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Abstract

A general method, the tensor product representation, is defined for the connectionist representation of
value/variable bindings. The method allows the fully distributed representation of bindings and symbolic
structures. Fully and partially localized special cases of the tensor product representation reduce to
exisung cases of connectionist representations of structured data. The representation rests on a principled
analysis of structure; it saturates gracefully as larger structures are represented; it permits recursive
construction of complex representatons from simpler ones; it respects the independence of the capacities
to generate and maintain multiple bindings in parallel; it extends naturally to continuous structures and
continuous representational pattems; it permits values to also serve as variables; it enables analysis of the
interference of symbolic structures stored in associative memories; and it leads to characterization of
optimal distributed representations of structural roles and a recirculation algorithm for leamning them.
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1. Introduction

There has been a recent surge of interest in the "connectionist” approach to artificial intelligence. In this
approach, Al models are large, massively interconnected networks of simple parallel processors, each possessing a
numerical "activation value" which it computes from the activation values of its neighbors according to some simple
numerical formula. (For recent collections, see Feldman, Ballard, Brown, & Dell, 1985; McClelland, Rumelhart, &
the PDP Group, 1986; Rumelhart, McClelland, & the PDP Group, 1986) The recent interest in connectionist
research has been fueled by significant conceptual and technical advances in the approach, by a rapidly increasing
number of demonstrations of the importance of connectionist computation in the detailed modeling of human
cognitive behavior, by growing interest in the power of various parallel architectures, and by dramatic progress in
neuroscience demanding a theoretical understanding of the properties of neural-like computation.

Connectionist models rely on parallel numerical computation rather than the serial symbolic computation of
traditional Al models, and with the inroads of connectionism has come considerable debate about the roles these
two forms of computation should play in AI. While some presume the approaches to be diametrically opposed, and
argue that one or the other should be abandoned, others argue that the two approaches are so compatible that in fact
connectionist models should just be viewed as implementations of symbolic systems.

In (Smolensky, forthcoming; also 1986a, 1987) I have argued at considerable length for a more complex view of
the roles of connectionist and symbolic computation in cognitive science. A one-sentence summary of the
implications of this view for Al is this: connectionist models may well offer an opportunity to escape the brittleness
of symbolic Al systems, a chance to develop more human-like intelligent systems—but only if we can find ways of
naturally instantiating the sources of power of symbolic computation within fully connectionist systems. If we
ignore the connectionist approach, we miss our current best hope for formally capturing the subtlety, robustness, and
flexibility of human cognition. If we ignore the symbolic approach, we throw out tremendous insights into the
nature of the problems that must be solved in creating intelligent systems, and of techniques for solving these
problems; we probably doom the connectionist approach to forever grappling with simple cognitive tasks that fall
far short of the true capacity of human intelligence. If we use connectionist systems merely to implement symbolic
systems, we might get Al systems that are faster and more tolerant of hardware faults, but they will be just as brittle.

T L

The present paper is part of an effort to extend the connectionist framework to naturally incorporate, without
losing the virtues of connectionist computation, the ingredients essential to the power of symbolic computation.
This extended version of connectionist computation would integrate, in an intimate collaboration, the discrete
mathematics of symbolic computation and the continuous mathematics of connectionist computation. This paper
offers an example of what such a collaboration might look like.

One domain where connectionist computation has much to gain by incorporating some of the power of symbolic
computation is language. The problems here are extremely fundamental. Natural connectionist representation of a
structured object like a phrase structure tree—or even a simple sequence of words or phonemes—poses serious
conceptual difficulties, as I will shortly discuss. The problem can be traced back to difficulties with the elementary
operation of binding a value to a variable. It is this basic problem that is addressed in this paper.

I begin in Section 1.1 by discussing why natural connectionist representation of structured objects is a problem.
I list several properties of the solution to this problem that is presented in this paper. In Section 1.2 I respond to the
possible connectionist criticism that it is misguided to even try to solve this problem. Then in Section 1.3 I outline
the rest of the paper.

Before proceeding it is worth commenting on where the research reported here fits into an overall scheme of
connectionist AI. As in the traditional approach, in the connectionist approach several components must be put
together in constructing a model. Elements of the task domain must be represented, a network architecture must be
designed, and a processing algorithm must be specified. If the knowledge in the model is to be provided by the
designer, a set of connections must be designed to perform the task. If the model is to aquire its knowledge through
learning, a learning algorithm for adapting the connections must be specified, and a training set must be designed
(eg., a set of input/output pairs). For most of these aspects of connectionist modeling, there exists considerable
formal literature analyzing the problem and offering solutions. There is one glaring exception: the representation
component., This is a crucial component, for a poor representation will often doom the model to failure, and an
excessively generous representation may essentially solve the problem in advance. Representation is particularly
critical to understanding the relation between connectionist and symbolic computation, for the representation often
embodies most of the relation between a symbolically characterized problem (eg. a linguistic task) and a
connectionist solution. :
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Not only is the connectionist representation problem a central one, it is also a problem that is amenable to formal
analysis. In this paper the problem will be characterized as finding a mapping from a set of structured objects (eg.
trees) to a vector space, the set of states of the part of a connectionist network representing those objects. The
mélange of discrete and continuous mathematics that results is reminiscent of a related classical area of
mathematics: the problem of representing abstract groups as collections of linear operators on a vector space. The
discrete aspects of group theory and the continuous aspects of vector space theory interact in a most constructive
way. Group representation theory, with its application to quantum physics, in fact offers a useful analogy for the
connectionist representation of symbolic structures. The world of elementary particles involves a discrete set of
particle species whose properties exhibit many symmetries, both exact and approximate, that are described by group
theory. Yet the underlying elementary particle state spaces are continuous vector spaces, in which the discrete
structure is imbedded. In the view that guides the research reported here, in human language processing, the
discrete symbolic structures that describe linguistic objects are actually imbedded in a continuous connectionist
system that operates on them with flexible, robust processes that can only be approximated by discrete symbol
manipulations,

One final note on terminology. In most of this paper the structures being represented will be refered to as
symbolic structures, because the principal cases of interest will be objects like strings and trees. Except for the
consideration of particular symbolic structures, however, the analysis presented here is of structured objects in
general; it therefore applies equally well to objects like images and speech trains which are not typically considered
"symbolic structures.” With this understood, in general discussions I will indiscriminately refer to objects being
represented as "structures,” "structured objects,” or "symbolic structures.”

1.1. Distributed representation and variable binding in connectionist systems

I have called the problem considered in this paper that of finding "natural” connectionist representation of
structured objects and variable bindings. In fact what I refer to is the problem of finding connectionist
representations that are fully distributed. The notion of distributed representation is central to the power of the
connectionist approach (eg., Anderson & Hinton, 1981; Hinton, McClelland & Rumelhart, 1986; Smolensky
forthcoming, 1986b; for an opposing view, see Feldman, 1986). To illustrate the idea of distributed representation,
consider the NETtalk system, a connectionist network that learns to pronounce written English (Sejnowski &
Rosenberg, 1986; see Fig. 1). Each output of this network is a phonetic segment, eg. the vowel [i] in the
pronunciation of the word we. Each phonetic segment is represented in terms of phonetic features; for [i], we have:
front = 1, tensed = 1, high-frequency = 1, back = 0, stop = 0, nasal = 0, and so forth. There is one output processor
in the network for each of the phonetic features, and its numerical value indicates whether that feature is present (1)
or absent (0). Each phonetic segment is therefore represented by a pattern of activity over the numerous output
processors, and each output processor participates in the representation of many different outputs. This defines a
distributed representation of the output phonetic segment.

At the opposite end of a connectionist representational spectrum are local representations. These too are
illustrated by NETtalk; this time, in the input. Each NETtalk input consists of a letter to be pronounced together
with the three preceding and three following letters to provide some context. For each of these seven letters there is
a separate pool of input processors in the network, and within each pool there is a separate processor for each letter.
In the input representation, in each of the seven pools the single processor corresponding to the letter present is
assigned activity 1, and the remaining processors in the pool are all assigned activity 0. This representation is local
in two senses. Most obviously, different letters are represented by activity in disjoint localities—in single
processing units. Unlike the output activity, there is no overlap of the activity representing alternative values. The
other sense of locality is that the activity representing different letter positions are all disjoint: each pool localizes
the activity representing one letter position.

The input representation in NETtalk illustrates the problems of representing structures and of variable binding in
connectionist networks. The input is a string of seven characters (of which the middle one is to be pronounced).
There is a pool of processing units dedicated to representing each item in this string. Each pool can be viewed as a
slot in the structure: a variable. The value of each variable is a pattern of activity residing in its pool of units. In
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Figure 1. The NETtalk system of Sejnowski & Rosenberg (1986) illustrates both distributed and local con-
nectionist representations.
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NETtalk this pattern is localized; we will later consider examples of models in which the corresponding pattern is
distributed throughout the pool. Regardless of the patterns used to represent the values, in such systems the
variables are localized regions of the network. These variables are in fact registers, and nearly all connectionist
systems have represented structured data using them. Yet registers are hardly natural or desirable within
connectionist models. In order to make available in the processing of structured data the full power of connectionist
computation that derives from distributed representation, we need to use distributed representations of variables in
addition to distributed representations of values.

In this paper a completely distributed representational scheme is proposed for variable binding: the tensor
product representation. In this representation both the variables and the values can be arbitrarily nonlocal.
Applications of the tensor product scheme to the connectionist representation of complex structured objects is
explored. Features of the tensor product representation, most of which distinguish it from existing representations,
include the following (corresponding section numbers are indicated in parentheses):

e The representation rests on a principled and general analysis of structure: role decomposition (2.2.1).

® A fully distributed representation of a structured object is built from distributed representations of both
the structure’s constituents and the structure’s roles (2.2.4).

e Nearly all previous connectionist representations of structured data, employing varying degrees of
localization, are special cases (2.3).

e If a structure does not saturate the capacity of a connectionist network that represents it, the components
of the structure can be extracted with complete accuracy (3.1).

s Structures of unbounded size can be represented in a fixed connectionist network, and the
representation will saturate gracefully (3.2).

e The representation applies to continuous structures and to infinite networks as naturaily as to the
discrete and finite cases (3.3).

e The binding mechanisms can be simply performed in a connectionist network (3.4).

e The representation respects the independence of two aspects of parallelism in variable binding:
generating vs. maintaining bindings (3.4.1).

e The components of structures can be simply extracted in a connectionist network (3.4.2).

e A value bound to one variable can itself be used as a variable (3.6).

e Connectionist representations of operations on symbolic structures, and recursive data types, can be
naturally analyzed (3.7).

e Retrieval of representations of structured data stored in connectionist memories can be formally
analyzed (3.8).

e A general sense of optimality for activity patterns representing roles in structures can be defined and
analyzed (3.9.1).

e A connectionist "recirculation" learning algorithm can be derived for finding these optimal
representations (3.9.2). '

1.2. Connectionist representation of symbolic structures

The general issue behind the research reported here is the representation in connectionist systems of symbolic
structures. What are computationally adequate connectionist representations of strings, trees, sentences?

This section is addressed to connectionists who may find this question misguided. The essence of the
connectionist approach, they might say, is to expunge symbolic structures from models of the mind. I must agree
that the connectionist approach is rather far from a "language of thought” view of cognition in which all mental
states are formalized as symbolic structures. However there still remains in connectionism an important role to be
played by language and symbolic structures, even if that role is substantially reduced relative to its counterpart in
the traditional radically symbolic approach. 1 have argued this point in some detail in Smolensky (forthcoming),
and will only summarize the relevant conclusions here.
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Any connectionist model of natural language processing must cope with the questions of how linguistic
structures are represented in connectionist models. A reasonable starting point would seem to be to take linguistic
analysis of the structure of linguistic objects seriously, and to find a way of representing this structure in a
connectionist system. Since the majority of existing representations of linguistic structure employ structures like
trees and strings, it is important to find adequate connectionist representations of these symbolic structures. It may
well turn out that once such representations are understood, new connectionist representations of linguistic
structures will be developed that are not truly representations of symbolic structures but which are more adequate
according to the criteria of linguistics, computational linguistics, psycholinguistics, or neurolinguistics. It seems
likely, however, that such improvements will rest on prior understanding of connectionist representations of existing
symbolic descriptions of linguistic structure.

The importance to the connectionist approach of representing linguistic structures goes well beyond models of
natural language processing. Once adequate connectionist representations are found for linguistic structures, then
these can serve as the basis for connectionist models of conscious, serial, rule-guided behavior. This behavior can
be modeled as explicit (connectionist) retrieval and interpretation of linguistically structured rules. Adequate
connectionist models of such behavior are important for connectionist models of higher thought processes.

One line of thought in the connectionist approach implies that analyses of connectionist representations of
symbolic structures are unnecessary. The argument goes something like this. Just as a child somehow learns to
internally represent sentences with no explicit instruction on how to do so, so a connectionist system with the right
learning rule will somehow learn the appropriate internal representations. The problem of linguistic representation
is not to be solved by a connectionist theorist but rather a connectionist network.

In response to this argument I have five points.

(1) In the short term, at least, our leaming rules and network simulators do not seem powerful enough to
make network learning of linguistic representation feasible.

(2) Even if such learning is feasible at some future point, we will still need to explain how the
representation is done. There are two empirical reasons to believe that such explanation will require the
kind of analysis begun in this paper: explanation of the computation of real neural networks has turned
out to require much analysis, as mere observation has proved woefully inadequate; the same has turned
out to be true even of the self-organized connectionist networks that perform computations vastly
simpler than most of natural language processing.

(3) It is important to try to build bridges as soon as possible between connectionist accounts of language
processing and existing accounts; the problem is just too difficult to start all over again from scratch.

(4) We would like to be able to experiment now with connectionist learning models of rather complex
linguistic skills (eg. parsing, anaphoric resolution, and semantic interpretation, all in complex
sentences). For now, at least, such experiments require connectionist representation of linguistic
structures to serve as inputs and outputs. We want to study the leamning of the operations performed on
linguistic structures without waiting many years for the completion of the study of the learning of the
linguistic representations themselves.

(5) Language is more than just a domain for building models, it is a foundation on which the entire
traditional theory of computation rests. To understand the computational implications of
connectionism, it is crucial to know how the basic concepts of symbolic computation and formal
language theory relate to connectionist computation.

Of course exploiting connectionist representations of the sort of symbolic structures used in symbolic Al by no
means commits one to a full connectionist implementation of symbolic Al, which, as stated earlier, would miss most
of the point of the connectionist approach. The semantic processing of a connectionist representation of a parse tree
should not be performed by a connectionist implementation of serially applied symbolic rules that manipulate the
tree; rather, the processing should be of the usual connectionist sort: massively parallel satisfaction of multiple soft
constraints involving the micro-elements forming the distributed representation of the parse tree. Thus in this paper
connectionist representations of pop and cdr will be mathematical relations between patterns of activity, not
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processes carried out over time in a connectionist network as part of an extended serial computation (in contrast to
Touretzky, 1986). The view behind the present research is not that mental operations are always serial symbol
manipluations (although a few are); rather the view is that the information processed often has useful symbolic
descriptions, and that these descriptions should be taken seriously. (This view is spelled out in detail in Smolensky,
forthcoming).

1.3. Outline of the paper

In Section 2, the notion of connectionist representation is formally defined and the tensor product representation
is constructed. Examples are considered, and the various special cases that reduce to previous connectionist
representations are discussed. In Section 3, a number of properties of the tensor product representation are proved
and several extensions discussed. The connectionist representation of symbolic operations is defined, and examples
for stacks and trees are considered. Retrieval of symbolic structures represented in connectionist memories by the
tensor product representation is analyzed. Finally, a sense of optimality for patterns representing roles in structures
is defined and explored, and a connectionist "recirculation" algorithm is derived for learning these optimal
representations. Section 4 is a summary and conclusion. :

The entire paper centers around the vector operation of tensor product. This operation is simple to define
numerically but considerably more subtle to characterize abstractly. Because the tensor product is central here but
often omitted in treatments of linear algebra, a brief exposition of its abstract characterization is offered in the main
Apppendix, Section 5. In the process of characterizing the tensor product, certain other vector space concepts are
introduced that are also drawn upon in the paper. Section 6 is a small Appendix containing a calculation deferred
from a proof.

2. Connectionist representation and tensor product binding: Definition and examples

In this section I first formally characterize the notion of connectionist representation. Next, the problem of
representing structured objects is reduced to three subproblems: decomposing the structures via roles, representing
conjunctions, and representing variable/value bindings. First role decompositions are discussed, and then I define
the superpositional representation of conjunction and the tensor product representation for variable/value bindings.
Next I show how various special cases of the tensor product representation yield the previous connectionist
representations of structured data.

2.1. Connectionist representation

The question of how to represent symbolic structures in connectionist systems will be treated formally in this
paper in the following way.

Connectionist representations are patterns of activity over connectionist networks; these patterns can extend over
many processors in the network, as in distributed representations, or be localized to a single processor, as in a local
representation. Such a pattern is a collection of activation values: a vector with one numerical component for every
network processor. The space of representational states of a connectionist network thus lies in a vector space, with
a dimension equal to the number of processors in the network. Each processor corresponds to an independent basis
vector; this forms a distinguished basis for the space. In many connectionist networks the processor’s values are
restricted in some way; such restrictions are important for consideration of the dynamics of the network but are not
central to the representational issues considered here, and they will be ignored. (For expositions of the application
of vector space theory—linear algebra—to connectionist systems, see, e.g., Jordan, 1986; Smolensky, 1986b.)

DEFINITION 2.1.1: The activity states of a connectionist network are the elements of a vector space V which
has a distinguished basis (¥; }.

Whenever I speak of a vector space representing the states of a connectionist network, a distinguished basis will be
implicitly assumed. Rarely will it be necessary to deal explicitly with this basis. Sometimes it will be useful to use
the canonical inner product associated with the distinguished basis: the one in which the basis vectors are orthogonal
and of unit norm. (Equivalently, this inner product of two vectors can be computed as the sum of the products of
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corresponding vector components with respect to the distinguished basis.) Whenever I speak of activity patterns
being orthogonal, or of their norm, these concepts are taken to be defined with respect to this canonical inner
product; the inner product of vectors u and v will be denoted u-v.

DEFINITION 2.1.2: A connectionist representation of the symbolic structures in a set S is a mapping v from §
to a vector space V:

. § >V

Of central interest are the images under the mapping y of the relations between symbolic structures and their
constituents, and the images of the operations transforming symbolic structures into other structures. Also important
are basic questions about the representation mapping such as whether distinguishable symbolic structures have
distinguishable representations:

DEFINITION 2.1.3: A connectionist representation  is faithful iff it maps no structure to the zero vector 0 € V
and is one-to-one:

S1#S52 P Y(s1) #y(s2)

2.2. Tensor product representation: Definition

The representation of structured objects explored in this paper requires first that structures be viewed as
possessing a number (possibly unbounded) of roles which, for particular instances of the structure, are individually
bound to particular fillers. For example, a string may be viewed as possessing an infinite set of roles {ry, 72, =~}
where r; is the role of the i# element in the string. A particular string of length n involves binding the first n roles
to particular fillers. For example, the string aba involves the bindings {a/ri, b/r, a/r3}, using a notation in which
f /r denotes the binding of filler f to role r; in this string, the roles r; for i >3 are all unbound. Now note that the
structure has been characterized as the conjunction of an unordered set of variable bindings. The probiem of
representing the structure has been reduced to the problems of

(1) representing the structure as a conjunction of filler/role bindings;
(2) representing the conjunction operation;
(3) representing the bindings in a connectionist network.

These problems are respectively considered in Sections 2.2.1 through 2.2.3 and brought together in Section 2.2.4.

2.2.1. Role decompositions of symbolic structures
As a formal definition of roles and fillers, I will take the following:
DEFINITION 2.2.1.1: Let § be a set of symbolic structures. A role decomposition F /R for § is a pair of sets
(F, R), the sets of fillers and roles, respectively, and a mapping
UrR:F XR—Pred(S), (f,rYy=>fIr

For any pair f € F,r € R, the predicate on § ugr{(f,r) = f/r is expressed: f fillsrole r.

The role decomposition has single-valued roles iff for any s € S and r € R, there is at mostone f € F such
that f /r (s) holds.

The role decomposition is recursive iff F =§.
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A role decomposition determines a mapping
B: S— 2R s 5 ((f, r)|fir(s)}
The set B(s) will be called the filler/role bindings in s, and the mapping B will be called the filler/role
representation of § induced by the role decomposition.
The role decomposition is faithful iff § is one-to-one.
The role decomposition is finite iff for each s € §, the set of bindings in s, B(s), is finite.

Throughout this paper all role decompositions will be assumed to be finite, except in sections where the infinite case
is explicitly considered.

Recursive role decompositions are heavily used in the standard description of symbolic structures. For example,
the description of a LISP S-expression as a structure whose car and cdr are both S-expressions is a recursive
decomposition via the roles car and cdr. The tensor product representation to be presented shortly cannot be
defined using recursive role decompositions; recursive role decompositions can however be analyzed, as will be
done in Section 3.7.

Faithful role decompositions are particularly useful because the filler/role representations they induce allow us
to identify each symbolic structure with a predicate having a simple conjunctive form:

THEOREM 2.2.1.2: Let F /R be a role decomposition of . For each s € §, define the predicate n;_ by:

fir(s)

Tel$) = ¢ i e

where A denotes conjunction. Then if the role decomposition is faithful, the structure s can be recovered
from the predicate 7.

PROOF: This result follows immediately from the following lemma.

LEMMA 2.2.1.3: The mapping B of the role decomposition maps elements of S into subsets of FXR.
These subsets possess a partial order, set inclusion <, which can be pulled back to § via f:

s1< 52 iff Blsy) < Bls2)
Suppose F /R is faithful. Then with respect to the partial order <, the set of elements of § for which the
predicate m, holds has a unique least element, which is so. In this way 5o can be recovered from its

corresponding predicate 7t ,

PROOF OF LEMMA 2.2.1.3: Since B(s) is the set of filler/role bindings in s, 51<s5 iff the bindings in s
are a subset of those of s5,:

s1<s, iff [forallf € Fand r € R, fir(sy) > fir(s)]
forallf € F andr € R. Now consider the set of elements s satisfying the predicate

S(m)={s e S|n(s))=(seS§|forallf € Fand r € R, fIr(so) > fIr(s)}
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={seS|so<s)

This set contains sg, and 5o is a least element; it remains to show that there is no other least element.
Consider any other element sy in § (% ). Since W is faithful and s,#so, there is at least one binding f /r
not shared by so and si1. Since s1€ S(m) and 5o is a least element of §(m,), we must have
fir(s))A—f Ir(so). This implies —(s1<50) S0 5, cannot be a least element in S (7).

2.2.2. Connectionist representation of conjunction

The representation of conjunction in connectionist models has traditionally been performed with pattern
superposition, i.e. vector addition. If two propositions are each represented in a connectionist system by some
pattern of activity, the representation of the conjunction of those propositions is the pattern resulting from
superimposing the individual patterns. This paper adopts this method. In terms of the representation mapping v,
We can write:

DEFINITION 2.2.2.1: A connectionist representation Y employs the superpositional representation of
conjunction iff:

YA p) = Z w(pi)

The representation of the conjunction of a collection of propositions is the sum of the representations of the
individual propositions.

Note that, like conjunction, vector addition is an operation possessing the properties of associativity and
commutativity. Were this not so, vector addition could not be used to represent conjunction.

Applying the superpositicnal representation of conjunction to the case at hand:

DEFINITION 2.2.2.2: Suppose S is a set of symbolic structures and F/R is a role decomposition of § with
fillers F and roles R. Suppose further that y, is a connectionist representation of the filler/role bindings:

Vp: (fir|feF,reR}>V

where V is a vector space. Then wyp;, the connectionist representation of S induced by F/R, the
superpositional representation of conjunction, and i, is

S-oVis— Ir
A7 " ré ﬁ(s)‘lfb(f )

The use of vector addition to represent comjunction has pervasive implications for the faithfulness of
representations. If the representations of aA b and cA d are to be distinguishable, then a+b and c+d must be
different. This constrains the possible patterns a, b, ¢ and d that can represent a, b, ¢ and d. It will be guaranteed
that a+b and c+d will be different if the vectors a, b, ¢ and d are all linearly independent: no one can be expressed
as a weighted superposition of the others. In order to guarantee the faithfulness of representations, it will often be
necessary to impose the restriction of linearly independent representing patterns for the constituents. This
restriction is an expensive one, however, since to have n linearly independent patterns one must have at least n
nodes in the network.
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2.2.3. Connectionist representation of variable binding

It remains to consider the representation of filler/role bindings; this section introduces the tensor product
representation.

The tensor product representation of a value/variable binding is quite simple to define (see Figure 2). To bind a
filler f to a role r we first represent f as a pattern of activity f over a set of "filler" units {ﬁ,} and represent r as a
pattern of activity r over a set of "role" units {7,}. The binding f /r is represented by a pattern of activity f/r over a
set of "binding" units {b¢p} of which there is one for each pair of filler and role units. The activity of the binding
unit b'bp is the activity of the filler unit f; in the pattern f times the activity of the role unit 7p in the pattern r.

This procedure is readily characterizable in vector space terminology. The representation of the role r is a
vector r in a vector space Vg. Vi is a real vector space with dimension equal to the number of units 7,. The
representation of the filler f is a vector f in a vector space Vr, a real vector space with dimension equal to the
number of units fy. The representation of the binding f /r is the tensor product vector f/r = f®r in the tensor
product vector space Vg = Vr® Vz (see the Appendix in Section 5). V3 is a real vector space with dimension equal
to the product of the dimensions of Vz and Vz. The components of the vector f/r are related to the components of f
and r as follows. Each filler unit f; corresponds to a vector f‘¢ in Vr (the vector representing the pattern of activity in
which that unit has activity 1 and all other units have activity zero). The complete set of vectors {f}} forms the
distinguished basis for Vr and any vector f in Vi can be expressed in terms of this basis as a sequence of real
numbers; these are the activities of all the units in the pattern corresponding to f. Exactly the same story holds for
the roles. Then the tensor product space Vp = Vp® V3 has as a basis the set of vectors {Bq,p = ﬂ@rp} The ¢p
component (by, = f/ryp) of the vector b = f/r = f@r representing the binding is the product of the ¢ component of f
(fy) and the p component of r (rp):

byp = f/rep = forp

DEFINITION 2.2.3.1: Let F/R be a role decomposition of §. Let yr and yg be connectionist representations
of the fillers and roles:

\{Ip:F——)Vp -
Yr:R—>Vp

Then the tensor product representation of the fillerirole bindings induced by yr and Wy is the mapping:

Vo: (fir|f € F,r e R} Ve®Vir; fir = yr(f)®Yr(r)

Figure 3 shows an example specially chosen for visual transparency. Consider an application to speech
processing, and imagine that we are representing the amount of energy in a particular formant over time. For the
roles here we take a series of time points and for the fillers the amount of energy in the formant. In Figure 3, the
roles are represented as patterns of activity over five units. Each role r, is a time point and is represented as a
peaked pattern centered at unit p; the Figure shows the case p = 4. Each filler f; is an energy level; in Figure 3 this is
represented as a pattern of activity over four units: a single peak centered at the energy level being represented. The
binding pattern is a two-dimensional peak centered at the point whose x- and y-coordinates are the time and energy
values being bound together.

The example of Figure 3 is visually transparent because of the simple geometrical structure of the patterns. Of
course there is nothing in the binding mechanism itself that requires this. The distributed representation of roles and
fillers can be arbitrary patterns and in general the tensor product of these patterns will be even more visually opaque
than are the patterns for the roles and fillers: see Fig. 4. However the mathematical simplicity of tensor product
binding makes the general case as easy to analyze as special cases like that of Figure 3.
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Filler
(Energy)

Role (Time)

. Figure 3. A visually transparent example of the tensor product representation of a role/filler binding.
Darker units are more active.
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Figure 4. A generic example of the tensor product representation of a role/filler binding.
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2.2.4. Tensor product representation
Putting together the previous representations, we have:

DEFINITION 2.2.4.1: Let F/R be a role decomposition of S, and let wr and yr be connectionist
representations of the fillers and roles. Then the corresponding tensor product representation of S is

2 S > Ve®Vp; ®
y: S —Vr RSH(f,réB(s)wp(f) Yr(r)

If we identify s with the conjunction of the bindings it contains, and if we let f = yr(f) and r = yr (r), we
can write this in the more transparent form:

W(/i\ﬁ/fi) =300

The interpretation of the activity of binding units in the tensor product representation depends on the
interpretation of the feature and role units. If the filler or role representations are local, then each unit individually
represents a particular filler or role. In the filler or role representation is distributed, the activation of an individual
node may indicate the presence of an identifiable feature in the entity being represented. This was true of the
example given in Section 1.1: each of the output units represents a phonetic feature in the phonetic segment output
by the network. For expository simplicity, we can consider a local representation to be one where a given "feature”
is present in exactly one represented object, and a given object possesses exactly one "feature.” Then if the binding
unit by, is active in the tensor product representation of a structure s, the interpretation is that the feature
represented by f, is present in a filler of a role possessing the feature 7,. In this sense, 50,9 represents the conjunction
of the features represented by f, and 7,.! By iterating the tensor product representation, we can produce conjunctions
of more than two features; this will be considered in Section 3.7.3.

2.3. Previous representations and special cases of tensor product representation

Section 3 analyzes the general properties of the tensor product representation. Before proceeding to this general
analysis, it is useful to examine a number of special cases of the tensor product representation because these turn out
to include nearly all previous cases of connectionist representations of structured objects.

2.3.1. Role decompositions

The examples of previous connectionist representations of structured objects that we shall consider employ only
a few role decompositions.

DEFINITION 2.3.1.1: Suppose S is the set of strings of length no more than n from an alphabetA. Let F = A,
and let R = {r; }/41, where r; is the role "occupies the i* position in the string”. Then F/R is the positional
role decomposition of S .

This is the example given above in Section 2.2, in which the string aba is represented by bindings
{alry, bir,, alrs}. This decomposition is finite, has single-valued roles, and is faithful. This decomposition is the
most obvious one, and the one most often used in previous connectionist systems.

1. For a more precise formulation, consider a simple case where the activity of unit fq; is 1 or 0, and indicates the
truth value of the proposition "there exists x among the represented objects such that the predicate ﬂ, holds of x";
and suppose 7, can be similarly- interpreted. Then bgp indicates the truth value of the proposition "there exists x
among the represented objects such that both predicates fy and 7, hold of x."
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The positional decomposition has an obvious extension to the case of finite strings of arbitrary length, where the
set of roles becomes infinite; I will treat this as the case of the above definition with n = e, In the infinite case the
decomposition is still faithful, still has single-valued roles, and is still finite, since the strings are all of finite length.
The infinite case will be used later to explore saturation of the tensor product representation.

There is a less obvious role decomposition of strings that is used, as we shall shortly see, to great advantage by
Rumelhart and McClelland (1986):

DEFINITION 2.3.1.2: Suppose § is the set of strings of length no more than n from an alphabet A. Let
F =Au{<, >}, where < and > are two new symbols meaning "left string boundary" and "right string
boundary” respectively. LetR = {rx, |x € F,y € F}, where r,, is the role "is immediately preceded by x
and immediately followed by y". F/R is a role decomposition of § called the I-neighbor context
decomposition.

Under this decomposition, the string aba becomes the set of bindings {a/r«< s, b/ra 4, alry »}. This decomposition
does not have single-valued roles and is not faithful if n>4 (the strings a3 and a* can’t be distinguished). There is
an obvious generalization to the k -neighbor context decomposition: this is faithful if n <2k+2.2

There are also obvious generalizations of the 1-neighbor context decomposition to differing size contexts on the
left and right. A special case is the representation of pairs, say strings with n =2, where the roles are
R = {r x|x € F): the right-neighbor context. The pair ab is represented as the single binding a/r ;. This role
decomposition, we shall see, is used in a powerful technique called conjunctive coding.

While it is true that the positional role decomposition is more faithful than context decompositions for the
representation of a single structure, it turns out that if multiple structures are to be simultaneously represented, the
positional decomposition can be less faithful than the context decomposition. Suppose we are to represent the
conjunction of ab and cd by superimposing the representation of the two pairs. What gets represented is the union
of the binding sets of the two structures. In the case of positional roles, this union is {a/ry, b/rq, c/ry, diry}; now it
is impossible to distinguish what is being represented from the conjunction of ad and cb. However, with the right-
neighbor context decomposition, the union of the binding sets is {a/r , ¢ /r 4}, which is not at all confusable with
the conjunction of ad and ch. With context decompositions confusions can of course also result; these
decompositions are not even faithful for representing single structures, when the same fillers appear multiple times
in the same context.

An additional virtue of context decompositions is that they give rise to connectionist representations that give
the network direct access to the kind of information needed to capture the regularities in many context-sensitive
tasks; we shall discuss this below for the specific example of the Rumelhart and McClelland (1986) model..

2.3.2. Connectionist representations

Having discussed a few of the role decompositions that have been used in connectionist representations of
structures, we can now consider a number of examples of such representations. These are grouped according to the
degree of locality in the representations of roles and fillers; we therefore start by distinguishing local and distributed
connectionist representations in general, and then examine the degree of locality of various exisiting representations
of structured objects.

2. This decomposition gives the initial and final substrings of length up to 2k, and all internal substrings of length
2k+1. These substrings uniquely determine strings of length no more than 2k+1. The strings a%**! and a2 can’t
be distinguished, however, so the decomposition is not faithful if n >2k+1.
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2.3.2.1. Local and distributed representations

Local representations dedicate an individual processor to each item represented. In terms of the vector space of
network states, these individual processors correspond to the members of the distinguished basis. Thus:

DEFINITION 2.3.2.1.1: Let y be a connectionist representation of a set X in a vector space V with distinguished
basis {¥;}.  is alocal representation iff it is a one-to-one mapping of the elements of X onto the set of basis
vectors {V;].

A connectionist representation that is not a local representation is a distributed representation.

2.3.2.2. Purely local representations of symbolic structures
The first special case of the tensor product representation is the most local one.

DEFINITION 2.3.2.2.1: Let wrz be the tensor product representation of S induced by a role decomposition
F/R of § and two connectionist representations Wy and wg. Then yp;r is a purely local tensor product
representation if yr and yr are both local representations.

This case is illustrated for the representation of strings in Fig. 5. If the filler and role patterns both involve the
activity of only a single processor, then the tensor product pattern representing their binding will also involve only a
single unit. In other words, if yr and Yy are both local representations, then so too is Yr/z .

Purely local tensor product representations have been used along with the positional role decomposition of
strings in many connectionist models; for example:

e As was already mentioned in Section 1.1 and illustrated in Fig. 1, NETtalk uses the purely local
representation of Fig. 5 to represent seven-letter input strings.

e The interactive activation model of the perception of letters in words (McClelland & Rumelhart, 1981,
Rumelhart & McClelland, 1982) uses the representation shown in Fig. 5 for representing. four-letter
strings, at its intermediate or "letter” level of representation. This too is a purely local tensor product
representation.

e The TRACE model of speech perception (McClelland & Elman, 1986) uses a purely local representation
of strings of phonemes, although some of the positional roles involve overlapping time intervals.

e Fanty’s (1985) parser uses a purely local tensor product representation involving a positional role
decomposition of trees.

o Feldman’s (1985) connectionist system for visual processing uses a representation that includes the
tensor product of a local representation for visual features (including color, size, and shape) and a local
representation for position in the visual field.

2.3.2.3. Semi-local representations of symbolic structures
The next most local special case is this.

DEFINITION 2.3.2.3.1: Let yr/;r be the tensor product representation of S induced by a role decomposition
F/R of § and two connectionist representations W and Wyg. If yr is a distributed representation and g is a
local representation then gz is a semi-local tensor product representation or a role register representation.

If the filler representation is a distributed pattern and the role representation involves the activity of a single unit, the
result is a copy of the filler pattern in a pool of units dedicated to the role: see Fig. 6.

Semi-local tensor product representauons have been widely used in conjunction with positional role
decompositions:
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The letter perception model (McClelland & Rumelhart, 1981; Rumelhart & McClelland, 1982) uses a
semi-local representation of letters at its lowest or "letter feature” level; this is the example shown in
Fig. 6. A set of units is dedicated to the representation of the first letter’s features; a letter is
represented as a pattern of activity over these units, where each unit indicated whether a particular line
segment is or is not present in the first letter. There were identical copies of this "first letter register”
for the second, third, and fourth letter.

An early version of NETtalk (Charles Rosenberg, unpublished communication, 1985) used a semi-local
representation for the input string: the i* letter was represented by a pattern of activity over a set of
units dedicated to the i* position, and each unit indicated whether a particular orthographic feature
(eg., closed loop, ascending line) was present in that letter.

In Hinton’s (1981b) semantic net model, relationships of the form R(x,y) (eg.,
has_color (clyde, grey)), are represented by placing three distributed patterns of activity representing
the fillers of the roles R, x,and y in pools dedicated to those roles. (There is an additional pool as
well.)

The model of Riley & Smolensky (1984) that answers qualitative questions about a fixed simple electric
circuit also uses a semi-local representation. Each role is a circuit variable (eg., the current, or the
resistance of one of ‘the resistors) and the fillers are the qualitative values increases, decreases,
stays_constant. Each filler is represented as a small pattern in a pool of two units dedicated to the
corresponding role.

Touretzky and Hinton’s (1985) connectionist production system interpreter uses productions with two
symbolic triples on the condition side; each triple is represented by a pattern of activity in a separate
pool of units. (The representation of the triples themselves are considered in the next section.)

The McClelland and Kawamoto (1986) model that learns to assign case to the nouns appearing in a
standard sentence frame uses a semi-local input representation. Each input is an instance of the frame:
The N1 V the N, with the N3. The roles here are the three nouns and the verb, and each filler is
represented by a pattern of activity in a pool of units dedicated to the corresponding role.

2.3.2.4. Fully distributed representations of symbolic structures

Now we come to the most distributed case:

DEFINITION 2.3.2.4.1: Let yr/z be the tensor product representation of § induced by a role decomposition
FIR of § and two connectionist representations Wyr and yg. If yr and W are both distributed
representations, then g is a fully distributed tensor product representation.

Examples of fully distributed representations are few.

A visually transparent example of a fully distributed tensor product representation using the positional
role decomposition was given in Fig. 3. The patterns representing roles here are examples of coarse
coding representations described in Hinton, McClelland, & Rumelhart (1986). It is traditional to focus
on the numerous positions (roles) that activate a particular role unit (its "receptive field"); the
formulation here focuses on the numerous role units activated by a particular positional role. These are
merely two perspectives on the many-to-many mapping between positions and units,

The McClelland and Kawamoto (1986) model mentioned earlier can be viewed as using a fully
distributed representation of the output. Each output is a set of bindings of noun fillers to the case-
frame slots of the verb. This output can be viewed as having roles like loves-agent, loves-patient, eat-
instrument, break-patient, and so on; these roles can in tum be viewed as structured objects with two
sub-roles: verb and case-role. The patterns representing the overall roles are the tensor product of a
distributed pattern representing the verb (built from semantic verb features) and a local representation
of the case-role. The representation of the overall roles is thus semi-local. The representation of the
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output as a whole is the tensor product of this distributed (albeit semi-local) representation of the roles
and a distributed representation of the fillers (built of semantic noun features of nouns). This is an
example of the kind of iterated tensor product representation that will be discussed in Section 3.7.3.
Because of this iterated structure, the output units in this model represent three-way conjunctions of
features for nouns, verbs, and semantic roles. (The "features" of semantic roles used in the model are
of the local type mentioned in Section 2.3.2.4: they are in one-to-one correspondence with the semantic
roles. A more distributed version of this model would employ real features of semantic roles, where
each semantic role is a distributed pattern of features. Then the roles in the output as a whole would
have fully distributed representations instead of semi-local ones.)

e An example of a fully distributed representation employing the 1-neighbor context decomposition is the
Rumelhart and McClelland (1986) model that learns to form the past tense of English verbs; see Fig. 7.
In this model, elements of § are strings of phonetic segments. The word "we" corrsponds to the string
[w][i] which has the bindings {w/r . ;, i/r._»}. The representation of this string is thus

W® I'< N + i®l‘w_>

The filler vectors (eg. w) are distributed patterns over a set of units representing phonetic features (eg.,
rounded, front, stop). The role vectors (eg. r< ;) are patterns of activity over a set of units each of
which represents the conjunction of a feature of the left neighbor (<) and a feature of the right neighbor
(w). (In this model, both < and > possess the single feature word_boundary.) As in the previous
example, since the roles are composite objects, they are in fact themselves further decomposed into
sub-roles. The pair of phonetic segments defining the context is decomposed using the right-neighbor
context decomposition, and the pattern representing the role r, 5 is the tensor product of patterns of
phonetic features for [a] and [b].- To reduce the number of units in the network, many of the units
arising in this further decomposition of the roles were in fact discarded. The overall structure of the
representation of the roles can still be productively viewed as a tensor product from which some units
have been thrown away.

e Touretzky and Hinton’s (1985) representation of triples of letters can be viewed as the same sort of
third-order tensor product as in the last example, but in which even more binding units are discarded.
Their representation involves a set of units o = 1, - - -, N, each of which responds to three groups of
letters (L&, L&A, LY): unit o is active in the representaton of (JM, 1D, 1) iff O e L for
i =1,2,and 3. To relate this to the tensor product representation, imagine three pools of N units, one
pool for each letter in the triple. In the i* pool, unit Z§) is active iff /© e L§): each letter is
represented by a pattern in the corresponding pool. Create a binding unit for each triple of units, one
from each pool; it is active iff the corresponding three units are active. This is the tensor product
representation of the triples induced by the 1-neighbor context decomposition, with the roles further
decomposed by the right-neighbor context decomposition, as in the previous example. Now if we
throw out all the binding units except the N "diagonal” ones corresponding to (&89, 48, &&¥), we get
Touretzky and Hinton’s representation.

Having mentioned Rumelhart and McClelland’s (1986) use of context decompositions, it is worth elaborating on
remarks of Section 2.3.1 about the advantages of context decompositions over simpler positional decompositions.
Many regularities in language depend on the context in which a constituent finds itself, rather than its absolute
position. This is particularly true in phonology; the regularities that must be learned in order to form the past tenses
of English verbs typically depend on neighbor relations: for exampie, the rule for "regular” verbs involves replacing
x/ry > by the bindings {x/ry 4, d/ry 5} if x has feature voiced, and by the binding {x/r, ., t/ry >} if x does not have
feature voiced. Thus the featural representation of phonetic segments together with the context decomposition of
the string provides the network with just the kind of representation of phonetic strings that it needs in order to learn
the regularities characterizing this task.
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Figure 7. The principal representation used in Rumelhart and McClelland (1986) for phonetic strings. The
abbreviations used are wb = word_boundary, frnt = front, bck = back, tnsd = tensed, stp = stop; nsl = nasal; gld =
glide. ‘
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2.4. Relations among purely local, semi-local, and fully distributed representations

Purely local, semi-local and fully distributed representations look quite different on the surface. Are they really
as different as they seem? According to the definitions, the only difference is the relation between the
representation vectors and the distinguished basis vectors indicating the individual processing units. Does this really
matter?

As discussed at length in Smolensky 1986b, the answer depends on the dynamics driving the connectionist
network, and not solely on the representations themselves. If the dynamics is linear, so that the activity of every
unit is exactly a weighted sum of the activity of its neighbors in the network, then networks using purely local,
semi-local and fully distributed representations will have exactly isomorphic behavior, subject to a few
qualifications. Under the linear transformations that map these three cases into each other, locality is not preserved,
so that local damage to the networks will have different effects, and what can be learned via the usual local
connectionist leaming procedures will be different. If the network contains nonlinear units, the isomorphism fails.
Also, assuming finite networks, the local case accomodates only a fixed, finite set of fillers and roles; the semi-local
case allows an unlimited number of fillers but only a finite set of roles. The fully distributed case, however, can
accomodate an infinite set of fillers and roles in a finite network, as will be discussed in Section 3.2.

3. Tensor product representation: Properties

In Section 2 I defined the tensor product representation and showed how a number of representations used in
previous connectionist models are various special cases of the tensor product representation. In this section I will
discuss a number of general properties of this representation. The case of interest is fully distributed representation;
while most of the results apply also to the more localized special cases, in these cases they become rather trivial.

3.1. Unbinding

Until now I have ignored a crucial and obvious question: if the representations of all the variable bindings
necessary for a particular structure are superimposed on top of each other in a single set of binding units, how can
we be sure the binding information is all kept straight? In this section we explore this question via the unbinding
process: taking the tensor product representation for a complex structure and extracting from it the filler for a
particular role. Under what conditions can we perform this unbinding operation accurately?

THEOREM 3.1.1: Let ypg be a tensor product representation induced by a role decomposition with single-
valued roles. Suppose the vectors representing the roles bound in a structure s are all linearly independent.
Then each role can be unbound with complete accuracy: for each bound role r; there is an operation which
takes the vector yr g (s) representing s into the vector f; representing the filler f; bound to r;.

PROOF: If the role vectors {r; } being used are linearly independent, then they form a basis for the subspace of
Vr that they span. To this basis there corresponds a dual basis {(U; } (see Section 5.1 of the Appendix). Each
element in this dual basis is a linear mapping from V3 into the real numbers with the property that

1 ifi=]
Uilrj) = 8 ={o if i)

That is, U; maps the single role vector r; to 1 and all other role vectors to 0. If we make use of the canonical
inner product on the vector space Vi, then the dual vector U; can be expressed as the operation of taking the
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inner product with respect to some vector u; in Vg:
U;(v) = vy

for all v in Vg this is shown in Theorem 5.1.5 of the Appendix. Call {u;} the unbinding vectors for
roles {r;}. Now let s be the tensor product representation of a structure in which the roles {r; } are bound to
the fillers {f;}. Then we can extract f; from s, or unbind r;, by taking a partial inner product of s with the
unbinding vector u;:

su; = (;fj ®rj)-u,- = zljf,-(rj-u;) = ;fj&j =f;

0

DEFINITION 3.1.2: The procedure defined in the preceding proof is the exact unbinding procedure.

Let unbinding of role r; be performed as in the previous proof, but in place of the unbinding vector u; use the
role vector r; itself. This is the self-addressing unbinding procedure.

Unlike the exact binding procedure, the self-addressing unbinding procedure is defined for any set of role vectors,
even if they are not linearly independent.

THEOREM 3.1.3: Suppose the self-addressing procedure is used to unbind roles. If the role vectors are all
orthogonal, the correct filler pattern will be generated, apart from an overall magnitude factor. Otherwise, the
pattern generated will be a weighted superposition of the pattern of the correct filler, f;, and all the other
fillers, {f;},«. In this superposition, the weight of each erroneous pattern f; relative to the correct pattern f;,
the intrusion of role j into role i, is

LR 7]

where 0j; is the angle between the vectors r; and r;.

PROOF:
ST = (;fj ®!‘j)‘l'.' = ;f,-(rj-n) = (l',' ‘l‘;)f,’ +,Z#(rf'ri)f"

In this weighted superposition, the ratio of the coefficient of each incorrect filler f; to that of the correct filler
f; is

r j T
T T

The denominator is | r; |2 and the numerator is cos 8;; || ;|| || r;||, giving the claimed result. |

Since the tensor product binding representation is symmetric between role and filler, the unbinding procedures
given above can also be used to retrieve a role pattern from the filler pattern to which it is bound. While there is no
asymmetry between role and filler in the representation of a single binding, an assymmetry may however result
from the combination of many bindings in the representation of a structured object. For while role decompositions
often involve single-valued roles, it is uncommon to encounter single-valued fillers. Thus while there will often be
a unique filler indexed by a given role, there will often be several roles associated with a single filler. In the latter
case, an unbinding that is performed using the filler pattern as an index will generate the superposition of all the role
vectors bound to that filler.
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3.2. Graceful saturation

Like a digital memory with n registers, a connectionist system that uses n pools of units to represent a structure
with n roles has a discrete saturation point. Structures with no more than » roles filled can be represented precisely,
but for larger structures some information must be omitted entirely. The form of saturation characteristic of
connectionist systems (eg., connectionist memories) is less discrete than this; this is one aspect of the "graceful
degradation” advertised for connectionist systems.

Aspects of the graceful degradation notion can be formally characterized as follows.

DEFINITION 3.2.1: Let F/R be a role decomposition of S. A connectionist representation y of § has
unbounded sensitivity with respect to F /R if for arbitrarily large n,

y(Afiir)

varies as f; varies, foreachi =1,2, ---,n.

If for sufficiently large n the representation of structures containing » filler/role bindings is not faithful, then
\ saturates.

If y saturates and has unbounded sensitivity then y possesses graceful saturation.

The tensor product representation, unlike local and role register representations, can exhibit graceful saturation.
To show this, I now consider an example that also illustrates how fully distributed tensor product representations
can be used to represent an infinite number of roles in a finite-dimensional vector space corresponding to a finite
connectionist network. ‘

THEOREM 3.2.2: Suppose § is the set of finite strings with unbounded length, and let {r; }/2; be the positional
roles. Let the vectors {r;}f; be unit vectors in N-dimensional space, randomly chosen according to the
uniform distribution. Then this tensor product representation possesses graceful saturation. The expected
value of the magnitude of the intrusion of role i into role j is proportional to N V2, The number of bindings n
that can be stored before the expected total magnitude of intrusions equals the magnitude of the correct
pattern increases as N 12,

PROOF: Since all role vectors have unit length, the expected value of the magnitude of the intrusion is
1 T
EI = mjo |cos 8 |V (8;) 6

Here Vy.; is the N—-1-dimensional volume of the unit sphere in N -space, and V(8;;) is the volume of the
subset of the unit spere in N-space consisting of all vectors having angle 8;; with the vector r;. This subset is
in fact a sphere in N-1-space with radius sin;. [To see this, choose a Cartesian coordinate system in N-
space in which the first coordinate direction lies along r;. Then the first coordinate x; of all points in the
subset is cos 0;;. Since all points lie on the unit spere, we have

1=/ x2=cos20;+3 N, x?
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which implies
SNox?2=1-cos?0; =sin?Q;
Thus the subset is a sphere in N-1-space with radius sin6;.] Therefore
V(8ji) = Vg sin¥-20;

Thus the expected intrusion is

_ VN 5™ .y _ VN2 Aty VN 2
El—mzjo Sy eccsede—- ijoz dz —m‘m

(using the substitution z = cos 6 which implies dz = —sin6 d8). As shown in the Appendix in Section 6, the
ratio of volumes of spheres of successive dimensions Vyo/Va-; is a complex expression taking different
forms depending on whether N is odd or even. Since these details are quite irrelevant to the general behavior
as N increases, we can look at the mean of two successive such ratios (using the geometric mean since the
quantities are ratios) which is given by the simple expression?

V(N-1)/27

The result then is

El = \/ Ty 2.
As claimed, the expected interference falls as N /2,

For a structure involving n bindings, the expected total magnitude of intrusions of all {r;};. into r; is
{(n—1)EL This equals unity at

n=vr2 (N-1)12+1
which increases as the square-root of N. ||

The estimate of interference given in the preceding theorem is a very conservative one, since it computes the
expected sum of the absolute values of all intrusions. In fact, for any given component of the desired filler, the

errors caused by intrusions will be of both signs, producing a net error much smaller than the worst case analyzed
above.

3.3. Continuous structures and infinite-dimensional representations

Certain structures are characterized by a continuum of roles. Strings, for example, have a natural extension to a
continuum of positions. Examples of such continuous one-dimensional "strings" include speech input and motor
output; a two-dimensional example is an image.

3. There is a rough calculation that suggests that, as the dimension N grows, the expected inner product of role vec-
tors should decrease with the square root of N. Suppose for the first N role vectors we chose an orthonormal basis.
For the next vector, suppose we choose one that is equidistant from all the others; an example is the vector whose
components in the orthonormal basis are N-1(1, 1, -~ -, 1). In order for this vector to have unit length, the normali-
zation constant N must be YN. Now the inner product of this vector with any of the others is N~! = N-12,
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The tensor product representation extends naturally to the case of a continuum of roles. The representation of
the conjunction of bindings extends naturally from the sum over a discrete set of bindings to an integral over a
continuum of bindings.

DEFINITION 3.3.1: Let F/R be a role decomposition of §, not necessarily finite, and let dp(r) be a measure
on R. Let suppr (s) be the subset of R containing roles which are bound in s, and suppose F/R has single-
valued roles. Suppose given the connectionist representations

yr:F- Ve f o f
Yr:R>Vari>r

and assume these functions are measurable with respect to dp(r). Then the corresponding tensor product
representation of § is

Yrr(s)= pi QLA

yrr (s) is defined only for those s for which the integral is well-defined: suppg (s) must be a measurable set
and the integral must converge.

If the role decomposition is finite, and d1 is counting measure, then this reduces to the previous definition of the
tensor product representation.

In the case of a continuous string, we can take the roles to be r(¢) for a continuous time index ¢. For the
measure we can use ordinary Lebesgue measure on ¢. Then if each is represented by a pattern r(¢) and the fillers by
the patterns f(¢), the entire continuous string is represented by Lf(t)@r(t) dt This representation of the continuous
structure goes over exactly to the discrete case if it happens that the fillers are discrete step-functions of time.
Suppose the filler f(¢) is constant over the interval [#;, 441] with value f;. Then the representation of the string is

[fo®r dt = T F@r) dt = T Br(t) dt = T ® [\ r(¢) dt = T O

where the vector representing the discrete role for the time slot [#;, #;41] is the integral of the vectors representing the
time points in the slot:

L
r; :=j“ r(t) dt

The representation of a continuous string can be visualized with the help of the example illustrated in Fig. 3,
which shows a tensor product binding between a time and the energy level of a speech formant. The patterns
representing the energy level and time are peaks centered at the values being represented; this can apply to
continuous represented values as well as discrete ones. The pattern r4 representing time i = 4 (shown in Figure 3) is
a peak centered on the third role unit; a pattern r(4.2) representing time ¢ = 4.2 would be derived by taking a peak
on the continuous line centered at 4.2 and evaluating it at the integer values i = 1,2, -+, 5. One can similarly
generate patterns representing continuous energy levels f(t). As in the discrete case, the tensor product
representation of the binding f (¢)/r (¢) then becomes a two-dimensional peak centered at (¢, f (¢)), evaluated at
points with integer coordinates. Superimposing the representation of the bindings for all 1, we get the representation
of the continuous string of energy levels: it resembles a smeared-out version of the graph of energy versus time, the
activity of each unit in the grid of Fig. 3 being greater the closer it lies to the actual graph.

In the representation illustrated in Fig. 3, the role and filler vector spaces have finite dimensions (5 and 4,
respectively). In such a case it is of course impossible for all the role vectors to be linearly independent; that would
require an infinite-dimensional fole vector space. The tensor product representation applies as well to infinite-
dimensional vector spaces as to finite-dimensional ones. In that case the patterns representing roles (and possibly
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also fillers) would not be patterns defined by a finite number of values as shown in Fig. 3 but could rather be curves
defined over a continuous segment. The peaked patterns representing energy levels and times could be smooth
Gaussians over a fixed interval, with mean equal to the quantity being represented and with variance, say, some
fixed value. Then the representation of each binding would be a two-dimensional smooth Gaussian with mean at
the point with x - and y -coordinates equal to the time and energy values, respectively.

If the role space is infinite-dimensional then so too will be the binding space. To view this space as the states of
a connectionist network would require postulating an infinite number of units, one for each dimension of the space.
The infinite-dimensional case is of interest not for computer simulation but for analysis; patterns which are
functions of a continuous variable pose no particular difficulty for analysis relative to patterns which are finite-
dimensional vectors.

It is significant that the tensor product representation extends so naturally to continuous collections of roles,
continuous sets of fillers, and vectors for representing roles and fillers that are continuous patterns. As I have
argued elsewhere (Smolensky, forthcoming), it is useful to hypothesize that a defining characteristic of
connectionist computation is the existence of an underlying continuous model. Thus a well-motivated connectionist
representational scheme should have a natural continuous extension, even if particular simulation models take
advantage only of the discrete case.

3.4. Connectionist mechanisms for binding and unbinding

The tensor product representation has so far been characterized mathematically, without any discussion of how
such a representation might be set up and used in a connectionist system. In this section I consider first the creation
of bindings and then unbinding.

3.4.1. Parallel binding in connectionist systems

The most immediate application of the tensor product representation is to models learning to map some
structured input to structured output; for example, the surface form of a sentence to its parsed form. Here it is not
the job of the network to set up the tensor product representations: in presenting the input/output pairs to the
network during training, the modeler must convert the symbolic inputs and outputs to their vector representations,
and this can be done directly by using the mathematical definition of the tensor product representation.

In more complex applications, a network might be so constructed as to intemnally perform variable binding via
the tensor product. A convenient way to achieve this is to use so-called sigma-pi processing units (Rumelhart,
Hinton, & McClelland, 1986). Such a unit has a number of input sites at each of which connections from a number
of other processors converge. For each site o, the sigma-pi unit takes the product of all the inputs {I4; }; there; it
then adopts as its value v a weighted sum over all sites, with one weight wg per site:

V= %wgnl p

Using sigma-pi units, tensor product binding can be easily achieved in a connectionist network: see Fig. 8. The
network consists of a set of filler units f, a set of role units 7,, and set of binding units b4,, one for each pair of filler
and role units. Each binding unit is a sigma-pi unit with a single site with unit weight. Converging on the site of the
binding unit by, are two connections, one from fy and one from 7,. Then if the filler and role patterns f and r are set
up on the filler and role units, the binding units will set up the representation of the binding f/r.

Figure 9 shows a network equivalent to the one shown in Fig. 8. Here the product occurs not at the unit but at
the junction of two connections; the two activities entering the triangular junction (of Hinton, 1981a) from the filler
and role units are multiplied together and the result is sent along the third line to the binding unit.

The representation of complex structures requires superimposing multiple filler/role bindings. There are two
obvious ways of doing this: sequentially and in parallel. In the sequential case, one binding is performed at a time,
and the binding units accumulate their activity over time. This can be achieved with the network shown in Fig. 8 if
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we use accumulating sigma-pi binding units obeying:
&Y = Swal Lo

Equivalently, serial binding can be performed by the network of Fig. 9 if the binding units accumulate activity over
time.

In order to superimpose all N bindings in parallel, we need to extend the network shown in Fig. 8, creating
nodes {f { }&L1 and {r{® }&-1: see Fig. 10, which illustrates the simplest case, N = 2. Now each sigma-pi binding
unit has N sites instead of one; each site has unit weight. Each site o on binding unit by, receives a pair of

connections from the nodes f§ and 7{®. Now we can bind N pairs of roles and fillers in parallel. In the ¢* filler
pool we set up the pattern fg representing f s and on the 6* role pool we set up the pattern r, representing 7. The
value of binding unit by is then

by = 21 (@, 7} = Z (ol

The pattern of activity on the binding units is thus the correct tensor product representation of the structure. Fig. 11
is the equivalent of Fig. 10 using multiplicative junctions instead of sigma-pi units.

There is no need to perform all the binding serially or in parallel; the mechanisms of sequential and parallel
combination of bindings are independent, and can be combined. If there are N pools of filler and role units, N
bindings can be established in parallel, and if the binding units accumulate activity over time, further bindings can
be added sequentially, up to NV at a time.

There are two senses in which bindings are occuring in parallel here. Bindings are generated in parallel, N ata
time; the generative capacity is sharply defined by N. At the same time, multiple bindings are being maintained in
parallel; the binding units can simultaneously support multiple bindings superimposed on each other. The
maintenance capacity of the representation is not sharply defined, due to the graceful saturation of the
representation. The scale of the maintenance capacity is, however, set by n, the number of role units in each of the
N sets.

For the network shown in Fig. 10, the generative and maintenance capacities are independent; this contrasts with
most existing connectionist systems. For example, the McClelland & Rumelhart letter perception model processes
exclusively four letter words. Strings of length n =4 can be represented; the maintenance capacity is precisely
defined at 4 letters. The binding of all four letters to their positions are all performed in parallel; the generative
capacity is also N = 4. If different roles correspond to different regions of a parallel network, as in local and semi-
local representations, it is natural that these roles should all be sent activation in parallel. If the different roles share
a common set of units, as in fully distributed representations, there comes the space/time trade-off we have seen
above: duplicate machinery to permit parallel binding, or wait while multiple bindings are performed serially.

It seems intuitive that the two binding capacities ought to be independent characteristics of the degree of
parallelism in a processing system. In many human cognitive processes, for example, the generative capacity of
binding appears to be much smaller than the maintenance capacity: N<<n. In visual perception we are able to
maintain rich percepts involving a huge number of bindings of properties to locations, but it turns out that at any one
time (requiring approximately 50 msec) our visual systems can only establish the bindings for a small region of the
visual field (Treisman & Schmidt, 1982). The large number of bindings that we maintain in parallel are generated a
small fraction at a time through an extended sequential process. In discourse processing, syntactic and semantic
processes seem to indicate that many constituents in complex structures are being maintained and processed in
parallel, yet only a small fraction of these constituent/role bindings are generated at once. If one looks at the
processing of small linguistic and/or visual items whose size fits within the binding generative capacity (eg. four-
letter words), the distinction between the generative and maintenance capacities does not assert itself. However,
connectionist models of more complex, extended tasks such as reading whole passages must respect the distinction
between these two aspects of parallelism; the tensor product representation offers a natural way to do so.
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3.4.2. Connectionist unbinding mechanisms

The mathematics of the unbinding procedure was described in section 3.1. It is easy to implement this
procedure in a connectionist network; in fact, the network of Fig. 9 can be used for unbinding as well as for binding.
We presume that the binding units are supporting a pattern of activity which is the tensor product representation of a
structure. To unbind role r;, a pattern of activity is first set up on the role units: for the exact unbinding procedure,
this pattern should be that of the unbinding vector u;; for the self-addressing unbinding procedure, the pattern
should be r;. As a result of the activity in the role and binding units, a pattern of actitivity arises on the filler units.
At each triangular junction, the activity of the connected role and binder units are multiplied together and sent to the
connected filler unit, which adds up all the inputs it so receives. Thus the activity of filler unitf, is

fo= %‘f sbep

This is the correct activity to implement the unbinding procedures of Section 3.1. With the extended network shown
in Fig. 11, N roles can be unbound simultaneously.

This procedure has been defined for retrieving a filler from a role. By interchanging roles and fillers, it can also
be used to retrieve a role from a filler, subject to the caveat of section 3.1 about non-single-valuedness.

3.5. Binding unit activities as connection weights

In Section 3.4.1 we discussed one way of generating the tensor product representation of a structure:
sequentially representing individual filler/role pairs on the role and filler units, while each binding unit takes the
product of the activities of its corresponding pair of role and filler units. These products then accumulate on the
binding units as the individual pairs are presented. This procedure is formally identical to the Hebbian learning
procedure for storing the associations between roles and corresponding fillers: each binding unit plays the role of
the connection between a role and filler unit, and its activity plays the role of the weight or strength of that
connection. Furthermore, the self-addressing unbinding mechanism described in Section 3.4.2 is formally identical
to the use of the Hebbian weight matrix to associate a pattern over the role units with the corresponding pattern on
the filler units.

This relationship between binding units and connections suggests avenues for further exploration, two of which
will now be briefly described.

3.5.1. From Hebbian to Widrow-Hoff weights

In section 3.1 it was pointed out that pattern needed for exact unbinding of role r;, the unbinding vector u;, is
not in general equal to the role vector r;; the retrieval and role patterns are equal only if the role vectors are all
orthogonal. This corresponds to a well-known property of the Hebbian weight matrix: associations will be correctly
formed by the Hebbian leamning procedure if and only if the input patterns are orthogonal. There is a more complex
learning procedure than the Hebbian one which produces a matrix with better retrieval capability than the Hebbian
matrix: the Widrow-Hoff (1960) or delta rule (Rumelhart, Hinton, & McClelland, 1986) This suggests replacing the
Hebbian matrix corresponding to the tensor product representation with the Widrow-Hoff matrix. With this new
representation, the self-addressing unbinding procedure would produce correct results as long as the role vectors are
linearly independent. orthogonality is not required. Unfortunately, this Widrow-Hoff representation is considerably
more difficult to write down, analyze, and actually construct in a connectionist network. For example, the Widrow-
Hoff learning procedure, unlike the Hebbian one, requires repeated presentations of the set of items to be stored.
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3.5.2. Relation to Connection Information Distribution

The relation between tensor product binding units and Hebbian weights suggests another development of the
present analysis. In McClelland’s (1986) Connection Information Distribution (CID) scheme, the activity of certain
units determine the weights between others. Unbinding could be naturally carried out in a CID as follows. The
represented structure would be active in a set of binder units which would set the weights between role and filler
units, This would create a machine that transforms roles patterns to filler patterns (to the approximation to which
retrieval vectors equal role vectors). Fig. 11 can be viewed as a CID in which the binder units are setting weights in
a collection of N role/filler associators.

Despite the intimate relation between tensor product binding units and connection weights, it should emphasized
that the primary purpose of the tensor product representation is not to serve as an apparatus for filler/role
associations: it is rather to provide a pattern of activity representing a structured object which can then be used to
process the object as a whole. This is the reason the elements of the tensor product representation have been viewed
as the activities of units rather than the strength of connections. The CID allows us to use unit activities as
connection strengths, giving us simultaneous access to both aspects of the representation.

3.6. Values as variables

1t is often important for the value bound to a variable to in fact itself be a variable to which a value is to be
bound. The tensor product binding representation allows for this in the following way. Out of the representation for
the variable/value binding can be extracted the pattern of activity that represents the value. This pattern can in tum
be used as the pattern representing a variable, and used in another binding on other binding units where it is bound
to a value. The situation is depicted in Fig. 12.
3.7. Representation of symbolic operations; recursive decompositions

So far we have not considered the representation of symbolic operations: mappings from S to itself. Examples
that will now be considered are the stack operations push and pop and the LISP operators car, cdr, and cons.
Understanding such operations are important for treating recursive role decompositions, since in such a
decomposition each role is in fact an operator mapping S into S .

The definition we need to get started is
DEFINITION 3.7.1: Let O be an operator on §':

0:5-58;5>0(s)

Suppose y: S — V is a connectionist representation of §. Then a corresponding representation of O is an
operator

OV Vv Ov
with the property

(0 (5)) = Ow(s)

3.7.1. Stack operations: push and pop

In this section we consider the basic stack operations, push and pop . To keep complications to a minimum, two
simplifications will be made. In place of a stack containing complex elements, simple strings from a fixed alphabet
will be used to model the essential stack structure of linear ordered elements with a first element. The second
simplification will be to consider an infinite stack, i.e., no limit to the length of the strings modeling the stack.
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Let S be the set of finite-length strings from an alphabet A. Let F/R be the positional role decomposition of
definition 2.3.1.1. Let yr be a faithful representation of F, and let yz be a representation of R in which the role
vectors {r; }fzo representing the positional roles {r;}/2o are all linearly independent. This means that Vi is an
infinite-dimensional space. (The analysis can easily be modified to strings of length no more than n, in which case
Vg can be n -dimensional; the finite case just introduces uninteresting complications.) For simplicity, assume that the
role vectors span the space Vg and therefore form a basis.

The positional role decomposition has the property that if r; is unbound, so is r; if j>i. Thus the
representations of strings are all in a restricted subspace of V':

DEFINITION 3.7.1.1: The string subset of V is

Vs=(3fi®r;| foralli,iff; = 0then forall j>i,f; =0}

THEOREM 3.7.1.2: The pop operation on S is represented by a linear transformation pop on V:

pop: Vo Vi 36 ®r; —» 3 fi®riy

The operation push, on S is represented by an affine transformation push, on V:

pushy: Vo V; 3 ®r; 5 a®ro+ 3 fi ®riyy

Both pop and push, inap Vsinto Vg, forall a #0.

PROOF: First note that the definitions of pop and push given in the Theorem are adequate because, as shown
in Theorem 5.3.4  (b) of the Appendix, every vector in V = Vp® Vi can be uniquely expressed in the form
Y fi @r; since {r;} is a basis of Vz. That pop is linear and push is affine are easily checked.

Suppose s is the string aoa - - - a, and that the characters have representations g (¢;) = a;. Then
Ypop (s)) = y(ai1az " =" Gp-1) = gaa ®ri1 = pop2.a; ®r; = popy(s)
Thus pop is a representation of pop. Similarly, push, is a representation of push, .

Y(push,(s)) = y(aaoa; - - - a,) =a®ro+ fbai ®r;4; = push, Y a; Or; = push, y(s)
1= 1=

3.7.2. LISP binary tree operations: car, cdr, and cons

Let S be the set of LISP S-expressions built from a set of atoms A. We define a role decomposition as follows.
For the fillers, take F = A. A typical role, 7911011, is defined as follows. The predicate a/ro11011 is "the caddaddr is
the atom a". The roles are indexed by finite bit strings, and correspond to compositions of car and cdr operations,
with O indicating car and 1 indicating cdr. Note that these roles are to be filled only by atoms. Thus, for example,
the S-expression s = (a (b . ¢)) contains the bindings {a/ro, b/roy, ¢/r11}; the role ry is unbound—not because s
has no cdr, but because the cdr is not an atom. The role indexed by the empty string € is special: the predicate a /r
is "is the atom a ."
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This decomposition is faithful and has single-valued roles. If objects like circular lists are considered valid S-
expressions, then the decomposition is not finite.

This role decomposition has the property that if r, is bound, then ry, is unbound, where yx is the concatenation
of the bit strings y and x. In particular, if r¢ is bound, no other role can be; this is exactly the case for atoms. Lists
are S-expressions for which the cdr is never a non-nil atom, at all levels of imbedding; in other words, for all bit
strings x, r 1, is unbound or bound to nil.

Let yz map each r; into a corresponding vector r, in a basis of an infinite-dimensional vector space Vz. Let yr
be a faithful representation of F = A in Vp, and let nil:=yr (nil). Now we investigate the properties of the induced
tensor product representation .

DEFINITION 3.7.2.1: The atomic subspace of V is
Va= {fOr¢|fe Vr} = Vr®span({re})
The non-atomic subspace of V is

na= {2 ®r, |y € Vi) = Vpr®span({r; |x #&})

The S-subset of V is

Vs= {31 ®r,| forallx,if f; =0 then forally, f,, =0}

The list subset of V is

Vi=(3f®r; € Vs| forallx, fi; #0 > fi; = nil}

Note that V; is not closed under vector addition. For example, y((a)) + w(((b))) corresponds to a mixture of two
list structures; it possesses the bindings {a/ro, b/re}, violating the condition defining V5. Thus Vs is not a vector
space. The same example also shows that V; is not a vector space.

Now we are ready for representations of the operators car, cdr, and cons.

DEFINITION 3.7.2.2: Define two linear transformations To and T; on V by the following actions on the basis

{r:}:
To: Va— Ve T Ty Fri > 0;re e 0

Ti: Ve VR Tx1 5 Iy Feo > 05 reg > 0

THEOREM 3.7.2.3: The following linear transformations on V' are representations of the operators car and cdr:

car: 3 f, ®r - 3 f, @Tors
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cdr: 3, ®r, » Y, ®Tir,

PROOF: The representation of an S-expression s can be written

ys) =36 08r), =f:@re+ Y0810+ Y1 Oy
¥ X X

Now fxo = cxr(car (s)), where cxr denotes the composition of cars and cdrs corresponding to the bit string
x. Soif ¢t = car(s), then fzo = cxr(t). Thus the filler of r,¢ in s is the filler of r, in ¢t = car(s). Conversely,
any filler of r, in ¢ is a filler of 7x¢ in 5. Thus the representation of car (s) is

y(car(s)) = Y fo®r, = car[fg® Te+ 3 f0@r, 0+ Zf,,;@r,l] = car y(s)

This shows that car represents car. By replaying this argument with car replacing cdr and with 0 and 1
interchanged, we see that cdr represents cdr . The linearity of car and cdr are immediate consequences of the
linearity of T and T;. ’

NOTE: The operators car and cdr treat nil like all other atoms: they map it to 0. This corresponds to the
car and cdr of all atoms, including nil, being undefined. If car and cdr are defined to be undefined on all
non-nil atoms, but to take nil to nil, then the above definitions of car and cdr have to be changed if they are
to represent car and cdr: the definitions must include the ad hoc stipulation that nil®r is mapped to itself,
while a ® ¢ is mapped to 0 for all vectors a representing non-nil atoms. This does not destroy the linearity of
car and cdr as long as the vector nil is linearly independent of the representations of all non-nil atoms. It
does destroy the property that f®r > r® Tr, where the transformation of the role is independent of its filler.
0

THEOREM 3.7.2.4: Let up and uy be two vectors in V. Then there is a unique vector v in V,, such that

car v =g
cdrv=u

Define
cons: VXV — Vi (up, u) —> v
Then this function is:

cons: (3£ ®ry, T, Ory) o ¥ £, Orro+ Ty Bryy
X Yy x Yy

cons is a representation of the cons functionon §.

PROOF: Let

w=Yf, Or,
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u = Zf'y @l‘y
¥
v=3f8r+Xf;,®ry;
x Yy

Then
carv=car[2f,®r,o+2f’y®r,1] =3, ®r; =1
x y X
and
cdrv=cdr[2f,®rxo+2f'y®ryl] =3, ®ry =u
x y y

Furthermore, v € V,, 50 v satisfies the required conditions. These conditions completely determine v: the car
condition determines the fillers of all {r.o}, the cdr condition determines the fillers of all {r,;}, and the
condition that v be in V,, implies that the only remaining role, ., must be unfilled.

Since car and cdr represent car and cdr, it follows that cons represents cons . To see this, let

s = cons(so, 51)
up = Y(so)
u; = y(s)

Then, since car represents car, and car (s) =g,
car y(s) = y(car (s)) = Y(so) = wo

and similarly
cdry(s) = uy

By the previous part of the proof, this implies that
Y(s) = cons(uo, uy)

In other words,
Y(cons (so, s1)) = cons(y(so), W(s1))

Thus cons represents cons. ||

Just as complex structures in § can be constructed from atoms by successive applications of cons, so the tensor

product representation of these items can similarly be constructed by successive applications of cons on the vectors
representing atoms:

y(a) = yr@)dre

Using cons to build up complex representations from simpler ones allows us to exploit the recursive role
decomposition of § provided by car and cdr.
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The analysis of strings in Section 3.7.1 can be viewed as a subset of this analysis of S-expressions. The alphabet
is identified with the set of atoms, and the i*% positional role r; of the string is identified with roi,, where i, is the

unary representation of i: i, =11---1(/ times). The operator pop becomes cdr and push,(s) becomes
cons(a,s).

3.7.3. Iterated tensor product representations

Related to recursive decomposition is the simpler case of iterated decomposition. This occurs when the fillers or
roles are themselves structures that are decomposed by a new role decomposition. In other words, having
decomposed § in terms of F and R, we now take F or R as a new §’ and decompose it in terms of new fillers F’
and roles R’. Consider the case of decomposition of R. If the role decomposition of R is F’/R’, then the binding
f/r isitself a set of bindings f /(f “/r"). The tensor product representation of such a finer-grained binding is then

fO(H'Sr)

In this case we are led to third-order (or, by further iteration, even higher-order) tensor products. The binding units
can be interpreted as representing third- (or higher-) order conjunctions of features.

This iterative structure is just what we see in the Rumelhart and McClelland (1986) past-tense learning model.
Here the original role decomposition of phonetic strings is the 1-neighbor context decomposition. Each role 7, -y 18
itself a structured object, whose structure is determined by the pair (x, y). These pairs can be decomposed by the
right-neighbor role decomposition, in which x fills the role has right neighbor y, r’ ,. Thus the binding i/r,, i (the
vowel in week) becomes i /(w/r’ ;) and the final representation is the third-order tensor product:

iOw® l"__k
(In fact, in this model, this is just i® w®k, since the role vector r” ; is just k.)

3.8. Storage of structured data in connectionist memories

One of the primary uses of connectionist representations is as objects of associations in associtive memories.
Because of its mathematical simplicity it is possible to analyze the use of tensor product representations in such
memories. Here I analyze the case of pair association since it is simpler than the content-addressed auto-association
case which is perhaps a purer example of connectionist "memory” (see Rumelhart, Hinton, & McClelland, 1986).

We start with the simplest possible case.

THEOREM 3.8.1: Suppose Wrz is a tensor product representation of § induced by a decomposition with
single-valed roles, with representations of fillers and roles in which all filler vectors are mutually orthogonal
as are all role vectors. Let {s®)} be a subset of S, and let the vectors representing these structures, {s®)}, be
associated in a connectionist network using the Hebb rule with the patterns {t®)}. Then if the structures {s®)}
share no common fillers (i.e., for each role, all structures have different fillers), the associator will function
perfectly; otherwise there will be cross-talk that is monotonic in the degree of shared fillers. In particular, the
output associated with s%) is proportional to

B 4 ;}ulk t&)
ey
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where

= "rf.“éf JQ )” e )2
T TSR

PROOF: The Hebbian weights are

W = ;tac)sac)r

Thus the output generated from the input representing s) is (using Theorem 0 (c) from the Appendix):

Ws = SO0 50
- ;t(k)l;f‘az)@ r‘} .[;fﬁ)@r ,v]
= Tt );;(ff" MDY rir;)
- ;gk);;(sf‘g,), el 0135 v 1)
=TT, ool 91 i[>

- Fn A r.muZ} 0+ é{z:!l 12O}y, ;} e

The first term here is the correct associate t¢) weighted by a positive coefficient. The second term is a sum of
all other (incorrect) associates {t%)};,; , each weighted by a non-negative coefficient. These coefficients will
all vanish if there are no common fillers. Taking the ratio of the coefficient of t*) to that of t® gives the
desired result. [

The Hebb rule is capable of accurately learning associations to patterns that are orthogonal. If the patterns are
not necessarily orthogonal but are still linearly independent, the associations can be accurately stored in a
connectionist memory using the more complex Widrow-Hoff (1960) or delta leaming procedure (Rumelhart,
Hinton, & McClelland, 1986). So the question is, what collection of symbolic structures have linearly independent
representations under the tensor product representation? To answer this question, it turns out to be important to
define the following concept:

DEFINITION 3.8.2: Let F/R be a role decomposition of § and let k +—> s*) be a sequence of elements in §. An
annihilator of k > s® with respect to R /F is a sequence of real numbers k ~> o®), not all zero, such that, for
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all fillers f € F,andallrolesr € R,

ok = 0.
k: fir € B(s®)

For example, consider the sequence of strings (ax, bx,ay, by). With respect to the positional role
decomposition, this has a total annihilator (+1,-1,-1,+1), since for each filler/role binding in
{alry, biry, xIra, yir;), the corresponding annihilator elements are {+1, —1}, which sum-to zero.

THEOREM 3.8.3: Suppose W is a tensor product representation of the structures S, and that k > s® is a
sequence of distinct elements in §. Suppose that the filler vectors f representing the fillers bound in the
elements {s®)} are all linearly independent, and that the same is true of the role vectors r representing the
roles bound in the elements s®, If k£ —> s®) has no annihilator with respect to F /R, then associations to the
tensor product representations {y(s;)} can all be simultaneously and accurately stored in a connectionist
memory by using the Widrow-Hoff learning rule.

PROOF: Let

W(s®) = IO,

Here we use the same set of roles {r;} for all structures {s*)}; by Theorem 0 (b), this can always be done

provided we allow the filler vector ff¥) to equal the zero vector whenever the role 7; is unbound in structure
5@,

By the remarks immediately preceding Definition 3.8.2, it is sufficient to show that the patterns {y(s*)}
are all linearly independent. Suppose on the contrary that there are coefficients {a®)}, not all zero, such that

0= ;ack)w(su:)) = ;am{ SO | = Zl:;a(k)f‘(k)} ®r;

Then, as shown in Theorem 5.34 (a) of the Appendix, because the role vectors {r;} are linearly
independent, this implies that for all 7,

z:(x(k)f‘(k) =0

Now we rewrite this as a sum over all distinct filler vectors:

f. ok) = 0
27: ’Yk: f,§= f,

But since the filler vectors {f,} are linearly independent, this implies, for all i and for all v,

a®) =0
E: f,z';= f,

This means exactly that {o®)} is an annihilator of the sequence of structures £ > s®), Since by hypothesis
such an annihilator does not exist, it must be that the representations {\y(s®))} are linearly independent. [

It was remarked above that the strings {ax, bx, ay, by } possess an annihilator with respect to the positional role
decomposition. This means that the tensor product representations of these strings are not linearly independent,
even under the preceding theorem’s assumptions of linearly independent filler and role vectors. They cannot
therefore be accurately associated with arbitrary patterns even using the Widrow-Hoff learning rule. On the other
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hand, it is easy to see that the strings {ax, bx, ay} do not possess an annhilator; the preceding theorem shows that
they can therefore be accurately associated with any patterns.

3.9. Learning optimal role representations

The tensor product representation is constructed from connectionist representations of fillers and roles. As
indicated in Section 2.3.2.3, distributed representation of fillers has been used in many connectionist models for
some time; usually, these representations are built from an analysis of the fillers in terms of features relevant for the
task being performed. But what about distributed representations of roles? This is basically a new problem raised
by the tensor product representation. For many applications, it is easy to imagine task-appropriate features for roles
that could serve well as the basis for distributed role representations. For example, Fig. 3 shows a distributed
representation of positional roles with the useful property that nearby positions are represented by similar patterns.

In this section I will examine the question of distributed representations for roles from a domain-independent
perspective. I will characterize one rather general sense in which a set of role vectors might be considered
"optimal.” Then I will analyse this criterion, and finally show how a connectionist network could learn such optimal
representations itself.

3.9.1. Optimal role representations

Suppose that F/R is a faithful role decomposition of § with a finite set of roles, {r;}¥;. Suppose we are to
represent these roles using a set of n role units, where n<N. What role vectors in the n-dimensional role space Vi
should be used to represent the N roles? What we have is essentially a compression of information, and the question
is: How can the n-dimensional space be used to represent N roles with the minimal Ioss of information?

How can we measure the information available to a connectionist system using the tensor product representation
with a given representation of the roles? One way is to have a network of connections attempt to extract the N roles
out of the pattern, and see how close it can come to the original. Fig. 13 illustrates this method, which is a variation
on approaches that have been pursued by a number of connectionist researchers. Grossberg has for a long time used
similar approaches for studying the learning of codes in connectionist systems (see, eg., Grossberg, 1982). Closely
related methods have been embodied in Boltzmann "encoder” networks (see, eg., Ackley, Hinton & Sejnowski,
1985) and further explored with the back-propogation learning rule (Rumelhart, Hinton, & Williams, 1986). The
verb-learning model of Rumelhart and McClelland (1986) also involved a similar scheme. The study by Williams
(1985) is directly relevant: certain special cases of results from that study are used as lemmas below. (The theorems
presented below are, to the best of my knowledge, new.)

Consider the tensor product representation of s. It is a pattern of activity over a matrix of connectionist units, as
in Fig. 3. Since all filler units are treated equally, for the purposes of analyzing role representations we can just
arbitrarily pick one, fy, and focus exclusively on it. This amounts to focussing on a single row of the matrix of
binding units, {5¢ »}8=1. This is the middle row of Fig. 13. In the representation of s, the pattern of activity on this
row of binding units can be constructed as follows. For each role r; there is a corresponding "input” unit i; in the
bottom row of units in Fig. 13. The activity of input unit i; is the activity of the chosen filler unit f¢ in the pattern f;
representing the filler of role ;

i = (f)e,

The components of the role vectors determine the strengths of the connections between the input units and the
binding units in Fig. 13. In particular, the strength Wy, of the connection from i; 10 by, is the p-component of the
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Figure 13. A network for studying the information available to connectionist processing in tensor product
representations using a set of role vectors {r;}.
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vector r; representing role r;:
Woi =(ri)p

The units in the middle layer of Fig. 13 are linear units whose value is the weighted sum of their inputs. Therefore
the activity of the p* middle unit, 7, is:

My = ZWpifi = 2ri)p(fids, = [Q‘:f, ®r,) e bog

Thus we see that the activity of the middle layer is indeed the pattern of activity of row ¢ in the tensor product
representation. (In fact, the network of Fig. 13 is equivalent to the ¢ portion of the network of Fig. 10. Here we
assume there are enough pools of units in Fig. 10 to dedicate one pool to each role and thereby to generate all
bindings in parallel. Unit {; in Fig. 13 corresponds to unit f%;) of Fig. 10. With a given set of role vectors, each

placed in a fixed pool of role units, the activity of the units 7§ in Fig. 10 is constant, and instead of using these
activities as multiplication factors at the sites of the sigma-pi units, they are used as connection weights in Fig. 13.)

The weights between the lower and middle layers of Fig. 13 use the role vectors to set up (the ¢g part of) the
tensor product representation of s in the middle layer. This matrix of weights determined by the role vectors will be
called the encoding matrix E. In order to measure the amount of information in the tensor product representation
that is available to connectionist processing, there is a second layer of connections in Fig. 13 that attempts to extract
the original information. The matrix of weights from the middle to the upper layer will be called the decoding
matrix D. Each unit §; in the upper layer of Fig. 13 attempts to compute the activity of the corresponding input unit
i; in the lower layer. Perfect performance would occur if the pattern of activity of the top layer exactly matched that
of the bottom layer. In this case, the compression of information through the middle layer would not lose any
information. As a measure of the amount of information lost, it is natural to compute the sum-squared error in the
output pattern o as a copy of the input pattern i:

EG) = "2:;@ — P = o2

This error, of course, depends on the input pattern i; as an overall measure of the error incurred in the
encoding/decoding process, we can average over input patterns.

THEOREM 3.9.1.1: Suppose we randomly generate input patterns i, with the activities of the input units
independent, identically distributed random variables with mean 0 and variance v2. Then the expected value
of E(i) is

w3, |DE&—4[?

Here, &; is the input pattern in which input unit #; has activity 1 while all other input units have activity 0.

PROOF: Expand the input vector i in the basis &;:

i= ZVgé[
]
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E(@) = ||o-i]?
= | DE-i|?
= | (DE-D)i||2

| E-1) $v;a: )2
= ~1)2 vié&

- ltév;(DE—1>éf||2

= {‘gw(m:-l)éi} -[};vj <DE—1>é:]
- g};w v;(DE-1)%; (DE-1)2;

When this quantity is averaged, the terms with { #j vanish: since the random variables v; are independent, the
expected value of v;v; if i#j is the expected value of v; times that of v;; both these are O since all v; have
mean 0. What remains are the terms with i =j; for these terms, the expected value of v;v; is the variance v2
(again, because all v; have mean 0), and the dot-product of the vectors is just their squared length. This gives
the desired result.

The preceding result motivates the following definition:
DEFINITION 3.9.1.2: The expected error for the network of Fig. 13 is defined to be

2

E = iu DEg;—¢;
i=

The expected error depends both on the encoding weights E and the decoding weights D. For present purposes, I
will consider a set of role vectors to be "optimal” if it permits the least possible expected error.

DEFINITION 3.9.1.3: A set of role vectors determines an encoding matrix E. For a given E, let the minimal
error be the smallest value of E that can be obtained by varying the decoding matrix D. A set of role vectors
is optimal iff no other set of role vectors has a lower minimal error.

Before proceeding to the analysis of optimal role vectors, it is helpful to change the network of Fig. 13 to the
one shown in Fig. 14. The upper layer of Fig. 13 has been identified with the lower layer, so that instead of a
three-layer, feed-forward network we now have a two-layer, feed-back network. The weights are unchanged: E is
the matrix of weights from the lower layer to the upper layer of Fig. 14, and D is the matrix of weights from the
upper to the lower layer. I will refer to networks like those of Fig. 14 as encoding/decoding networks.

The definition of the expected error E is formally unchanged, although the interpretation is slightly different: the
matrix DE now represents the passage of activity up from the lower to the upper layer and then back down to the
lower layer again.

THEOREM 3.9.1.4: It is always possible to find a set of optimal role vectors for which the connections in the
corresponding encoding/decoding network are symmetric.

PROOF: For the purposes of this proof and the following one, let L = DE. L is so named because it is the
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Upper Layer

Lower Layer

Figure 14. The network of Fig. 13 with corresponding input and output units identfied: an
encoding/decoding network.
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lower cycle: it takes activity from the lower layer, passes it to the upper layer, and then back down again to
the lower one. This cycle determines the expected error, so the expected error can be written in terms of L:

E=} |Le-&?
=TI @)
= $(L~1)éz (L-1)&
=24 L-)TA-D&
= Tr(L-1)T (L-1)

Here Tr denote the trace operation. What we show next is that for optimal role vectors, L is symmetric. To
this end we express L in terms of its symmetric and anti-symmetric parts S and A :

S=12(L+LT); A=12(L-LT) > L=S+A;S8T =§;AT =-A;SA = AS
Now we express the error in terms of S and A:
E = THL-1)T (L-1)
=T(L'L-[LT +L]+1)
= Tr([ST+AT][S+A] - 2S5 + 1)
= Tr(STS+[ATS+STAJ+ATA — 28 + 1)
= Tr(STS+[-AS+SAJ+ATA - 2§ + 1)
= Tr(STS+S[-A+A+ATA - 28 + 1)
=Tr(STS+ATA-25+1)
=Tr(STS - 2S + 1) + TrATA

Thus the error is the sum of a term depending on the symmetric part of L and a term depending on the
antisymmetric part. The latter is positive-definite:

TrATA = ZZ(AU )2
]

Thus if L is not already symmetric, replacing L by its symmetric part S—i.e. setting the antisymmetric part A
to zero—will lower the error. Hence for optimal role vectors, L must be symmetric.

From the symmetry of L follows a Lemma appearing in Williams (1985):

LEMMA 3.9.1.5: The minimal possible error is N—n. The error will be minimized iff L is an orthogonal
projection onto a subspace of dimension n.
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PROOF: Since L is symmetric:
E = Tr(L-1)7T (L-1) = Tr(L-1)?

This trace can be evaluated in any orthonormal basis we like. We can choose a basis in which L is
diagonal; this basis is an orthonormal set of eigenvectors of L, which exists because L is symmetric. In
this basis we have

E= ‘g(L‘-,--lﬁ

To minimize the error, we therefore want as many as possible of the diagonal elements of L to equal 1.
The maximum number possible is n, because L = DE, and E is a linear map into an n-dimensional
space; thus the range of L is at most n dimensional (the rank of L is at most n). The remaining N-n
diagonal elements of L. must be zero. It follows that E = N—n. We now know what L looks like. In
the basis in which it is diagonal, there are n basis vectors on which L is the identity operator and N-n
basis vectors on which L. is the zero operator. Thus L is an orthogonal projection onto an n-
dimensional subspace. |

A geometrical picture of Lemma 3.9.1.5 (Ron Williams, personal communication, 1986) is illustrated in Fig.
15. Each term in the error is the squared-length of the difference vector between &; and its image under L.
The image is constrained to lie in the range of L, a subspace of dimension at most n. To minimize the error,
the range of L should be as large as possible: of dimension n; also, the image of &; should be as close as
possible to &; while still in the range of L: the image should be the orthogonal projection of &; onto the
subspace. Thus L should be an crthogonal projection onto an n -dimensional subspace.

Now that we know L is an orthogonal projection, it follows that L is a non-negative definite symmetric
matrix of rank n. Any such matrix has a decomposition

L=WI'w

where W has rank n. By choosing n basis vectors in the range of W we can take W to be an n XN matrix.
Thus the matrix L = DE can alternately be decomposed L = WI'W, i.e. with the nXN encoding matrix E
replaced by W and the Nxn decoding matrix D replaced by W7. Since the new E =W and D = W7 are
transposes of each other,

Epi =Dip

and the new encoding/decoding network has symmetric connections. The new network has the same
expected error as the old one, since L is unchanged and E is determined by L. |

Because of this theorem, I will assume henceforth that symmetry is part of the definition of an
encoding/decoding network.

The next result gives a geometrical characterization of the optimality condition. It relies on viewing the role
vectors as defining a coordinate system in the role pattern space R*, the space of patterns in the upper layer of the
encoding/decoding network. In an ordinary Cartesian coordinate system defined by an orthonormal basis &; (eg.,
the basis of that name defined above for the lower layer pattern space RV), the i* coordinate of the point at the tip
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Figure 15. The geometrical picture of Lemma 3.9.1.5.
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of the vector visx; = v-&;. Suppose we use the N role vectors {r; }X; in this way to define N coordinates {&; }X::
Gy =vr

These coordinates allow us to describe patterns in terms of their orthogonal projections along all the role directions.

Of course these coordinates are not all independent: there are N of them, but only n dimensions in the space of role

patterns. Using the coordinates {&; }, we can describe the optimality condition:

THEOREM 3.9.1.6: Using the coordinates {; )X, define a putative inner product on R* by
N
<u,v> = lgii W& (v)

Then the role vectors are optimal iff this putative inner product equals the canonical inner product.
Equivalently, the role vectors are optimal iff the rows of the matrix E are orthonormal.

PROOF: First we need a second lemma appearing in Williams (1985). Define U = ED; U is so called because

it is the upper cycle:. it takes activity at the upper layer, sends it down to the lower layer, and then sends it
back up the upper layer.

LEMMA 3.9.1.7: The error is minimized iff U = 1. This holds iff the rows of E are orthonormal.

PROOF: By Lemma 3.9.1.5, L is a projection, so we have L2 = L. (This is trivially verified using the
basis in which L is diagonal: each diagonal element is either 0 or 1.) Thus:

DE =L =L? = DEDE = DUE
From this we show U = 1. By Lemma 3.9.1.5, L is of rank n, so the range of E is all of R*. Thus any
vector v in R™ (the upper layer pattern space) is the image of some u in RY¥ (the lower layer pattern
space):

v=Eu > Uv=UEu
Now it follows from the previous two equations that both v and Uv have the same image under D:

D(v) = D(Eu) = (DE)u = (DUE)u = D(UEu) = D(Uv)
It follows that v and Uv must be the same vector, since for any vector w in RV:

(Uv—v)Ew = ET(Uv-v) = D(Uv-v)w = 0-w = 0

Thus Uv—v is orthogonal to the entire range of E, which is all of IR”: it must therefore be 0. Since this
is true for all v € R*, it follows that

U=1
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Evaluating the previous equation to see its significance for E, we find:
6pp' = Upp' = (ED)pp’ = ;(E)pi (D)ip’ = Z(E)pi CET)ip’ = XEpiEp'i
For p = p’, this says that the p and p” rows of E are orthogonal; for p = p’, it says that row p has norm
one. In other words, the rows of E are orthonormal. |

From Lemma 3.9.1.7 it follows that the inner product defined by {£; } is the same as the canonical one:

<V, W> = gﬁi (V)€ (w)

= iV'l’;W'l‘,‘
1=

= ;[%;VPEP,] [g;wp'ﬁpq]

%:pzvap’;Epi Epi

1
=M

pzvapﬁpp’

= 2. VoWp

R-l

i
<
£

0

The previous result can be paraphrased as follows. If the role space were large enough to accomodate all the
role vectors, if n were greater than N, we could choose the role vectors to be orthonormal, and then base a Cartesian
coordinate system on them; with respect to these Cartesian coordinates, the canonical inner product would be the
usual sum of products of corresponding coordinates. But in the present case, we are trying to squeeze too many role
vectors into the role space: n < N, and we can’t choose orthonormal role vectors. Yet if the role vectors we choose
are optimal, we can still go ahead and define a coordinate system using them, and correctly compute the inner
product by the sum of products of corresponding coordinates.

Several examples of optimal role vectors in IR? are shown in Fig. 16. In each case, the corresponding encoding
matrix E is also shown; it can be verified that the rows are orthonormal. In one case, the coordinates (; } are also
shown.

3.9.2. Connectionist learning of optimal role representations by recirculation

The encoding/decoding network of the previous section imbeds the role vectors as weights in a connectionist
network. This makes it possible for the network to learn these vectors through a weight-change procedure.

DEFINITION 3.9.2.1: Let an encoding/decoding network be given as in Fig. 14. Then the recirculation
algorithm for modifying the weights is as follows. The first unit in the lower layer is given activity 1, and all
other units are given activity 0: this is the "input pattern.” This pattern of activity is passed to the upper layer
through the connections, establishing a pattern po. This pattern is passed back to the lower layer and then up
again to the upper layer, forming pattern p;. Then the Widrow-Hoff (1960) or delta rule (Rumethart, Hinton,
& McClelland, 1986) is used to compute a weight change for each connection: py is treated as the "teaching”
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Figure 16. Examples of optimal sets of role vectors in IR2. The role vectors are ordered counterclock-
wise starting with the vector pointing directly to the right.
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pattern, p; as the "current output” pattern, and the original "input pattern” is used. This weight change is
recorded but not yet carried out. Next the second unit of the lower layer is individually activated, and the
process repeated, and so on until all N lower units have been individually activated. Then the weight changes
that have been recorded for each connection are added to the current weight and the whole process is
repeated.

There is a stochastic counterpart to this recirculation algorithm, in which instead of activating an individual lower
unit, a random initial pattern is generated for the entire lower layer. The recirculation and weight change is done as
before, but now the weights changed on each trial. I will analyze only the non-stochastic version; however, under
appropriate circumstances the stochastic algorithm can be expected to approximate the non-stochastic one since, as I
now show, the non-stochastic algorithm performs gradient descent in E, and, as shown in Theorem 3.9.1.1, E is the
expected value of the error arising from randomly chosen input patterns.

THEOREM 3.9.2.2: The recirculation algorithm performs a gradient descent in the expected error E. With
sufficiently small learning coefficient it will converge to a locally optimal set of role vectors (a local
minimum of E). If this set of role vectors spans all of R* then it is a truly optimal set (a global minimum of

E).

PROOF:
E=Z|L& -&]*= TS Eei i - 8;j)?
The component of the gradient of E in the direction of the weight Eyyis
T = 2T i — 8y) g (e By = 8y)
= 2;2}3(;591 Epi — 8;j)(Epi8irj +Eprj8ini)
= 4;§Ep,~'Epk Eyy — 4Eyir

= 4;2Ep'k DypEpir —4Epr
P

These two terms can be related to activities produced in the recirculation algorithm. Suppose we have
activated unit i” in the lower layer with activity 1, and given all other lower units zero activation. Then the
first term is the activity at unit p” in pattern py, (p1)y, and the second term is the activity at unit p’ in pattern
Po, (Po)p. Thus we can write

- ai, = (po)pr — (P1)y’
This can be identified as the Widrow-Hoff weight change for weight Ey;-,

AEy;- = g [(teaching pattern)y — (current output )y J(input );-

if py is taken to be the teaching pattern and p, the current output; for this input, (input);- = 1. (Here g is the
learning coefficient.) In fact, since (input); = 0 if j #i’, the Widrow-Hoff rule produces zero weight change
for all weights E,; where j #i’. In other words, as we cycle through the units in the lower layer, individually
activating each one, the Widrow-Hoff rule gives us weight changes for the connections emanating from the
active unit, and these weight changes are along the direction of gradient descent in E. By waiting until the
end of the complete sweep before adding in all the weight changes and updating the weights, we ensure that
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the change is in the true gradient direction.

Writing the gradient in matrix notation, we have
VAVE = EDE-E = (ED-1)E = (U-1)E

Assuming a sufficiently small learning coefficient g, the gradient descent will approach a local minimum of E
where VE = 0. If the role vectors span IR”, E will be of full rank, and, as in the proof to Lemma 3.9.1.7, this
allows us to conclude from 0 = VE = (U-1)E that U = 1. By Lemma 3.9.1.7, this shows the role vectors are
optimal. Conversely, if the algorithm converges to a set of optimal role vectors, we also know from Lemma
3.9.1.7 that these role vectors must span R*. Thus the local minimum of E to which the algorithm converges
will provide an optimal set of role vectors iff they span R*. ||

4. Conclusion

The limitations of the results reported here are many. The theoretical analyses of role decompositions, graceful
saturation, connectionist representations of symbolic operators and recursive structures, retrieval of tensor product
representations in connectionist memories, and optimal role vectors have just begun. An analysis is needed of the
consequences of throwing away binding units to control the potentially prohibitive growth in their number. A
further analysis is needed of the possibility of having a value for one variable serve as another variable, without an
unbinding of the first variable. The relations between tensor product binding units and connection weights, briefly
considered in Section 3.5, need to be pursued. The tensor product representation needs to be tested out in real
connectionist models in a variety of domains to see if the theoretical virtues of the representation can be cashed in
practice. The recirculation algorithm for finding "optimal” role vectors needs to be explored to see whether it can
really serve a valuable role within an actual model.

Nonetheless, the tensor product representation enables truly distributed representations of complex symbolic
structures in connectionist systems, in a natural way that generalizes existing representations and is simple enough
to permit analyses of a number of properties. Tensor product representations are determined by a number of
constituents which can be productively analyzed separately: the role decomposition of the structures being
represented, the method for connectionist representation of conjunction, and the connectionist representations of
fillers and roles being used. Such conceptual tools for analyzing alternative connectionist representations are
necessary if we are to deepen our understanding of the representational component of connectionist modeling. Most
importantly, the tensor product representation allows a crucial element of symbolic computation, the binding of
values to variables, to be incorporated into the connectionist approach in a natural way that adds to the power of
connectionist computation without sacrificing its advantages.

5. Appendix: The Tensor Product

It is extremely simple to define the tensor product with respect to a basis. Suppose V and W are two vector
spaces, with dimensions Nv and Nw and bases {¥;} and {W; } respectively. Then the tensor product space V@ W
has dimension Ny Ny . The tensor product operation takes a vector v in V' and a vector w in W to a vector v®@ w in
V@®W. The vectors {V; ®w;} form a basis for V @ W. If the components of v with respect to the basis {¥;} are
{vi} and the components of w with respect to the basis {W; } are {w; } then the components of v® w with respect to
the basis ¥; @ W; are v; w;.

It is often useful to have a definition of vector operations independent of the choice of any basis. This gives a
deeper understanding of the operations from which the surface manifestations relative to particular bases can be
derived rather than stipulated. In the case of the tensor product, the basis-independent definition is rather subtle.

The tensor product is one generalization of multiplication to the vector space setting. The definition is
performed in three steps. First, a correspondence called duality is defined between vector spaces and certain spaces
of functions. Next, the notion of tensor product is defined for these function spaces. Finally, the definition of tensor
product is transfered back to the original vector spaces by again using the dual operation. The situation is summed
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up in Fig. 17. The concepts introduced along the way, dual vector spaces and bilinear functionals, are quite
important ones that merit attention in their own right. Dual vectors in particular are useful for performing unbinding
in the tensor product representation of variable binding.

5.1. Dual vector spaces

The first concept we need is that of two vector spaces being duals. This derives from the general concept of the
duality between a set X and a set of functions F on X. The key observation is that just as each function fin F isa
mapping fromX to Y':

fx > flx)
so each point x in X' can be viewed as a mapping x from F to Y
x:f>fix)
The traditional notation f{x) for function evaluation tends to hide this duality by treating f and x assymetrically; the

duality can be brought out better by using the more symmetrical LISP notation (f x).* In the remainder of this
Appendix I will use the LISP notation at appropriate points.

The notion of duality, then, can be captured by this semi-formal definition:

DEFINITION 5.1.1: Suppose F is the set of all functions from X to Y satisfying some property p:
F={fX->Y;x - {x)|ph}
Now consider the functions
X=X F>Y|fo (f x))
Then F and X are dual spaces if X is characterized by the same property p that defines F:
X =@ FoY|p®)
The relevant case here is that of vector spaces. The function space F will possess the vector space operations of
addition and scalar multiplication if the range of the functions, Y, has these operations. The simplest case is Y = IR,

the real numbers; in this case the functions in F are called functionals. Then, for any set X, F inherits the vector
space operations from R:

ofi+ffa: X = Y, x w offi xHB(2 x)

4, It is interesting to note that one can view the starting point of object-oriented programming as the stategy of asso-
ciating evaluation procedures for pairs (f x) not with the operation symbol f but rather with the data symbol x (that
is, with the data type of x). :
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Figure 17. The basis-independent definition of tensor product.
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Now note that the dual functionals x have a special propérty: they are linear functionals on F:
(ofi+Bfz x) = alfy x+B(f2 x)

Thus in order for F and X to be dual spaces, the functionals in F, like those in X , must be linear:
(f ax1+Bx2) = aff x)+B(f x2)

This only makes sense if X itself is a vector space (so that ax+Px; is defined). Thus:

DEFINITION 5.1.2: Let V be a vector space. The dual vector space V* is the set of linear functions from V to
R:

V* = [f‘ V- lRl(f (XV1+BV2) = a(f V])‘*‘B(f VZ)}

This definition was motivated by the condition that V' and its dual share the property of linearity; in fact, as required
by the notion of duality, V and V* share all their structural properties:

THEOREM 5.1.3: V and V* are isomorphic vector spaces, although there is no canonical isomorphism, (V*)*
and V are canonically isomorphic.

The proof of Theorem 5.1.3 makes use of a concept which is also important for unbinding tensor product bindings
(Section 3.1):

LEMMA 5.1.4: Let {¥;}; be a basis of V. Define the functionals {¥; } & by
Vi (V) = &

Then {V;} is a basis for V*: the dual basis of {¥;}. Given any f € V*, its components with respect to {¥; }
are

fi =f %)
PROOF OF LEMMA 5.1.4: Let v be any vector in V; expand it in the basis {¥;):
V= ZV,‘ A
Now note that
% (v) =0 (v ¥)) = ;Vj‘;i %) = ;Vjaij =v;
J

Thus ¥; is the functional that extracts the i component of any vector, with respect to the basis {¥;].

Now let f be any functional in V*. Since f is linear,

fO)=fQviv) = Z“,V.'f (i) = X0 (Wi = {;ﬁ 1?;} ™)
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Since this is true for any v € V, it follows that
f=25%

Thus we have shown that any f € V* is a linear combination of the functionals (Vi }; in other words, these
functionals span V*.

It remains to show that these functionals are linearly independent; it then follows that they are a basis of
V* and the lemma is proved. Suppose that

2o =0
This then implies, forall ve V, that

0= [Zaﬁa} W)= Zaeﬁ:(V) = ;af\'i

Since {v;)} are the components of v with respect to the basis {¥; }, they are completely independent; since v is
arbitrary, these numbers can be anything. The only way that the previous equation can hold is if all ¢; vanish.
This shows that the functionals {¥;} are linearly independent. |

PROOF OF THEOREM 5.1.3: As Lemma 5.14 shows, both V and V* are real vector spaces of the same
dimension, and are therefore isomorphic. To specify an isomorphism (a linear mapping) taking vectors in V
into functionals in V*, it suffices to map corresponding elements of a basis for V into the elements of a basis
for V*. It might seem that a canonical way to do this is to map a basis {¥; } onto its dual basis {V;}. However
the resulting mapping will vary depending on the choice of basis {¥;}. This can be easily demonstrated by

comparing the mapping determined by (¥;} with that determined by a basis {¥';} in which all the basis
vectors of {¥;} have simply been multiplied by 2:

If a vector v is expanded in the two bases, we see that its two sets of components are related by
V"' = %—V,‘

Since the dual basis elements {¥#’;} give the components with respect to the basis {¥";}, this last equation
implies

¥ = 29
Now the mapping from V to V* determined by {¥;} is

V= EV,‘Q’; > Zv;ﬁ,—
i I
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while the mapping from V to V* determined by {¥";} is
v ViV IViVi =3 1 Vi 1 V; = 1 AR
& £ i -2- 7 z‘ 13

As the basis expands, the components of v and the dual functionals {¥;} both contract; rather than
compensating each other, they compound the change, with the result that the image of v under the mapping
corresponding to the expanded basis is only one quarter of that under the original basis. For transformations
of basis that are more involved than simple rescaling, the situation is worse: in general, there is no simple
relation at all between the images of v under the two mappings corresponding to the two bases. The
conclusion is that while V and V* are isomorphic, there is no canonical isomorphism.

The situation is different for V' and (V*)* = V**_ Since isomorphism is transitive, it follows from the
preceding conclusion that V** and V are isomorphic; but now there is a canonical isomorphism. This
isomorphism is exactly the duality mapping x +— X with which this section began. For any v € V, associate
the functional v € V** defined by

ViV*S R f - f()
This is a linear transformation that requires no basis or other arbitrary choice for its definition; it is canonical.
Using this canonical isomorphism we can identify v with v, identify V with V**  and thereby regard duality

as a symmetrical relation going both directions between V and V*. ||

There is one final fact about dual bases that is needed in Section 3.1:

THEOREM 5.1.5: Each dual basis functional #; e V* is equivalent to the inner product with some vector
u eV

(V) =u;v

forallve V.

PROOF: Let V; be the subspace of V spanned by all the basis vectors other than ¥;:
V- =span({¥;|j #i})

This is a subspace of dimension n—1, since V has dimension n. There is a one-dimensional subspace
orthogonal to V_;; call it V;, and let w; be any non-zero vector in it. Define

Wi

u; = rs
WiVi

(The denominator here cannot be zero: if it were, ¥; would be orthogonal to V; and therefore in V. ; this
would mean it is a linear combination of the other basis vectors, which is impossible.) Now we can see that

N WiV
u;'v; = : ,,‘ =1
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On the other hand, if j #, w;-¥; =0since w; € V;, ¥; € V_;,and V; is orthogonal to V_;. Thus
fiirVo R v uv

is a linear functional with the following values on the basis vectors:
fi(¥j) =8;;

Thus f; = ¥;, completing the proof. [

5.2. Tensor product of functionals

Using the dual space V* of V we can define a sort of product of two functionals. Just as functions into R
inherit the operations of addition and scalar multipication, they also inherit another sort of multiplication:

DEFINITION 5.2.1: Letfe V* and g € W*. The tensor product of fand g is the functional f® g defined by

B g: VW R; (v, w) = Av)g (W)

The tensor product uses multiplication in R to combine two functions of one variable into one function of two
variables.

The linear properties of f and g and the properties of multiplication of real numbers combine to produce the
following properties for the tensor product t = f® g function:

m(avi+Bva, W) = an(vy, w) + Br(vs, w)
n(v, ow+Bwo) = om(v, wy) + Br(v, wy)
The function space which these tensor products inhabit is therefore defined as follows:
DEFINITION 5.2.2: Let V and W be vector spaces. A function ¢ from VXW to R is a bilinear functional if
d(avi+fva, W) = ad(vy, W) + Bd(va, w)
O(v, awi+Bwa) = ad(v, wi) + Bo(v, w)
The space of all such bilinear functionals is denoted V* @ W*.

‘We have already noted that functionals inherit vector space operations from IR; it follows that V* @ W* is a vector
space, since the conditions that functions in this space must satisfy are preserved by addition and scalar
multiplication.

5.3. Tensor product of vectors

It is now a simple matter to define the tensor product of V and W. We have already defined the tensor product
of their dual spaces, V* @ W*; all we need to do is take its dual, which exists since V* @ W* is a vector space.

DEFINITION 5.3.1: Let V and W be vector spaces. The tensor product space VO W is (V¥ @ W*)*, The
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tensor product of two vectorsve Vandwe W is

VOW: V*BW* 5 R; b ¢(v, w)

Given this basis-independent definition of the tensor product, we can prove the basic result that was stipulated in
the first paragraph of this Appendix:

THEOREM 5.3.2: Suppose {¥V; } is a basis of V' and {W; } is a basis of W. Then {¥; ®W;]} isa basis of VO W.
Thus if V and W have dimensions Ny and Nw, V ® W has dimension Ny Nw. If the components of v with

respect to {¥; } are {v;} and the components of w with respect to {W; } are {w;} then the components of v®w
with respect to {¥; @ W; } are {viw;].

Before proving this result, here is an extremely useful lemma:

LEMMA 5.3.3: [;a,-v,] ® [;ﬁ,w,-] = Z30:;v OW,
PROOF OF LEMMA 5.3.3: Using definitions 5.3.1 and 5.2.2, the calculation is straightforward:

{;aivi] ® (;ijf} 0 ‘D(;Otzvi, ;ijj) = Z;Oﬁz Bjd(vi, w;) = [2‘:;0&' Bjvi ®Wj:l ®
|

PROOF OF THEOREM 5.3.2: First we show that {¥; ®W;} is a basis of V¥ @ W*, where {¥;] is the basis of V*
“dual to {¥;} and {w; } is the basis of W* dual to {W;]}. Forany ¢ € V* @ W*, define

Oy = &(Vi, W)
Then
o(v, w) = (p(ZV;Q;, ;Wjo) = Z;Viqu)(%’ Wj) = Z;V; qu’ij = ;ZJ:\?,(V)W/(W)Q)U
= [2};(}),_,6, ®}f1]} (V, W)
Thus

6= Z;%' Vi W,

and the functionals {¥; ®w; } span V* @ W*. The linear independence of these functionals follows exactly as
in the proof of Lemma 5.1.4; they therefore form a basis of V* @ W*.

Having established that {7; ®W;} is a basis of V* @W*, we can use its dual basis as a basis of
(V¥QW*)* =V®W. Call this dual basis {f;;}. Recall from the proof of Lemma 5.1.4 that f; is the
functional that extracts the component ¢;; of any ¢ € V* @ W* with respect to the basis {V; @ w; }:

fiji o 0 = 0%, W;) = [V; OW;1(9)

In other words, fi; = ¥; ®W;, and the set {¥; ® W; } is exactly the basis of V @ W dual to {¥; ®w;}.
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It remains to verify that the tensor product multiplies vector components. Using Lemma 5.3.3, this is
straightforward:

3

vOw = [EV; \A’;} ® [Zw,-ﬁ’j} = ZE(V;W',')(Q,' @Wj)
] 7 J
Thus the ij component of v@® w with respect to the basis {¥; ® w;} is simply viw;. |
There are a few remaining facts about the tensor product that are used in the course of this paper; they are
collected together in the following theorem.

THEOREM 5.3 .4:

(a) Ifaset {w;} is linearly independent, and Y'v; ® w; = 0, then every v; = 0.

J
(b) Let {W;} be abasis of W. Then every vector in V ® W can be uniquely written: 3'v; @ w;
7
© vOW)FIAW) = (vv)(ww)

PROOF:

(a) Expanding each vector v; in a basis {v; } for V, we have
0=2v®w, = Z{ZV;‘:’ “U} Ow; =33V Ow;
J ]t [}

(using Lemma 5.3.3). Since {w;] is linearly independent, by adding additional vectors if
necessary we can expand it to a basis (W;} for W. Then the preceding equation gives an
expression for the zero vector in V@ W in terms of the basis {¥; ® W;}. In such an expression
the coefficient of every basis vector must vanish, so we conclude that all v;; =0, i.e., that all
Vi = 0.

(b) Since {V; @W;} isabasis of V® W, every vector uin V@ W can be written

Z;UU Q’,‘ ®Wj = ;

Zu,-,- C’.] @Wj
i
Thus for v; in the result to be proved we can choose v; = Y u; ¥;. The uniqueness of v; follows
]
from (a); for if
XV ®w; =2V 0w,
7 7
then

;(vj—v’j)®w,- =0

and by (a) we have thatall v;—v’; = 0.
(¢) If V and W have inner products, there is a canonical inner product on V® W in which the basis
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{¥; ®W;} is orthonormal if (¥;} and {W;} are. With this inner product,
(VOW)(VOW) =33 (vAW);(VOW); =Ty viw;Viw'j = [sz V'iJ [ZW/' W’J]
] O] : J
= (vv)(ww)

This result shows that this inner product on V ® W is independent of the choices of basis for V
and W, and depends only on their inner products.

6. Appendix: Volumes of N-spheres

This Appendix contains a calculation deferred from the proof of Theorem 3.2.2: the N -dimensional volume of
the unit sphere in N +1-space.

Using the notation of the proof of Theorem 3.2.2, this volume is
Vi = 2f7 Vier sit¥10.d0 =: 2V Ca
The integrals Cy can be related by an integration by parts:
Cy = [ Tsin™10] sin6 d® = [sin¥-10](~cos )5 — [~ [(V~1)sin¥~26 cos B](~cos 6) 46
=0+ (N—l)f:&sinN"ze (1-sin?6) d 8 = (N-1)[Cy—2 — Cy]
Thus we get a recursion relation
Cn = ﬂ}:&ic N-2

The first two integrals can be trivially computed:

C0=TC/2
Ci=1

Thus for N even we have:

cy=R1l35 . N-1_=m__ NI
NTTTTE N~ I[N

while for N odd we get:

2
2N—{%l!}
246 . N-1

Cv=F57 "y = NT

It can readily be shown by induction or direct multiplication of the preceding expressions that the product of two
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successive integrals can be simply expressed:
_nl
CnCy1 =55

Returning to the volumes, we have the recursion relation
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VN =2V Oy = 22V N-2C n2)C ey = 4VN2(Cn-1Ch-2) = 4V N %'N’l:l‘ = %VN-Z

Since V; = 2%, we have, for N odd,

N-1

Z
Vi = 2mfor-
!

and for N even,
Vn = 2(4m)N2(N /2)!IN !
The ratio of successive volumes,

Vv _
Vyer = 26w

follows the complex formulae given above for Cy-1, but the product of two successive ratios is simply expressed:

Yo I acwyacu = 4G4

Therefore the geometric mean of the two ratios involving N is

Vil Wy 1/2_\/_51:
W V| - YN
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