ORDER-THEORETIC TECHNIQUES
FOR NONDETERMINISTIC PROGRAMS*

Michael G. Main
CU-CS-344-86 August 1986
Presented at the Second Workshop on

Programming Language Semantics,
Manhattan, Kansas

*This research has been supported in part by National Science Foundation grant DCR-8402341.

ORDER-THEORETIC TECHNIQUES FOR NONDETERMINISTIC PROGRAMS*

Michael G. Main
Department of Computer Science
University of Colorado
Boulder, CO 80309 USA
Phone: 303-492-7579

ABSTRACT

This paper is an exposition of the demonic semantics of nondeterministic programs,
as recently used in several technical works (e.g. [4,17,20]). Particular emphasis is placed
on demonstrating the use of the usual order-theoretic proof techniques, such as computa-
tional induction. The main example developed is the semantics of nondeterministic recur-
sive programs, but the same techniques apply to nondeterministic recursive program

schemes or nondeterministic iterative programs.

*This research has been supported in part by National Science Foundation grant DCR-8402341.

1. MOTIVATION

There are two special cases of the order-theoretic semantics which have been considerably

studied on their own:

. Partial function theory: Deterministic programs are interpreted as partial functions
from an input domain to an output domain. A function is undefined at points where

its program fails to terminate.

o Angelic relational semantics: Nondeterministic programs are interpreted as binary
relations between input and output domains (for example, [7, part I}). Each input
element is related to all the possible output elements that it can yield. The possibil-
ity of nontermination is ignored. (We hope that an angel will lead the computation

away from nonterminating paths.)

Both of these models are useful because they can make use of the techniques of order-
theoretic semantics (such as computational induction, fixpoint induction, ...) without
employing the full scenario of domain theory. However, neither model is appropriate for.
total correctness proofs of nondeterministic programs: in the first case, nondeterminism is

not allowed, while in the second case nontermination is ignored.

One way to correct this deficiency is to include a new "state' denoted w. If a compu-
tation has the possibility of nontermination on an input z, then z is related to w by the
computation’s relation. This is the approach taken by deBakker [3] or Harel & Pratt (8],
for example. In both of these cases, ad hoc rules are added to indicate when an input is
to be related to w. As a result, the usual order-theoretic proof techniques cannot be

immediately applied.

An alternative approach, within order-theoretic semantics, is suggested by Smyth’s
powerdomain [18] and Plotkin’s interpretation of this construction [16,17]. In it’s most

eneral setting, Smyth’s owerdomain rovides semantics for nondeterministic
o7

computations over arbitrary CPOs (complete partial orders). The purpose of this paper is
to point out the special case of Smyth’s powerdomain in relational semantics. The result
is a simple relational semantics in which total correctness proofs of nondeterministic pro-

grams can be carried out by the usual order-theoretic techniques.

In terms of relational semantics, Smyth’s construction provides this principle: each
input is related to any output which cannot be ruled out by some finitely-deep amount of

information about the computation. In practice this means the following:

. If a program has the possibility of nontermination on input z, then z is related to
every possible output (including «w). The reason is that any finitely-deep information
about the computation paths of the program must leave an unfinished path — hence

no possible outputs can be eliminated.

. If a program must always terminate on input z, then z is related to exactly those
outputs which are possible via terminating paths. This is the same as the angelic

relational semantics.

Notice how this principle makes these two programs equivalent:

PROGRAM 1: PROGRAM 2:
i:=0; i:=0;
while (i = 0) do while (i = 0) do
=1 or 1i:=0 i:=20
od od

The underlying relation for both programs relates every possible input to every possible
output — which merely indicates that termination can never be guaranteed. The fact
that Program 1 can sometimes terminate is irrelevant here. This has been called demonic
semantics [4], meaning that if nontermination is possible, then a demon in the system will
cause the nonterminating path to be taken. Of course, we don’t really expect such a

demon to be implemented — but the concept is useful when reasoning about what a

program must do under all possible nondeterministic executions. (See [1,17,20] for more

on this approach).

The reward for taking this approach is two-fold: First, the demonic relational
semantics is easy to specify. Iteration and recursion employ least fixpoints with respect to
the superset ordering on relations. Second, since we are in the realm of order-theoretic
semantics, the usual proof techniques such as computational induction and fixpoint induc-
tion can be employed directly. The remainder of this paper is an expository presentation
of these ideas for recursively defined nondeterministic programs (similar to Manna [12],

chapter 5).

Notation: The equality operator will generally be denoted by = instead of =, (since
we reserve the usual equal sign for a weak equality). If f CA X B is a binary relation,
and a €A, then we use the notation f(a) to denote the set {b €B |(a,6)€ f}. Similarly

for a subset S CA, we use the notation f(S) for | J f(a). Some care must be taken in
a€S

relational application. For example, consider the relation double CZXZ, defined by
double(z) = {z+z} (where Z is the set of integers). Here is an incorrect derivation:
double({1, 2}) = {1, 2}+{1, 2} = {1+1, 142, 2+1, 242} = {2, 3, 4}
The incorrect step is the first step, which applies double to its argument {1,2}. Such a
"beta-conversion" can only be carried out if the argument is a singleton. The correct
derivation is:
double({1, 2}) = {double(1), double(2)} = {141, 2+2} = {2, 4}

This method of application is the "call-time choice" parameter passing rule [9,10].

2. NONDETERMINISTIC RECURSIVE PROGRAMS

Throughout the paper, D is a fixed arbitrary set of values, which includes three special

elements true, false and w (called "undefined").

i
i
|

2.1 Nondeterministic programs |

We define a nondeterministic n-ary program to be a relation f CD" X D, such that

(1) Let 2ED" be a vector where none of the components are «. Then f(z) is non-

empty, finite and does not contain «w, or f(;) =D.
(2) Whenever f(z, - -,D, -,z) is not D, then for any y €D:

fleg oy, sz) =flzy, - D, z).

(The y appears at the same position as D in this condition.)

The collection of all such programs is denoted [D" XD]. The first restriction on f(z)
corresponds to the notion that if f(z) has an infinite number of nondeterministic possibili-
ties, then it must also have a non-terminating path. Hence (by the principle of demonic
semantics), f(z) = D. (See Dijkstra [6] for more on why infinite nondeterminism causes a
nonterminating path.) The second restriction corresponds to the idea that if an argument
is D, then either the argument is not used, or the result contains « (which again results in

all of D as output).

We will use this collection together with the usual subset and superset orderings on

relations. Notice that every descending chain fO_D_fIsz « -+ has a greatest lower
o>
bound (M f;. The collection also has a greatest element — the complete relation which

1=0

we ambiguously denote () (for any n). In demonic relational semantics, {1 is the program
which always has the possibility of nontermination. Also, the collection of programs is

closed under the usual relational composition. Here are some example programs:

(1) The program equal §D2><D, where equal(z,y) is

if (z is w) or (y is w) then D
else if z is identical to y then {true}
else {false}.

This will usually be abbreviated as z=y.

i
i
!

(2) The program cond gDS XD, where cond(p,z,y) is

if p is true then {z}

else if p is false then {y}
else D.

This will usually be abbreviated as if p then z else y.

(3) Let SCD—{w}. Any function f:8" —D can be extended to a program
f CD" XD, which relates each z€38" to only f(z), and relates every other ele-

ment of D" to all of D. This is called the demonic extension of f to a relation.
(4) The program union QDZXD, where U(x,y) is {z,y} (if neither z nor y is w) or D
(if z=w or y=w). This is a nondeterministic choice between the two arguments

and will usually be abbreviated as z OR y.
(5) Here are some properties of the cond and union programs:

When fD =D then f(if b then z else y) = if b then flz) else fly).

(if p then (z OR 2) else (y OR 2)) = (if p then z else y) OR =

(if (p OR q) then z else y) = (if p then z else y) OR (if q then z else y).
(if p then (z OR 2) else y) = (if p then z else y) OR (if p then z else y).
(if p then z else (y OR 2)) = (if p then z else y) OR (if p then z else 2).

2.2 Correctness

To further illustrate the ideas of demonic semantics, this section gives a correctness proof
for a simple nondeterministic program. In the demonic setting, the key idea of a correct-

ness proof is that every nondeterministic possibility must be acceptable.

So, suppose D ={wtrue,false,0,1,2, -}, and we wish to define a program
f E{DQXD] which gives the quotient of dividing two numbers. We do not care what the
value of f is when either of the arguments is not a number, or when the second argument

is zero. We state these requirements as a pair of conditions:

e Precondition (A predicate on D? which indicates legal inputs):
P(z,y)=z€{0.1,2,..} and y€{1,2,3, - }.
o Postcondition (A predicate on D® which indicates what outputs are legal for given
inputs):
Q(z,y,2z) = (z=z DIV y).

(The value of the postcondition is irrelevant if P(z,y) is false.)

Given these conditions, a program f is correct provided that for all z,y ED2, and for all
z€f(z,y):
P(z,y) implies Q(z,y,2).
Of course, there are many programs which are correct. The greatest such program is
f(z,y) = cond(P(z,y),(z DIVy), D),
but other programs such as cond(P(z,y),(z DIV y),0) are also correct. In fact any pro-

gram ¢ such that f Dg is correct.

This is a non-recursive example, so it is not too interesting, but it does illustrate the
meaning of a correct program in the demonic semantics, and the importance of the 2
order. For recursive programs, the same notion of correctness applies, but the reasoning

must involve fixed-point techniques. These techniques are shown in the remainder of the

paper.

2.3 Continuous Relationals
A relational is a function 7:[D"XD|—[D"XD]. It is monotonic provided that it

preserves the D ordering (i.e., f D¢ implies 7{f] D7[g]). It is continuous provided that it

is monotonic and preserves the intersection of any decreasing chain (i.e., if

0 o0
fo2f,2f,2 -+ isa chain, then 1M filis M (Ff;]). The usual fixpoint theorems [11]
1=0 1=0
x . -
guarantee that any continuous relational 7 has a greatest fixpoint — M 7Y (where 7 is

1=0
the composition of 7 with itself ¢ times). In analogy to [12, Theorem 5-1], we have the fol-

lowing:

THEOREM (Continuous Relationals): Any relational 7[F| defined by composition of

programs and the relation variable F, 1s continuous.

Proof. The proof is by induction on the structure of 7, as in the analogous theorem for

continuous functionals. D

Here are some examples of continuous relationals (where p and g are some fixed non-
deterministic programs):
T[F|(z,y) = if p(z) then y else £ OR F(g(z),y)
7|F|(z) = if p(z) then z else £ OR F(g(z))

2.4 Recursive definitions

A recursive nondeterministic n-ary program has the form
Flz, -+ ,z,) < 1F|(z, \Z,),
where 7 is a continuous relational. In demonic semantics, the relation associated with this

program is the greatest fixpoint of 7. For a recursive program P of the form
\DO .

F(z,, -+ ,z,) < 7[F|(z}, " -+ ,z,), we will denote the relation for P by f, = N Y.
1=0

3. VERIFICATION TECHNIQUES

The common verification methods developed for order-theoretic semantics can be applied

to proofs of properties of f,. Some of these techniques are demonstrated in this section.

3.1 Stepwise Computational Induction (e.g. Manna [12, section 5-3.1]; see also
[13,19]).
Let P be the recursive program f(z) <= 7[f](z) To show that some property ¥ holds for

fp, we can show three things:
° That (1) holds.
o That whenever ¥(f) holds, then ¥(r{f)) also holds.

o That ©¥ is an admissible predicate. (A predicate is admissible provided that for every

continuous relational 7, if ¢(7‘i(Q)) holds for all 1 >0, then d(ﬂ(r‘(ﬂ))) also holds.)
i=0

This proof technique is called stepwise computational induction. Considerable effort has
gone into showing that certain sorts of predicates are admissible. Most of this effort car-

ries over to demonic semantics; For example, one of the results of Manna, Ness and

Vuillemin [13] generalizes to this lemma:

LEMMA (The admissible predicates lemma). Let S be a subset of D". Every predi-
cate which is of the form \J z € S:[F|(z) CG[F|(z), where o and 3 are continuous relation-

als, vs admissible. And, a finite conjunction of admissible predicates s admissible. []

EXAMPLE 3-1. Let p CD XD be a fixed program, and consider this recursive pro-
gram:

P:F(z) <= if p(z) then z else F(- F - +)
For this example, the "+ -+ F -+ - " can be filled in with any term formed from F, fixed
programs and the argument r. Some simple properties follow from fixpoint properties.

For example, if p(w)=D, then the equality f,(D)=D is obtained as follows:

fp(D)2fp(w) Since wWED
=if p(w) then welse fo(" fp- ") Fixpoint property
Dif wthen welse fo(" fp ") p(«w)=D
=D Definition of cond

A more complex argument (using the fact that p is a program) shows this same equality

holds even when p(«w)#ED.

Stepwise computational induction can be used to show that f,f, = fp- The proof is
not difficult, but it does demonstrate the extra care that must be taken to handle possible

nondeterminism in p. The proof uses the admissible predicate ¥(F) defined by

U(F): Wz €D[fp(F(z))=F(z)]

Base step: We must show ¢(Q)). For any z €D, fp(Uz))=fp(D)=D =()z), which

asserts ({1,

10

Induction step: We must show)(7[f]) holds whenever 1)(f) holds (where 7 is the continu-

ous relational used to define f,). For any z €D, there are these four subcases:
Case 1: p(z) € {true,false}

It is easy to show that both f,(7[f](z)) and T[f](x) are D.
Case 2: p(z) = {true} ;

Then 7{f|(z)=if p(z) then z else f(- f -)={z}. Hence

fplrifl(2))=fp(z)=if p(z) then z else fp(- fp -)={z}=1f](2)
Case 3: p(z) = {false}

Then 7{f|(z)=if p(z) then z else f(- f)

i

f(- - f). Therefore:

felfieN=1p(f - f - N=FC o f 0)=1f (=)

(The second equality follows from the induction hypothesis.)

Case 4: p(z) = {true,false}
This case is a combination of cases 2 and 3, wusing the equality
Aflz)=z OR ().

Thus, since ¢ is admissible, ¥(f,) holds, which implies f,fp=/p.

EXAMPLE 3-2. Let p CD XD and h €D XD be programs, and examine these recur-
sive programs:
P:F(z,y) < (if p(z) then y else F(h(z),y)) OR (if p(y) then z else F(z,h(y)))
Q:G(z) < if p(z) then z else (z OR G(h(z)))
We will show that fP(z,y)EfQ(x)UfQ(y). This equality may seem surprising at first,
because it is not true in the usual relational semantics, nor in the extended relational
semantics which includes w together with ad hoc rules. It is only true in the demonic

semantics, where possible nontermination causes disaster.

11

The proof is in several parts; the first part of the proof uses the subset S={z€D l\‘/
i p(hi(z))#{true }}. We will use stepwise computational induction to show that for all
z€8: fQ(z)—ED. The proof uses this admissible predicate:

WG): \Jz €S [G(z)=D].

Base step: We must show ({1). This is easy§since (1 is the largest relation, so {)(z) is

always D.

Induction step: Let g be a program where (g) holds. We must show that ¥(r]g]) also
holds (where 7is the continuous relational used to define fQ). Toward this end, let z€5.
Then:

gl(z) 2 2Ug(h(z))=2UD =D.
The first inclusion follows from the definition of 7 (and z €S); the next equality holds by

the induction hypothesis and the fact that at least one element of A(2)isin S.

In a similar manner we can also show that for all z€S and z € D:

fp(z,z) EQ = fp(x,z).

Again, this induction was not difficult, but we can employ it to show the original goal
that fp(x,y)EfQ(z)UfQ(y), for any z,y €D. Here are the cases:
Case l: z€S ory€sS

Then fy(z,y)=D EfQ(x) UfQ(y) — by the above computational induction.
Case 2: Neither znor yisin S

Let ¢ be the smallest integer such that p(hi(x))z{true }, and let j be the smallest
integer such that p(hi(y))E{true }. The proof is a double induction on ¢ and j; it

makes use of the fact that f, and fQ are fixed-points of the corresponding equations.

12

3.2 Fixpoint Induction (e.g. Manna [12, page 406]; see also [15]).
Demonic relational semantics gives the meaning of a recursive program as the greatest

fixpoint of a continuous relational with respect to the C order. As a result, properties of

greatest fixpoints, such as this, are available for program verification:

LEMMA (Fixpoint induction). Let 7 be a continuous relational and let f, be the

greatest fizpoint of 7. Then for any program g, 7{g] D¢ implies fp Dg.

EXAMPLE 3-3. Let p,g €D XD be programs, and consider these recursive programs:
S: F(z) <= if p(z) then z else F(g(z))
T: F(z) < if p(z) then z else F(F(g(z)))
U: F(z) < if p(z) then z else F(g(z)) OR F(F(g(z)))
The three continuous relationals associated with these programs will be denoted o, 7 and
v, while the programs themselves are f¢,f; and f,. Note that for any relation f,
olf1Cu[f] and 7[f] Cv[f], which implies f, € f; and f,Cf,. Fixpoint induction can
be used to show the opposite relations f¢ 2 f, and f,2f, — which implies that all

three programs are equivalent. Here are the fixpoint induction proofs:

fg 2f v
From the fixpoint induction lemma we must show that off] 2f ;. Actually, we can

show the stronger condition off UJ ={ |, as follows. For any z€D:

13

U[fy}(z) = if p(z) then z else fU(g(x)) Definition of o
= if p(z) then z else Fixpoint property of f

if p(z) then z else (f,(g(z)) OR fy(fy(9(2)))]

= if p(z) then z else (f (g(z)) OR f,(fy(9(z)))) Simplification
= f,(z) Fixpoint property of [
fT QfU :

From the fixpoint induction lemma we must show that 7{f]2 f ;. Again, we can
show the stronger condition 7{f U} =f , To prove this, note that example 3-1 implies

that f, f, = [y, therefore, for any z €D:
fyl(z) = if p(z) then z else f,(f,(g(z))) Definition of
= if p(z) then z else f;(g(z)) Example 3~1

Definition of o

I
Q.
S
S
&
-

Previous case

Il
e
S“\

131
e

3.3 Structural Induction (e.g. Manna [12, page 408]; see also [5]).

Structural induction is a method for proving properties about an n-ary recursive program
when the set D" is equipped with a well-founded partial order <{. The fact that the par-
tial order is well-founded means that there are no infinite descending chains
.z, >z, P> - (where [> is the inverse relation to < .) For example, the natural

numbers are well-founded, with the usual ordering.

LEMMA (Structural Induction). Let <{ be a well-founded order on a set S, and let
U2S — {true,false } be a predicate on S. Then () holds for all z €S provided that for all

€S, U(z) is implied by /\ Uy).
ydz

14

EXAMPLE 3-4. As an application, let S be the set of all finite non-empty strings over

the alphabet {¢,b}, and let D =S U{true,false,w}. Here are several partial functions on

strings:

stmple(z) is true if z has length one, and false otherwise.

cat(z,y) is the catenation of the strings z and y.

head(r) is the one-character string, consisting of the initial character of z.

tail(z) is the one-character string, consisting of the final character of z.

first(z) is z with the final character removed (undefined for strings of length one).
last(z)is £ with the initial character removed (undefined for strings of length one).

Using the demonic extensions of these functions, we can define this recursive program:
rev(z) <= if simple(z) then z
else cat(rev(tail(z)),first(z)) U cat(last(z),rev(head(z)))
What follows is a proof by structural induction of a property of rev. The well-founded
order on S is the order z <[y iff the length of z is less than the length of y. The proof

makes use of these properties of the relations (which are not proved here):

If not simple(z) then tarl(z) < z.
If simple(z) then first(z) = last(z).
If not simple(y) then last(tail(z)) = last(z).

THEOREM: For any string £ €S, first(rev(z)) = last(z).

Proof. Let z €S be a string. By the hypothesis of structural induction we may assume
that whenever u <{ z then first(rev(u)) is last(u). We must prove that this implies the

theorem for z.

If simple(z) holds, then: first(rev(z)) = first(z) = last(z). The first equality is from the

definition of rev, and the second is from property 4, above.

On the other hand, if simple(z) is false, then:

15

first(rev(z))
= first (cat (rev(tail(z)), first (z)) U cat (last(z),rev(head (z)))) Definition rev
= first(cat (rev(tail(z)), first(z)))U first(cat(last (z),rev(head(z))))
= first(rev(tail(z)))U first(last(z)) Property 1
= first (last(tail(2))) U first (last (z)) Induction & Prop. 3
= last (tail(2)) Ulast (z) Property 2
= last(z) Property 5

0.

Of course, rev has much stronger properties than this, which can also be proved by struc-

tural induction.

4. OTHER NONDETERMINISTIC LANGUAGES

The idea demonstrated here is this: a special case of order-theoretic semantics is

obtained by a relational semantics where recursive equations are solved by taking the

greatest fixpoint (with respect to the subset ordering). The result is a simple semantics

for total correctness of nondeterministic programs — and we can use the usual order-

theoretic proof techniques.

The idea has been demonstrated for nondeterministic recursive programs, but the
same idea is applicable to programs schemes (such as [2,10,14]) or nondeterministic itera-
tive languages. For example, the meaning of an iterative statement while b do S od is
the greatest fixpoint of

F =if b then ([S];F) else I,
where [[S] is the meaning of the statement S, and I is the demonic extension of the iden-

tity function.

16

References

S. Abramsky. Experiments, powerdomains and fully abstract models for applica-
tive multiprogramming, in: Foundations of Computation Theory, LNCS 1358,
(Springer-Verlag, 1983), 1-13.

A. Arnold and M. Nivat. Non-deterministic recursive program schemes, in: Foun-
dations of Computation Theory, LNCS 56, (Springer-Verlag, 1977), 12-21.

JW. deBakker. Semantics and termination of nondeterministic recursive pro-
grams, in: Automata, Languages and Programming (1976), 435-477.

M. Broy. On the Herbrand-Kleene universe for nondeterministic computations,
Theoretical Computer Science 36 (1985), 1-20.

R.M. Burstall. Proving properties of programs by structural induction, Comput. J.
1 (1969), 41-48.

E.W. Dijkstra. A Discipline of Programming, {(Prentice-Hall, 1978).
D. Harel. First-order dynamic logic, LNCS 68 (Springer-Verlag, 1979).

D. Harel and V.R. Pratt. Nondeterminism in Logic of Programs, in: Proceedings of
the 5th ACM Symposium on Principles of Programming Languages (1978), 203-213.

M.C.B. Hennessy. The semantics of call-by-value and call-by-name in a nondeter-
ministic environment, SIAM J. Computing 9 (1980), 67-84.

M.C.B. Hennessy and E.A. Ashcroft. Parameter-passing mechanisms and non-
determinism, in: Proceedings of the 9th Annual ACM Symposium on Theory of
Computing, (1977), 306-311.

J.-L. Lassez, V.L. Nguyen and E.A. Sonenberg. Fixed-point theorems and seman-
tics: a folk tale, IPL 14 (1982), 112-116.

Z. Manna. Mathematical Theory of Computation, (McGraw-Hill, 1974).

Z. Manna, S. Ness and J. Vuillemin. Inductive methods for proving properties of
programs, CACM 16(1973), 491-502.

M. Nivat. Nondeterministic programs: an algebraic overview, in Information Pro-
cessing 30 (S.H. Lavington. Ed.), (North-Holland Publishing Co., 1980), 17-2%.

4

D. Park. Fixpoint induction and proofs of program properties. in: Machine Intellr-
gence 5, (American Elsevier, 1970).

17

(18)

(19)

17

G.D. Plotkin. Dijkstra’s predicate transformers and Smyth’s powerdomains, in:
Abstract Software Specifications, LNCS 86, (Springer-Verlag, 1980), 527-553.

G.D. Plotkin. Computer Science Postgraduate Course Notes, University of Edin-
burgh, 1980-81.

M. Smyth. Powerdomains, Journal of Computer and System Sciences 16 (1978),
23-36.

Denotational semantics: the Scott-Strachey approach to programming language
theory, (MIT Press, 1977).

G. Winskel. A note on powerdomains and modality, in: Foundations of Computa-
tion Theory, LNCS 158, (Springer-Verlag, 1983), 505-514.

