Why and How to Learn Why:
Analysis-Based Generalization of Procedures

Clayton Lewis*

CU-CS-347-86 October 1986

University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

** This research was sponsored by the Personnel and Training Research Programs, Psychological Sciences Division, Office of Naval
Research, under Contract No. N0O0014-85-K-0452, Contract Identification Number, NR 702-009. Approved for public release;
distribution unlimited. Reproduction in whole or part is permitted for any purpose of the United States.

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

S

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

Approved for public release;
Distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
Cs-CU-347-86

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION

University of Colorado

6b. OFFICE SYMBOL
(If applicable)

7a_NAME OF MONITORING QRGANIZATION
Personnel and Training Research Programs

Office of Naval Research (Code 1142PT)
200 North Quincy St

6c. ADDRESS (City, State, and ZIP Code)

Campus Box 430
Boulder, CO 80309

7b. ADDRESS (City, State, and ZIP Code)
Arlington, VA 22217-5000

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

8b. OFFICE SYMBOL
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
N 00014-85-K-0452

8c. ADDRESS (City, State, and ZIP Codg)

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. | NO. NO ACCESSION NO.
6 1153N RR 04206 |RR 04206-04 NR 702-009

11. TITLE (Include Security Classification)

Why And How To Learn Why: Analysis-based Generalization of Procedures

12. PERSONAL AUTH'OR(S)
Clayton Lewis

13a. TYPE OF REPORT
Technical

13b. TIME COVERED
FROM TO

14. DATE OF REPORT (Year, Month, Day)

15. PAGE COUNT
86-8-26 76

16. SUPPLEMENTARY NOTATION
Submitted to Cognitive Science

17. COSATI CODES
FIELD GROUP SUB-GROUP
05 10
08

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Learning, Procedural, Explanation, Analogy

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Computer learners often develop explanations of events they observe during training.
Recent work on generalization suggests that explanations may be valuable in permitting

learners to develop generalizations from one or a few examples.

We explore this

idea by describing four generalization paradigms in which explanations play a part:
explanation-based generalization (EBG), structure mapping analogical generalization
(SMAG), modificational analogical generalization (MAG) and synthetic generalization

(SG).

We describe a model, the EXPL system, capable of applying MAG or SG to the
generalization of simple procedures in human-computer interaction.

We present

evidence that EXPL's analysis procedure, which constructs explanations as needed
by MAG or SG, embodies heuristic principles used by human learners, and that
MAG provides a good account of some human generalization, when retention of examples

is not a problemn.

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT
BT UNCLASSIFIED/UNLIMITED [J SAME AS RPT.

I OTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL
Dr. Michael Shafto

22b. TELEPHONE (Include Area Code) | 22¢. OFFICE SYMBOL
205—549 —4(%86 rea e) |22 ONR 11

42 PT

DD FORM 1473, 84 MAR

83 APR edition may be used until exhausted.
All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

Abstract

Computer learners often develop explanations of events they observe during
training. Recent work on generalization suggests that explanations may be
valuable in permitting learners to develop generalizations from one or a few
examples. We explore this idea by describing four generalization paradigms in
which explanations play a part: explanation-based generalization (EBG), structure
mapping analogical generalization (SMAG), modificational analogical
generalization (MAG) and synthetic generalization (SG). We describe a model, the
EXPL system, capable of applying MAG or SG to the generalization of simple
procedures in human-computer interaction. We present evidence that EXPL's
analysis procedure, which constructs explanations as needed by MAG or SG,
embodies heuristic principles used by human learners, and that MAG provides a
good account of some human generalization, when retention of examples is not a

problem.

Introduction

In a series of thinking-aloud studies of word-processor learning (Lewis and Mack,
1983; Mack, Lewis and Carroll, 1983) it was noticed that learners often
spontaneously offered explanations of why things happened the way they did.
Learners were under no explicit demand to produce such explanations, yet they
showed considerable fluency and ingenuity in developing them. Why were they
doing this? Lewis (1986b) speculated that the explanations assisted
generalization: determining how their actions were related to observed outcomes
could be crucial in permitting learners to build new procedures for accomplishing

novel tasks.

This speculation meshes well with recent work on mechanisms of generalization
under the headings "explanation based learning” (DeJong, 1981, 1983a, b;
Kedar-Cabelli, 1985, Mitchell, Keller, and Kedar-Cabelli, 1986, DeJong and Mooney,
1986) and "analogical generalization" (Pirolli, 1985; Anderson and Ross 1986). In
these approaches, in contrast with earlier "similarity-based" methods which look

for regularities among large numbers of examples (for review see Dietterich and
Michalski, 1983), generalizations are based on an analysis of one or a few

examples. The analysis aims to determine why an example is an example, so that

further examples can be recognized or constructed.

In this paper we discuss the application of these analysis-based generalization
methods to the task of generalizing simple procedures in human-computer
interaction. That is, given an example procedure and its outcome, we will use
analysis-based methods to obtain new procedures to produce new but related

outcomes. We will then consider data that test the extent to which these models

reflect analysis and generalization as practiced by human learners.

Analysis-based generalization

In similarity-based approaches generalizations are developed by examining a
number of examples of a to-be-learned concept and constructing an economical
description that is satisfied by all the examples (and not by any known
non-examples.) The generalization produced is the conjecture that any item that

satsifies this description is an example of the concept.

Analysis-based approaches attempt to build generalizations not by characterizing
a number of examples but by discerning the essential features of a single

example. By explaining what makes this example an example, we can characterize
a larger class of examples, namely the class of examples for which the same

explanation holds.

Explanation-based generalization (EBG). Mitchell et al. (1986) describe an

analysis-based technique, called EBG, in which the analysis of an example consists
of a proof, within a formal theory of the example domain, that the example

belongs to a specified goal concept. The generalization process examines this proof
and constructs a characterization of the class of examples for which essentially

the same proof would work. In contrast to similarity-based generalizations, a
generalization constructed in this way can be formally proven to be correct, even

though it may be based on only one example.

DeJong and Mooney (1986) discuss a broader framework, called

explanation-based learning, in which the analysis of an example is embodied in a

set of interlocking schemata which the example instantiates and which account
for the aspects of the example that are to be understood. Just as EBG generalizes
to the class of examples for which a given proof would go through,
explanation-based learning generalizes to the class of examples to which a given
schema or collection of schemata can be fit. While DeJong and Mooney discuss
some advantages of the schema approach, and some other improvements to EBG,
the differences between these two explanation-based methods are not important

to our discussion here, and we will use EBG as a representative of this class of

approach.

EBG requires a domain theory to be given, which is unévailable in many realistic
learning contexts, as Kedar-Cabelli (1985) and Mitchell et al. (1986) note. In the
domain being considered here, procedures for operating computers, learners
frequently encounter examples that they cannot explain on the basis of prior

knowledge.

Command names provide a simple example of this difficulty. In some operating
systems "dir" is a command for displaying a directory of files. When a learner
first encounters this command he or she would probably not know this. Thus
when an example using "dir" is first encountered, say in a demonstration, the
learner’s domain theory is inadequate to prove that the example accomplishes the
observed outcome, and so no generalization is possible in EBG. But it seems
probable that as a result of seeing an example of the use of "dir", the learner can
readily grasp what "dir" does, and augment his or her knowledge accordingly. It
appears in cases like this that extending the domain theory to account for new

examples is a key process in generalization, one not encompassed by EBG.

We will return to this issue, and what might be done about it, after determining
whether learners are actually able to generalize in the absence of adequate
background knowledge. In the meantime we will table EBG as a model of

generalization of procedures, and consider other candidates.

Analogical generalization. Given a procedure P, its outcome O, and some new
outcome O', we can form an analogy involving a new, unknown procedure, X, as

follows:
P:O:X:0O

If we have an analysis describing why P produces O, which picks out particular
relationships between the parts of P and aspects of O, we can use structure
mapping (Gentner, 1983) and try to impose these same relationships on X and O'.
As the name suggests, having determined what we think is the important
structure in the P : O pair we map that structure across the analogy and impose it
on the X : O' pair. In favorable cases this structure, which is represented as a
collection of relationships that must hold between X and O', will constrain X
enough that we can construct it. For example, our analysis of P and O might
attribute the appearance of a particular file in O to the presence of a stepin P

that mentions the name of this file. If a different file appears in O' we can satisfy
this relationship by including in X a step mentioning the name of the new file. Let

us call this method SMAG, for Structure Mapping Analogical Generalization.
Another approach to dealing with the above analogy is to rearrange it as follows:

0:0:P: X

If we can find a transformation that maps O into O' we expect that the same
transformation should change P into X. Thus we will construct X by modifying P,
suggesting the name MAG, for Modificational Analogical Generalization, for this
approach. Anderson and Ross' PUPS system (Anderson and Ross, 1986) is an
implemented MAG system; similar ideas are discussed in Pirolli (1985) and

Dershowitz (1985). We will follow PUPS in our discussion.

As applied to our domain, a to-be-generalized example in PUPS consists of a
procedure, a description of its outcome, and indications of the roles played by the
parts of the procedure in producing the outcome. Given a new outcome a simple
substitution mapping is constructed that transforms the old outcome into the new
one. This mapping is then applied to the parts of the old procedure, giving a new

procedure that (it is hoped) produces the new outcome.

Here is a simple example. Suppose the procedure TYPE "DELETE", TYPE
"EGGPLANT" removes the file named EGGPLANT from a system. How would we
remove the file BROCCOLI? In mapping the old outcome to the new one we need
only replace EGGPLANT by BROCCOLI. Applying this same replacement to the
command we get the new procedure TYPE "DELETE't, TYPE "BROCCOLI". This
example is trivial, in that we did not need any informathion about the roles of

parts of the procedure.

Now suppose we wish to acc:omplish the new goal of printing the file EGGPLANT.
Suppose further that in addition to the knowledge that TYPE "DELETE", TYPE
"EGGPLANT" removes the file EGGPLANT we know these facts: "DELETE is the

command for removing" and "WRITE is the command for printing." Mapping the

old outcome, removing the file EGGPLANT, to the new outcome is accomplished by
replacing "removing" by "printing". In contrast to the first example, the term
"removing" does not appear in the to-be-modified procedure, so we seem to be

stuck. We can't just replace "removing" by "printing" because "removing" does not

appear in the procedure we are trying to modify.

The PUPS process gets around this impasse by examining the roles of the parts of
the procedure. Finding that the role of DELETE is "the command for removing", it
applies the mapping to this role, obtaining "the command for printing." It then
looks for an implementation of this modified role, obtaining WRITE. It then

substitutes WRITE for DELETE, obtaining TYPE "WRITE", TYPE "EGGPLANT".

SMAG and MAG have in common the exploitation of the idea of analogy, and the
dependence on an analysis of how a to-be-generalized example works. SMAG
embodies this analysis in the structure that is attributed to P and O, and that is
then imposed on X and O'. MAG embodies the analysis in the assignment of the
roles that are used to guide the modification process. But the two methods differ
in their treatment of unanalyzed aspects of examples, an issue which will be
important in our later discussion. SMAG only imposes on the new procedure X
those constraints which it has discerned in P and O; any aspects of P that were not
implicated in the analysis of its relationship to O will not be mapped over to X
and O, and hence will not be reflected in X. By contrast, any aspect of P that is not
assigned a role in MAG will be left unchanged by the modification process, and

will survive in X,

Analogical generalization resembles explanation-based generalization in that it

can operate on a single example, and requires an analysis of how the example

works, rather than just a description of it. But unlike explanation-based
generalizations those based on analogies may be invalid. For example, in the case
last discussed it could be that DELETE only works with files whose names begin
with E. This possibility does not occur in explanation-based generalization
because of the requirement for a formal domain theory in which membership in a
concept can be rigorously proved; analogical generalization relaxes this strong

requirement and pays a price for it.

Synthetic generalization (SG). In earlier work on the role of explanations in
learning (Lewis 1986a) the author developed a generalization technique that
resembles SMAG and MAG in not requiring a formal domain theory, but that
produces new procedures by building them out of small, separately-understood
parts rather than by modifying an example, as in MAG, or by mimicing the
structure of an example, as 1n SMAG. Richard Altermén (personal
communication) calls this distinction the "little chunk - big chunk" contrast in the
context of planning systems. A "big chunk” planner works by finding a known
plan that accomplishes roughly what is needed, and then modifying it as
required. A "little chunk" planner works from a repertoire of small steps whose
behavior it knows. Faced with a novel goal, it builds a procedure to accomplish it

from scratch, using these primitive steps.

SG works as follows on the TYPE "DELETE", TYPE "'EGGPLANT" example. Assume
that an analysis of the example has yielded the informaltion that TYPE "DELETE"
specifies a removal operation, and that TYPE "EGGPLANT" specifies the indicated

file. From a second example it gleans that TYPE "WRITE" specifies a print

operation (say) and that TYPE "BROCCOLI" specifies the file BROCOLLI. The

examples themselves are discarded; only the information anout primitive pieces

10

is retained. Given the demand to remove BROCCOLLI, it synthesizes the procedure
TYPE "DELETE", TYPE "BROCCOLI" by putting together TYPE "DELETE" and TYPE
"BROCCOLI".

The principles underlying SG are very close to those underlying the work of
Winston and colleagues on learning physical descriptions for objects with
functional definitions (Winston 1980, 1982, Winston, Binford, Katz, and Lowry
1983). Winston et al. use auxiliary examples, called precedents, to establish
connections between physical features and functional properties; these
connections correspond to SG's connections between pieces of a procedure and
aspects of its outcome. Because of the goal of recognizing objects rather than
constructing them the Winston work does not build collections of features, as
would SG's synthesis process, but rather constructs efficient recognition rules for

constellations of features that might be observed in other examples.

Mechanism vs. superstition. A key point about SG is that it might produce the
procedure TYPE "BROCOLLI", TYPE "DELETE" rather than TYPE "DELETE", TYPE
"BROCCOLI". Its knowledge about DELETE and filenames does not include anything
about the order in which steps involving them must occur, and the SG procedure

does not have access to the original examples from which its knowledge was

derived. By contrast, MAG will rarely reorder an example, because a new

procedure is always obtained by substituting parts in the example. Only in the

special circumstance that a substitution interchanges parts would reordering

occur.

A similar contrast emerges in the treatment of unexplained parts of a procedure.

In SG, an unexplained step will never be included in a new procedure, because

11

the synthesizer will have no description of its effects. In MAG an unexplained
part of a procedure, that is, one that has no role, will in general be left unchanged

in the modification process.

Let us call SG a mechanistic process, in that generalizations include only features
of examples that are understood, and MAG a superstitious process, in that
features of examples that are not understood are carried forward into
generalizations. Under this definition SMAG is a mechanistic process, for reasons
discussed above: parts of a procedure that do not participate in known
relationships with its outcome will not be reproduced in the generalized

procedure.

We might expect superstitious generalization to be important in complex,
poorly-understood domains. Mechanistic generalization will not perform well

when a complete analysis of how an example works is not available.

Analysis of examples

All of these methods require information about the roles of parts of an example.

Where does this come from? In the procedure-learning context, how does a

learner glean from observing an example like TYPE "DELETE", TYPE "EGGPLANT"
what the parts contribute to the outcome? The thinking-aloud studies mentioned

earlier (Lewis and Mack, 1982; Mack, Lewis, and Carroll, 1983) provide a couple

of suggestions. First, learners seemed to pay attention to coincidences, or

identities, between elements of their actions and elements of results. For example

one learner conjectured that a message containing the word FILE was the

outcome of a command containing the word FILE, though in fact the message was

12

unrelated to the command and the occurrence of FILE in both was a coincidence.
Second, faced with examples containing multiple actions and results learners
appeared to partition results among actions in such a way that a single action was
presumed to have produced a single result. These cases suggested that learners
may possess a collection of heuristics that enable them to conjecture the

relationships among actions and outcomes in a procedure.

The identity heuristic. Suppose that we are watching a demonstration of an

unfamiliar graphics editor. After a series of actions which we do not understand
the demonstrator draws a box around an object on the screen. After some further
uninterpretable actions the object in the box disappears. We might conjecture
that the drawing of the box specified the object that was to disappear; that is, that
the earlier user action of drawing the box around the object was causally
connected with the later system response involving the identical object. This
heuristic, which ties together actions and responses that share elements, is
reminiscent of the similarity cue in causal attribution (Shultz and Ravinsky

1977), in which causes and effects which are similar in some respect may be
linked.

The loose-ends heuristic. Suppose in watching another demonstration we are able
to explain all but one user action and all but one system response, which occurs
later. We might conjecture that the otherwise unexplained action is causally
linked to the otherwise unexplained response. We might justify your conjecture
with two assumptions: that a demonstration shows an economical way to
accomplish its outcome and that all aspects of system responses are attributable

to some user action.

13

This heuristic captures some of the observed partitioning of results among actions
by learners mentioned above. It is consistent with the "determinism" assumption
discussed in the causal attribution literature (Bullock, Gelman and Baillargeon

1982), by which all events are assumed to have causes.

The EXPL system (Lewis, 1986a) was developed to explore these and similar
heuristics, and their role in generalization. It implements a small set of heuristics
in such a way as to produce the information required by MAG or SG from an
example. Thus combining the EXPL analyis with MAG or with SG provides a
complete model of procedural learning from examples, in which extracting
information from examples, and use of that information to produce new
procedures, are both represented. There appears to be no reason why the EXPL
analysis could not drive SMAG, but this has not been done. We will discuss in the
following sections those aspects of EXPL pertinent to the examples considered in
this paper; complications and extensions needed to handle more complex

examples are described in Lewis (1986a).

Encoding Examples are represented to EXPL as a series of events , each of which is
either a user action or a system response. An event is made up of one or more
components, which may represent objects, commands, operations, or other

entities. These components are treated by EXPL as arbitrary, uninterpreted

tokens, with a few exceptions that need not be considered here. No significance
attaches to the order in which components of an event are listed. Figure 1 shows

an example as described in English and as encoded for EXPL.

Insert Figure 1 about here

14

This primitive encoding scheme has many limitations; it cannot represent
relationships among entities within an event, such as the information that a
collection of entities all appear on the same menu, for example. But it has proved
adequate to support the analysis of examples of moderate complexity and it is
sufficient to support the implementation of the EXPL analysis heuristics which are

our focus here.

The identity heuristic in EXPL. When a component of a system response has
occurred earlier in a user action, EXPL asserts that that user action specified that
component of the system response. For example, if clicking a mouse on an object
is followed by the disappearance of that object, EXPL asserts that it was clicking

on the object that led to that object, rather than some other, disappearing.

EXPL's implementation relies on the encoding process to enable the identity
heuristic to be applied in some cases. Suppose a picture of an object disappears
after the name of the object is mentioned. The encoding of these events must use
the same token to represent the picture and the name. Otherwise the identity
heuristic will be unable to link the mention to the disappearance. A more
sophisticated implementation would permit encodings with multiple descriptions
of events, and use background knowledge to link tokens which are not identical
but have related meanings. EXPL's primitive approach is adequate to support our

discussion, however.

The obligatory previous action heuristic. EXPL's analysis assumes that system

responses occur rapidly with respect to the pace of user actions, so that system

15

responses will occur as soon as all contributing user actions have been made.
Consequently, some contribution from the immediately previous user action must

always be posited.

The loose-ends heuristic. If EXPL finds a user action which it cannot connect to
the goal of an example, and it finds a component of a later system response that it
cannot account for, it posits that the unexplained user action is linked to the
unexplained system response. In the current system the goal of an example is
identified with the final system response. This is inadequate in general but will

not cause trouble in our discussion here.

Previous action. When any components of a system response cannot be attributed
by the above heuristics to any prior user action, the EXPL analysis attributes
them to the immediately previous user action. This can be seen as a weakened
version of the very powerful temporal succession cue in causal attribution, in
which an event which follows another immediately is likely to be seen as caused
by that event (Duncker 1945). EXPL's encoding does not include quantitative
timing information, so the dependency of this cue on precise timing is not

captured.

The previous action heuristic plays a complementary role to the obligatory
previous action heuritic described earlier. Obligatory previous action ensures that
the latest user action will be assigned some causal role, even if there are no
unexplained system responses. Previous action ensures that all aspects of a

system response will be assigned a cause, even if there are no unexplained user

actions.

16

Prerequisite relations. In tracing the contribution of user actions to the ultimate
system response it may be necessary to recognize that an action contributes to an
intermediate system response that permits a later action to be carried out. EXPL
can make this determination in some special cases, but the examples we will
discuss below do not require it. The interested reader can consult Lewis (1986a)

for a description of the mechanism.

Applying the heuristics. The heuristics are implemented by a PROLOG program
which processes the events in an example in chronological order. Each heuristic is
applied in the order listed above to each system response, and places links
between earlier user actions and components of the response. The order of
application dictates that any attributions based on identity will be made before
any based on loose-ends, for example. In applying a heuristic the components

within an event are processed in order, which is assumed to be arbitrary.

Analysis of an example. Figure 2 shows the output of EXPL's processing of the

example in Figure 1. Note that EXPL's attributions agree well with an intuitive

interpretation of the English version in Figure 1.

Insert Figure 2 about here.

Role of prior knowledge and subsequent experience. The EXPL heuristics assume

nothing in the way of prior knowledge, other than what may be implicit in the
decisions made in encoding events in a particular way. Undoubtedly prior

knowledge plays a substantial role in the analysis of real examples, when

17

learners have some familiarity with the system and the tasks being performed.

EXPL also gives no account of the fate of analyses which are proved incorrect by
later experience. A complete theory would have to describe the process by which

initial conjectures, such as those developed by EXPL, are refined and revised.

Generalization

Using MAG to generalize an analyzed example. To support MAG the results of
EXPL's analysis must be converted to the form assumed by the MAG machinery,

in which the procedure to be modified is explicitly represented, and the roles of
its parts, when these are known, are specified. Figure 3a shows the resulting

information expressed informally.

The MAG machinery now accepts the statement of a new outcome. It constructs a
mapping to take the old outcome to the new one, in the form of a set of
substitutions, as shown in Figure 3b. It then applies this mapping to the old

procedure,

Insert Figures 3a, 3b, 3c, and 3d about here.

If a part has no substitution, but does have a role specified, MAG attempts to
make substitutions in the role, and then to find a new part that implements the
modified role. In general, background knowledge, or knowledge gleaned from

other examples, will be needed here. Figure 3c shows the results of analyzing

18

another example, part of which will be needed in modifying the current one.

The role-mapping process is shown in Figure 3d. The resulting procedure adapts

the example using knowledge gathered from the auxiliary example.

Using SG to generalize an analyzed example. SG requires the results of EXPL's

analysis to be cast in a different form. The links shown in Figure 2 are extracted
from the example and combined with similar links extracted from the analysis of
the example shown in Figure 3¢ to produce the collection of links shown in Figure

4a.

Given a new outcome, SG selects from its data base of links actions which will

contribute the needed components. Figure 4b shows the resulting procedure.

Insert Figures 4a and 4b about here.

Adding substitution to SG. The example just discussed shows how SG can combine
the analysis of two examples to build a new procedure. If only one example is
available EXPL's version of SG uses a simple substitution scheme to generalize the
single example. Components are assigned to classes, as part of the encoding
process, so that pictures on the screen might form one class, names of files

another class, and so on. If a component is sought, but no link is available that can
provide it, a search is made for identity links that provide a component of the

same class. If one is found, the associated user action is modified by substituting

the new component for the old one. The modified action is presumed to produce

19

the new component. For example, if clicking on a picture of a hat is seen to be a
way to specify the picture of the hat, then clicking on a picture of a fish would be

presumed to be a way of specifying the picture of the fish.
This extension of SG can be seen as the inclusion of part of the MAG machinery in
the SG framework. Without it, SG is unable to generalize many procedures

without using links derived from other examples.

Empirical tests of premises of these models.

How well do these EXPL-MAG and EXPL-SG models, or a hypothetical EXPL-SMAG
model, account for the behavior of people in analyzing and generalizing

examples? While the EXPL analysis heuristics are based in a general way on
observations of human learners more specific tests of the use of these heuristics

by people are needed. Similarly, evidence is needed regarding whether MAG,

SMAG or SG can account for generalizations constructed by people.

To gather such evidence paper-and-pencil tasks were devised in which simple
fictitious computer interactions were presented as a sequence of events in text
form, with a picture showing the contents of the computer screen. Participants
were asked to answer questions about the roles of particular steps in the
examples, or to indicate how they would accomplish a related task. Items were

constructed to probe the following issues.

Use of identity and loose-ends heuristics. The loose-ends heuristic should permit

participants to assign a role to a step by a process of elimination, even when that

step contains no particular cue for what its role might be. The identity heuristic

20

should set up the elimination process by previously linking some steps to some

aspects of system responses, thus excluding them as candidate loose-ends.

Use of Obligatory previous action heuristic. If a step with no obvious role

immediately precedes a system response the obligatory previous action heuristic
will assign it a role, whereas the same step appearing in the midst of a sequence

of user actions might not be assigned any role.

Mechanistic vs. superstitious generalization. As discussed above, superstitious

generalization will normally preserve order of steps, while mechanistic
generalization will accept reorderings as long as no logical constraint, such a
prerequisite relationship between two steps, is violated. An example was
constructed in which two steps could be reordered without violating any
apparent constraint, and participants were asked to judge whether the reordered

example would work.

Another item examined the treatment of an uninterpreted step. As discussed
earlier a superstitious generalizer will leave unchanged aspects of the example to
which it has assigned no role, since it has no basis for modifying them. A
mechanistic generalizer will show the opposite handling: only interpreted steps
can appear in a generalization, since steps will be included a procedure only if
they contribute to the goal for which the procedure is being built. An example
was prepared that included an apparently unnecessary step. While some
participants might assign a role to the step, it is possible that participants who

assigned it no role would nevertheless keep it in a generalization.

Method

21

Participants. Ninety students in an introductory psychology course served in the
experiment as part of a course requirement. As a rough gauge of computer
background they were asked to estimate hours of computer use. Estimates ranged
from 0 to 1000, with a median of 55 and lower and upper quartiles of 20 and
100.

Materials. Test items were presented on single pages of test booklets. Each page
carried the name of a fictional computer system, with a sketch of a display screen
and (if used in the example) a keyboard. A brief example of an interaction with
the system was then presented as a sequence of written steps, followed by one or
more questions about the example. Figure 5 shows the picture for a typical item;
the example and question were placed on the same page immediately below the
picture. Table 1 shows the content of each item. Groups of participants were
given different versions of the booklets, differing in the items included and the
order of certain items, as shown in Table 2. Items TRAIN, PERSON, and HOUSE
relate to the problem of identifying hidden events in analyzing procedures and

will not be discussed here.

Insert Tables 1 and 2 about here.

All booklets contained an initial practice item, which was discussed with
participants at the start of the experimental session, and a final page with

background questions on computer use.

22

Procedure. Participants were run in groups of five to twenty in a classroom. In
early sessions participants were assigned to Groups A and B in alternation on
arrival; later Groups S and T were formed in the same manner. Participants were
given instructions verbally. Points covered were that questions were intended to
investigate their interpretations of the examples, regardless of the amount of
their knowledge of computers, that each item referred to a different fictitious
computer system, that accordingly they should not attempt to correllate their
answers to different items or go back and change earlier answers. The use of a
touch screen, in examples where no keyboard was used, was exaplained.
Participants were asked to look at the practice item and to suggest possible roles
for its first step. It was stressed that there were no correct or incorrect answers
since the intent was to discover each person's interpretation of the examples, and
that participants were free to indicate when they could not determine an answer.
Participants were then asked to begin work, moving at their own pace, and to

turn in their booklets and leave when finished.

Coding and analysis of responses. Coding categories, given below for each item,

were constructed for each item before any responses were examined. Three

raters coded all responses independently, with final codes assigned by majority
rule. Responses for which no two raters agreed were coded as "no agreement". No
codes were discussed among the raters, either during the rating process or in the
assignment of final codes. The G or log likelihood ratio test (Sokal and Rohlf 1981)

was used to test for differences in response frequencies.

Results and discussion.

Table 3 shows the responses for each item. Where the same item was presented

23

to more than one group, G tests did not indicate significant inter-group
differences, except in the case of item RABBIT. Accordingly, results are pooled

across groups except in that case.

Insert Table 3 about here.

Item TRUCK. This item was given in two forms, one with the second step
containing "truck”, the other with the second step containing "red". Together, the
identity and loose-ends heuristics should result in the first step, which is the
same in both items, being assigned the role of specifying the aspect of the system

response that is not mentioned in the second step.

This is confirmed by the data. Table 4 tabulates just those responses indicating a
specification of color or of object or location. The difference due to the form of the

item is highly significant (G=61, 1 df, p<.001).

Insert Table 4 about here.

Item LADDER. This item examines whether attributions made using identity and
loose-ends in an earlier part of an example can be carried forward to
disambiguate later phases of an example. Identity and loose-ends should indicate
that "NNA" specifies rotation in analyzing steps 1 and 2. If this interpretation is
carried forward to steps 3 and 4 the analysis will indicate that "da9" specifies the
tree. Finally, analysis of steps 5 and 6 will connect "n6b" with shrink, given the

connection of "da9" with tree.

24

Most participants responded in a manner consistent with this outcome, but there
are other possible explanations of the outcome. It is possible that participants
assume that items type always consist of an operation followed by an operand,

and associate "n6b" with "shrink" on this basis.

Item MANAGERS. This item provides a test of the interaction of the loose-ends
heuristic, the previous action heuristic, and the obligatory previous action
heuristic. Assume that the steps in the examples are encoded as shown in Figure
6a: typing the meaningful term "display" is separated from typing "3". Assume
further that the relationship between "display" and "show list of" is known and
available to establish an identity link accounting for this aspect of the system
response. Figure 6b shows the state of analysis following construction of this
identity link. Note that in neither form is there a link drawn from the last user
action to any later system response. If the obligatory previous action heuristic is
now applied, as in the EXPL implementation, a link will be placed attributing the
first unaccounted-for component of the system response to the previous action, as
shown in Figure 6¢. The loose-ends heuristic will now connect any unattributed
components of the system response to the earliest unaccounted-for user action,
with results shown in Figure 6d. This analysis predicts that participants seeing
Form1 would attribute "manager's" to step 2 and "salaries" to step 1, while
participants seeing Form 2 should attribute "manager's” to step 1 and "salaries" to

step 2. As the tabulation in Table 5 shows, this pattern does not occur.

Insert Figures 6a, 6b, 6¢, 6d, and 6e and Table 5 about here.

25

If the obligatory previous action heuristic is not used the analyses obtained are
shown in Figure 6e. As can be seen, the attributions are consistent with the

dominant pattern of participants' responses.

Although a modified EXPL analysis can account for these results it seems
imprudent to attach much weight to these examples in assessing the interactions
of the heuristics. The items have the drawback that the analysis is heavily
dependent on encoding, including the order of components. A change in encoding
of the system response from "show manager salary” to "show salary manager”, for

example, would change EXPL's analysis.

In view of the uncertainty in EXPL's treatment it is interesting that participants
were so consistent in their attributions in these impoverished examples. Possibly
participants were influenced strongly by the order in which the questions were
asked, attributing the first effect they were asked about to the most recent step,

and then choosing not to attribute two effects to the same step.

Item STAR. Most participants indicate that the reordered procedure will not
work, without giving a reason beyond the change in order. As discussed earlier,
this would be expected from a superstitious generalization process. On the other
hand, 19 participants indicate that the reordered procedure would work,
consistent with mechanistic generalization. The 95% confidence interval for
proportion of participants accepting the change of order, ignoring uninterpretable

responses, extends from .07 to .46.

While retention of order is consistent with superstitious generalization, it could

26

also occur if participants have learned that order of steps is generally important
in computer procedures and apply that knowledge to the item. Table 6 tallies
acceptance of variant order and rejection of variant order with no grounds for
participants reporting less and more than the median computer experience. As
can be seen there is no indication that more experienced participants are less

likely to accept the variant order.

Insert Table 6 about here.

Item FISH. As discussed above, superstitious and mechanistic generalization
differ in their treatment of uninterpreted Steps. Table 7 tabulates participants
according to whether they assigned a role to the seemingly unnecessary Step 2,
and whether they retained this step in generalizing the example. As can be seen,
23 participants retained the step even though they assigned no role to it,
consistent with a superstitious generalization mechanism but not consistent with
mechanistic generalization. On the other hand, 7 participants dropped the
uninterpreted step, which is consistent only with mechanistic generalization. One
participant neatly combined mechanistic with superstitious generalization by
suggesting that Step 2 be dropped, but put back in if the new procedure did not

work without it.

Insert Table 7 about here.

27

When participants assigned roles to 'c43' they treated it appropriately in the
generalized procedure, consistent with all of the generalization models considered
here. Typical roles included indicating the position of the hat, specifying a location
in memory for the hat to be put, requesting that Step 1 should be executed, and
indicating that the next object touched should be acted upon. The lone participant
who dropped 'c43' from the generalized procedure after giving it a role said that

it caused the system to exclude the fish from the deletion operation.

Table 8 compares responses to the FISH item with those of the STAR item. If use
of mechanistic or superstitious generalization were consistent by participant,
participants should fall mainly in the "will work, drop" cell, for mechanistic, or
the "order bad, keep" cell, for superstitious generalization. To the contrary, more
participants fall in the other two cells, indicating inconsistency across the two
items. The "will work, drop” cell is empty, indicating that no participants were
consistently mechanistic, while some were consistently superstitious and others

were superstitious on one example and not the other.

Insert Table 8 about here.

Item FISH illuminates another point discussed above. Most participants
generalized the example by replacing Hat by Fish, even though they had seen no
example in which Fish was typed. This generalization is trivial in MAG but cannot

be handled in SG without adding substitution.

Item RABBIT. This item showed a significant effect of order, so results are not

28

pooled across groups. The comparison between this item and FISH provides a test
of the obligatory previous action heuristic. According to this heuristic even an
apparently unnecessary step must be assigned a role if it immediately precedes a
system response. In FISH the unnecessary step occurs between two user actions,
while in RABBIT it occurs just before a system response. As shown in Table 9
there is some support for the obligatory previous action idea in that of the those
who assigned a role in one and not the other nearly all assigned a role in RABBIT
and not in FISH. This preponderance is significant by sign test at the 95% level in
each group. But the table also shows that the preponderance of participants
assigned a role to the unnecessary step in both examples. This indicates that
analysis should attempt to assign a role to all actions, regardless of position,
rather than giving special handling to actions that immediately precede a system
response. This finding joins the results of the MANAGERS item in casting doubt on

EXPL's obligatory previous action heuristic.

Insert Table 9 about here.

Discussion

Support for analysis heuristics. The empirical findings support the conclusion that
people use principles similar to EXPL's identity and loose-ends heuristics. The
detailed coordination of these heuristics is less clear, and may differ from that in
the implemented EXPL system. It appears that people tend to assign a role to all

user actions, regardless of position, rather than using EXPL's obligatory previous

29

action heuristic.

Superstition or mechanism? While the pattern of results is mixed, and does not
indicate consistency across items within participants, it appears that responses
consistent with superstitious generalization are more common than those
indicating mechanistic generalization. It is possible that this finding is dependent
on the fact that participants had full access to the examples while interpreting or
generalizing them. In real learning situations participants would usually face a
serious retention problem, in which recalling complete examples well enough to
use superstitious generalization might be difficult. Under these conditions
mechanistic methods, which could work with even fragmentary recall of

examples, might be more prevalent.

EBG revisited. The ability of participants to generalize examples that contain
arbitrary, never-seen-before tokens, as in LADDER or FISH, bears out our earlier
contention that EBG, at least as characterized by Mitchell et al. (1986), cannot
provide a complete account of learning in this domain. Participants cannot possess

domain theories adequate to construct proofs about nonsense elements like "c43".

To attack this problem the EBG framewbrk might be extended to include addition
to the domain theory as part of the analysis of an example. The EXPL analysis
machinery, for example, could be adapted to produce its output in the form of a
theory about the significance of the steps in the example, rather than as links or
role assignments as needed by SG or MAG. The generalization process itself
would work just as it does in normal EBG, but of course the results would no
longer be rigorously justifiable, being only be as good as the

heuristically-conjectured domain theory.

30

How would such an extended EBG model compare with SMAG, MAG or SG? Would
it be mechanistic or superstitious? The behavior depends on the nature of the
domain theory. With appropriate domain theories EBG can mimic the

generalizations of any of these models.

Suppose first that the domain theory specifies how the parts of a procedure
produce its outcome. In this case EBG implements structure mapping.
Kedar-Cabelli (1985) describes a procedure called "purpose-directed analogy" in
an EBG framework. If applied to generalization of procedures purpose-directed
analogy would construct new procedures by capturing the relationship between
procedure and outcome in the example in the form of a proof that the procedure
produces the outcome. The proof would then be generalized. The new procedure
would be determined by the constraint that the generalized proof must establish
that the new procedure produces the desired new outcome. This is the SMAG
process, in which the analogy P: O :: X : O'is solved by mapping the relationships

in the P-O structure onto the X-O' structure.

Seen in the EBG framework, SG appears as a special case of SMAG. While SMAG
can incorporate arbitrary relationships among attributes of procedures and their
outcomes, SG's synthesis process requires that only general principles of
combination, and specific descriptions of parts, are permitted. Consequently the
domain theory for SG consists of two distinct subtheories. An a priori subtheory
describes how parts of procedures interact when put together. This theory must

be general, not referring to features of any particular examples. The second
subtheory consists of descriptions of the various possible parts of procedures,

whose behavior may have been extracted from the analysis of examples.

31

Figures 7a and b show how Item FISH could be handled in an EBG version of SG.
The a priori domain subtheory is an explicit statement of the assumption
underlying EXPL's SG planner, without the substitution scheme. The part-specific
subtheory contains relationships posited by the analyzer in processing examples.
As required for pure SG, two examples are processed, one to establish how to
specify Delete and one how to specify Fish. To build a procedure for Removing
Fish we take the intersection of the two goal concepts. As expected from a
mechanistic approach the step c43 is dropped. As expected, the EBG machinery is
doing two things here. First, it is filtering the attributes of the examples so that
only apparently necessary attributes are kept. Second, it is streamlining the
application of the domain theory by replacing more abstract specifications of goal

concepts by more concrete ones.

Insert Figures 7a and 7b about here.

It might appear that a superstitious generalization mechanism like MAG could not
be accomodated in the EBG framework. After all, one of the functions served by
proofs in EBG is filtering features with roles from features without roles, while
MAG simply retains features without roles. Nevertheless, with an appropriate

domain theory EBG can mimic MAG, at least in simple cases.

The domain theory needed for MAG is somewhat different from those for SMAG
or SG. While theories for these models will describe the role of all relevant parts

of procedures, the theory for MAG may not. Instead, the MAG theory must

32

indicate the outcome of a procedure as a whole, so that uninterpreted parts will
not be stripped out in the generalization process. To permit generalization to
work at all on the whole procedure, any replaceable parts must be detected and
replaced by variables in the domain theory. Thus the domain theory represents a
procedure as a sort of matrix in which some parts, those with known roles, are

substitutable, while parts without known roles are fixed.

Figures 8a and b show the treatment of Item FISH in a MAG-like version of EBG.
Note that the analysis of the example must perform a good deal of abstraction,

but that the relationships that must be detected to do this are the same as are
needed for SG, and are detected by EXPL's analyzer: the step [type delete]
specifies remove , the step [type hat | specifies hat . The required abstractions are
accomplished by replacing tokens that appear in both the procedure (or roles of

parts of the procedure) and the outcome by variables.

Insert Figure 8a and 8b about here.

Roles of explanation in generalization. Consideration of these generalization

mechanisms reveals that explanations can play more than one part in

generalization. In SMAG, SG and EBG, explaining the outcome of a procedure leads
to the construction of hypotheses about the role of the procedure's parts. These
hypotheses are packaged as input to a planner, in SG; as input to a mapping

routine, in SMAG; or as extensions to the domain theory in EBG. As long as the
hypotheses about the parts are correct, and the theory about the behavior of

combinations of parts is correct, new procedures built from the parts will work as

33

expected. That is, a complete and correct explanation of how the example works

enables us to build new procedures that will also work.

In MAG what is explained is not how the procedure determines the outcome, but
how the outcome determines the procedure. That is, explanations in MAG are
used as a guide to changing the example procedure, given that the desired
outcome has changed. The validity of the modified procedure rests not just on the
validity of the analysis of the example but also on the validity of the modification
rules, which are not part of the explanation of the operation of the original
example. It can also rest on the action of unexplained aspects of the example

which are left unchanged by the modification rules.

In EBG, SMAG, and SG an explanation serves to filter relevant procedure
attributes from irrelevant ones. In MAG relevant features may be explained or

not; explanations play no filtering role but are only used to guide modification.

In EBG only, explanations are further used to streamline the construction of
generalized procedures by simplifying the application of the domain theory to
cases similar to the example. This does not seem to be crucial in the simple
procedural examples we have considered here, though they are in other domains

considered by Mitchell et al.

Dependence on background knowledge. To what extent are the analysis and
generalization mechanisms we have been discussing dependent on knowledge of
the specific domain we have considered, human-computer interaction? Could
these same mechanisms be applied to concepts outside this domain, or are they

embodiments of particular assumptions learners make about this particular

34

domain, assumptions which must be the result of some prior, possibly more basic

learning process?

The generalization mechanisms are clearly not limited to this domain, since they
have all (except for SG) been developed to deal with other kinds of concepts.

What about the analysis heuristics?

The obligatory previous action heuristic (which did not receive strong support) is
an example of a piece of machinery which might rest on special assumptions. The
rationale for it that we discussed above, the assumption that system responses

are fast compared with user actions, certainly would not apply to all procedural
domains. But this argument is not decisive, because this may not be the correct
rationale. As we also discussed above, temporal succession is a very powerful cue
for causal attribution in domains unrelated to human-computer interaction; the
obligatory previous action heuristic could reflect the tendency to attribute effects

to immediately prior events, just as the plain previous action heuristic does.

The identity heuristic does not appear to rest on any specific ideas about
human-computer interaction, though it may reflect assumptions that are not
completely general. While principles akin to identity may be involved in
unravelling many physical phenomena, for example the notion that objects in the
same place are more likely to interact than objects in different places, identity
might seem especially useful in understanding artifacts rather than natural
systems. If red and green switches are available to control red and green lights, it
seems compelling that a well-meaning artificer would have matched up the
colors. There seems much less warrant for the conjectufe that drinking a

naturally-occurring red plant extract (say) will be effective in making one's face

35

flush red.

But of course just such conjectures are commonplace in prescientific thought; see
discussion in Frazer (1964). So whatever we may think of the support for it, it
appears that the identity heuristic is not restricted to artifacts, let alone

computers.

The rationale proposed above for the loose-ends heuristic, like that for the
obligatory previous action heuristic, would restrict its application. It was assumed
that the events the learner is seeing constitute a coherent and efficient
demonstration, without wasted motion and mistakes. There is nothing in that that
is limited to the human-computer interaction domain. But it is possible that
learners will apply loose-ends without making even this assumption. Just as
people do not restrict the use of identity to artifacts, they may tie up loose ends

when there are no grounds for expecting them to connect.

Summary. We can now collect the above arguments, and the indications in the
data, and draw conclusions about the generalization processes participants used.
Pure SG cannot account for participants’ ability to generalize from a single
example, though SG plus substitution can. Neither of the mechanistic methods, SG
or SMAG, can account for the tendency of participants to reject variant order in
the STAR item, or the fact that some participants retain uninterpreted features of
examples in generalizing. MAG, a superstitious mechanism, appears to be able to
account for the findings in a natural way, except that some participants were

willing to accept variant orders in STAR.

All of these generalization mechanisms could be brought within the EBG

36

framework described by Mitchell et al. But a mechanism like EXPL's analyzer
would be needed to build domain theory extensions from examples if EBG is to
operate in this domain, since participants clearly were able to generalize

examples for which they had no adequate a priori theory.

The results bearing on the analysis of examples support the idea that devices like
EXPL's identity and loose-ends heuristics do play an important role, and that
participants are able to use them to explain the role of parts of unfamiliar
procedures. Such principles of analysis seem to be capable of supporting a variety

of different generalization mechanisms.

Returning to our original question, why explain things during learning? It appears
that explanations organize knowledge about procedures in a way that supports
generalization. Our data suggest that participants used heuristic rules to associate
parts of procedures with aspects of outcomes in such a way as to determine what

part of a procedure to change to obtain a modified outcome.

37

REFERENCES

Anderson, J. R. and Thompson, R. (1986). Use of analogy in a production
system architecture. Paper presented at the Illinois Workshop on

Similarity and Analogy, Champaign-Urbana, June, 1986.

Bullock, M., Gelman, R., and Baillargeon, R. (1982). The development of
causal reasoning. In W.J. Friedman (Ed.), The Developmental

Psychology of Time. New York: Academic Press.

DeJong, G. (1981). Generalizations based on explanations. Proceedings

1JCAI-7, Vancouver, 67-69.

DeJong, G. (1983a). Acquiring schemata through understanding and
generalizing plans. Proceedings IJCAI-8, Karlsruhe, 462-464.

DeJong, G. (1983b). An approach to learning from observation. Proceedings
of the 1983 International Machine Learning Workshop, Urbana IL.

DeJong, G. and Mooney, R. (1986). Explanation-based learning: An

alternative view. Machine Learning 1.
Dershowitz, N. (1986). Programming by analogy. In R.S.Michalski, J.G.
Carbonell & T.M. Mitchell (eds.), Machine Learning: An Artificial

Intelligence Approach, Volume II. Los Altos, CA: Morgan Kaufmann.

Duncker, K. (1945). On problem solving. Psychological Monographs, 58,

38

Whole No. 270.

Frazer, J. (1964). The new golden bough . (T.H. Gaster, Ed.), New York: New

American Library.

Gentner, D. (1983). Structure mapping: A theoretical framework for

analogy. Cognitive Science, 7, 155-170.

Kedar-Cabelli, S. (1985). Purpose directed analogy. In Proceedings of the
Cognitive Science Society Conference, Irvine, CA: Cognitive Science

Society.

Lewis, C.H. (1986a). A model of mental model construction. In Proceedings

of CHI'86 Conference on Human Factors in Computer Systems. New
York: ACM, 306-313.

Lewis, C.H. (1986b). Understanding what's happening in system
interactions. In D.A.Norman and S.W.Draper (Eds.) User Centered
System Design: New Perspectives on Human-Computer Interaction.

Hillsdale, NJ: Erlbaum.

Lewis, C.H. & Mack, R.L. (1982). Learning to use a text processing system:
Evidence from "thinking aloud" protocols. In Proceedings of the

Conference on Human Factors in Computer Systems. New York: ACM

387-392.

3

Mack, R.L., Lewis, C.H., & Carroll, .M. (1983). Learning to use word

39

processors: Problems and prospects. ACM Transactions on Office

Information Systems, 1, 254-271.

Mitchell, T.M., Keller, R.M. and Kedar-Kabelli, S.T. (1986) Explanation-based

generalization: A unifying view. Machine Learning , 1.

Pirolli, P.L. (1985). Problem solving by analogy and skill acquisition in the
domain of programming. PhD Dissertation, Department of

Psychology, Carnegie-Mellon University, Pittsburgh, August, 1985.

Shultz, T.R. and Ravinsky, F.B. (1977). Similarity as a principle of causal
inference. Child Development, 48, 1552-1558.

Sokal, R.R. and Rohlf, F.J. (1981). Biometry. San Francisco: Freeman.

Winston, P.H. (1980). Learning and reasoning by analogy. CACM, 23,
689-703.

Winston, P.H. (1982). Learning new principles from precedents and

exercises. Artificial Intelligence, 19, 321-350.

Winston, P.H., Binford, T.O., Katz, B., and Lowry, M. (1983). Learning
physical descriptions from functional definitions, examples, and

precedents. Proceedings of AAAI-83, Washington DC, 433-439.

40

>RI thank Mitchell Blake, Steven Casner, and Victor Schoenberg for their assistance
in the research described here. Many others have been generous with ideas and
suggestions, including Richard Alterman, John Anderson, Susan Bovair, Gary
Bradshaw, Lindley Darden, Steven Draper, David Kieras, Donald Norman, Peter
Polson, Jonathan Shultis, and Ross Thompson. This work was supported by the
Office of Naval Research, Contract No. N00014-85-K-0452, with additional

contributions from the Institute of Cognitive Science and AT&T.

41 - 42

Table 1:Test ltems.

Item In picture Example Questions

TRUCK truck and boat 1 Type "67m" on keyboard. What does Step 1 do?

Form 1 on screen,
keyboard

Form 2 ditto

LADDER tree and ladder
on screen,
keyhboard

MANAGERS blank screen,

Form 1 keyhoard

Form 2 ditto

STAR words alpha,
beta, gamma,
epsilon in bar at
top, star in
lower part of
screen

FISH hat and fish
on screen,
keyboard

RABBIT rabbit and carrot

on screen,
kevboard

2. Type "truck” on kevhoard.

sexoy Truck turns red.
1. Type "67m" on keyboard.

2. Type "red" on keyboard.
sweerlruck turns ced.

1.Type "NNA" on kevboard.

2. Type "ladder” on keyboard.

»ooLadder rotates 45°

3. Type "NNA" on keyboard.
4. Type "da9" on kevboard.
»yvrTree rotates 45°

5. Type "néb" on kevboard,
& Type "da%" on keyboard.

»onTree shrinks to half size.

1. Tvpe "display3"”.

2. Type "a25".

»»8ystem shows list of
managers salaries.

1. Type "n25".

2. Type "display3".

»»System shows list of
managers salaries.

1. Touch the star.
2. Touch"beta".

3. Touch a place near the
left side of the screen.
>0 The star moves to the
teft side of the screen,

1. Type "delete” on the
kevhoard.

2. Type "c43".

3. Type "hat".

»»»The hat disappears.

1. Type "rabbit",

2. Type "remove",

3. Type "HJ4".
»»Rabbit disappears.

ditto

What would you do to make the
ladder shrink?

Which step would you change
if you wanted a list of
managers ages instead of
managers salaries?

Which step would you change
if vou wanted a list of clerks’
salaries instead of managers'
salaries?

ditto

If 1 tried to move the star to
the bottom of the screen this
way:
Touch "beta”.
Touch the star.
Touch a place near the bottom
of the screen.
Would it work?If not, why not?

What does Step 2 do?
What would you do to make the
fish disappear?

What does Step 3 do?

Table 2: Order of items in test booklets for groups

Group A Group B Group S
(n=13) (n=15) (n=31)
STAR STAR STAR
TRUCK TRUCK TRUCK
(Form 1) (Form 2) (Form 1)
TRAIN TRAIN TRAIN
LADDER LADDER LADDER
FISH FISH RABBIT
PERSON PERSON MANAGER
HOUSE HOUSE (Form 1)
PERSON
HOUSE
FISH

43

Group T
(n=31)
STAR
TRUCK
(Form 2)
TRAIN
LADDER
FISH
MANAGER
(Form 2)
PERSON
HOUSE
FISH

Table 3. Pasticipant's responses.

44 - 45

Item Number of responses Category of response
TRUCK Form1 Form?
0 22 step specifies truck or object
30 3 step specifies red or color
1 9 step specifies location
13 12 other
0 0 no agreement
LADDER 70 'n6b ladder
20 other
0 no agreement
MANAGERS
First Question Form! Form2
& 6 step 1
25 22 step 2
0 3 other
0 0 no agreement
Second Question
25 23 step 1
3 6 step 2
0 2 other
0 0 no agreement
STAR 19 says will work
33 says will not work because order is wrong
8 says will not work because order iswrong
and gives a reason why order is important
6 says will not work but does not fit above
1 none of above
3 no agreement
FISH
First Question 9 step 2 does nothing
26 don't know or can't tell
33 step 2 is given some role
| other
1 no agreement
Second Question 8 ‘delete fish'
57 ‘delete c43 fish'
25 other
0 0o agreement
RABBIT GroupS Group T

0
1
30
0
0

3
2
25
1
0

nothing

don't know or can't tell
does something

other

no agreement

Table 4. Interpretation of step in Item TRUCK.

Interpretation of Step 1

I

Content of |

Step 2 | _color object or location
|

truck | 30 1
l

red] 3 31

46

Table 5. Responses to two forms of Item MANAGERS.

Answers to |

questions | Form 1 Form 2
stepl, step 1 | 2 2
stepl, step 2 [3 4

step 2, stepl | 23 20
step2,step2 | 2 2

47

48

Table 6: Relationship of acceptance of variant order in Item STAR with
experience.

Reported computer experience

!
Response to I
new order | lessthan more than
in STAR |55 hours 55 hours
|
will work l 8 8
I
order bad, |
no reason | 23 23
|

given

Table 7. Intepretation and treatment of extra step in Item FISH.

| Treatment of 'c43'

Interpretation | in new procedure
of 'c43' L_keep drop
I
given role | 32 1
|
no role]
or role not | 23 7
I

known

49

Table 8: Comparison of responses to Items FISH and STAR.

Treatment of 'c43' in FISH
Response to

I
|
new order | norole, no role,
in STAR |__keep drop
l
will work | 7 0
l
order bad, |
no reason | 12 7
I

given

50

Table 9. Comparison of role assignment in Items FISH and RABBIT.

Interpretation of 'HJ4' in RABBIT

known

I
l
Interpretation | given no role
of 'c43' | role or role not
in FISH | known
|
IL_GroupS GroupT Group S Group T
|
given role | 21 16 1 1
|
no role I
or role not | 9 9 0 5
I

52

User types letter 'd' on keyboard.
User touches picture of train on screen.
System removes train from screen.

Example as encoded for EXPL:
utype d

u touch train
s remove train

Figure 1: Example of procedure and outcome.

utype d
loose-end link
u touch train

/ identity link
S‘remOVE@

Figure 2: EXPL analysis of example in Figure 1.

53

Outcome of [[type d], [touch train 1] is [remove train 1.
Role of [type d] is [specify remove].
Role of [touch train] is [specify train].

Figure 3a: EXPL output as provided to MAG for example in Figure 1.

Old outcome is [remove train].
New, desired outcome is [shrink train].

Substituting shrink for remove maps old outcome to new outcome.

Figure 3b: Determining mapping in MAG.,"

utyper
u touch car
s shrink car

Results of EXPL analysis of auxiliary example:
Outcome of [[type r], [touch car 1] is [shrink car].
Role of [type r]is [specify shrink].

Role of [touch car] is [specify car].

Figure 3c: Auxiliary example showing shrink operation.

54

Original procedure:

[[type d 1,[touch train 1]

Substitution does not apply to [type d].

]?ut role of [type d] s [specify remove].

Substitution transforms this to [specify shrink].

Analysis of auxiliary example shows that [type r] plays this role.
[type r] replaces [type d].

Substitution does not apply to [touch train] or its role.

Resulting modified procedure is [[type r 1, [touch train 11.

Figure 3d: Applying substitution of shrink for remove to the example.

55

link([type d 1, remove)
link([touch train],train)
link([type r], shrink)
link([touch car], car)

Figure 4a: Links extracted from Figure 2 and from auxiliary example in Figure 3c.

Outcome: [shrink train]

Procedure: [[type r], [touch train]]

Figure 4b: Procedure constructed for new outcome by using links in Figure 4a.

Figure 5: Picture for Item FISH.

56

57

Form 1 Form 2

u type display u type n25

utype 3 u type display

u type n25 u type 3

s show managers' salaries s show managers' salaries

Figure 6a: Encoding of Forms 1 and 2 of MANAGERS item.

Form 1 Form 2
u type display u type n25
utype 3 , u type display
u type n25 u type 3
how)managers' salaries s@how)managers' salaries

Figure 6b: After placement of identity links.

Form 1 Form 2

u type display u type n25
utype 3 u type display
u type n25 1 utype 3

s show mana ' salari h al
ers' salaries s{showymanagers' salarie
- s \(anagers salaries

Figure 6¢: After applying obligatory previous action heuristic.

59

Form 1

Form 2
u type display u type n25
utype 3 u type display
u type n25 -} u type 3

(salaries

s show@anagers‘ salaries s{showfmanagers

Figure 6d: After applying loose-ends heuristic.

(0

Form 1 Form 2

u type display

sho managers stsho managers{' salaries)

Figure 6e: Result of eliminating obligatory previous action heuristic.

’

60

A priori domain theory:

A is an aspect of the result of procedure P if S is a step of P and S is linked
to A.

Example 1;

u type delete
u type c43
u type hat
s remove hat

Assertions added to domain theory by analysis of Examplel:

[type delete] is linked to remove .
[type hat] is linked to hat .

Note that [type c43] has been given no role.

Example 2:;

u type reduce
u type fish
s shrink fish

Assertions added to domain theorv by analvsis of Example 2:

[type reduce] is linked to shrink .
[type fish] is linked to fish .

Figure 7a: Using EBG to perform SG-like generalization for Item FISH.

61

Goal Concept 1:
Procedures P such that remove is an aspect of the result of P.

Proof that Example 1 is a member of Goal Concept 1:

[type delete] is a step of Example 1.
[type delete] is linked to remove .
Therefore remove is an aspect of the result of Example 1.
eneralization based on proof;
Pisin Goal Concept 1 if [type delete] is a step of P.
al Concept 2:

Procedures P such that fish is an aspect of the result of P.

Proof that Example 2 is a member of Goal Concept 2:

[type fish] is a step of Example 2.
[type fish] is linked to fish .
Therefore fish is an aspect of the result of Example 2.

Generalization based on proof:

P is in Goal Concept 2 if [type fish] is a step of P.

Construction of procedure to accomplish [remove fish 1:

Desired procedure P lies in intersection of Goal Concepts 1 and 2.

If [type delete] is a step of P, and [type fish] is a step of P, P will be in
Goal Concepts 1 and 2. Note that [type c43] is not included in the
construction.

Figure 7b: Continuation of Figure 7a.’

62

Example:

u type delete
u type c43
u type hat
s remove hat

Domain theory constructed from example:
(1) Outcome of [X, [type c431,Y1is[QR] if
role of X is [specify Q] and
role of Y is [specify R].
(2) Role of [type delete] is [specify remove].
(3) Role of [type Z] is [specify Z].
al concept:

Pairs P,O such that the outcome of procedure P is O.

Figure 8a: MAG-like generalization in EBG.

63

Proof that the example and its outcome satisfy the goal concept:

Let X = [type delete]

Y = [type hat]

Q = remove
‘R = hat

W = hat .

Role of [type delete] is [specify remove] by assertion (2) in domain
theory, so role of X is [specify O 1.

Role of [type W] is [specify W] by assertion (3) in domain theory, SO
role of [type hat] is [specify hat] and therefore
role of Y is [specify R].

Since the conditionson X, Q,Y, and S in (1) are satisfied,
the outcome of [X, [type c¢43 1, Y 1is [O R]; that s,
the outcome of [[zype delete], [type c43 1, [type hat 1] is [remove hat 1.

Generalization based on proof:

Replacing hat by a variable, and leaving other terms in the example fixed
we find that any procedure

L]

([type delete], [type c43], [type Z 1]
and outcome

[remove Z]
are in the goal concept.

Therefore to get [remove fish] use [[type delete], [type c43 1, [type fish]].

Figure 8b: Continuation of Figure 8a.

