRISTAN is independent of the particular node representation. It assumes only that the representation is a
subclass of a certain general wLISP window class.
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Description of TriKit. TRIKIT presents itself to the user as an interaction sheet as shown in Figure 5-10
(top window). In this window, the user specifies the interface to the application, chooses a graphical
representation for the nodes, and controls the creation of the user interface.

tristan-design-kKit-2 . - .

Name of relation: inheritance-hierarchy::
An item is called a: class:i :
Name of child relation: subclass:
Name of parent relation:  superclass:
Default fayout direction: horizontal
Evaluate item name? Yes
Compare items by:
Pname selector for items: general-get-pname::
Create an unlinked item with name *name™

<<

The window has a default size? No
Width: 5000  Height: 400 [Eeecity size uith rubber Box1]
Types of items: e
|
ITER
N
tristan-system,l-l-l-l
{Create Sustem and Instantiateil [Create Sustem!]
> > < <L

<some_inheritance-hierarchy-window>

ld ialog-u 10603
ry-windoui
@MAC S 1N3OL
forocess—u indou}< she li-uindou

Foaue-windol

Figure 5-10: Initial state of the main form and an
inheritance hierarchy window generated from it

The following types of fields may be found in the interaction sheet:

edit fields indicated by their dotted background; for entry and modification of names,
numbers, program code, etc.; a mouse click on the field moves the cursor into
it and allows editing of its contents.

choice fields if the number of possible values of a field is very small, this type of field is
being used; mouse clicks circle through the set of values.

menu fields for a larger number of choices; a mouse click produces a pop up menu.

push buttons low and long rectangles with a black frame; a mouse click activates their as-

sociated action.
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subform icons large squares; a mouse click produces a subform.

The initial form is filled in with an example application of an ObjTalk inheritance hierarchy display system
(Figure 5-10, bottom window). This allows users to familiarize themselves with TRIKIT, to modify
parameters, and to learn their significance.

Name of item type: example item
Expression to check whether *item" is of this type:
Can the parents for a given item be computed?
Compute the list of parents for “item"

(ask tem SUperc) -l -l il Ll D L L L L
Is the order of the parents significant? No
Can the children for a given item be computed? Yes
Compute the list of children for *item™
(ASK LIEEM SUBCIASSE ) -1+ 1wl Tl T T T T T T

Is the order of the children significant? No
ltem representation: string-region
Label =

(ask ,item prame) -l n L L L L L L L
ltems =

(list (ask Jitem prame)) -l il L L e e
Its font: mini

Its left button down action:

Figure 5-11: Initial state of the node form

Clicking the square representing the example item subform produces the form of Figure 5-11. While
the main form is associated with the graph in general, the subforms describe the properties of its nodes.

Let us examine the use of the system through the example of building a directory editor like the one
shown in Figure 5-8. A directory editor is a tool for viewing a hierarchical file system and for doing
operations on it such as creating or removing a directory, moving a file into another directory, and renam-
ing files.

In Figure 5-12 the first four fields have been filled in to reflect the terms of the file system domain. They
establish a common vocabulary for the user and the system. They describe the names of the relation to
be displayed, the names of the items that are elements of the relation, and those of the links to super-
ordinate and subordinate nodes in the relation. The next field, Evaluate item name?, says that a
user-entered name of a file or directory represents itself as opposed to being the name of a variable
holding the actual item. Equal is used as a comparison function for directory names. No other changes
have been made to this form.

The example item form has been renamed (Figure 5-13), and the two most important fields have been
adapted to the new application: The de:parents function computes the list of superdirectories and the
de:children function computes the subdirectories, that is, the contents of the directory. The
de :pname function in the label field computes a “print name”, or a label, for the items; that is, it strips off
the leading pathname component and leaves the file name, which is unique only locally within its direc-

tory.
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Name of relation: directory~hierarchy:
An item is called a: directory: i
Name of child relation: subdirectory
Name of parent relation:  parent-directory.
Default layout direction:  horizontal
Evaluate item name?
Compare items by:
Pname selector for items:

L4t

The window has a default size? No
Width: 500 Height: 400:--- [Erecivy size with rubber box!]
Types of items:
LN DIRECTORY
&
tristan-system.-
fCreate 5ystem and Instantiate!l [Create Sustami]
T 53 3 3 <4

Figure 5-12: Main form, modified to describe a directory editor

Yes

(detparents ftem) Ll L T L L L L L L L
ls the order of the parents significant? No
Can the children for a given item be computed? Yes

Compute the list of children for "item™
(de:children item).-- O :

Is the order of the children significant? No
Item representation: string-region
Label =
(detpname ftem) -l il L L L D L L L L D L L
Items =

Figure 5-13: Node form, modified to describe a directory node

Functions with a “de:” prefix (de:parents, de:children, de:pname) belong to the application
domain. They are application-specific and must be supplied by the application programmer.
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<{some directory-hierarchy-window)

D
sl — [Tt

Figure 5-14: An example directory hierarchy window

The modifications mentioned previously are sufficient to produce an initial working version of the directory
editor. A click on the “Create System and Instantiate!” push button compiles the forms into a
TRISTAN system. Part of it is the directory-hierarchy window type, which is being instantiated to produce
the window of Figure 5-14. It shows a directory called andreas with two of its subdirectories, Lisp and
kbpe. kbpe has further subdirectories. Note that it is not necessary to display the complete graph; the
display may be limited to any subset of the whole.

[directory-hierarchy-windowsmenu
copy&move
move "~ move
reshape move-horiz
newghape move-vert
kill adjust=-x
bury adjust-y
tobottom kKill
totop Kill=-subhierarchy
refresh display-subhierarchy
. put tobottom
find class def totop
properties refresh
clear flip
scroll display-one-parent-directory
__replan-layout display-all-parent-directorys
display-subhierarchy... display-one-subdirectory
display-directory... display-all-subdirectorys
window=-snapshot
shrink-to-icon

Figure 5-15: The main menus of the directory hierarchy window
and the directory node

Figure 5-15 shows on the left the main menu of directory hierarchy windows. In addition to generic
window operations (top items up to scroll and the two bottom items), there are three application

specific operations that have been added automatically:
replan-layout
supplied by the TRISTAN system: automatically rearranges the layout of the graph;

display-subhierarchy...
also supplied by the TRISTAN system: displays all the recursively subordinate nodes of a given
node;

display-directory..
generated by TRIKIT: displays a given directery. This is a renamed version of the generic
display-item. .. operation of TRISTAN.
The menu on the right of Figure 5-15 is associated with individual directory nodes. Again, some of the
operations, like move, are general. Others, like kill- subhlerarchy, are supplied by TRISTAN, and the
display operations are generated by TRIKIT.
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tristan-design-kit=-2.

Name of relation: directory-hierarchy:
An item Is called a: directory:
Name of child relation: subdirectory.:.:.
Name of parent relation:  parent-directory.:
Defauit layout direction: horizontal
Evaluate item name? No
Compare items by: equal:’;’
Pname selector for items: depname:
Create an unlinked item with name "name

< <

Create
V| (deicreate-child name item)
Add *child" to "item"

Remove “child* f

The window has a default size? Yes
Width: 466 Height: 1490 Epecifu size with rubber boxi]
Types of items:
LA DIRECTORY COPY OF
DIRECTORY
A
ave Suystem on File: tristan-system. -0 L0
[Create System and Instantiate!] ICreate Systemi]
>> > < <<

Figure 5-16: Extended description of the directory hierarchy window

Currently the directory hierarchy editor has a number of shortcomings. If the systemis to be a true editor,
it should be possible to create new nodes and to alter the graph structure. For this purpose, the meaning
of creating a child and of relinking a ncde from one parent to another have been specified in the main
form using the application functions de : create and de :move (Figure 5-16).

Also, there are actually two types of nodes in the application: directories and files. The user therefore
creates a new subform (Copy of Directory) by cloning the existing one. Now the system must be
told how to distinguish between the two node types. Consider Figure 5-17, in which the second field
specifies the necessary predicate expression (de:directoryp). There has aiso been an action as-
sociated with the node: clicking the node will make the directory it is representing the current working
directory.

This action is not appropriate for plain files (Figure 5-18). Instead, an action to load the file into an editor
has been specified. Because the nodes are semantically different, it would be nice to display them
differently. The Item representation field has been set{o label-region, which has no frame. A
window created according to these modifications now looks exactly like Figure 5-9 on page 21.

If this version of the system is not yet satisfactory, the user will have to work on the system at the
implementation level of ObjTalk and LIsP. The Save System on File operation in the main form
creates a file containing the code of the directory editor, which may then be further modified.
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Name of item type:
Expression to check whether “item® is of this type:

(derdirectoryp ftem). il il il e e L
Can the parents for a given item be computed? Yes
Compute the list of parents for *item"

(detparents Jtem )i il il Tl D e
Is the order of the parents significant? No
Can the children for a given item be computed? Yes

Compute the list of children for "item*™

Is the order of the children significant? No
ltem representation: string-region
Label =
(derpname tem)- -l il il L Ll D L L L L L L L D e
items =

Its font: mini
Its left button down action:
(NG (CAF TEOIM )Y it et T T T T

Figure 5-17: The directory node form

Name of item type:
Expression to check whether *item" is of this type:
Can the parents for a given item be computed? Yes
Compute the list of parents for *item":
(detparents ftem) i il il il Ll L L T L
Is the order of the parents significant? No
Can the children for a given item be computed? Yes
Compute the list of children for *“item™

Is the order of the children significant? No
ltem representation: label-region
Label =
(detpriame QMY e e e L L
ltems =

Its font: mini
lts left button down action:
(EMACE=Flle (AT IOM)):rt ettt T T L

Figure 5-18: The plain file node form

A Rule Dependency Display: Experiences with TriKit. This section reports our experiences with the
application of TRIKIT to the visualization of the relationship of rules of in an EMYCIN-like formalism. One of
our students used TRIKIT to build the rule dependency display for scanning and debugging a knowledge
base of approximately 100 rules (Figure 5-19). A rule is displayed as a small rectangle containing the rule
number and, on its left, the premises and on the right the conclusions. Both of them are displayed as
larger rectangles with several lines of text.

Separate rules can share nodes within this network. For example, a conclusion of one rule can serve as
a premise of another rule.
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Figure 5-19: A rule dependency display

Using the system uncovered problems with certain features and concepts that were not initially under-
stood:

e The system can be created, instantiated and saved. The users need to understand what is
being created and what is being saved (e.g., a definition of a hierarchy? the forms? their
application? a specific picture?).

« [t is not obvious at first that to define a relation two types of sheets are needed, one relating
to the hierarchy in general and the second (displayed by clicking example node) defining
the different nodes in the system. The names of the sheets should be changed to better
reflect their purpose.

+ The user may not realize that the system contains default values in the main hierarchy sheet.

¢ In the sheets the two terms ifem and name are used. It is not clear that item refers to the
elements of the application relation as data structures, whereas name refers to their external
representation through an identifier.

e Some parts of the system can be understood only through experimentation. An example is
the item representation field of the node subform, whose possible values (e.g.,
string-region, label-field) determine the overall appearance of the nodes.

s The meaning of some fields, such as Pname selector for items, is not obvious. Also,
the user may not know whether a system-supplied value of a field (general-get-pname)
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works with his or her application.

e The use of the fields is not obvious. Some values of fields have functional purposes and
some serve just as labels, for example, as the title of a menu.

Because of these problems and because no additional documentation was available, the student needed
some help from the system designer. Once he understood those issues, however, he was able to extend
the rule display independently and make good use of it. This experiment gave us valuable insights into
the weak points of TRIKIT.

Discussion. With TRIKIT the user can construct useful systems without knowing the details of the
selected building blocks. This design process happens on the level of abstract properties of graphs (e.g.,
horizontal versus vertical layout of the graph), not on the implementation level (ObjTalk classes). Some-
times it is necessary to use code-level specifications, for instance, code that computes the list of parents
for an item (Figure 5-13). This form of specification does not pertain to the graph as such, but is required
for the interface between application and TRIKIT; TRIKIT does not make any assumption about how graphs
might be implemented in application systems.

A critical design decision was whether to make the user explicitly aware of the distinction between an item
in his or her relation and the node object representing it as a labeled rectangle in the display. Initially we
made this distinction. But later we dropped it from the model of the design process presented to the user.
This is an example of the abstraction from implementation details that we hope to achieve with design kits
like TRIKIT.

Although the design space of TRIKIT is limited by the available options in the forms, it is possible to use
this system to create a prototype, which may be refined on a lower level. The design space of possible
systems could be extended in several ways. Cne way of doing this is extending the forms with new fields
and providing new forms for other aspects or views of the system. The tool could be expanded to:

e visualize dynamic processes by highlighting currently involved nodes (inferences in the rule

display),
= allow output to be sent to nodes,
« support more than one type of link between nodes,

¢ be integrated with efforts to build a more general window design kit (Section 5.1). This
capability could give the application programmer more control over the behavior of the graph
window and the individual nodes. The generated graph display/editor could be made a part
of a larger system.

Further research will also be done to incorporate general knowledge of graph data structures. Given an
example of a graph, or a description of the data structure such as a type definition or a MYCIN context
definition, the system could automatically produce an initial display design.

5.3 Comparison

One major goal in the development of the TRIKIT system was to overcome the limitation of the WIDES
suggestions menu as being the only input mode. The command interaction style provided by the sugges-
tions menu of WIDES is replaced in TRIKIT with a declarative or descriptive mode.

In WIDES it should be possible to disregard the suggestions and explore other parts of the design that the
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system does not currently consider important. This feature should be an additional alternative for the
expert, because the suggestions menu makes interaction with WIDES straightforward for novices. TRIKIT,
on the other hand, lacks this kind of guidance, and users are in danger of being overwhelmed with the
many options, not knowing which of them will be important for getting done a first version of an applica-
tion.

With WIDES the users are aware that code is being generated and they can learn the functions of the
different pieces of code. This makes it easy to make enhancements on the implementation level. Users
are incrementally writing code (creating a definition) by selecting high-level commands from a dynamic
menu. TRIKIT does not show the code level to the user at all. This is because TRIKIT is itself powerful
enough to generate complete, working systems. Code is generated internally from the specification
represented by the filled in forms.

Both systems contain knowledge about their respective domains. They provide a subgoal decomposition
that identifies subproblems of the design space in which the user wants to solve problems (Figure 5-20).
The design kits use the partial solutions to build Up a complete design. In order to achieve that com-
ponents work together properly, they must be ordered correctly (e.g., the title-mixin must always
precede the border-mixin). Existing objects must be notified, when new objects are created (e.g., the
create-child operation notifies its superordinate node). This knowledge is represented in the
procedures of the design kits that generate the code. More explicit knowledge representations are re-
quired to make the design kits themselves extensible.
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Figure 5-20: Subgoal trees for WIDES and TRIKIT



32

6. Assessment of our Efforts

The human-computer interaction subsystem is crucial to the usability and success of most computer
systems. New prescriptive goals (e.g., convivial and symbiotic systems), new methodologies (e.g., dif-
ferential programming, use of kits) and new tools (e.g., intelligent support systems) are needed to make
systems usable and useful.

Some of the important tradeoffs and design problems in this area of research are:
o the usability barrier: it takes a major effort and large training costs to learn a complex system
that offers extensive functionality;

e the construction kit versus complete system decision: whether to design the system com-
pletely in advance or to offer a metasystem enabling end-users to alter it according to their
needs;

e distribution of control: does the system or the user make decisions? Can control shift back
and forth between the agents involved so that cooperative problem-solving is possible?

The advantages of construction and design kits are:

e they provide a powerful environment for rapid prototyping of a large class of systems;

e they increase the control of the user over systems without requiring the user to learn many
details;

e the large class of existing building blocks “guarantees” to some extent the construction of
high-quality systems with relatively low construction costs; systems can be created more
quickly because the designer can rely on well-developed parts and take advantage of stable
subassembiies (e.g., exploiting the rich inheritance network in the WLISP system).

e the associated support tools make it easier to learn and work with complex systems.

Specific construction and design kits are used by different classes of users for a variety of different tasks.
Our experience has shown that the use of design kits is not restricted to the inexperienced user: if the
functionality offered by the design kit is sufficient, then there is no reason why the expert should not use
it.

It is misleading to assume that knowing how to use a construction and design kit will come for free and
will not require any learning process at all. Learning processes are required at different levels in using the
kits: users have to operate on different descriptive levels, they need to understand the domain concepts
used in the kits, and they must know how to use a specific kit for their purposes and goals.

It remains an open question whether we can succeed in considerably extending the functionality of the
design Kits to cover a substantial part of their domains while retaining or even improving the simplicity of
use. WIDES is currently easy to use, but we do not know whether we will be able to retain this property
when the system covers not only simple kinds of windows but also other objects like menus, icons,
gauges.

It has been a difficult problem to establish a shared vocabulary between the designer and the user that
enables the user to understand the descriptions for the required inputs. The meaning of the label Pname
selector for items (Figure 5-16) is not obvious to someone who does not know this technical term
of the menu system. To remedy shortcomings like this, we have to solve the following problems:

o find a better conceptualization of the design task and use it to restructure the forms to make
them easier to understand;
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e select prototypical examples more carefully and convey a better feeling of what needs to be
done by taking task structures and the user’s knowledge into account;

e provide optionally displays of help texts for all fields;

e allow alternate modes of specification; explore more direct forms of manipulation of
prototypes;

e prompt for information at the time it is needed. Information about what it means to create a
link between two nodes should be asked for only when this action is being executed for the
first time.

Currently the interaction with the design kits is mostly a user's monologue. The system does not act on
its own initiative on user inputs. Our goal is to make dialogues possible in which the user and the system
take actions in turn and correct each other’s errors and faise assumptions. Small examples of this kind of
interaction can be found in the current implementations:

o default values of fields represent the design kit’s initial assumptions of useful values;

e when the user creates a new type of node in TRIKIT, the system copies its properties from an
existing node because the new node is probably more like the existing node than like the
original defaults.

Consistency becomes a problem when systems can be modified on different descriptive levels. If design
using a kit can be mapped into simple operations such as setting parameters of predefined building
blocks on the code level, consistency can easily be achieved (e.g., specifying the size of a window on the
code level by giving two constants for width and height). If, however, a part of a definition (e.g., the list of
superclasses) is derived from multiple specifications of the user (e.qg., whether a title bar or an icon is
desired) the design kit cannot, in general, decide how to reconcile the interactive specifications and the
code-level specifications. A program analysis component could make it possible for the high-level (form)
description and the program code to coexist and for the user to use both languages alternately (for a
further discussion of this problem see [Waters 86]).

Other issues arising from the conceptual distance between a description and what it describes need to be
further expiored. What happens {o an existing object when its description has been changed? Should it
be updated? Updating is not always desirable or possible because immediate updates may be computa-
tionally too expensive, the screen display may change to such a degree that the user loses track of where
things are, or changes of descriptions of actions executed at the time an object is created have no effect
on already existing objects (e.g., initial size of a window).

Regarding kits as desirable components of computer systems, the question arises what we have to do to
develop kit-kits, that is, kits for designers of construction and design kits. What challenges and problems
do designers face in developing new kits or extending existing ones? Their design requires a qualitatively
different descriptive level using many more abstractions and they have to defer commitment so that users
are left with their share of and influence on the design.
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7. Conclusions

The challenge of increasing the effectiveness of human use of computers goes beyond technical ques-
tions. Software must be designed to optimize not the way machines work, but the way people think -- an
objective which we hope to meet in part with human problem-domain communication. Just as television,
the telescope, and the microscope have amplified our sight, computers will amplify human capabilities by
expanding memory, augmenting reasoning, and facilitating communication.

We are interested in building evolutionary systems that grow to fit an environment of needs rather than
carrying out a single, well-specified task. In these systems the main activity of programming has moved
from the origination of new programs to the modification of existing ones. If designers are to modify
existing programs, they must understand how the parts of these programs function. An important ques-
tion concerns the level of understanding necessary for successful reuse and redesign: exactly how much
does the user have to understand? A construction kit with a large number of generally useful building
blocks provides a good basis for reuse and redesign; but without the additional assistance of design Kkits,
users are lost in the wealth of information and possibilities offered by complex systems. We believe that
human problem-domain communication is the most promising way of overcoming these problems.
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