RESULTS ON NLC GRAMMARS WITH
ONE-LETTER TERMINAL ALPHABETS*

Jochen Hoffmann and Michael G. Main
CU-CS-348-86 September 1986

*M. Main’'s research has been supported in parnt by National Science Foundation grant DCR-8402341.

RESULTS ON NLC GRAMMARS WITH
ONE-LETTER TERMINAL ALPHABETS*
(September 1986)

Jochen Hoffmann and Michael G. Main
Department of Computer Science
University of Colorado
Boulder, CO 80309 USA
Phone: 303-492-7579
ABSTRACT

Node-label controlled graph grammars (NLC grammars) are a mechanism to
generate sets of graphs (called graph languages). This paper examines the generating
power of NLC grammars with a restricted connection relation and some closure pro-
perties of the class of NLC languages. Also, a modified language generating mechan-
ism for NLC grammars is introduced, and the resulting class of graph languages is

compared to the class of NLC languages. All results are based on grammars with
one-letter terminal alphabets.

*M. Main’s research has been supported in part by National Science Foundation grant DCR-8402341.

1. Introduction.

Recently, node-label controlled (NLC) graph grammars have been intensively studied as a
method for generating sets of node-labelled graphs (called graph languages) [3,9]. The key feature
of NLC-grammars is that both the application of a production and the embedding of a newly intro-
duced subgraph are controlled by node-labels. These grammars were introduced and studied in a
series of papers by Janssens and Rozenberg [3,4,5,6,7,8]. They examined the combinatorial struc-
ture of the languages generated by NLC grammars, and also researched several extensions and vari-

ations of the NLC model.

In a later paper, Ehrenfeucht, Main and Rozer}berg [1] examined several restrictions on
NLC grammars, including analogues of the Chomsky and Greibach normal forms for string gram-
mars. None of the restrictions which they considered result in normal forms for NLC grammars.
However, they left several questions unanswered concerning NLC grammars which have only a sin-
gle terminal label. This paper resolves those questions, and also investigates additional properties of
NLC grammars with a single terminal label. The additional properties involve closure results of the

NLC languages, and an alternative generation mechanism which is motivated by parsing problems.

2. Preliminaries.

We will consider only finite undirected graphs without loops or multiple edges. The nodes
of the graph are labelled with symbols from a finite alphabet. When all nodes of a graph o have the
same label, we will sometimes write o as a pair o= (V,E), where V is the (finite) set of nodes in o
and £ ¢ (VxV) is the set of edges in o Since o is undirected and without loops, E must be a sym-

metric relation over V and cannot contain pairs of the form (v,v). We will refer to graphs satistying

the above restrictions simply as graphs. If o is a graph, | o | denotes the number of nodes in .. For a

finite alphabet £, G z denotes the set of all graphs with node labels from Z.
Definition. An NLC grammar is a system G = (Z,A,P,S,C), where

2 is a finite nonempty set, called the set of labels,

A is a proper nonempty subset of Z, called the set of terminal labels,

P is a finite set of productions :

each production has the form X := o, where X is a nonterminal label (X Z—A)and o

is a graph from G g,
S € X—Ais a special nonterminal label, called the start symbol,
C ¢ X xXis a binary relation, called the connection relation.
Let G =(Z,A,P,S,C) be an NLC grammar. A production (X := o) € P is applied as fobllows:

(1) Start with a graph p and a specific occurrence of an X -labelled node in M. This node is
called the mother node. The set of nodes which are directly connected to the mother node is

called the neighborhood.
(2) Delete the mother node from the graph .

(3) Add to U a copy of the labelled graph o. This new occurrence of o is called the daughter

graph.

(4) For each pair (Y,Z) € C, connect every Y -labelled node in the daughter graph to every Z -

labelled node in the neighborhood.

If n is the graph resulting from steps (1) - (4), we write [Znto denote the relation ‘‘n is directly

derived from (L in G ”°. A sequence of such transformations

D=(ophiz - 3H

is called a derivation of length n, and is denoted by pig % H,. When the grammar G is understood,

we also write simply L = n or g % L, .

The language generated by the grammar G is the set of all graphs with terminal labels that

can be derived from the graph with a single S -labelled node, i.e.,

*
L(G)={ne GalS Zu}.
(We often use S to denote the one-node graph with label S.) A language L is called an NLC

language if L is generated by some NLC grammar G .

For any integer £ 2 0, an NLC grammar is called & -ary iff we have |ot|< k for all produc-

tions X := o An e-production is a production X := g, where € is the empty graph.

Examples.

Consider G = (Z,A,P,S,C), where £=(S,a}, A={a}, C = {(a,a)} and P contains
the two productions § := §_2 and S := 6. The following is a derivation in G :
§$Sa__>5aa=>aaa
Note that in the last step the left node gets connected only to the middle node, since the right node
was not in the neighborhood of the S-labelled node. The language generated by this grammar con-

sists of all nonempty chains in which all nodes are labelled a .

As another example, let G =(Z,A,P,S,C), where 2={S,a,b}, A={a,b},

C={(.a),,b)(a,b),(,a)) and P contains these two productions:

S
HVAN
a b
Szg——é

In any derivation, the S -labelled node remains connected to all other nodes. Eventually, the second
production must be applied, and the resulting graph is the final graph. At each step, the new a-
labelled node must connect to all b-labelled nodes and vice versa. Therefore, the language gen-

erated by this grammar is L =L (G)={B,, |n > 1}, where
b

is a complete bipartite graph with n nodes on each side. All left nodes are labelled @ and all right

nodes are labelled b.

3. Restrictions on the Connection Relation.

One class of restrictions of NLC grammars examined in [1] concerns the connection rela-
tion of the grammar: An NLC grammar is called functional if its connection relation is a partial
functiop. It is called inverse functional if the inverse of its connection relation is a partial function.

And it is called symmetric if its connection relation is a symmetric relation.

It is shown in [1] that all of the above restrictions reduce the generating power of NLC

grammars. However, the proofs assume that the terminal alphabet has a size > 2. We show that the

results from [1] still hold for a terminal alphabet of size 1.

The proofs in this section assume NLC grammars without e-productions. We therefore

need as a preliminary result Theorem 2.1 from [1]:

Let k 20 be an integer and G =(Z,A,P,S,C) be a k-ary grammar. Then there exists a k-ary grammar
G’'=(Z,A,P’,S,C) such that P’ contains no e-productions and L(G’)=L(G)- {g}. That is, L(G")is
identical to L (G), except possibly for the empty graph.

The transformation of an NLC grammar into an equivalent grammar without g-productions can be
done effectively: it is very similar to the elimination of e-productions from a context-free string
grammar [2]. Note that the elimination of e-productions changes only the set of productions P : no
other components of the grammar are affected. In particular, this implies that e-productions can be
eliminated without changing properties of the connection relation C (like functionality, inverse

functionality and symmetry). We sometimes call an NLC grammar without a-productions an g-free

grammar.

Derivations in a grammar without g-productions have the important property that the
number of nodes is non-decreasing from one derivation step to the next. For a derivation

D= (§'::> ++ = U) with n =|u|> 1, it follows that there is a last graph v with fewer than n

nodes. We can therefore write

D=(§ > s>y -),
where all graphs up to Y have fewer than n nodes, and all graphs after y have exactly n nodes. For

such a derivation, we call 7y the crirical graph, and we call the derivation step y = § the critical

step.

Theorem 1. There is an NLC language L over a one-letter terminal alphabet, which is not gen-

erated by any functional NLC grammar.

Proof: LetL =G4y~ {&}, the language of all nonempty graphs with nodes labelled a. It is easy
to verify that L is an NLC language. Suppose, there is a k-ary (k>2) functional NLC grammar
G=Z,{a},P,S,C) that generates L. We may assume that P contains no &-productions. Also
note that (a,a) e C, since otherwise no graph generated by G could contain a connected com-

ponent with more than £ nodes. L contains all circles of the form

a a
Cp = U with n > 3 nodes.
a a

Choose n >k+2 and let u=C,. We will now show that the assumption of G deriving p leads to a

contradiction, which proves the theorem.

LetD = (§ =+ =>Y=>8§=> -+ =) be aderivation of | in G, where Y denotes
the critical graph, ie., |y|<n, [8|=n =|u|. Let X := o be the production applied in the step
Y = 3. Since this step increases the number of nodes, |c|>2. After this step, only node-

relabelling productions are applied.

Let o be the subgraph of the final graph p derived from o. Since U is a circle with
n >|a’| nodes, there must be two nodes x,” in o and y;” in L—o’ which are directly connected.
Since |o'|=|t|22 and |p—a'| = |u|-|o | = n—k = k+2-k = 2, we can choose two more

nodes x5" in o’ and y5”in (—0), such that x;"#xy’, yy'#y’, and x4’, y,” are directly connected:

(u—a’)

Let x1,x2, y1,y2 be the nodes in § which are the ancestor nodes of x1’, x5", y{/, y2’ respectively.
Then, x,y; and x;,,y, must be directly connected in 8. Now we show that y1 and y, are both

labelled a in 3: Suppose, y is labelled Y#a.

case 1. x;islabelleda.

Since x is connected to y 1, we have (a,Y) e C. Since (a,a)e C, this contradicts the func-

tionality of G.

case 2. x,islabelled X=a.
Then x, and y; both have nonterminal labels. Either x; or y; must derive an a-labelled node
first (in the derivation D). At this step, the edge connecting x 1 and jl must be broken (since
G is functional and (a,a) € C, thus (a,Z) ¢ C for all Z#a). This is a contradiction to x’,

y1’ being connected in .

Therefore, y; must be labelled a in §, and similarly y, must be labelled @ in 8. Since G is NLC,

there must also be edges connecting x1, y, and x5, y; in 3.

X1 Y1
o ><< (8-0t)
X2 Y2

Since any rewriting of x; (or x,) treats the connections to y and y, identically, all four edges must

be present in the final graph p. But n was chosen > 4, so | cannot have a cycle of length 4.

d

Theorem 2. There is an NLC language L over a one-letter terminal alphabet, which is not gen-

erated by any inverse functional NLC grammar.

Proof: A graph g = (V,E) is called complete iff
E=WVxV) - {vv)|lveV]},
i.e., if it has all possible edges. Let L be the language of all complete graphs with nodes labelled

a. It is easy to verify that L is an NLC language. Assume, L(G)=L for a k-ary e-free inverse

functional NLC grammar G.

Let pel be a sufficiently large (|p|>42) complete graph. Let
D=(= - =>a=p= - =) be aderivation of 1 in G. Let o = B be the last step in
D where a production is applied which contains a non-terminal in the daughter graph. LetZ := Y
be the production applied in this step. Let X be a nonterminal label of a node , in Y. The graph
(B-7) cannot be empty, otherwise | B|=|y|<k, which would imply | |< k2. Therefore, we can

choose a node ny € (B—7). Let ¥ be the label of ny. Since the final graph is complete, n, must

connect to n,, and we have (X,Y) e C.

Rl T

By

\<= 1'h<

Let D’ be a derivation in G obtained from D as follows:
If Y is a nonterminal label, and ny is rewritten in the tail (B = -+ =) of D before n, is

rewritten, then swap the two derivation steps which rewrite n, and ny, otherwise let D’=D .

In the resulting derivation D", n, is still labelled Y when n, is rewritten. By the choice of the step
(o0 = B) (and since G is e-free), the rewriting of n, introduces one or more a-labelled nodes.

Since G generates only complete graphs, these nodes must connect to ny,hence (a,¥Y) e C.

We have (a,Y)e C and (X,Y) e C. But since X#a, G cannot be inverse functional.

The contradiction shows that L cannot be generated by an inverse functional NLC grammar,

O

To show that symmetry of the connection relation also reduces the generating power of

NLC grammars for a one-letter terminal alphabet, we need a few definitions and two technical lem-

mas:

Definition. Let g =(V,E) be a graph and X a subset of the nodes of g.

a. NX)={veV/|thereexistsanx e X : (v,x) e E}

= all nodes that are directly connected to some node in X

10
b. NeX)=NX)-X
c. X isan extreme set in g iff for all nodes x € X either

1) x is directly connected to every node in Ne (X) ,or

ii) x is not directly connected to any node in Ne (X).

d. x € X is an inner node of X iff x is not directly connected to any node in Ne (X).

Lemma 1. Let L be an NLC language over a one-letter terminal alphabet and G a k -ary, e-free
NLC grammar that generates L. Then, for any g € L (with|g| > k), there exists a g’ e L such that

a) |g’|=|g|

b) g’ hasanextreme setX with2<|X |<k

Proof: LetgeL (with|g|>k),and let
D= = - 2>B=>y= .- = g)beaderivationof g in G,
(B =) the critical step in D,
Z := a the production applied in the critical step,
z the Z -labelled node in [that is rewritten in the critical step,
and Ne (z) the neighborhood of z in .
Rearrange the steps of the derivation D as follows:

(1) copy all steps up to (but not including) the critical step;

(2) rewrite the nodes in Ne(z) until they are all labelled by the one terminal label (applying

steps from the latter part of the derivation);

11
(3) apply the critical step;
(4) apply the remaining steps from D.

The graph g’ resulting from the modified derivation is in L and has the same number of nodes as g.

Let X be the set of nodes in g that was introduced in the critical step.

We have 2 <|X |[<k. Moreover, X is extreme: Let x be a node in X. When x is intro-
duced in the critical step, all nodes in Ne (X) = Ne (z) are labelled a (the terminal label). Since G
is NLC, x is connected to either none or all the nodes in Ne (X). If, in the remainder of the

modified derivation, x is disconnected from one of the nodes in Ne (X), then it must disconnect

from all of them.

d

Lemma 2. LetL be an infinite NLC language of connected graphs over a one-letter alphabet. Let
G =(,{a},P,S,C) be a symmetric k-ary, e-free NLC grammar with L(G)=L.
Then, forall ¢ € L with|g |> k, there is a graph ¢’ € L with the following properties:

M lg’l=lg]|

(2) g’ contains an extreme set X with 2 <|X |<k, such that no two inner nodes of X are con-

nected.

Proof: Letg e L with|g|>k,andletZ := o be the production applied in the critical stepin a

derivation of g in G (2 €| |< k). Rearrange the derivation as follows:

(1) apply all the steps up to (but not including) the critical step;

12

(2) let z be the node which will be rewritten in the critical step: apply relabelling productions
from the latter part of the derivation to the nodes in the neighborhood of z, until they all
have terminal labels;

(3) apply the critical step;

(4) select a node that still has a nonterminal label (if there is one) and apply the remaining steps

for this node in sequence;
(5) repeat (4) in turn for every remaining node that still has a nonterminal label.

Let g’ be the resulting graph, and let X be the set of nodes in g’ introduced in the critical step. We
have [g|=[g |, and X is an extreme set in g’ with 2 <|X |<k (see the proof of Lemma D. It

remains to show that no two inner nodes in X are connected by an edge.

Let u,v be two inner nodes in X and let N =Ne (X). Since g’ is connected and |g’|> £,
we have N#J. Since u and v are not directly connected to any node in N, and since all the nodes
in N are labelled @ when the critical step is applied, there are labels U ,VeX with the following
properties:

(1) W,a)d Cand(V,a)¢ C;
(2) in some intermediate graph after the critical step, u is labelled U ;

(3) in some intermediate graph after the critical step, v is labelled V.

Since |g’| >k and g’ is connected, we have (a,a) € C, and therefore U#a and V£q . Since the
production steps after the critical step are “‘not mixed’’, one of the nodes u,v must be labelled a

before any production is applied to the other node. Let u be the node that reaches the terminal

label first.

13

case 1. When the final step is applied to u, v is labelled V. Node u must disconnect from v at
this step, since (V,a) ¢ C and C is symmetric, therefore (a, Ve C.
case 2. When the final step is applied to u, v is not labelled V. Since no productions have been

applied to v yet, v must reach label V when u is already labelled a. At this step, v

disconnects from u .

Theorem 3. There is an NLC language L over a one-letter alphabet which is not generated by any

Symmetric grammiar.

Proof: LetG =(Z,{a},P,S,C),where L= {S,U,V,a},

P contains the following productions:

U S
1 S:= Vv 1%
v 1%
U
2) S = % 14
v v
B3 U :=69
4 V=8,

C={@.a)@U)@)V),{U,a)U,U)}.

14

L =L (G) consists of all graphs of the form

g = ﬁﬁﬁ (all nodes labelled @)

Suppose, there is a symmetric & -ary NLC grammar G’ with L(G’)=L. We may assume that G’
ise-free. Letg € L with|g [> k+3. Since L contains only one graph with |g | nodes, g must con-

tain an extreme set X with 2 <|X |<k, such that no two inner nodes of X are directly connected

(by Lemma 2).

However, an analysis by cases shows that any extreme set in g with > 2 nodes contains at

least one subgraph o of the form

“Talla

Therefore, any extreme set in ¢ with > 2 nodes contains at least one pair of inner nodes which are

directly connected. The contradiction shows that L cannot be generated by a symmetric grammar.

a

4. Closure Properties of NLC.

In this section, we examine closure properties of the class of NLC graph languages: we
consider the set-theoretic operations intersection and complement and the graph-theoretic opera-

tions dual and edge complement.

Theorem 4. The class NLC is not closed under intersection.

15

Proof: LetG,=(Z, {a},P,S,C)), G,=Z, {a},P,S,Cy), where 2= {S,A,B,X,a},

P contains the following productions:

1 S = A
A B

@ X =0—=%

B) A =6

4 X =4

(5) B =4,

C1={A,A),X,B),(a,),(T,a)},

C2={(4,A),X,B),(a,D)}.

First, we show that L; = L (G ;) = CUR, where C = {C3,Cqy" -+ }

a a '
C, = U , a circle with n nodes)
a a

a

?

and all graphs in R ; contain a cycle of length 3:

Every derivation in G ; must start with production (1), followed by n 20 applications of

production (2) and <n applications of production (3) to nodes not adjacent to the X -labelled node.

The resulting graph is

16

where Aa denotes either label A or label a, and the graph has n+3 nodes. Clearly, o, % Chsz. In
1

order to derive from @, a graph which is not in C, one of the neighbors of the X -labelled node must
be rewritten, followed by one or more applications of production (2). Since every label connects to

a, this will introduce a cycle of length 3 as a subgraph.

Next, we show that L, =L (G ;) = C UR,, where R, contains only acyclic graphs: As in

Gy, S ;=> O, and therefore Cc L,. To derive from «, a graph which is not in C, one of the
2

neighbors of the X -labelled node must be rewritten, followed by one or more applications of pro-
duction (2). Since the labels A and X do not connecttoq in G 2, this will break the cycle. Produc-

tions (2)-(5) cannot introduce a cycle, so the graph remains acyclic.

RiNRy=Q,s0LyNLy=C. Itis shown in [1] that C is not an NLC language, so NLC
is not closed under intersection.

O

Corollary . The class NLC is not closed under set complement.

Proof: This follows immediately from theorem 4 and the fact that NLC is closed under set union.

d

17

Definition . For a graph g € G (43, let dual(g) be the graph resulting from the following con-

struction:
(1) Represent every edge in g by a node in dual (g), labelled bya.

(2) Connect any two nodes in dual (g) by an edge iff the corresponding edges in g are adjacent.

For a graph language L& G (4}, let dual (L) = {dual (g)|g € L}.

Theorem S. The class NLC is not closed under the operation dual..

Proof: Let L be the language of all complete graphs with nodes labelled by a (as in Theorem 2).
It is straightforward to show that L is NLC, but dual (L) is not NLC, since the size of the graphs in

dual (L) does not grow in steps bounded by a constant, as required by Corollary 2 from [3].

]

Definition. Let g € G () be a graph. The edge complement g of g is the graph in G (4}, which
has the same set of nodes as g and has an edge connecting any two distinct nodes % and v if and

only if # and v are not connected by an edge in g. For a graph language L, the edge complement L

of Listheset {g|g e L}.

Theorem 6. The class NLC is not closed under the operation edge complement.

Proof: The grammar

G =({S,a},{a),{S =62 , 5 =81, 8, ((a,0)})

generates the language L of all non-empty chains of a-labelled nodes. Suppose, there is a k -ary

18

NLC grammar (k 22) that generates L. Let n 2k+3 and e L be a graph with » nodes. Let
V ={vy,va, ..., v,}) be the set of nodes of 3. The numbering of the nodes is obtained by consider-

ing g as a left-to-right oriented chain of nodes. Finally, let X be an extreme set of nodes in g with

2 <|X |<k. (Such a subset exists by Lemma 1.)

Note that |V —X |> 2, which implies that every node in X is connected (in Z) to at least
one node outside of X. (This is because every node in 7 is disconnected from at most two other
nodes.) Thus (since X is extreme), every node in X is connected (in @) to every node in Ne (X).
Now, consider two nodes v; and v; in X, with i < j. If i#1, then the node v;_; exists and is not
connected (in) to v;, which implies v;_; € Ne(X). But, v; is connected (in g) to v;_;, which
implies that v;_; € X. Continuing this argument shows that vy - - - v; are all in X. Similarly,

Vj "' Vnand viy - vjpare also all inX. But now,|X |2 n-1> k, which is a contradiction. By
this contradiction, we conclude that L is not NLC.

O

5. Neighborhood-Preserving Derivations.

In this section we consider a language generating mechanism slightly different from

Definition.

(1) A derivation step is called neighborhood preserving (NP) iff the neighborhood of the

daughter graph (not including the nodes of the daughter graph itself) is equal to the neigh-

borhood of the mother node.

19

(2) A derivation is called neighborhood preserving if each of its derivation steps is neighbor-

hood preserving.
(3) For an NLC grammar G, the neighborhood preserving language of G, L np (G), is the set
of all graphs g, such that a neighborhood preserving derivation of g exists in G. Note that

in general L yp (G) c L (G).

(4) The class NPNLC is the class of all graph languages L, such that, for some NLC grammar
G,L =Lyp(G).

Given the graph resulting from a neighborhood preserving derivation step, the daughter graph and

the production applied, the mother graph is uniquely determined. Since arbitrary NLC derivations

don’t have this property, languages in NPNLC seem to be easier to parse than NLC languages. We

therefore examine the relationship between NLC and NPNLC.

Theorem 7. NPNLC is not a subclass of NLC.

Proof: LetG =(Z,{a},P,S,C), whereX={S,A,B,X,a},

P contains the following productions:

X

1 S = A
A B

@ x=47%

(3) A =6

@ X =48

(5 B =4,

20
C={A,A),X,B),(a,D)).

We show that L yp (G) =C = {C3,Cy4,...}, where

a a
C, = U is a circle with n nodes.
a a

Every derivation in G must start with production (1), followed by n =0 applications of

production (2) and <n applications of production (3) to nodes not adjacent to the X -labelled node.

The resulting graph is
A;_——‘IX
Aa '
oy =
Aak_._lB

where Aa denotes either label A or iabel a, and the graph has n+3 nodes. When production (3) is
applied to the A -labelled node which is adjacent to the X -labelled node, or when production (5) is
applied, the X -labelled node gets an a -labelled neighbor. This implies that production (2) can not
be applied again, since this step would not be neighborhood-preserving. Therefore, the size of the
graph can not change any more, and only the relabelling productions (3,4,5) can be applied. Since
a connects to any label, no connections are broken, and the final graph must be in C. Conversely,
every graph in C isin L. Itis shown in [1] that C is not an NLC language, so C € NPNLC -NLC .
a

21

Theorem 8. NLC is not a subclass of NPNLC.

Proof: We first observe that the class NPNLC is closed under intersection with discrete graphs.

A graph g =(V,E)is discrete iff E = . Let D ¢ G (a} denote the set of all discrete graphs with

nodes labelled a.

Consider a neighborhood preserving derivation: if, at any step, an edge is introduced, it
cannot be broken and must be present in the final graph. Therefore, a neighborhood preserving

derivation derives a discrete graph if and only if the daughter graph at each step is discrete.

Let L € NPNLC and let G =(Z,{a},P,S,C) be an NLC grammar with L yp (G)=L.

By removing from P all those productions whose daughter graphs contain edges, we obtain a gram-

mar G’ withLyp (G’)=LAD,ie,LAD e NPNLC.

We can now prove the theorem by presenting an NLC language L, such that
LND & NPNLC. In the description of the grammar, we use the notation i J to denote addition
modulo 3. LetL =L(G)and G =(Z,{a},P,S,C) where

= {a ,S,RO,Rl,R2,T0,Tl,TZ,LO,Ll,LZ},‘

22
P contains the following 13 productions:

1) S =420
R;
[]

@ Ti:= (i =0,1,2)
T;yjo——aoT; 1

@) T =% (=012

4 L =6 (=012
S) R == (i=01,2) ,and

C=ZxZ- {(Ri’Ri), (RiaTiil), (Ti-fl’Ri)’ (Ll’Ll)IOSl S2}~

We are interested only in the discrete graphs in L. The derivation of a discrete graph in
G proceeds in a way resembling the construction of a complete binary tree: At the lowest “‘level”’,
we have some number of nodes labelled T; (for some i € {0,1,2}), which form a complete sub-
graph of the current graph. The levels above are filled with isolated nodes. Initially (i.e., after
applying production (1) and (2) with i =0), we have one isolated node labelled R and two nodes
labelled Ty, which form a complete subgraph of size 2. In order to derive a discrete graph, all
edges on the lowest level must be broken. This can be done by rewriting all the T;-labelled nodes
in turn using production (3). Since (L;,L;) € C, all connections are broken, and we have a discrete

graph. At this point, only the relabelling productions of type (4) and (5) can be applied.

Instead of using productions of type (3), we can choose to expand the “‘tree’’ by applying
productions of type (2) to the T;-labelled nodes on the lowest level. This starts a new level of
nodes labelled T;+; below the current level. Note that each such derivation step introduces an R;-

labelled node, which remains connected to all T;-labelled nodes on the current level. These con-

23

nections can be broken only by applying production (2) to all T;-labelled nodes on the current
level. This property of the grammar forces the whole current level to be rewritten using production

(2), which roughly doubles the number of nodes in the graph.

Moreover, in the derivationrof a discrete graph, the ‘‘tree’’ can never become unbalanced:
suppose that, at some stage of the derivation, the current level has been partially expanded, i.e., it
still contains some T;-labelled nodes, and the level below contains some nodes labels Tiz1. If we
would now apply production (2) (‘‘prematurely’’) to one of the T;#1-labelled nodes on the lowest
level, we would introduce a connection of the form r{‘——g i¥ 1 which can never be broken. There-

fore, the graph resulting from such a derivation cannot be discrete.

Since any level in a discrete graph derived in G contains twice as many nodes as the pre-

vious level, we have

LAD ={g € G4]g is discrete and|g |=27~1 for some n >2).
The set {|g|:g € LN D} has arbitrary large gaps, so corollary 2 from [3] can be used to show
that LA D is not an NLC language (see proof of theorem 5). Moreover, LND cannot be in
NPNLC, since corollary 2 from [3] also applies to NPNLC (its proof is based on a pumping argu-

ment which is equally applicable under the NP restriction).

If L were in NPNLC, then, by the closure property shown above, L\ D would have to be
in NPNLC. Therefore, L € NLC-NPNLC.

a

24
5. DISCUSSION.

We have shown that even for a one-letter terminal alphabet the functional, inverse func-
tional and symmetric restriction on the connection relation reduces the generating power of NLC
grammars. A primary technique in these proofs is the identification of the first point in a derivation
where the number of nodes no longer grows (the "critical point"). By rearranging derivation steps
which are nearby the critical point, graphs with special properties can be generated by the restricted
NLC grammars. However, such graphs are not always generated by arbitrary NLC grammars,
hence the restrictions are a reduction in power. It is still an open problem to find normal forms for

NLC grammars, i.e. restrictions on NLC grammars that do not reduce their generating power.

Other questions of interest are: How can we characterize the class of symmetric (func-
tional, inverse functional) NLC languages? What graph-theoretic operations preserve the NLC pro-
perty? NPNLC is a class of graph languages resulting from a restriction on NLC derivations. We
found that not ail NLC languages can be generated this way, but we gain some non-NLC languages.
Can efficient parsing algorithms be developed for NPNLC languages? Is the class NPNLC broad

enough to be interesting for applications?

D

2)

3)

C))

5)

(6)

)

®)

®

25

References

A. Ehrenfeucht, M.G. Main and G. Rozenberg, Restrictions on NLC graph grammars, 7CS
31 (1984), 211-223.

M. Harrison, Introduction to Formal Language Theory, Addison-Wesley, Reading, MA.,
(1978).

D. Janssens and G. Rozenberg. On the structure of node-label controlled graph languages,
Information Sciences 20 (1980), 191-216.

D. Janssens and G. Rozenberg. Restrictions, extensions and variations of NLC grammars,
Information Sciences 20 (1980), 217-244,

D. Janssens and G. Rozenberg. Decision problems for node-label controlled graph gram-
mars, JCSS 22 (1981), 144-177.

D. Janssens and G. Rozenberg. A characterization of context-free string languages by
directed node-label controlled graph grammars, Acta Informatica 16 (1981), 63-85.

D. Janssens and G. Rozenberg. Graph grammars with neighbourhood controlled embed-
ding, TCS 21 (1982), 55-74.

D. Janssens and G. Rozenberg. Graph grammars with node-label controlled rewriting and
embedding, Report 83-10, Institute of Applied Mathematics and Computer Science,
University of Leiden, Wassenaarseweg 80, Leiden, The Netherlands (1983).

M. Nagl. A tutorial and bibliographical survey on graph grammars, in: Graph-Grammars
and Their Application to Computer Science and Biology (V. Claus, H. Ehrig and G. Rozen-
berg, eds), LNCS 73, Springer-Verlag, Berlin (1978), 70-126.

