Providing Programmable Relations Over
Software Objects in Aspen

D. Baker, D. Heimbigner, S. Sutton, Jr.

CU-CS-350-86 December 1986

%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE

ACKNOWLEDGMENTS SECTION.

ABSTRACT

Aspen is a system of managing large collections of software objects. It combines
object-oriented and relational concepts as its modelling primitives. Aspen is unique in
that it allows its users to program the semantics of relation query and update by associat-
ing specific programs with the various query patterns over relations. This allows for a
flexible and extensible object manager. A wide variety of access and storage patterns are
possible, including simple stored relations, lazy evaluation, forward and backward
inferencing, and constraint checking.

1. Introduction

It is recognized that software design environments are characterized by a
wide variety of typed objects and an equally wide variety of relationships over
those objects. For example, there may be objects of type Source, Binary,
Library, Project-plan, and Requirements. There may be relations such as
Compiles_into(Source,Binary), which relates a source file to the binary into
which it compiles. There may also be a relation
Implements(Requirements,Source), which relates a set of requirements to the
Source object that implements those requirements. A key problem for such
environments is the maintenance of these relationships in the face of evolution
of the system. Another major problem is the need to support a wide variety of
storage and access mechanisms; many existing programs require data in certain

highly encoded formats (files of text, or bit-maps, for example).

Aspen is a system designed to support such large collections of objects,
types, and relations. It was developed in conjunction with the Arcadia project

[Taylor 88|, which has as its goal the development of a software environment

for Ada® [ALRM 83]. It is unique in providing programmable semantics for vari-
ous relations. This allows for a wide variety of storage and access mechanisms
for relations. In addition, this feature also allows for the inclusion of forward
and backward inferencing and constraint monitoring as means of maintaining

the relationships over various objects in the system.

2. Aspen Architecture

In terms of implementation, Aspen is intended to serve a role similar to a
file system, namely providing a pervasive support for persistent (i.e., long-term)
storage of objects. It consists of an object-store that uses non-volatile memory

to store the persistent objects. Aspen controls the interface between the

2 Ada is a registered trademark of the US Government, ADA Joint Program Office.

Layer 4:

Layer 3: Versions, etc.

Layer 2:

Layer 1:

object-store and the various programs.

In terms of functionality, Aspen may be viewed as a multi-layer system (see
figure 1). Layer 1 is the basic operating system upon which Aspen is con-
structed. This may include an existing file system (such as the Unix file sys-
tem). Layer 2 is Aspen proper. It uses the facilities provided by layer 1 to
implement its functionality. It may best be viewed as an extension /replacement
for the underlying file system. Layer 3 is a set of concepts that are recognized
as universally important to environments, but whose detailed implementation
may vary from environment to environment. Examples of such capabilities
might include version control, immutability, and specific software methodolo-
gies. The capabilities provided by Aspen are intended to be powerful enough to
allow users to implement layer 3 functions using Aspen. A particular software

environment is expected to define its various global policies about versions, etc.,

Particular Tools
(e.g., Compilers, Analyzers)

Environment

PRO +
Objects 4+ Types + Operations+Processes

Operating System, Concurrency control
and Hardware

Figure 1. Aspen Functional architecture..

in layer 3. Several different implementations of layer 3 may coexist on a single
system. Layer 4 is a set of user defined programs of various kinds. For exam-
ple, it might contain specific compilers and analyzers. It is in layer 4 that a
programmer does his/her actual software design and implementation using the

programs provided there.

3. Aspen Modelling Concepts

The modelling concepts in Aspen consist of objects, types, operations,
processes, and relations. For purposes of presentation, this set of concepts is
described in three parts. Part 1 describes objects, types, and operations. Part
2 describes processes and the programs that implement them. Part 3 describes

PRO, which defines the programmable relations concept.

3.1. Basic Modelling Primitives

The basic modelling language most closely resembles Smalltalk [Goldberg
83] or Objtalk[Rathke 83]. It comnsists of the following concepts:

(1) Object: The system to be modelled is assumed to consist of objects. Each
object is unique and can be distinguished from all other objects. Objects
have an associated state that can be examined and modified. Essentially

everything known to Aspen is represented as an object.

All objects known to Aspen are persistent. This means that an object need

not vanish as a result of the normal termination of a program execution®.

As a consequence, persistent objects may have a lifetime longer than the
program executions that create or manipulate them. The physical nature
of persistence may differ from object to object depending upon its type (see

below). Thus, some objects might be made persistent by storing in a

3 In practice, this means that the object is stored on non-volatile memory.

persistent store [Atkinson 83], some might be stored in a database, some
might be stored in files, some might be stored on tape, and some might be

stored on paper.

Type: All objects are created as instances of specific types. A type con-

sists of a set of object values and a set of operations (see below).

Aspen will enforce strong typing within its confines. Explicit coercion
operations must be provided for situations in which it is necessary to

change the type of an object (except, of course, from subtype to supertype).

Types may have multiple supertypes (hence multiple subtypes). When T is
declared to be a supertype of S, it means that every object of type S is
considered to also be of type T. Some supertypes are termed "Mixins"
[Rathke 83] because they are used to augment a type with certain kinds of

behavior rather than constituting a fully formed type of their own.

Operations: Operations define the structure of the state associated with
objects of a given type. Operations may be used to read and write the

memory of associated objects.

Operations are inherited along the supertype/subtype lines. That is, if
type T1 is a subtype of type T2 and O is an operation defined on T2, then

O may be applied to objects of type T1 as well as to objects of type T2.

It should be emphasized that the basic set of primitives is intended to be

“closed", which means that it can be and is used to represent itself. This kind

of closure has been achieved in both Smalltalk and Objtalk. In Aspen types

and operations are themselves objects, and there is a type Type and a type

Object, the latter being the supertype for all other types. These objects are

often called meta-objects and the collection of meta-objects is called meta-data.

Meta-objects, like other objects, will be accessible to programs (subject to

protection restrictions).

Aspen assumes that all other concepts needed for a working design system can

ultimately be constructed out of these primitives plus processes and relations.

3.2. Processes and Programs

Processes*

include both automated and manual procedures. Automated
processes may informally be considered to fall into two general classes: tradi-
tional tools and software process programs. Both of these types of process are
represented in Aspen by executable objects. The execution of these processes
occurs under the control of Aspen. Manual processes, to the extent that they
are known to Aspen, will be represented by non-executable objects. The execu-
tion of manual processes will occur beyond the control of Aspen, but Aspen will

still be able to represent these processes in relations with other objects in the

system.

Tools are traditional computer programs (or sets of programs), such as
compilers and data flow analyzers, written in traditional programming

languages.

Software process programs are programmatic expressions of the software
development process formulated in a software-process programming language
[Osterweil 86]. The purpose of software process programs is to formalize and
automate the activities of the software development process in order to make
them amenable to the same sorts of programming, analysis, and testing tech-
niques that are applicable to conventional computer programs. Because of the
complexity of activities required for software development, some software pro-
cess programs may be expressible as algorithmic procedures, while others may

be represented by logic (Prolog-style) programs that depend on inferencing

“The term process is used here in a general sense as opposed to the specific meaning in, say,

mechanisms. Thus, it is expected that software process programs will be com-
posed of other software process programs, manual processes, and traditional

tools.

All processes in Aspen will belong to the type Process. Automated
processes may be répresented by the type Automated_Process, while manual
processes may be represented by the type Manual_Process. Both of these would
be subtypes of the type Process, but the definition of Automated_Process may
be supplemented by the "mixin" Erecutable_Process. Tools and process pro-
grams in particular may be represented as objects of type Tool and type
Process_Program, respectively, which in turn would be subtypes of the type
Automated_Process, and which would thereby inherit the property of executabil-
ity.

In the rest of this paper, the terms program, tool, and process may be used
interchangeably since all will have an ultimate representation as a computer

program.

3.3. PRO - Programmable Relations over Objects

In addition to objects, types, operations, and processes, Aspen provides a
specialized notion of programmable relations over objects (PRO) as an addi-
tional modelling concept. In Aspen a relation is a distinguished type of object
that is used to structure the organization of processes and objects in general.
All objects exist in the context of one or more relations, and processes are used
to define the semantics of relations, as explained below. Thus PRO is built

upon and integrates the lower-level modelling concepts.

The semantics of relations are specified in terms of query patterns over the

relation. A pattern is an instantiation of the relation with some of the attri-

Unix.

butes given and some to be determined. For an N-ary relation, there are 2**N
patterns. Consider the binary relation R(z,y). This has four patterns, as fol-

lows, where ? indicates an unknown:

R(z?,y?)

R(z,y?)

R(z?y)

R(z,y)
Associated with each pattern may be a unique process that defines the seman-
tics of queries that match that pattern. That process must take the given
attributes and fill in the unknown attributes. For example, the process associ-
ated with R(z,y?) is given the value x, and must compute a value for y.
Processes need not exist for all possible patterns, in which case certain queries
cannot be solved, and an error results. Because each query pattern has at most
one defining process associated with it, the choice of process for any query is not
ambiguous. These processes may be arbitrarily complex and may operate algo-
rithmically or inferentially. They may be tools, manual processes, or software
process programs. In general they will make subqueries against relations and

thereby invoke subprocesses.

The case of all attributes given is treated specially. It is used to specify
the semantics of updates. These specifications are usually only useful for rela-
tions whose semantics are extensional (i.e., they actually store the tuple rather
than derive it every time it is needed). There are three programs associated
with this pattern: one for insertions, one for deletions, and one for
modifications. In the case of insertions and deletions, the program is given the
values of the attributes specifying the element to be inserted or deleted and it is

the program’s responsibility to modify the storage supporting the relation.

4. The Programming of Relations

The programming of a relation in Aspen involves the specification of a pro-
cess to be invoked to satisfy queries against that relation. The programming of
these processes is the major task in the construction of an Aspen-based environ-
ment. The following examples illustrate the programming of Aspen relations for

purposes of compiling a source-code object into an object-code object.

Most of the examples use software process programs. For purposes of
characterizing these programs, we have adopted the following assumptions and
conventions. The objects involved are declared and typed. The processes
involved are named and may make queries against relations. The processes
may take parameters, and these parameters may have types in, out, and in out;
these are similar to the modes of parameters to subprograms in Ada. The flow
of objects through processes is represented graphically, where "O ===> P"
represents the flow of object O into process P and "P -—-> O" represents the
flow of object O out of process P. The expression of queries is patterned after
Prolog, and is intended to be suggestive rather than prescriptive of the type of

syntax that might be used in any process programming system.

Example 1: Simple compilation processes supported by Aspen

The following discussion illustrates the case in which a simple compiler is

used, that is, one that does not generate intermediate objects.

Consider a relation compiles-into between objects of type source-code and

objects of type object-code.

comptles-into

source-code object-code

One query pattern for this relation is to specify a source-code object and
request the related object-code object. The most natural interpretation of this
query is as a request for the object-code object compiled from the given source-
code object. This semantic interpretation of the query can be supported most
simply by associating a compiler directly with that query pattern, so that when-
ever that query is made the compiler is invoked on the given source-code object
to derive the object-code object. Note that in this case the process associated
with the query is a traditional "tool". This situation is summarized in the fol-

lowing table.

English query actual query program
what is the object, C, of type compiles-into(S, C?) compile(S: in source-code,
object-code, that is related to the C: out object-code)
given object, S, of type source-code
via the compiles-into relation?

Suppose instead that the programmers of this relation did not want to
invoke a simple tool directly, but instead wished to invoke a process program
which, through one or more sub-queries, would effect the compilation. In this
case the queries would look just as they do above, but the process invoked
would be a process program instead of a tool (and it might be designated

"compile_proc" instead of "compile").

The simplest process program that would achieve this would make a single
sub-query that would invoke the compiler. There may be little use for such a
simple program in a real environment, but it provides a simple case for illustra-
tion. Such a program might be described as follows: An object of type source-
code is input to compile_proc and and an object of type object-code is output

from it.

S: source-code;
C: object-code;

S ===> compile_proc ---> C

The compile_proc program has a single sub-query:

program is defined by =
compile_proc(S: in source-code, compile(S, C?)
C: out object-code)

Of course, the compiles_into relation has another query pattern of interest,

which might be represented by the following query:

English query program
what is the object, S, of type compiles-into(S?, C) Lookup(S: out source-code,
source-code, that is related to the - C: in object-code)

given object, C, of type object-code
via the compiles-into relation?

Implementing the lookup program requires that there be stored somewhere a
"pointer" from an object code object back to the source code object (or objects)

from which it was created.

Example 2: A non-monolithic compilation program supported by

Aspen

A more complicated compilation program is possible (even likely) in an
environment that supports the composition of tools from smaller tools and in
which the intermediate objects produced by a compiler may be saved for reuse
by the compiler or other tools. Consider the same binary relation,
compiles_into, and the same query pattern compiles_into(S,C?), but with more
complex semantics because compilation produces a token stream from the
source code, then produces a parse tree from the token stream, and then pro-
duces the object code from the parse tree. Such a "compile_proc" program may

be described as follows:

S: source-code;
C: object-code;

S ===>> compile_proc ---> C

L: token—stream;

10

P: parse-tree;

In this case the intermediate objects (L and P) are declared within compile_proc
and are hidden from processes that query compiles_into. As described, the pro-
gram comptle_proc has three linearly ordered sub-queries, against the relations

lex, parse, and code:

program is defined by sub-query structure
compile(S: in source-code, 1. lex(S,L?),
C: out object-code) 2. parse(L, P?),
3. code(P,C?)

The semantics of these relations are defined by programs in a manner similar to
the definitions presented above, and they are available for queries from

processes other than compile_proc.

Example 3: Dynamic computation of sub-queries

In the previous examples, the effect of the program invoked in response to
a particular query was predetermined. It is possible and often desirable for a
process to dynamically compute the sub-queries needed to solve a given query.
Continuing with the example of compiles_into, the program compile_proc could
have a more complex sub-query structure in which it would invoke either the
simple compiler (as in example 1) or the more complex compiler (as in example
2). The choice among these two approaches could be made based on the availa-
bility of (or need for) intermediate objects, the load on the processing or storage
system, or other criteria. If the second choice is made, and any of the inter-
mediate objects are available, then there may also be a choice of starting point
in that sequence of sub-queries. In general, the program used to define the
semantics of queries can infer the most appropriate sub-queries to make to

return the desired results (as discussed in the next section). A given inferencing

11

program can be attached to and shared by any number of relations, as long as

the relations involve types known to the program.

5. Common Relation Semantics

Many of the relations in Aspen will share common semantics. It is
expected that many of these semantics will be embedded in programs and then
these programs will be attached to any relation that desires to use those specific

semantics. At least the following kinds of semantics will be implementable:
(1) Extensional,

(2) Backward inferencing,

(3) Forward inferencing and constraints,

Each is examined in more detail in the following sections.

5.1. Extensional Semantics

Many of the relations in Aspen operate as simple tables that store explicit
connections between objects. Such relations are termed extensional. This
means that the relation is stored as a set of n-tuples of pointers to related
objects. Various flavors of extensional relation may be defined to accommodate
various physical representations. For example, such relations might be stored
as vectors or heaps, possibly with associated indexing mechanisms (btrees or
hash tables). All will have a common interface that allows for the insertion,
deletion, and modification of tuples, and the scanning of the relation tuple by

tuple.

5.2. Backward-Inferencing Semantics

Backward inferencing is another important kind of semantics. It is invoked

as a result of a query pattern in which with one or more known values and one

12

or more unknown values. Such queries are satisfied by first satisfying a set of
sub-queries that together can be used to satisfy the original query. This type of
process is often called "derivation" since the result of the original query is
derived from the results of the sub-queries. The relation being queried may not
exist (in the sense of having an extension), but rather, specific queries against
the relation are answered dynamically. The term Backward is used because of

the obvious similarity to Prolog inferencing.

The Odin system [Clemm 84] can serve to illustrate this kind of semantics.
Odin allows one to record various object types and the tools (programs) that
can produce objects of that type. Further, it records the object types that each
tool requires as input. Each tool represents a means to derive objects of the
output type from objects of the input types. For example, for each source

object, there is a corresponding relocatable object derived via the C-compiler.

For each relocatable, there is a corresponding executable object®. Odin main-
tains a hyper-graph whose nodes are object types and whose hyper-edges

represent the tools that can derive the output from the input.
In Odin, one can make a request for a derived object such as:
test.c : exe.

This command requests the object of type eze (executable) that is derivable
from the object test.c, which is of type ¢. Odin can find the given sequence of
tools that must be invoked to produce the type eze object by examining the
graph and finding a path from the type ¢ to the type exe. Then by applying
the tools specified by that path, Odin can construct the requested derived

object.

In Aspen, an inferencing program similar to Odin can be associated with

the query patterns of those relations that correspond to the various types of

SHandling multiple relocatables and libraries is obviously glossed over in this discussion.

13

Odin’s internal graph. Queries against such relations invoke the inferencing
program to actually derive the answer to the query using the internal graph and
dynamically invoking the appropriate tools via queries against other relations.

For example, the above Odin command would be represented by the query
Eze(test.c,e?).

This might dynamically invoke the following sequence of queries
CCl(test.c,0?),Ld(o,e?)

as the means to satisfy the original query.

5.3. Forward Inferencing Semantics and Constraints

Forward inferencing is defined here as the capability to perform an action
as a side effect of a change to some object. In Aspen, forwérd inference is han-
dled by associating programs with the relational update operations: insert,
delete, and modify. Whenever a relation is changed, some program will be

invoked to decide how to interpret that change.

A major use for forward inferencing is the maintenance of constraints over
relationships. A constraint program is intended to verify that some predicate
holds on the current state of some set of objects. If the constraint is violated,
then the constraint program must take some action to deal with the violation.
Possible actions might be to report the violation or to change the state of some
objects to repair the violation. It is axiomatic that if a constraint holds over
some set of objects, then it can only be violated in the future by changes to the
objects. Thus constraint checking can be initiated at the time that objects are

changed.

A major problem for forward inferencing is to determine when to execute
the associated program. It must be done on a transaction basis, which means

that changes are grouped into sets of related changes. Forward inference

14

programs may be defined to be performed before the changes are made per-
manent or after they are made permanent. Checking before the changes are
made is useful for verification of the correctness of changes. Checking after is

useful for propagating changes to other objects and relations.

6. Higher-Level Modelling Concepts

The role of Aspen is to provide essential low-level modelling elements and
principles. It is clear, however, that any useful environment must provide many
higher-level capabilities, such as version control, packaging, control over the
persistence and mutability of objects, configuration management, tasking,
management of metadata, and others. Aspen is designed to support such
features in a natural way. Limitations on space preclude extensive examination
of all of these. but support for version control and packaging (especially direc-

tories) is briefly discussed below.

8.1. Version Control

Versions of objects may be assumed to form a branching tree. "Vertically"
ordered objects are assumed to represent time-successive versions. "Horizon-
tally’" ordered objects are assumed to represent alternative (time-concurrent)

versions. Several objects in the tree may be actively in use simultaneously.

By default a new version is assumed to be the successor of the old version
from which it was implicitly created, that is, the new and old versions are
related vertically in the tree. Formation of an alternate version is usually
accomplished by an explicit "branching” instruction to establish a new horizon-
tal relationship in the tree. Creation of new horizontal relationships implicitly
establishes new vertical relationships as a side effect. In practice, it is often
desirable to terminate branches and merge them into other branches (usually

some designated main line). This merging process is very difficult to automate

15

and so few version control systems address it.

Historically, version control systems have taken two different approaches to
the storage and management of versions of an object. In some systems, like
RCS [Tichy 82|, and SCCS [Rochkind 75|, all version objects are physically
packaged into a special version control object (for example, an RCS ",v" file).
In such systems particular version objects are inserted into and extracted from
the version control object by special user tools. In other systems, like Cedar
Lampson 83], each version is maintained as a separate, independent object, and
the version relation is realized through a logical packaging mechanism provided
by the operating system. The particular version objects may be immutable, as
in Cedar, or mutable. In these systems existing versions are accessed just like
other objects (without special tools), and an attempt to change a version object

results in the creation of a new version object that incorporates the changes.

Aspen takes the view that version control is not primitive, and that various
version control policies and mechanisms can be implemented using constraints
and forward propagation. When an attempt is made to create a new version
object, a version control process will be invoked to ensure that the previous ver-
sion is preserved and that the new version is recorded according to the version
control scheme in use. In an RCS-like system, the proper tool would be invoked
to physically insert the new version into the version control object. In a
Cedar-like system, the new version would have to be logically inserted into the
version control relation. (Note that in the most general case version objects can
also be used in the creation of new objects that are not new versions. Conse-
quently the creation of new versions must be distinguishable from the creation

of new objects in general.)

One unsolved problem with version control concerns the granularity of

differences between versions. That is, how many changes must be made before

16

a new version is created. In Emacs, for example, it is possible to save a version
every n keystrokes. For RCS, an explicit user command (check-in) controls the
granularity. This issue is closely tied to the notion of transaction since the
creation of versions is often naturally associated with the completion of atomic

transactions.

8.2. Packaging and Directories

In any software environment, the organization of the logical "space" of
objects is a central issue. It affects the naming of objects and the ways in
which objects may be logically contained or "packaged" in one another. The
simplest logical organization is a "flat" object space, in which all objects are
contained in single-level name space and nesting of objects (such as files in
directories) is precluded. Experience with the old IBM-360 operating systems
shows that this is untenable. It has proven more useful to organize the object
space into hierarchical "packages'" or 'directories’ of related objects, such as
trees and other forms of directed graphs (acyclic or otherwise). The Unix direc-

tory system clearly shows the utility of such an organization.

Different notions of packaging will be supported at different layers in an
Aspen environment. At the lowest layers of the environment proper, immedi-
ately above Aspen (Figure 1, Layer 3), packaging will be provided by direc-
tories. At higher layers, additional logical and physical packaging schemes can

be constructed by users.

6.2.1. Directories

Aspen directories are a special type of relation between names and objects.
Directories define logical containment of objects (as opposed to physical con-

tainment). The type of the contained objects is unrestricted; they may include

17

other directories and relations. Objects (logically) contained in a directory may
also participate in other relations with objects that are outside the directory.
This concept is a direct generalization of a Unix directory to include objects of
arbitrary types. It is also a generalization of the relations in CAIS [CAIS 85|,
where objects can participate in multiple relations, but only one primary rela-

tion.

Since directories are relations, they have associated processes that can
interpret queries and respond to changes. These processes are responéible for
interpreting names and checking constraints. User processes may utilize direc-
tories as structures to hold named objects; these processes may then retrieve

objects by querying the directory.

A query against a directory relation is similar to traversing one step of a
path specification in Unix. Thus it is possible, unlike Unix, to have various
flavors of directory that interpret paths in different ways. For example, one
kind of directory might implement an export interface facility so that not all of
its objects are accessible through the directory; another kind may be used in a

distributed system to retrieve objects from remote sites.

7. Implementation Issues

In order to work in a multi-user environment, Aspen will need to address a
number of implementation issues. Garbage collection, concurrency control and
atomic transactions are three obvious examples, although not exhaustive. Ini-
tially, and where possible, known solutions will be used and later extended as
needed. Thus reference counting (with all of its flaws) may be used for garbage
collection. Similarly, locking may be used for concurrency control. Atomic
transactions can initially be implemented using explicit commit and abort
operations. This is inconvenient for the user, it is not expected that this solu-

tion will be adequate beyond the prototyping stage. Transaction specification

18

will be very important in Aspen since much of the constraint semantics depends
on the form of transactions that are implemented. It will also affect issues such
as version control. Eventually some sort of user-controllable transaction

management must be provided, but the details are as yet unspecified.

8. Comparison of Aspen to Related Systems

In the past few years there has been much research on systems that may
be used for managing design processes and objects. These include CAD/CAE
systems, [Katz 82, McLeod 83, Hollaar 84, Zara 85|, as well as programming and
software development environments [Teitelman 81, Ceri 83, Goldberg 83, Powell
83, Clemm 84, LeBlang 84, CAIS 85, Reiss 85, taylor 86]. Aspen is intended to
support software development, especially through the programming of software
processes as proposed by Osterweil [Osterweil 86| and the inferencing of process
invocation as generalized from the Odin system [Clemm 84}! Two of the sys-
tems that have the most significance for Aspen in this regard are POSTGRES
[Stonebraker 86| and Encore [Zdonik 85]. Aspen is briefly compared to each of

these below.

8.1. Comparison to POSTGRES

POSTGRES is a database management system that is being developed as
the successor to the INGRES relational database system [Stonebraker and Rowe
86]. Aspen shares many of the same goals as POSTGRES, but differs from it in
important ways with respect to the data model, process invocation, and

features provided.
Among the design goals of POSTGRES are

(1) 1. to provide better support for complex objects;

19

(2) 2. to provide user extendibility for data, operators, and access methods;

and

(3) 3. to provide facilities for active databases (using alerters and triggers)

and inferencing (both forward- and backward-chaining).

These features will be important in any software engineering environment, and

Aspen has been designed to support them as well.

POSTGRES preserves the traditional relational data model used in
INGRES. In this model, objects are not shared among relations and relations
themselves are not a data type. Thus, in POSTGRES relations are not compos-
able, and the type system is not closed. Aspen adopts a combination of the
relational and object-oriented data models. In Aspen particular objects can
participate in multiple relations. Relations themselves are typed objects and as
such can participate in other relations. Thus, in Aspen the type system is
closed. By including relations as objects that may be managed in the context of
other relations Aspen supports "meta-programming” of the software process in

addition to the traditional programming of the software product.

POSTGRES supports the programming of processes in both a query
language and in general programming languages (procedures written in general
programming languages are a special data type). Processes may be invoked in
response to queries within the system, or in response to a specific "execute’ com-
mand. Processes of the latter type may make POSTGRES queries or may
operate independently of the system and act on objects not in the POSTGRES
database. In Aspen, processes may be programmed in a general programming
language or in a special software-process programming language (of the type

proposed by Osterweil [Osterweil 86]). All processes are invoked directly or

indirectly in response to queries, under the control of Aspen®; this ensures that

8Unix processes, as opposed to Aspen processes, may be invoked directly.

20

Aspen retains control of access to persistent objects.

One other major difference between POSTGRES and Aspen is in the range
of features included. POSTGRES provides for forward- and backward-
inferencing by means of triggers, alerters, and virtual columns. Aspen provides
for backward inferencing through the processes that users may associate with
relations to define the semantics of queries. Aspen supports forward inferencing
by enabling the user to specify the conditions under which forward-inferencing
processes are to be invoked (for example, in response to particular types of
queries or changes to objects). POSTGRES also provides version control and
history management, whereas Aspen provides mechanisms that enable users to
incorporate alternative version control and history management methods at a
higher level. In general, Aspen provides low-level mechanisms on top of which
users may build higher-level features that are adapted to the needs’of a partic-
ular project or methodology. In contrast, POSTGRES is a more complete but

less flexible system in which many features are built in.

8.2. Comparison to Encore

The Encore system [Zdonik 85] provides an object-oriented database
approach to programming environments. In particular, Encore provides an
object-oriented database language for a database in which the objects are
described by types with operations, properties, and type inheritance. Aspen
shares much of the object-orientation of Encore, but provides more general

facilities for dealing with inferencing and the relationships among objects.

The type system in Encore is closed in the sense that everything known to
Encore is an object of some type. All objects have a type, and types themselves
are included as objects. Binary relations among objects are represented as pro-

perties of the objects, and these properties are also objects; relations apart from

21

properties are not included as a predefined type within the system. All
processes in Encore are associated with operations on objects. Aspen adopts a
similar object-oriented perspective. All objects have a type, the types are them-
selves objects, and the type system is closed. One minor distinction is that
types in Aspen are represented as abstract data types defined in terms of a
domain of values and operations on those values. A more important difference
is that while objects in Aspen have a state (analogous to properties in Encore),
Aspen provides for n-ary relations over objects. Processes in Aspen are associ-
ated with relation objects in particular; the relations provide a structured

framework for the action of processes on objects.

Encore supports backward inferencing through associative retrieval, and it
supports forward inferencing through triggers that may be linked to the opera-
tions on an object. As discussed above, Aspen supports inferencing through
processes that may define the semantics of queries or that may be invoked in
response to user-specified conditions. Thus Aspen can thus support Encore-style

inferencing and also other typés of inferencing.

8. Conclusions

The programmable relation concept of Aspen seems to provide a powerful
means for defining and controlling relationships over objects. This allows for a
flexible and extensible object manager. A wide variety of access and storage
patterns are possible, including simple stored relations, lazy evaluation, forward

and backward inferencing, and constraint checking.

References

[ALRM 83] Ada Joint Program Office, U.S. Department of Defense,
Ada Programming Language Reference Manual,
ANSI/MIL-STD-1815A-1983, 1983.

22

[Atkinson 83]

[CAIS 85

[Ceri 83]

[Clemm 84|

(Goldberg 83]

[Hollaar 84]

Katz 82]

[Lampson 83|

[Leblang 84]

[McLeod 83]

Atkinson, M. P., et al, "An Approach to Persistent Pro-
gramming'', Computer Journal 26(4):360-365, 1983.

Ada Joint Program Office, U.S. Department of Defense,
Common Ada Programming Support Environment Interface
Set, Proposed MIL-STD CAIS, 1985.

Ceri, S., and Crespi-Reghizzi, S., "Relational Data Bases in
the Design of Program Construction Systems', SIGPLAN
Notices 18, 11 (November 83), pp. 34-44.

Clemm, G. M., "ODIN - An Extensible Software Environ-
ment Report and User’s Manual", University of Colorado at
Boulder, Computer Science Department Technical Report
CU-CS-262-84, (May 1984).

Goldberg, Adele and Robson, David, Smalltalk-80: The
Language and its Implementation Addison Wesley, 1983.

Hollaar, L., Nelson, B., and Carter, T., "The Structure and
Operation of a Relational Database System in a Cell-
Oriented Integrated Circuit Design System", Proceedings of
the 21st Design Automation Conference (1984), pp. 117-125,

Katz, R. H;z "A database Approach for Managing VLSI
Design Data'", Proceedings of the 19th Design Automation
Conference, (June 1982), pp. 274-282.

Lampson, B. W., and Schmidt, E. E., "Organizing Software
in a Distributed Environment", Proceedings of the ACM
Symposium on Programming Languages Issues in Software
Systems, San Francisco, (June 1983), pp. 1-13.

Leblang, D. B., and Chase, Jr., R. P., "Computer-Aided
Software Engineering in a Distributed Workstation En-
vironment', Proceedings of the ACM Symposium on Practi-
cal Software Development Environments, Pittsburgh, (April
1984), pp. 104-112.

McLeod, D., Narayanaswamy, K., and Bapa Rao, K. V,,
"An Approach to Information Management for CAD/VLSI
Applications" Proceedings of the ACM SIGMOD Interna-
tional Conference on Databases for Engineering Design, San
Jose (May 1983), pp. 39-50.

23

[Osterweil 86]

[Powell 83]

[Rathke 83]

[Reiss 85]

[Rochkind 75|

[Stonebreaker 86]

[Taylor 86]

[Teitelman 81|

[Tichy 82]

Osterweil, L., "A Program—ObJect Centered View of
Software Environment Architecture," University of Colora-

do, Department of Computer Science Technical Report
CU-CS-332-86, (May 1986).

Powell, M. L., and Linton, M. A., "Database Support for
Programmmg Environments" Proceedmgs of the ACM SIG-
MOD International Conference on Databases for Engineer-
ing Design, San Jose (May 1983), pp. 63-70.

Rathke, C., and Laubsch, J. H., "OBJTALK: Eine
Erwelterung von LISP zum obJektorlentxerten Program-
mieren", In Objektorientierte Software- und Hardwarearchi-
tekturen, Teubner Verlag, 1983, H. Stoyan and H. Wedek-
ind, ed., pp. 60-75,

Reiss, S. P., "PECAN: Program Development Systems that
Support Multlple Views" IEEE Transactions on Software
Engineering SE-Il, 3, (March 1985), pp. 276-285.

Rochkind, M. J., "The Source Code Control System", IEEE
Transactions on Software Engineering SE-1, 4, (December
1975), pp. 364-370.

Stonebreaker, M., and Rowe, L. A, "The Design of

Postgres", Proceedings of the ACM-SIGMOD International
Conference on Management of Data, pages 340-355, Wash-
ington, D.C., 28-30 May, 1986.

Taylor, R. N., Clarke, L. A., Osterweil, L. J., Wileden, J.
C., and Young, M., Arca,dla A Software Development En-
vironment Research Project”, Second International Confer-
ence on Ada Applications and Environments, April, 1986,
pp. 137-149.

Teitelman, W., and Masinter, L., "The Interlisp Program-
ming Env1ronment Computer 14, 4 (April 1981), pp. 25-34.

Tichy, W. F. "Design, Implementation, and Evaluation of
a Revision Control System," Proceedings of the Sizth Inter-
national Conference on Software Engineering, pp. 58-67,
1982.

24

[Zara 85]

[Zdonik 85]

Zara, R. V., and Henke, D. R., "Building a Layered Data-
base for Desngn Automatmn, Proceedings of the 22nd
Design Automation Conference, (1985) pp. 645-651.

Zdonik, S. B., and Wegner, P., "A Database Approach to
Languages, Libraries and Envxronments, Proceedings of the
Workshop on Software Engineering Environments for
Programming-in-the-Large, Harwichport, Massachusetts,
June 1985, pp. 89-112.

26

