EDGE-LABEL CONTROLLED
GRAPH GRAMMARS*

Michael G. Main and Grzegorz Rozenberg

CU-CS-349-86 October 1986
Revised June 1987

* G. Rozenberg has been supported in part by National Science Foundation Grant MCS-83-05245. M. Main’s research
has been supported in part by National Science Foundation grant DCR-8402341.

EDGE-LABEL CONTROLLED GRAPH GRAMMARS*

Michael G. Main Grzegorz Rozenberg
Department of Computer Science Institute of Applied Mathematics
University of Colorado and Computer Science

Boulder, CO 80309 U.S.A. University of Leiden

Leiden, The NETHERLANDS
and
Department of Computer Science

University of Colorado
Boulder, CO 80309 U .S A.

ABSTRACT

We introduce a graph-grammar model based on edge-replacement, where both the rewriting
and the embedding mechanisms are controlled by edge labels. The general power of this model is
established - it turns out to have the complete power of recursive enumerability (in a sense to be
made precise in the paper). In order to understand where this power originates, we identify three
basic features of the embedding mechanism and examine how restrictions on these features affect
the generative power. In particular, by imposing restrictions on all three features simultaneously, we

obtain a graph-grammar model that was previously introduced by Kreowski and Habel.

Keywords: edge-rewriting, label-control, NLC, recursive enumerability.

* G. Rozenberg has been supported in part by National Science Foundation Grant MCS-83-05245. M. Main has been supported in part by Na-
tional Science Foundation Grant DCR-84-02341.

1. Introduction

In recent years, node-label controlled (NLC) graph grammars have been intensively studied as
a method for generating node-labeled graphs [6,7,8,9,12]. The key feature of NLC-grammars is that
both the rewriting of a subgraph, and the embedding of a newly introduced subgraph are controlled
by node labels. (This is in contrast to the algebraic approach [1], where rewriting and embedding
are based on structural properties of graphs.) Node-labeled graphs, which are the subject of NLC-
grammars, are fundamental objects with numerous applications in computer science and other areas.
Within the realm of graphs, one also has edge-labeled graphs, which are equally fundamental. It is
natural to ask how the label-based control mechanism carries over to edge-labeled graphs. The aim

of this paper is to initiate systematic research in this area.

The model of edge-label controlled (ELC) graph grammars we are presenting is influenced by
our experience with NLC-grammars, and by the research of H.J. Kreowski on edge replacement sys-
- tems [2,3]. However, we should warn that making a proposal for ELC grammars involves much

more than simply taking the dual of NLC grammars.

The paper begins by presenting our basic ELC model and illustrating its features by examples.
It turns out that our basic model is "too powerful" in the sense that it generates all the class of recur-
sively enumerable graph languages. In order to formally state and prove this result, we have to for-
malize the notion of a recursively enumerable graph language. We do this by introducing a simple

algorithmic language for constructing graphs.

In analyzing EL.C grammars more closely, one can distinguish three basic parameters used in
the rewriting process. Roughly speaking, the first parameter determines whether neighboring edges
can be deleted when an edge is rewritten. The second parameter determines whether the source and
target nodes of a rewritten edge can "merge" during the rewriting process. The third parameter con-
trols whether multiple copies of the source and target nodes of a rewritten edge can appear. We

investigate the impact of these three parameters. It is interesting to notice that if we make all three

[N

parameters "restrictive"”, then we get the original edge-replacement systems proposed by Habel and

Kreowski [2,3]. Other combinations of the parameters yield other classes of languages.

Terminology and notation: Throughout the paper, the term graph refers to a directed, edge-
labeled, finite graph with at least one node (and with no self-loops). Multiple edges between the
same pair of nodes are allowed. For a finite alphabet A, the set of all graphs with labels chosen from
Ais denoted G ,. Formally, such a graph is a tuple (V, E, [, source , target), where V is a non-empty
finite set of nodes, E is a non-empty finite set of edges, /:E —A is a function assigning labels to
edges, and source ,target :E —V are functions assigning source and target nodes to edges. We do
not distinguish between isomorphic graphs, so that the term "graph" actually refers to a class of iso-
morphic graphs.

The graph with exactly one node is denoted by e. An edge labeled by A is called an A-edge.
We say that an edge is incident to its source and target nodes, and two edges which are incident to a
common node are called adjacent. Similarly, two nodes which are incident to a common edge are

called adjacent. The set of nodes of a graph o is denoted by nodes() and the set of edges of o is

denoted by edges(c). The cardinality of a set S is denoted | S| .

2. Edge-Label Controlled Graph Grammars
Definition 2.1. An edge-label controlled graph grammar (ELC grammar) is a 5-tuple
AP S,C), where
— 2 is a finite set of edge labels.
— A is a proper subset of Z, called the rerminal labels; elements of Z—A are nontermi-
nals.

— P is a finite set of productions,; each production has the form

A = (0, Osoyrce » Ocl‘arget)

where A is a nonterminal label, x e Gy , and Olpyrce and Oltarger T€ NONEmMPpty sub-
sets of nodes(a).
— § is a nonterminal label called the start label.

—C < (Zu{soLatep }) x Z is the connection relation.

[

The use of the connection relation and the meaning of rsoLarep — which is not in ¥ — will be
explained in a moment. An ELC grammar without a specified start label is called an ELC grammar
scheme. The way that an ELC grammar generates a set of graphs (its graph language) is similar to
the mechanism of node-label controlled (NLC) graph grammars. But before the description of this

mechanism, we need a short discussion of the productions.

The graph «, on the right side of a production, is nonempty since G y contains only nonempty
graphs. These graphs are called daughter graphs, and intuitively a rule such as
A = (O, Ogource s Osarger) Will be used to replace an A -edge by the subgraph .. In this replacement
procedure, the labels of edges adjacent to various nodes in o will be important. For this reason, we
assign a "type" to each node in a daughter graph, based on the labels of the node’s adjacent edges.

These types are not an intrinsic part of the graph (i.e., the nodes remain unlabeled), but merely an

aid in describing the replacement procedure. The "type" of a node with no incident edges is an
1soLATED -node. A node with an incident A-edge is an A-node. A node with several incident edges
may have several types; for example a node could be both an A-node and a B-node if it has both A
and B edges incident to it. Throughout the replacement procedure, new edges will be added, con-
necting a daughter graph to the rest of the graph. But when we add these new edges, we will not
change the "types" that we have identified with each node — i.e., if we add an A-edge, this will not

make new A-nodes.

Now we can describe the ELC replacement procedure, which consists of rewriting an edge
with a production rule that introduces a new subgraph, and embedding the new subgraph by adding
new edges. Let G =(Z,AP,5,C) be an ELC grammar. A production 4 := (O , Olgpurce Cltarger)
of P is used to transform a graph in the following way.

Part 1.

Start with a graph u; within U, choose any occurrence of an A -edge, which we will call the

mother edge. Let s be the source node of the mother edge, and let ¢ be the target node. All

edges which are incident to s or ¢ (except the mother edge) are called neighborhood edges.

The mother edge, the neighborhood edges, plus s and ¢ are now deleted from the graph L,

yielding a new graph ',

FPart 2.
Add a copy of o (the daughter graph) to the graph p” (where the edges and nodes of the copy
of o are disjoint from W”).

Parrt 3.

Now we introduce new edges between 1" and the daughter graph. The introduction of these

edges is controlled by the connection relation C, and by the "types” of the nodes in the daughter

graph. The process consists of adding edges, according to one of the following rules:

(i) Outgoing edges: For each neighborhood edge }Z—>?t (where u#t) and each node

Part 4.

(ii) Incoming edges: For each neighborhood edge . —Z

V € Qlgource » if there is some Y such that v is a Y-node and (Y, Z) € C, then connect v to

u with a Z-edge: (:}——»L—>z£). Similarly, for each neighborhood edge ?———Z >e
(where u#s) and each node v € Qg if there is some Y such that v is a Y-node and

(Y,Z) e C, then connect v to u with a Z-edge: (?)-——Z——>:t).

>§ (where u#t) and each node

V € Olgource » If there is some Y such that v is a Y-node and (Y,Z) € C, then connect u to

v with a Z-edge: (zt —Z >:)). Similarly, for each neighborhood edge . —Z—~——>?
(where u#s) and each node v € Ougrger, if there is some Y such that v is a Y-node and

(Y,Z) e C, then connect v to u with a Z-edge: (:‘ —Z~————>;).

The final thing that remains to be done is to establish some new internal edges in the

daughter graph; these edges correspond to edges that were originally parallel to the mother

edge. Specifically, for each neighborhood edge g—l———>? and each pair of nodes u € Cpyrce

and v € Ougrge, if there are two pairs (Y,Z) e C and (Y',Z) € C such that uis a Y-node and v

is a Y’-node, then connect u to v with a Z-edge: (21 —Z—>;). Similarly, for each neighbor-

hood edge ?—Z

>} and each pair of nodes u € Oyypgpr and V € Olypurce, if there are two

pairs (Y,Z)e C and (Y’,Z) € C such that u is a Y-node and v is a Y '-node, then connect u to

v with a Z-edge: (:‘ ——Z————>:}). Since self-loops are not allowed, these connections are only

done when u#v.

The final result has been to replace the mother edge with a copy of o. Edges were transferred from
the mother’s source and target t0 Olypurce aNd Gygrger - Let M be the graph resulting after Part 4. We

write U =M to denote the relation "M is directly derived from W in G ". If there exists a finite
sequence of transformations:

U > D>
then we write g % Wn and say that W, is derived from Ly in G; the finite sequence is called a

derivation of length m, and each application of the replacement procedure is one derivation step.
The language generated by the grammar G, also called an ELC language, is the set of all graphs in

G , which can be derived from a graph with a single S-edge connecting two nodes; that is,
LG)=(ne G,| eS—>e Zp).

Any graph which can be derived from the start graph e—S—>eis called a graphical form of G.

Whenever the grammar G is understood from the context, the notation will be simplified to = and

*
= .

Examples. We present several examples of productions and their application in a replacement
procedure. The nodes of a daughter graph o will be represented as follows: Ois a node which is in
neither Ogource NOT Qugrger; ® 1s a node which is in only Otgyrc. ; B is a node which is in only Olgrger; h
and @is a node which is in both Opurce and Cgrger -

Example 2.1. Consider a grammar with the connection relation {(b,A),(X,a),(X,b)} and

the following production (among others):

Let o be the right side of the above production. Here is an example of how the production is used in
a replacement procedure. The example begins with the following four-node graph — the mother

edge for this example is indicated by the dotted box.

.............

In Part 1 of the replacement procedure, the mother edge is removed, along with its source, target and

neighborhood edges. In this case there are four neighborhood edges (the two curved edges which
are adjacent to the mother target and the two b-edges which are adjacent to the mother source).

When these are removed, only a single edge remains, from the top of the previous drawing:

In Part 2 of the replacement procedure, a disjoint copy of the daughter graph is added, yielding this

disconnected graph (the dotted line indicates the new daughter graph):

...........

Also in Part 2 of the replacement procedure, we assign "types" to the nodes of the daughter graph,
according to the labels of the adjacent edges. In this case, the upper node of the daughter graph is an
X -node and a b-node; the lower left node is a b-node and an A -node; and the lower right node is an
A -node and an X -node.

In Part 3 of the replacement procedure, edges are established between the daughter graph and
the rest of the graph. These edges are established by examining the connection relation, and by exa-

mining each of the neighborhood edges that were deleted in Part 1. For example, the pair (b,A) is

in the connection relation, and there is a neighborhood A -edge from the mother target to the upper
left node of the original graph. This implies that a new A -edge is established from every type b -

node in Qygrger to the upper left node of the original graph. This gives one new edge:

{

.............

Notice that there is no A -edge from the second node of Olearger tO the upper left node of the graph,
since this second node is not a type b -node. In all, Part 3 will add four edges between the daughter

graph and the rest of the graph. At the end of Part 3, the graph looks like this:

..........

..

In this case, Part 4 does nothing (since there were no edges parallel to the mother edge), so the entire

replacement procedure looks like this:

10

...........

.............

...

Example 2.2. Consider the same production as the previous example, but suppose that the
connection relation contains only the pair (A,a). The production can be applied to the same graph
as before, but the result is different. In particular, the daughter graph is reconnected to the rest of
the graph in a different way. The pair (A,a) is in the connection relation, and there is a neighbor-
hood a-edge from the upper right node of the original graph to the mother target node. Therefore a
- new a-edge is established from the upper right node of the original graph to every type A -node in
Olrarger . The complete replacement procedure is drawn below, with the mother edge and daughter

graph outlined.

............

...

.............

Example 2.3. This example shows how an edge which is parallel to the mother edge results in

edges that connect source and target nodes of the daughter graph. These edges appear in Part 4 of

11

the replacement procedure. For this example, we start with the following two node graph:

........

........

We will rewrite the X -edge from this graph, using the production from Example 2.1, and with the
connection relation containing only (A,c) and (X,c). In Part 1 of the derivation, the X -edge is
removed, along with its source and target nodes and the neighborhood c-edge. This leaves the
empty graph, to which we add the daughter graph in Part 2 of the replacement procedure. So, at this
point the graph consists of the three nodes of the daughter graph — two of which are in Oltarger » and

one is in Clgpyree

Part 3 of this replacement procedure adds no new edges (since there were no neighborhood edges
between the daughter graph and the rest of the graph). However, Part 4 adds two new edges from
the two nodes of Ougrger to the one node of tgpuce. Both these edges arise from the ¢-edge which
originally connected the mother target to the mother source. Since (X, c¢) is in the connection rela-

tion, we connect the lower right node of Qlarger (an X -node) to the one node of (gure. (an X -node).

12

Since (A, ¢) is also in the connection relation, we also connect the lower left node of Olarger (an A -
node) to the one node of sy (an X -node). In general, with this connection relation and the indi-
cated parallel ¢-edge, we add a new ¢ -edge from each A -node or X -node in O, to each A -node

or X -node in Oy, . The complete replacement procedure is drawn here:

........

........

Example 2.4, This is an example of a production rule with a node in the daughter graph (o)
which is in both Otyrce and Ogree;. The connection relation for this example contains all possible

pairs, and the production rule is:

When this production is applied to an X -edge, a new X -edge is introduced, and all connections
to the old X -target node are transferred to the new X -source node. Here is an example replacement

procedure with the mother edge and daughter graph outlined:

13

Example 2.5. This is an example of a complete grammar. The nonterminal labels are {S,.X,A),
with start label S. There are two terminal labels {a,b}. The connection relation is {(a,q), (a,4),
(a,b), (b,A), X,a), X,b)}. There are these three productions: (The source and target nodes for the
daughter graph of the first production are not indicated because they are irrelevant; this production is

only applied as the first step of a derivation, where there are no neighborhood or parallel edges.)

G A O
b
S =
A b X a

14

A derivation in this grammar begins by replacing the start label with the first production rule:

| - A .
S >
A b X a

At this point in the replacement procedure, the graph has precisely one X -edge, and two A -edges.

The X -edge may be replaced using the second production rule, which will keep the total number of

X -edges at one and add one new A -edge in a particular way. For example, applying the second pro-

.

duction rule to the above graph results in this replacement procedure:

) \\/
= A
A bl | X a b bl 1 X a
l'ﬁ———

The third production rule changes an A -edge to an a-edge. Because of the connection relation, an
application of the third production also causes any X -edge adjacent to the mother source or target to
"disappear”. This is because (a ,X) is not in the connection relation. For example, here is a replace-

ment procedure using the third production rule:

15

b
Q

b/ b b
1}<T~ lpé__a__.._....
This particular derivation can be completed by applying the third production rule to the remaining

two A -edges. This gives the final two steps of the derivation like this:

L L a

A @ @
A 5 4
b/ b a A/a
a ¢ a

More generally, a derivation in this example grammar has these three stages:

1. The first derivation step where the start-edge is replaced using the first production rule.

2. Applications of the second and third production rules, without replacing the A -edge adjacent to

the X -edge. At each point in this stage, the graph has the form:

16

ora

The edges around the "rim" are all labeled by either A or a. The only restrictions are that the
edge which is immediately counter-clockwise from X is an a-edge, and the edge which is

immediately clockwise from X is an A -edge.

3. Eventually, in any derivation, the A-edge which is adjacent to the X-edge will be rewritten to an

a. At this point, the X-edge disappears, since (a,X) is not in the connection relation.

4. The remainder of the derivation replaces any remaining A -edges with a -edges, using the third

production rule. The end result is a graph of this form:

From this, it is easy to see that the grammar generates all graphs of the above form, with at

least three a’s. In Section 8, we will show that this graph language cannot be generated

17

without a connection relation which breaks some edges (such as the way the X-edge is broken
by replacing the adjacent A-edge).

Example 2.6. This is an example of a grammar which generates only discrete graphs. (There
are no terminal labels.) The source and target sets for the productions of this grammar are always
distinct single nodes of a daughter graph. Despite this simple form for productions, the grammar is
interesting because the only graphs it generates have exactly 3x(8") nodes. This "exponential

growth" in graph size will be used in Section 8.

The start label for the grammar is S and the other nonterminal labels are {Ag,A1,4,,X,B }.
The connection relation contains these pairs:
(A;,Aj)for i =0,10r2
(Aj+1,4;) fori =0, 1 or 2; addition is modulo 3
(B.A2)
(1soLATED,B).
Here are the productions of the grammar. As in the previous example, the source and target nodes

of the first production are omitted since this production is only used at the start of a derivation.

®

Aivt

18

Since there are no terminal labels, the grammar generates only discrete graphs. As mentioned
above, the sizes of these discrete graphs are growing exponentially. To prove this, let
S =>a; = '+ =0, be a derivation of a discrete graph o,,. We prove four properties which

hold for any of the graphical forms oy:

1. Every non-X-edge in oy is adjacent to every other non-X-edge.
2. Every non-X-edge in oy is adjacent to one X-edge, and this X-edge is not adjacent to any other
edge.
3. Let Af (o) be the number of A edges in oy, and similarly for A{, A4 and B*. If oy contains at
least one A;-edge, then
| nodes (ow) = 3x(Af (ow)+AT (o) +A% (o) +B# (o).
4. Define the value of o to be the following integer:
If Af (o) =0 then value (o) = 9A T (o) +34% (o) +| nodes (o)
else value (o) = 21AH (o) +9A T (o) +45A8 (0) +| nodes (o) .

Then there exists an integer n such that value (o) = 3 x(87).

The proof of these properties is by induction on k. The base step (k=1) is easy since ¢ is the fixed

graph X >e—A0 e and properties 1-4 are easily verified for this graph. The induction step

19

is a case analysis, based on the five possible productions which can be applied at oy _; = 0.

The fourth property implies that every graph generated by this grammar has 3 x(8") nodes for

some n. In fact, any such graph (n21) can be generated by this grammar.

3. Explicit ELC Grammars

In order to use an ELC production, we associate "types" with each node of the daughter graph.
These types are the labels of the edges which are incident to the node, and these types are used (in
Parts 3 and 4) to determine which new connections are made between this node and the rest of the
graph. Thus, the labels in daughter graphs serve two purposes: they label the edges, and they also
control the "types" that affect the new connections.

It may sometimes be convenient to separate these two roles of the edge labels. As an alterna-
tive to this method of associating types, we could explicitly assign types to the nodes of each
daughter graph — without regard to the labels of incident edges. In particular, we could assign a set
of edge labels L(u) to each node u of each daughter graph. If L(u) is the empty set, then u is to be
treated as if it is anssoraTep-node. Otherwise it will be treated as an A-node for each A in L(x). This
explicit assigning of types to daughter graph nodes permits a simplier design of grammars in many
cases. We call these grammars explicit ELC grammars (since each node of each daughter graph has

an explicit set of labels assigned to it).

Can explicit ELC grammars generate graph languages which cannot be generated by any ELC
grammar? No! The following theorem shows how an explicit EL.C grammar can be converted to an

ordinary ELC grammar, without affecting the language that is generated.

Theorem 3.1. The class of languages generated by explicit ELC grammars is precisely the class of

ELC languages.

20

Proof: Clearly every ELC language can be generated by an explicit ELC grammar. For the other
direction, let G = (£,A,P,S,C) be an explicit ELC grammar. We will construct an ELC grammar G’
which generates the same language as G. The label set of G’ is £ U P (T), where P(Z) is the power-
set of 2. The terminals are still A and the start symbol is still S. The productions of G’ are the same
as those in G, but each daughter graph is modified. For each node u in a daughter graph, we add
one extra node m, , and there is an edge labeled by L(1) from m, to u. The source and targer subsets
of the daughter graph remain unchanged. For each new nonterminal label X e P (X), there is also
one new production: X := @&. Finally, the connection relation of G’ is the union of these five sets:
{X,A)] X € P(¥),and forsome B € X:(B,A) e C)
{(@,A)| (soLarep,A) e C)
{(soLatED,A)| A € T}
{1 XY e P(D))
{(soLateD , X)| X € P (2)}

Each production of a derivation in G can be simulated in G’ by a sequence of productions: the first
production corresponds to the step from G, but with the extra nodes m,,, and the rest of the produc-
tions in the sequence apply the new productions to get rid of the m, nodes, by collapsing them into
other nodes. In this way, each graph generated by G is also generated by G’. It is straightforward to

show that these are the only graphs G’ generates. []

The explicit form is useful for showing that specific languages are ELC. In particular, we will
use it to show that ELC languages have the complete power of recursive enumerability. But first we

must define R.E. graph languages, which is the subject of the next section.

4. Recursively Enumerable Graph Languages

21

This section defines recursively enumerable graph languages over a fixed terminal alphabet A.

Intuitively these are languages whose elements can be effectively enumerated.

4.1 Linear Descriptions of Graphs

We start with a small "algorithmic language" which can be used to construct graphs, using a
simple set of primitive instructions. The instructions allow operations like "add a new node" or
"connect two specific nodes with a Y-edge." The language is designed with one goal in mind:
sequences of instructions should be easy to "simulate” by a fixed ELC grammar. Because of this
goal, the collection of allowable instructions may not be the most natural possible, but the set is
complete enough to construct any graph (with 2 or more nodes).

Each sequence of instructions can be thought of as a little algorithm to dynamically generate a
graph. At the beginning (before any instructions are executed), the "dynamic graph” has exactly two
nodes, labeled 1 and 2, and no edges. Each instruction adds some edges, or nodes, or does some

~other alteration to the graph. At each step we assume that the nodes are labeled by consecutive
integers starting at 1. Also, we keep track of one distinguished node number in a variable called
current (initially currenr=1). As will be shown, instructions can change the value of current, and
also renumber the nodes. We begin with a list of the different instructions, and then specify how
they can be put together to form "graph programs".
LEFT and RIGHT:
The LEFT instruction subtracts one from the value of current. The riGHT instruction adds one to

the value of current.

EpGEy (Y is any label):

This connects node number current to node number current+1, using a Y-edge.

SWAP:
This instruction swaps the node numbers of node number current with node number current +1.

The value of current remains unchanged.

ADD:
This instruction adds a new node. The number of the new node is current+1. Any node with a
number higher than current has its node number incremented by 1. The value of current

remains unchanged.

JOIN:
This instruction causes two nodes to merge. In particular, the nodes numbered current and
current+1 are joined together. Any edges between the two nodes disappear. Any other node

with a number higher than current+1 has its node number decremented by 1.

SKIP, IGNORE and END:
The skip instruction does nothing. The IGNORE instruction causes the next instruction to be
ignored. END is a special instruction which must appear twice at the end of each sequence. It
has no effect on the construction of the graph. The "operational" reason for these instructions

will become apparent later.

These instructions can be put together sequentially to form "graph programs”. We require these pro-
grams to meet certain restrictions. In particular, RIGHT and EDGEy can only be given if current is less
than the number of nodes in the dynamic graph. A LEFT instruction requires current >1, and the
IGNORE instruction cannot be the final instruction in the algorithm, nor can it precede another 1GNORE
instruction. Also, we require that the total number of nodes in the graph being constructed is never
less than 2 — hence jov cannot appear unless there are at least three nodes in the graph. For rea-
sons to be explained later, we also require that the swap and joiN instructions appear only when
current 1s less than n—1 (where n is the number of nodes in the dynamic graph). Finally, the exp
instruction must twice appear at the end of the sequence, and nowhere else. When these END instruc-

tions occur, the value of current must be 1.
A graph program is any sequence of instructions which meet these rules.

Example. Here is an example graph program: CONNECT,, ADD, CONNECT,, RIGHT, CONNECT ., LEFT,

END, END. This program constructs the following three node graph:

4.2 Formal Definition of R.E. Graph Languages

We are now ready to give the definition of a recursively enumerable graph language. For any
graph o, there may be many graph programs which construct &t. Among these we need to fix a shor-
test program (fewest instructions) which constructs .. The way we choose this fixed program is not
important, so long as it is effective. For example, we may choose the lexicographically first pro-
gram. The chosen program will be denoted by program(co). The one-node graph doesn’t have a

graph program, so we will define program(e) = onE (where oNE is a new symbol).

For a graph language L over an alphabet A, we can define a string language over the alphabet
{LEFT, RIGHT, SWAP, ADD, END, ONE} U {EDGEy | ¥ € A} by
program(L)= {program(u)| we L}.
Note that the alphabet of program(L) does not contain IGNORE, SKIP Or JOIN, since these will never

appear in a shortest program for some graph.

Definition 4.1. A graph language L is called recursively enumerable iff program(L) is a recur-

sively enumerable string language.

[

The next section shows that the ELC languages are precisely the recursively enumerable graph

languages.

24

5. The Power of ELC Grammars

This section demonstrates that ELC grammars generate precisely the recursively enumerable
graph languages. The proof uses a technique similar to an approach taken for "handle NLC" gram-
mars in [11]. These are graph grammars which generate node-labeled graphs, but where the item
replaced in a derivation step consists of an edge plus the edge’s source and target node. (These three
things form a "handle"). The proof of the result begins with an ELC grammar scheme S 5 which can

"simulate" graph programs.

5.1 Executing Graph Programs

This section gives an ELC grammar scheme S which "simulates" the graph programs of Sec-
tion 4. The simulation occurs by starting with a graph which corresponds to some arbitrary graph
program /1,15, - - - ,I,. From this starting point, the only terminal graph which S, can derive is the

~graph which the program /1,7, - - - ,I,, constructs. This is obtained by having the productions of S 4
execute the instructions of the graph program in a particular way.

The terminal labels for S, are the labels of A. The non-terminals are the instructions (LEFT,
RIGHT, EDGEy , SWAP, ADD, IGNORE, SKIP, JOIN and END) plus five extra symbols (X, A, B, G and T). The
connection relation is X x X, where X is the set of all labels. The productions will be given after a

short discussion.

Suppose we have a graph program /1,75, - -+ ,[,, which encodes a graph p. When the graph
program is executed, we can keep track of the graph as it is being constructed, and also keep track of
the value of current at each step. Specifically, let U; be the graph that exists after executing i
instructions of the graph program (together with the information about how its nodes are numbered).
Also, let current; be the value of current at this point. Thus, [y is the beginning graph, with two

nodes (numbered 1 and 2) and no edges, while W, is the final graph LL.

25

Now define some auxiliary graphs Mo,ny, * * - ,N,—2. The graph 1; contains enough information
to specify L;, the ordering on (;’s nodes, the value of current; and the list of remaining instructions
(i1, - -+ In). In particular, we define 1; by adding some new nodes and edges to |;. The graph ;

is shown in Figure 5.1.

The line of uncircled nodes at the bottom of the figure are the nodes of ;. They are connected
in order by a sequence of X-edges, so that node number 1 is on the left and the highest numbered
node is on the far right. The edges drawn below these nodes in the figure are the actual edges of ;.
Above each node of L; is a "stick” of extra nodes. All but one of these sticks is a chain of two A-
edges. The other stick is a chain of the remaining instructions /;.1, - - - I,,. The node number of the

node which has the special "instruction stick" is also the value of current;.

FIG.5.1. The graph 1;. The uncircled nodes are the nodes of I; .

26

The grammar is constructed so that only one possible production can be applied to a graph like
1;. This one production is completely determined by the next instruction in the "instruction stick".
For example, if the instruction /;4; is RIGHT, then there is a production which corresponds to the
RIGHT instruction which can be applied to m;. The effect of applying this production is to move the
instruction stick right one node. In this way, M; is transformed into m;,;. Finally, when m,_; is
reached, there are only two instructions (END, END) remaining. At this point, some extra productions
must be applied to M, to get rid of the extra nodes and edges. The final result will be the graph
Hp =

One more item should be mentioned about the 1; graphs. The nodes which have attached "A-
sticks" (i.e., those which are not current;) may have a more complicated structure attached. This
structure will be a graph of A and B edges. We require that this attached graph has at least one edge
which is not connected to the uncircled node from Ll;, and that no B-edges are adjacent to this uncir-

cled node. So,n; can actually be a bit more complicated than Figure 5.1.

Figures 5.2 through 5.12 show the productions which correspond to each of the instructions,
together with an example of how these instructions would transform m; into 1;.;. Some additional
comments on the productions are given after the figures. The productions are given in the explicit
ELC form. Recall that in the explicit form, each node u of a daughter graph has an explicit set L(1)
of edge-labels which determines when it is an A-node. In the figures, we will write L(1) next to each
node u of a daughter graph. §; denotes AU {X }; S, denotes AU {X ,A }, and S5 denotes the set of
instructions (LEFT, RIGHT, EDGEy, SWAP, ADD, IGNORE, sKIP, JOIN and END). We will use the notation

from Section 2 to denote the source and target subsets (O,®,5,&).

27

Production P1.

{A} (RIGHT)
X = A IGNORE
® X
S, S

Example derivation step: The edges C and D in this example are from the graph which is being con-
structed. The - indicates the instruction stick. The mother edge and daughter graph are indicated
by dotted boxes. ,

FIG. 5.2. The RIGHT instruction.

28

Production P2.

{LEFT} (A}

X = IGNORE A
& X

S1 S1

Example derivation step: The edges C and D in this example are from the graph which is being con-
structed. The - 1ndicates the instruction stick. The mother edge and daughter graph are indicated
by dotted boxes.

FIG. 5.3. The LEFT instruction.

29

Production P3. (Foreach Y € X)

{EDGEY }
X = IGNORE
X
S csa_/\ﬂg‘ 2

Y

Example derivation step: The edges C and D in this example are from the graph which is being con-
structed. The - - - indicates the instruction stick. The mother edge and daughter graph are indicated
by dotted boxes.

1 t r

A A A A EDGE A A

K ;' R . 7.

A EDGE A A A IGNORE:"-: A A
« X \}ij M
D c D y o

...............................

FIG.5.4. The EDGEy instruction.

{swar}
Production P4. ®

IGNORE
o

JOIN

LEFT

o) o)
iA LEFT A

A JOIN A
e =)

X} % Aavmy £ A X Ty

X =
{

Example derivation step: The edges C and D in this example are from the graph which is being con-

structed. The - indicates the instruction stick. The mother edge and daughter graph are indicated
by dotted boxes.

F1G.5.5. The swap instruction.

31

Production P5.
o}
A
{aDD}
X = IGNORE A
e X > X .5
St S2

Example derivation step: The edges C and D in this example are from the graph which is being con-
structed. The - - - Indicates the instruction stick. The mother edge and daughter graph are indicated
by dotted boxes.

............

..................................

FIG.5.6. The ApD instruction.

32

Productions P6 and P7. (For each instruction I# Enp)

S3 {skir}

I:= KIP IGNORE = KIP
®
{1IGNORE} S

Example derivation step: This shows how Productions P6 and P7 work together to execute an IGNORE
Instruction which precedes an App instruction. The edges C and D in this example are from the
graph which is being constructed. The --- indicates the instruction stick. The first mother edge is
indicated by a dotted box; the second is indicated by a dashed box.

.....................

L J

=0

»
=P . . .

.

2

]

.

=4

=4

A AD A A SKIP A A SKIP A
® = E- B c.(— -E ® = l(1(
A IGNORE A A IGNO:RE 5 A A SKIP A
W X v X X X
D C D C D C

FG. 5.7. The IGNORE instruction.

Productions P8 and P9.

S3

SKIP = T T = | S u S,
®
S1

Example derivation step: This shows how Productions P8 and P9 work together to execute a skip
instruction. The edges C"and D in this example are from the graph which is being constructed. The

- indicates the instruction stick. The first mother edge is indicated by a dotted box; the second is
indicated by a dashed box.

FIG.5.8. The skIp instruction.

34

Productions P10 and P11.
JOIN {A} (B}
X := IGNORE X = A
@ X
S S, U {1GNORE} Ss

Example derivation step: This shows how Productions P10 and P11 work together to execute a JOIN
instruction.” Recall that this instruction cannot be used to join the last two nodes in the graph, hence
P11 always has a chance to be applied. The edge C in this example is from the graph which is being
constructed. The - - - indicates the instruction stick. The first mother edge is indicated by a dotted
box; the second is indicated by a dashed box.

A
) A
A A
1
A A JOIN
1{ = = [
JOIN A A IGNORE IGNORI
X
@ 4
C C C

FIG.59. The JOIN instruction.

Productions P12 and P13.
{enp} (A} {A}
X = G X =
® ®
A S Avu {G} 8,

Example derivation step: This shows how Productions P12 and P13 get rid of the X-edges at the end
of a derivation. The edges C and D in this example are from the graph which is being constructed.
The first mother edge is indicated by a dotted box; the second is indicated by a dashed box.

3 ! ! ! !

END)| A END A A

! ! ! ! ! ! ! !

END, END)| A A END| A A

] T 1 ! PR ! i

END G G A G G G
......... - - - AN - <L - -

FIG.5.10. Productions to remove X-edges.

36

Production P14.

{END}

END =

®
{A.G)

Example derivation step: This productions is used to get rid of the enp-edges at the end of a deriva-
tion, by changing them to A’s. The mother edges are indicated by dotted boxes.

.....................

1 [
END END A
oy -
N -
END A A
ot = >
G
®

FIG.s.11. Production to remove Enp-edges.

37

Productions P15 and P16 (For I = A or B).

{A,B,G}
I := G = S, v {G)
(24
{A,B,G]}

Example derivation step: These productions are used to get rid of the A’s, B’s and G’s at the end of
a derivation, by collapsing the subgraphs with these edges to a single node. This is a simple exam-
ple. The mother edges are indicated by dotted boxes.

.............

.............

...........

.............

FIG.5.11. Productions to remove A, B and G-edges.

38

Here are some comments about the productions:

1. Actually, it is possible to apply a "wrong" production to 1;. For example, the LEFT production
might be applied when it should be a riguT production. However, the application of a "wrong"
production always results in one or more of the "sticks" becoming disconnected from the rest
of the graph. Once this happens, the derivation can never finish with a terminal graph. In par-
ticular, the only way an A-edge or an ENp-edge can be removed is if there is a G or X edge in
the same connected component of the graph.

2. Now, suppose we start with the graph 1g. From the previous comment, we see that any deriva-
tion must "execute” the first instruction, yielding 1;. From here, the derivation must move to
N2, N3, and so on, until it reaches 1, —. At this point, the graph still contains two END instruc-
tions, and current=1.

3. Once the derivation reaches M, _, the derivation can only be finished off by using productions

- P12 through P16. This leaves us with the terminal graph p, which the graph program

14, - -.I, constructed.
The formal result is stated in Lemma 5.1.

Lemma 5.1. Let P =1y, - -1, be a graph program which constructs some graph we G, (with
| u| >1). Letm; (0<i £n=2) be one of the auxiliary graphs defined above. Then the only terminal
graph generated fromM; using the graph scheme S is L. []

5.2 The R.E. Theorem

Suppose L is an arbitrary fixed recursively enumerable graph language over an alphabet A.
This section defines an ELC grammar Gy which generates L. For simplicity, we assume that the
one-node graph is not in L. Handling the case where the one-node graph is in L is a a simple exten-

sion of the case treated here.

39

By definition, program(L) is a recursively enumerable string language. Thus, there is a
phrase-structure grammar GP which generates precisely program(L) (see [4]). From normal form

results, we can assume the following properties of this grammar:
A. The nonterminal alphabet of GP is disjoint from the alphabet of the program scheme S 5.

B. Every production of GP is a context-free production (Z—a, where Z is a single nonterminal
and o is a string of symbols) or a production of the form UY —-UZ (where U, Y and Z are all

nonterminals).*

C. In any derivation of GP, the leftmost symbol remains a nonterminal until after the final pro-

duction is applied.

Using GP and the grammar scheme S (of Section 5.1), we can define the ELC-grammar G, which
generates precisely L. As in the previous section, the productions are given in the explicit format,
with explicit sets of labels attached to each node of a daughter graph.

Labels, Terminals and Start Symbol of Gy, :

The label set (denoted by Z) consists of the labels of S, plus the labels of GP plus a new start

symbol S. The terminals are A.

Connection relation:

Thisis allof ¥ x X,

*The idea to use this sort of grammar was suggested to us by Hans-Jorg Kreowski. It has been shown to be a normal form by [10]. This results
in a much simplier presentation than our original scheme which employed Turing machines.

40

R1. Production for the start symbol (S):

O
A
Where S’ is the
S = o] o} start symbol of
GP
S’ A
X -9
%) %]

R2. For each context-free production Z—A 1 - - - A¢ (k >0) in GP, the graph grammar G,
has this production:

z z

Z:=®___A_1_>o. . O—AZ—>@

R3. For each context-free production Z —¢ in GP, the graph grammar Gy has this produc-
tion:

™

N
W
)

41

R4. For each non-context-free production UY -UZ in GP, the graph grammar G has this
production:

RS5. Productions from S 4:

Each of the productions of S 4 is also a production of G,.
Lemma 5.2. I[f ue L then Gy, generates .

Proof: Let e L be a graph from the language L, and let program(u) =1/ - - - I,. Using produc-

tions R1 through R4, there is a derivation in G 4:

S’ I,
X X

Let Mo be the last graph in this derivation. From Lemma 5.1, there is a derivation 1o = L, using

only the rules from the grammar scheme S, (rules RS above). Therefore, in G, there is a deriva-

tonS ngSu []

42

Lemma 5.3. If G, generates a graph L, then L€ L.

Proof: There are two types of derivations in Gz . In one case, the graphical form eventually
contains a disconnected component with an A,B or END label, but no X or G label. Such a
derivation cannot be completed to a terminal graph. On the other hand, a derivation can
start with production R1, then continue with productions R2-R4, never applying R3 in a si-
tuation which would disconnect the graph. In this case, the sentential form will eventually

become this:

N]

.................

»
"l.
“"
‘O..“ll't'."'.'.

The sequence I - - - I, is a graph program for some graph | € L, and the dotted triangle is
a connected graph of A-edges, with at least one edge that is not adjacent to the node at the
bottom. At this point, the only productions which can be applied are those from S, (rules

R5 above). By Lemma 5.1, this derivation can only be finished by generatingte L. []

Theorem 5.4. A graph language is recursively enumerable iff if is an ELC language.

43

Proof: Given an ELC language L, it is easy to build a Turing machine which enumerates
program(L) — hence L is recursively enumerable. On the other hand, if L is recursively enumer-
able (and does not contain the one-node graph), then the previous two lemmas show that the ELC
grammar Gy, generates L. If L is recursively enumerable and does contain the one-node grapﬁ, then

an EL.C grammar for L is obtained by adding one production (S := &) to an ELC grammar for

L-{e} []

6. A Hierarchy of Language Classes

We have shown that the ELC grammars have the power of recursive enumerability. In fact,
this is generally too powerful since any nontrivial problem about the language generated by an ELC
grammar is undecidable (by an analog of Rice’s Theorem [14]). So, the result of the previous sec-
tion should be taken as a warning: It may be easy to specify languages with an ELC grammar, but

all of the problems we may wish to answer about such languages are undecidable.

With this in mind, we want to impose various restrictions on ELC grammars, so that the result-
ing classes of languages are still "powerful enough"”, but that they have more manageable properties.
With this in mind, we single out three basic features of the "direct derivation step" in an ELC gram-
mar, and then impose restrictions based on these features. In this way we get the following restric-

tions:

1. Complete Connection Relation.

This requires the connection relation C to be complete — i.e., C =(Z U {1soLatep }) = Z.

2. Disjoint source and targer sets

This requires Otyyrce and Ogrger to be disjoint for each production rule.

3. Singleton source and target sets

This requires Oource and Clygrger to always be singletons in each production rule. However,

44

they do not need to be disjoint, so that there might be only a single node from o, which is both

Olsource and Olygrger .

When all three of these restrictions are imposed simultaneously, the resulting grammars are the
edge-replacement systems introduced by Habel and Kreowski [2,3], with one technical change.* The
fact that all three restrictions taken together yields this known class of languages gives some
justification for our choice of features — especially so since the Habel-Kreowski class has a number
of nice properties similar to context-free string grammars. It also has some drawbacks, such as the
inability to generate sets of graphs where the number of connected pairs of nodes is nonlinear with

respect to the total number of nodes.

On the other hand, when the restrictions are taken in various combinations, the result is the
hierarchy of language classes drawn here. (The subscripts indicate which restrictions have been
placed on the grammars. The solid arrows indicate proper inclusions of language classes, and the

dotted lines are inclusions which may or may not be proper.)

*The systems used by Habel and Kreowski also allow loops (an edge from a node to itsclf). But, if loops are not allowed, the result is the same
as ELC grammars with the three restrictions. There are several sensible ways to handle loops with ELC grammars, but none of these methods
correspond to the treatment given by Habel and Kreowski.

45

The remainder of the paper is a preliminary consideration of some properties of these eight classes

of languages. We focus on demonstrating the eight proper inclusions indicated above.

7. Requiring Singleton source and target Sets

ELC 3 grammars require Olgoyc. and Olearger 1O De singleton sets in each production. Intuitively,
this restriction means that a single edge in the neighborhood does not become duplicated when an
adjacent edge is replaced. Such an edge remains a single edge, or it may be erased entirely if the
connection relation is not complete. The graphs generated by a grammar with this restriction cannot

become too highly connected. The formal result is in this lemma:

46

Lemma 7.1. Let L be a language generated by an ELC 5 grammar. Then there exists a constant ¢
such thar for any graph Y€ L, the total number of pairs of adjacent nodes in 7y is no more than

c| nodes(y)| .

Proof: Let G be thchLC 3 grammar which generates L. The constant ¢ is the maximum number of
nodes in a daughter graph of G (with ¢ >0). Actually, we can prove a result which is stronger than
the lemma. The result is this: Let y be any graphical form of G, and suppose the nodes of y are parti-
tioned into m disjoint sets S1,S2, -+, Sy, where each set S; is connected. An unordered pair of sets
{S;,S;} is called adjacent if there is an edge from a node of S; to a node of S j» or vice versa. We
will prove that the total number of pairs of adjacent sets is no more than c¢m. (This immediately

implies the lemma, by taking y to be a terminal graph and partitioning it into singleton nodes.)

The proof of the stronger result is an induction on the length of the derivation of . The base step (y
is e—S——>e) is trivial. For the induction step, assume the result holds for graphical forms with
derivations of length %, and suppose we now have a graphical form y with a derivation of length
k+1. Let Sy, - -, S, be the partition of y (as above). Also, let vy’ be the next-to-last graphical form
in the derivation of y, and let X = (O, Cypurce » Olrarger) e the final production which takes y” to v.
(Recall that Otpyrce and Olgrger must be singleton sets. Because of this we will abuse notation and let

Olsource ANd Qgrger be the actual single nodes rather than singleton sets of nodes.)

The nodes of y” are nearly identical to those of g. The only differences are that ¥’ has two extra
nodes (the mother source and mother target) which y does not have, and y has the nodes of the
daughter graph which y” does not have. From this, we see that the partition Sy, - - -,S,, of v also
gives us a partition Sy, -+ -,S’, of v/, as follows: If Ouce 1S in set S;, then the mother source
node in Y’ is in set S';; if Oygrger is in set S;, then the mother target node in y” is in set S’;; each
other node of y” is placed in the same set as its corresponding node in y. Of course, some of the

resulting partition sets of Yy’ may be empty, but this is not forbidden. We will let n denote the

47

number of such empty sets in the partition of y”. Also note that if a node v of the daughter graph is
in set S;, then S’; is either empty, or it contains the mother source or mother target. (Otherwise it is

not connected.)

What adjacent pairs can occur in the partition of y? There are only two sorts of adjacencies that can

arise:

1. A pair {S;,5;} may be adjacent in Y because {S’;,S’;} is adjacent in y”. By the induction
hypothesis, the maximum number of such adjacencies is ¢ (m—n).

2. Let S; be one of the sets which contains at least one of the daughter nodes, and let S ; be a set
such that S’; is empty. These might be adjacent in ¥, even if they were not adjacent in y’
(since S; can contain one of the daughter graph nodes). Now, there are no more than ¢ choices
for S; and no more than n choices for §;. Therefore, the number of adjacencies of this kind is

no more than cn.

Hence, the number of pairs of adjacent sets in 7 is no more than ¢ (n—n)+cn = cm, as required. [

One consequence of the above lemma is that the language G , of all graphs over A cannot be

generated by an ELC3 grammar (when A is nonempty). However, when restriction 3 is removed, it
is not difficult to generate G ,, even if the other two restrictions are present. The technique is to first
generate graphs with lots of edges, then selectively remove edges. This does not work when restric-
tion 3 is present, because graphs with "lots of edges" cannot be generated in the first place. This

gives the following corollary:

48

Theorem 7.2. The lines indicated by solid arrows in the following diagram are proper inclusions:

8. Requiring a Complete Connection Relation

ELC grammars require the connection relation to be complete. This means that once an edge
is established, it can never be removed, except by rewriting it or by "collapsing" its source and target
nodes. We show three results about this restriction. First, we show that certain non-trivial language
problems are decidable for ELC | grammars. This implies that the ELC; languages are a proper sub-
class of all R.E. languages. The other two results are combinatorial lemmas about the languages
generated by ELCi, and ELC 3 grammars. These lemmas are used to show three other proper

inclusions of language classes.

49

8.1. The Reduction from R.E.

For convenience, we assume throughout this subsection that all ELC grammars have nontermi-
nal labels chosen from some fixed countably infinite set N, and they have terminal labels chosen
from some other fixed countably infinite set T. This does not effect the generative power of the

grammars (up to a renaming of terminal labels).

Suppose we have a collection of ELC grammars H. For example, H might be all of the ELC
grammars, or perhaps only those grammars that meet certain specified restrictions (like ELC). The
class of grammars H is called recursive provided that it is decidable whether an arbitrary ELC-
grammar is in H. A language problem on H is a problem of the form: "Given a grammar G (from
H), does L(G) ...7" The question (indicated by "...?") can be any yes-no question like "contain a
discrete graph?" or "contain an infinite number of graphs?". A language problem on H is nontrivial
if there are grammars in H where the answer is "yes", and there are other grammars in H for which

the answer is "no". A modification of the proof of Rice’s Theorem [14] gives us the following

result.

Lemma 8.1. Let H be a recursive collection of ELC grammars such that every recursively enumer-
able graph language is generated by some grammar of H. Then every non-trivial language problem
onH is undecidable.

Proof: Let H1,H,, - - - be some effective enumeration of those grammars in H which have no termi-
nal symbols. Also, let ; denote the discrete graph with i nodes and no edges. A diagonalization
| argument shows that

K = {vil| vieH:)

is not a language generated by a grammar of H, hence X is not recursively enumerable.

Next, consider the membership problem for H: Given a grammar H of H and a graph v, determine

whether Y& L(H). If this problem is decidable, then the following would be an R.E. string

50

language:

{program(y,)| v;eH;)
(where program is the function from Section 4). But, this would imply that X (from the previous
paragraph) is recursively enumerable, which we know is not true. Therefore, the membership prob-

lem for H is undecidable.

Finally, suppose P is a nontrivial language problem on H, and suppose there is an algorithm to
decide P. We can proceed as in the proof of Rice’s Theorem to use this algorithm to decide the

membership problem for H. By this contradiction we conclude that P must be undecidable. []

Now, consider ELC;. This class of grammars is recursive, but the "one-node" problem is

decidable in this class, as shown in this lemma:
Lemma 8.2. Let G € ELC . It is decidable whether the one-node graph is in L(G).

Proof: First, we define the "destructive" labels of G to be the smallest set of labels such that:

1. If X = @&is a production of G, then X is destructive.

2. LetX := [be a production of G. (We don’t care what the source and targer sets are.) Define B’
to be the subgraph of 3 obtained by keeping only destructive edges. If B’ is connected, then X

is destructive.

Such a smallest set exists since the set of all labels meets these two conditions, and whenever two
sets of labels meet the conditions then so does their intersection. In fact, the smallest set of labels to
meet these two conditions can be computed by starting with those labels that must be destructive by

rule 1, then continue to add any new labels that are forced to be destructive by rule 2 until eventually

no new labels need to be added. We claim that X 2> e iff X is destructive. Therefore, @€ L(G) iff

the start label is destructive, and this can be determined by computing the set of destructive labels. []

51

Because the one-node problem is non-trivial, the previous two lemmas imply that ELC does

not generate all of the R.E. languages:

Theorem 8.3. L (ELC) is a proper subclass of L(ELC). []

8.2.* A Result about Restrictions 1 and 2
This section demonstrates that the graphs generated by ELC 1, grammars always contain a certain

simple kind of subgraph. The result needs a few preliminary definitions:

Definition 8.1. Let ybe a graph and S a subset of nodes(y).
a. neighborhood(S) = {v € nodes(y)—S | there exists some node in S which is directly con-
nected to v by an edge of vy }.
b. S is a 2-simple set in vy provided that neighborhood(S) can be expressed as a union
neighborhood(S) = N1\ N,, and for each v € S, either
(1) v is directly connected to none of neighborhood (S), or
(i1) v is directly connected to all of N1 and none of N1 ~N,, or

(iii) v is directly connected to all of N, and none of No—N ;.
i
Lemma 8.4. Let L be an ELC 13 language. Then there exists a constant ¢ such that for any o € L
(with| nodes ()| >c), there exists o’ € L such that:
(@)] nodes(o)| =| nodes(a”)| , and

(b) o’ has a 2-simple subser S with 3<| S| <c.

* The results of this section were developed with Mark Brissenden. It is related to a similar result about NLC-grammars [5].

52

Proof: Let G be an ELC 1, grammar generating L, and let ¢ be the maximum number of nodes in a

daughter graph of a production of G. Consider a graph o e L (with | nodes (&) >c¢), and a deriva-

tion S % B =Y % o of a. The graph v in this derivation is the first point in the derivation such

that | nodes(y)| =| nodes(o)| . The daughter graphs used in the remainder of the derivation all have
precisely two nodes — otherwise the number of nodes in the graphical form grows beyond

| nodes(ar)| , and because of restriction 2, it cannot shrink again. Thus, each production in the deriva-

tion Y %? o is the replacement of a mother edge by zero or more new edges. In general, o is

obtained from 7y by replacing each nonterminal edge by zero or more terminal edges. We now
modify the derivation Y % o as follows:

1. For each nonterminal label X which appears in y, choose some arbitrary two node graph 8y such

that X % Ox. Such a graph must exist, otherwise the derivation y % o would not be possible

without increasing the number of nodes.
2. Apply the derivation X -£G> dy to each nonterminal label in y. Let o’ be the resulting terminal

graph.
The graph o’ is in L and has the same number of nodes as y and o. In fact, since o’ is obtained by
making single-edge replacements to Y, we may as well identify the nodes of o’ with the nodes of 7.

Let S be the set of nodes in ¢’ that were introduced in the daughter graph of the step B = % and let

G be this daughter graph. We have 3<| S| <c. Moreover, S is 2-simple, which is shown as follows:
The division of the neighborhood of S is N1 WUN,, where N contains those neighborhood nodes
which were adjacent to Gspyrce in 7V, and N, contains those neighborhood nodes which were adjacent
t0 Oarger in Y. Now the nodes of S are precisely the nodes of o, and there are three cases for such a
node:

1. A node which is in neither Gyouce NOT Orgrger . Such a node is not directly connected to any node

53

in Ny or N,, since it cannot be directly connected to any of the neighborhood of ¢ in the
graphical form .

2. A node which is in Ggurce but not Gyargr. Because of the complete connection relation, such a
node must remain connected to all of Ny. However, it cannot be directly connected to any of
N1—Nj, because it is not connected to any of these nodes in ¥.

3. A node which is in Gy, but not Gy, . Because of the complete connection relation, such a
node must remain connected to all of N,. However, it cannot be directly connected to any of

N, —N1, because it is not connected to any of these nodes iny. []

If the connection relation is not complete, then it is possible to generate an infinite language of
discrete graphs which does not meet the requirements of Lemma 8.4. In particular, the the "wheel"
graphs generated by Example 2.5 do not meet the requirement of the lemma. This is because the
only 2-simple subgraphs of the n-node wheel graph have less that 3 nodes, or more than n—3 nodes.
Therefore, this language cannot be generated by an ELC, grammar. However, Example 2.5 is an

ELC, grammar, giving the following result:

Theorem 8.5. L (ELC 1) is a proper subclass of L (ELCy). []

8.3. A Result about Restrictions 1 and 3

The primary result of this section is similar to the "interchange lemma" for context-free string
languages [13]. The result applies to ELC 13 grammars. The current version of the proof needs a
number of preliminaries, some of which might be eliminated in a simplier proof. (Although the con-
cepts in these preliminaries may be useful elsewhere too.) Here are the preliminaries:

The follow function.:

If we have a derivation step S:o0 = B, in an ELC3 grammar, then the nodes of o can be

mapped to the nodes of B by a function follows :nodes (ov)—nodes (B). The function followg

maps the mother source node to the source node of the daughter graph, and it maps the mother

54

target node to the target node of the daughter graph. All other nodes of o are also nodes of j3,

so follows is the identity function on these nodes. Similarly, if D :o S B is a derivation of
zero or more steps, then we can define followp :nodes (0)—nodes (B), by composing the follow
functions of the individual derivation steps.

DP-graphs:
A double-pointed graph (or DP-graph) is a triple (8,v1,v,), where 0 is a graph and v;,v, are
distinguished nodes of 8. A DP-graph is proper if its two distinguished nodes are not the same
node. For a label X, we will abuse notation, and let X also stand for the proper two-node DP-
graph with a single X-edge from the first node to the second node. We also ambiguously let e
denote the one-node DP-graph. We will use capital Greek letters (©, V) for DP-graphs, and
DISCRETE denotes the set of all discrete DP-graphs.

The © operation on DP-graphs:
Let ©®=(8,v1,vo) and ¥ = (y,wi,wy) be two DP-graphs. The graph ©®@W¥ is obtained by

"merging” 6 and v, and identifying their pairs of distinguished nodes. Here is an example:

A W X
D o= =
! V2 Wi Y/{fvz Y

We give the formal definition for the case where W is proper or neither of the DP-graphs is

proper. (The remaining case, where ® is proper and W is not proper, is symmetric to the case

where ¥ is proper and ® is not). In this case, the nodes of @ @Y are

(nodes (8) U nodes (y)) — {wy.v:].
The edges of O remain the same, as do those edges of v which were not incident to its dis-

tinguished nodes. An edge whose source was wy (k=1 or £=2) in y has a new source v, and

55

similarly for targets. (The exception is an edge between the two distinguished nodes of Y,
when 6 is not proper. Such an edge disappears, since we do not allow self-loops.)

The © operation on sets of DP-graphs:
Let A and B be two sets of DP-graphs. The graph language A ©B is defined as (OBY| @c A
and W e B }.

Ly,Ly,L3:
Let G be an ELC 3 grammar, and let © = (8,v1,v,) be a proper DP-graph. We can define three
graphs languages. The first language consists of the discrete graphs that can be generated from
0 without "collapsing" v, and v,. The second language is the same, except v1 and v, must be

collapsed. The third language is needed for some special cases later on.

L1(®) = {(y.followp (v1).followp (v2)) € DISCRETE)|
For some derivation D :6 & v, followp (vy) # followp (v4))

Lo(®) = {(y.followp (v1).followp (v4)) € DISCRETE|
For some derivation D :6 % v, followp (v1) = followp (v,)}

L3(®) = (¥ e DISCRETE| For some derivation D :0 % vy, followp (v1) # followp (v2),
¥ is obtained from (y, followp (vy), followp (v5)) by merging the two points. }

In the last line, ‘¥ is obtained by identifying followp (v 1) with followp (v5).

Derivations of discrete graphs:
Let G be an ELC 3 grammar which generates only discrete graphs, and let (@@Y¥) be a graphi-

cal form for G. The discrete graphs which can be generated from (@@®Y) are completely

defined by the following:

(1 @OF) v} = Li@BLI(Y) U Ly®)BLy(Y) U Li@)OLy(P)

56

Lemma 8.6. Let L be an infinite language of discrete graphs, generated by an ELC 13 grammar.
Then L contains four graphs oy, o, B1, B2 such that ou=By and | nodes (ay) —| nodes(ap) =

| nodes (By)| —| nodes (o), .

Proof: Assume that L does not contain four graphs as specified in the lemma. From this, we will
show that L contains only a finite number of graphs. Let G be the ELC 13 grammar which generates
L. The proof proceeds by assigning a "type" to each derivation in G. There will be only a finite
number of derivation types, and each derivation type will generate only a finite number of different

graphs. Therefore, G generates only a finite number of graphs.

Let S be the start symbol of the grammar, and consider a derivation D :S 35“{. We assign a "type" to
this derivation as follows:
1. IfL1(S) = {v}, then D has type "1". Otherwise, continue to step 2.
2. If Ly(S) = {7}, then D has type "2". Otherwise, continue to step 3.
3. If neither of the previous two steps has assigned a type to D, then there must be some label X, a
proper DP-graph ® and a pair (i,/) such that:
A. The derivation D has the form § % (X ©0) % v.
B. (@,7)is (1,1), (2,3) or (3,2).
C.lL;X) > 1.
D.ye (L;X)®L;(0)).
For example, we can choose X =S, and let ® be the two-node discrete proper DP-graph, and
conditions A-D will all be met for some (i,/). (In particular, condition C is met, because the
derivation is not of type 1 or 2.) The graphical form (X ©0) in condition A is called an
undetermined point in the derivation, because the final graph in the derivation has not yet been

determined. There may be many values of X, (i,/)) and ® which meet conditions A-D. We

want to choose the values so that the undetermined point (X ©0) is as far right as possible. If

57

there are several choices which are equally far right, then the decision between the choices is

arbitrary. Given this choice, the type of the derivation D is "(X,i,j)".

Clearly there are only a finite number of types of derivations. There is at most one graph generated
by derivations of type 1, and at most one graph generated by derivations of type 2. It remains to
show that for any type (X,i)), there are only a finite number of different graphs generated by deriva-

tions of this type. The proof has three cases, depending on the value of (i,).

First, consider a type (X,7,1). The set L{(X) contains at least two discrete DP-graphs (from condi-
tion C). Let my and m be the sizes of two different discrete DP-graphs in L (X). There must be
some fixed integer ny, which depends only on X, such that whenever (X ©0) is a graphical form in
G, then L1(®) contains at most one discrete DP-graph, and this DP-graph has the fixed number of
nodes ny. (If there were two such sizes, say ny and ny, then G would generate four discrete graphs
of sizes my+n1~2, my+ny—2, mytn1~2 and mo+n,—2. But, we have already assumed that four such

graphs do not exist.)

Consider a derivation S = X BB) => (YO0) 5 v of type (X,1,1), where (X ©0) is the rightmost
undetermined point of the derivation. Note that L ;(¥) contains only one graph — otherwise (X ©6)
would not be the rightmost undetermined point of the derivation. Let 7y be the number of nodes in
this one graph. This implies that the final graph 7y has exactly ny+ny—2 nodes. Since there are only
a finite number of choices for ¥ (because there are a finite number of production rules), this implies
that there are only a finite number of different graphs that can be derived by a derivation of type
X,1,1). |

The cases of (X,2,3) and (X,3,2) derivations are treated similarly. [].

If the connection relation is not complete, then it is possible to generate an infinite language of
discrete graphs which does not have four graphs as specified in Lemma 8.6. In particular, the sizes
of the discrete graphs generated by Example 2.5 are increasing exponentially. Therefore, this

language does not meet the property of Lemma 8.6, and it cannot be generated by an ELC 13

58

grammar. However, Example 2.5 is an ELC o3 grammar, giving the following result:

Theorem 8.7. L(ELC 13) is a proper subclass of L (ELC3), and L(ELC123) is a proper subclass of
L(ELCq3). []

9. Discussion

We have introduced and studied a new graph grammar model, which is motivated by the previ-
ously studied node-label controlled graph grammars and the edge-rewriting systems of Habel and
Kreowski. In general, the model has the complete power of recursive enumerability. In order to
understand where this power arises, we have studied several obvious restrictions on the model,

resulting in the following hierarchy diagram:

K
ot

ELC1 95

The solid arrows indicate proper inclusions of language classes, as shown in Sections 7 and 8. The
remaining four dotted lines all correspond to removing restriction 2 (disjoint source and target sets).

In one sense, we know that these four dotted lines are also proper inclusions, because it is impossible

59

to generate the one-node graph in ELC;. (This is similar to the fact that context-sensitive string
grammars cannot generate the empty string without an erasing rule.) However, apart from this spe-
cial case, we do not currently know whether restriction 2 causes a reduction in power. In particular,
if L is an ELC -language, is L—{e} always an ELC ;-language? (And similarly for the other three
dotted lines). The fact that ELC grammars have the full power of recursive enumerability needs to
be taken as a warning. In particular, Rice’s theorem implies that every non-trivial question about
ELC-languages is undecidable. Hence, in most practical cases, where there is interest in parsing or
other questions about the graphs being generated, we will need to work with models that are less
powerful than ELC. In our current work we are considering the above three restrictions in this light,
as well as the special case where source and target subsets are required to be the entire daughter

graph. Here are several other natural research directions that we are continuing to study:

1. Research on the combinatorial properties and decidability properties of the individual subclasses

of ELC grammars in our diagram.

2. Hopefully the results of the previous questions will help us to single out a central subclass of
ELC grammars. Once such a central subclass arises, we would like to study this in more
depth. A similar plan was followed for node-label control grammars, yielding the tractable

subclass of boundary NLC grammars [15].

3. We plan to undertake a comparison of ELC grammars with other well-known classes of graph
grammars. In particular, a careful comparison between ELC and NLC grammars (also on vari-
ous sublevels) seems natural, since in both grammar models the replacement mechanism is
driven by labels. This should contribute to our understanding of the subtle issue of node-edge
duality in the context of graph replacement. Our preliminary research indicates that this is a

complex issue which may lead to a consideration of hypergraph grammars.

4. There are also a number of technical issues concerning our model. For example, we do not

60

currently allow loops in graphs, although loops are allowed in Habel-Kreowski’s edge-
replacement systems. Is this a critical difference, or can loops be accommodated in the ELC

model?

(&)

@

®3)

@
5

©

N

®)

®

(10)

an

(12)

13)

a4

(15)

References

H. Ehrig, M. Pfender and H.J. Schneider. Graph grammars - an algebraic approach, in: Proc.
Conf. Switch. Automata Theory (1973), 167-180.

A. Habel and H.-J. Kreowski. On context-free graph languages generated by edge replacement, in:
Graph-Grammars and Their Application to Computer Science, 2nd International Workshop, (H.
Ehrig, M. Nagl and G. Rozenberg, eds), LNCS 153, Springer-Verlag, Berlin (1983), 143-158.

A. Habel and H.-J. Kreowski. Characteristics of graph langages generated by edge replacement,
Technical Report, Department of Computer Science, University of Bremen (1985).

M. Harrison, Introduction to Formal Language Theory, Addison-Wesley, Reading, MA., (1978).

J. Hoffmann and M.G. Main. Results on NLC grammars with one-letter terminal alphabets,
University of Colorado Technical Report Cu-CS-348-86 (September 1986).

D. Janssens and G. Rozenberg. On the structure of node-label controlled graph languages, Infor-
mation Sciences 20 (1980), 191-216.

D. Janssens and G. Rozenberg. Restrictions, extensions and variations of NLC grammars, Informa-
tion Sciences 20 (1980), 217-244.

D. Janssens and G. Rozenberg. Decision problems for node-label controlled graph grammars,
JCSS 22 (1981), 144-177.

D. Janssens and G. Rozenberg. Graph grammars with neighbourhood controlled embedding, T7CS
21 (1982), 55-74.

H.C.M. Kleijn, M. Penttonen, G. Rozenberg and K. Salomaa. Direction independent context-
sensitive grammars, Information and Control 63 (1984), 113-117.

M.G. Main and G. Rozenberg. Handle NLC grammars and languages, University of Colorado
Technical Report CU-CS-315-85 (1985), submitted for publication.

M. Nagl. A tutorial and bibliographical survey on graph grammars, in: Graph-Grammars and
Their Application to Computer Science and Biology (V. Claus, H. Ehrig and G. Rozenberg, eds),
LNCS 73, Springer-Verlag, Berlin (1978), 70-126.

W. Ogden, Ross and K. Winklmann, An "Interchange Lemma" for context-free languages, WSU
Technical Report CS-81-080, Pullman, WA., (1981).

H.G. Rice. Classes of recursively enumerable sets and their decision problems, Trans. AMS 89
(1953), 25-59.

G. Rozenberg and E. Welzl. Boundary NLC graph grammars — basic definitions, normal forms and
complexity, Information and Control 69 (1986), 136-167.

