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ABSTRACT

A basic question in the theory of communicating processes is "When should two processes bé
considered equivalent?”. Attempts to answer this question have led to the concepts of observation
equivalence, bisimulations, testing equivalence, failure equivalence, etc. The main point of this
paper is to increase the understanding and motivation for two of these equivalences, namel)} failure
and testing equivalences. The approach starts with the idea that the equivalence of processes should
be reducible to the visible sequences of actions which a process performs in various contexts. This
idea is implemented by a string-based semantic order for communicating processes where diver-
gence is catastrophic. Under some assumptions about contexts, the resulting semantics is shown to
be equivalent to the improved failure semantics of Brookes and Roscoe [7] and also to the must
testing-semantics of Hennessy and DeNicola [11,17,18]. This characterization gives independent

support for the appropriateness of failures and testing.
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1. Introduction

Demonic nondeterminism is an order-theoretic approach to the semantics of nondeterministic

processes. The approach embodies two principles:

The Partial Order in Demonic Nondeterminism:
There is a partial order on processes, where a relationship p £ g means that less can be
guaranteed about the behavior of p than about the behavior of ¢. Less nondeterminism in a
process results in a higher position in this partial order. In terms of proéram correctness: if we
guarantee that every possible behavior of a process is correct, then this process can always be
replaced by a process which is higher in the semantic order, and the result will still be correct.
The least element in this order is a process called chaos, whose behavior is a nondeterministic

choice between all possible behaviors.

Catastrophe Principle:
In some settings, there are behaviors which are always bad. For example, most programmers
would agree that an infinite loop with no input/output is always undesirable. Or, in Milner’s
Calculus of Communicating Systems, we might wish to avoid infinite sequences of internal
actions. The term divergence refers to such a behavior, which is always to be avoided.
According to the catastrophe principle, a process which might diverze is just as bad as a pro-
cess which always diverges. Hence, all processes which have the nondeterministic possibility
of divergence are identified with each other. In fact, they are all identified with chaos, since
one of the many nondeterministic choices of chaos is divergence. In terms of program correct-
ness, this principle assumes that divergence is a behavior that we must always avoid. Hence a
process which might diverge is always incorrect, and it does no further harm to identify it with

the catastrophic behavior of chaos.

This approach to nondeterminism is appropriate if we are studying properties which hold for ail
behaviors of a process. However, it does not capture all information about a process. For example,
the approach cannot indicate which behaviors cannot occur in a process that has the possibility of
diverging, since such a process has been identified with chaos. This also occurs with Dijkstra’s

weakest precondition semantics [10] and the Smyth powerdomain [21], both of which incorporate



these two principles. More recently, the two principles have explicitly justified various approaches
to nondeterminism (for example, [2,4,5,9,11,17,18,19,20]). Of particular note are two apphcauons

of the principles to the semantics of communicating processes:

In failure semanrics, proposed by Brookes, Hoare and Roscoe [6,7], a process is characterized
by a set of pairs called failures. A failure (s,X) consists of a string of actions s which a process can
perform, and a set X of actions which the process can refuse to perform immediately after doing s.

A higher position in the semantic order corresponds to fewer failures.

- The must semantics is one of three testing semantics proposed by Hennessy and DeNicola
(11,17,18]. A process is characterized by defining a set of tests which it might not pass. A higher

position in the semantic order corresponds to having fewer tests which might not be passed.

Both these approaches have provided models of communicating processes. But, a basic ques-
~ ton remains: Why are failures important? — or — Why are these tests used? These questions can
only be answered by appealing to some concept which is widely accepted as fundamental on its own
merit. The concept chosen here is a string of actions. Of course, the purity of this concept is subjec-
tive, but it can be justfied as underlying most operational models of processes, as well as automata
theory and formal language theory. In any case, we can define a semantic order where a higher posi-

tion corresponds to being able to do fewer strings of actions.

In general, the string-based order is less discriminating than the other *wo orders. However,
none of these orders are used in their raw form. Instead, they are closed under contexts, so that in
the final form, a process is lower than another only if this lower-than relationship remains valid for
all contexts in which the processes may be placed. (If this closure is not explicitly done, it is

because the order is already closed, which is the case for the failures order on CSP processes.)

The new result here is this: under some assumptions about contexts, all three closed orders are

identical (failures, must-testing and strings).

A familiarity with Milner’s Calculus of Communicating Systems (CCS) would be useful (but
not vital) in reading the paper. Section 2 defines the various semantic orders on processes, based on
failures, must-testing, and strings. This is done using an abstract model of processes called /abeled
iransition systems, which underlies CCS and other models of communicating processes. Section 3
provides the basic results about when the orders are identical. Section 4 gives examples of labeled

transition systems for which the results apply.



2. Order-Semantics of Labeled Transition Systems

2.1 Labeled Transition Systems

A labeled transition system consists of two kinds of objects — processes and actions - and rela-
tions which indicate how actions can transform one process into another. These systems are the
abstract models which underlie many studies of communicating processes. such as Keller’s original
study of parallel programs [14], Milner’s Calculus of Communicating Systems [15] and Hoare's
Commdnican’ng Sequential Processes [13]. The formal definition given below is closest 1o
DeNicola’s systems [17].

Definition 2.1. A labeled transition system (LTS) is a set P of processes and an infinite set A of

actions, together with these:

o  The internal (or invisible action): A special element of A, denoted by .

e Transition Relations: For each action e A there is a binary relation -%> on P. (If p is

related to ¢ by %> then we write p %> ¢.)
»  Divergence Predicare: A predicate? on the set P of processes. (When the predicate is rrue for
a process p then we write p?; otherwise we write p‘]j .) The predicate meets the property that for

all p,q € P : whenever (p ieq)andq?,then alsop?. 0

Intuitively, p? means that the process p is capable of diverging, in the sense defined in Section 1.
The relationship p -*»> ¢ means that the action o is capable of transforming the process p to the

process ¢ . The internal action 7T is not observable by an outside observer.

Visible (non-t) actions are called events. In general we use p, g and r for arbitrary processes
and Q) for a set of processes. Lower case Greek letters are arbitrary actions (with T the internal

action); s and ¢ range over finite strings of events; X ranges over finite subsets of events.



2.2 Notation about Transitions

The notation pg ——»p; AN P Dt 2> Dn is used as shorthand for
Do i‘-->¢p1 and p; =>pyand - - - Dn—l 2>p,. We also use the following notation:
p=4q

means there is a sequence of processes p =pg <> pj <> Py - - Ppg > DPn=q.
p E=>gq

means there are processes such thatp == py 2> p; => q.
p =>q

means there is a sequence of processes po == py =2> Py - Pu_i =2 p,, where p =po,

q=pp,ands =Qy 0y " Q.

means there is a process g such that p <= g.

Stopped processes
A process p is stopped if p\]z and there is no event « and process ¢ such that p %5 g. (Hence,
a stopped process cannot diverge, nor can it be transformed by any events.)

p?s , and p!} s
The first expression means there is some process ¢ and some string ¢ such that ¢ is a prefix of s
and p =t ¢ and q?. The second means there are no such ¢ and . The intuitive meaning of

(p?s) is that divergence may occur if we try to transform the process p using the string s.



(p after s)

This is the set of processes {¢| p == ¢ }.

(p mustX) and (Q mustX)

The first expression means that whenever p ==> ¢, then there exists some oce X such that

g == . The second expression (Q must X) means that (p must X) holds foreachp € Q.

Finite Choice LTS
An LTS is called finize choice provided that for every process p and string s:

pl}s implies that the set {ce A| p 2= } is finite.

(This is a weaker version of Abramsky’s sort-finiteness [1].)

2.3 Order-Theoretic Semantics

We can put several semantic orders on the processes P of an arbitrary LTS. These orders are
motivated by the principles of Section 1. Intuitively, an order-relation p £ ¢ means that p is "more
nondeterministic” than g. This will be obvious in the first order presented below, but perhaps less
obvious in the others. The orders are actually pre-orders, meaning that they are transitive, reflexive
relations — but not necessarily anti-symmetric. Thus, we may have p £ ¢ and also ¢ £ p, which

means that p and q are equally nondeterministic.

Definition 2.2. TRACE pre-order:
The traces of a process are the finite strings of events which a process may undergo, ending in
a stopped process. The process called chaos is one which may undergo every possible trace.

In the setting of the Catastrophe Principle, a process which diverges is identified with chaos.

This suggests that there are two kinds of traces of a process p: (1) If p == ¢ and q is stopped,

then s is a trace of p; (2) If p <= ¢ and q?, then s7 is a trace of p (for every r). Formally the

set TRACE(p) is:



{s] p?s, or for some q: p =<=> ¢ and q is stopped}.

The trace pre-order on proéesses is defined by:
p E™<=q iff TRACE (p) 2 TRACE (q).

Definition 2.3. EMPTY STRING pre-order:
This pre-order is less discriminating than the trace pre-order. Its motivation will become evi-
dent in Section 3. We denote the empty string by €.
p Csqiffe isrin TRACE (g ) implies € is in TRACE (p)).

Definition 2.4. MUST pre-order:
This was defined by DeNicola and Hennessy [11,17,18] as one of three pre-orders based on

testing. For our purposes, an alternate characterization given by DeNicola and Hennessy is

easier to work with. Here is the definition (from [18, Definition 6.4.1]):

p LwosT g iff for all 5, X: pj]s implies
() qls,and
(i) ((p after 5) must X) implies ((g after s) must X).

Definition 2.5. FAILURE pre-order:
This was first defined by Brookes, Hoare and Roscoe for CSP processes [5,6,7], and later by
Brookes for CCS [4]. The definition depends on failures, which are pairs (s,X), where s is a
string of events, and X is a finite set of events. The definidon given here corresponds to the
failure semantics with divergence, used by [7]. Intuitively, (s,X)e FAILURE (p) means that
after p undergoes the string s, it might diverge or be unable to perform an event from X. Here
is the formal definition of failures, and the failure pre-order:
FAILURE(p) = {(s,X)| pls. or not ((p after s) must X)}.
p Lrauwms g iff FAILURE (p) 2 FAILURE (q).



2.3 CONTEXT pre-orders:

In general, it is not sufficient to know that a process is more nondeterministic than another.
Instead, we need to show that this relationship remains valid for whatever context the processes find
themselves in. To formalize this, we define an LTS with (unary) contexts:

Definition 2.6. An LTS with conrexts is an LTS together with a set of contexts. Each context is a
function C':P — P on the set P of processes, and the set of contexts is closed under compositon.

Thus, if C [ ]and C,[ ] are contexts, then so is their composidon C,[C[ 1. 0

If we show that for every context C, C [p] is more nondeterministic than C [q], then whenever C [p]
is correct, so is C[q]. Intuitively: it is always possible to replace an instance of p by ¢ — without

destroying correctness of thf; surrounding program. This is the basis of four new pre-orders:
(p L race g ) iff for all contexts C: (C[p] £ ™=C[q]).
(p L q ) iff for all contexts C: (C[p]1Z=C[gq ).
(p L panme g ) iff for all contexts C: (C [p] £ mnwme C [¢]).

(p L xustq ) iff for all contexts C: (C[p ] S WsTC[g]).



3. Results on the Pre-orders

The eight pre-orders of Section 2 are the topic of this section. The results apply mostly to
finite-choice LTS’s. In these systems we show:
(p Lrwsmq) iff (p C™wmeq) implies (p S™=q) implies (p S =q).
These results are used in Section 4 to show that the four context pre-orders coincide for commonly

used LTS’s with contexts, such as CCS and CSP. We begin with some preliminary lemmas.

Lemma 3.1. Let s be a string of events and p be a process in a finite-choice LTS. Then
s € TRACE (p) iff for all finite sets X of events, (s,X ) e FAILURE (p).

Proof: (A) Assume s € TRACE (p). We must show that for every finite set X of events:
(s,X)e FAILURE (p). pr?s then (s,X)e FAILURE (p) is immediate. On the other hand, ifpés

then there is some process ¢ such that p == q and q is stopped. Let g be this process and note that

(since q is stopped), for every event o not (¢ <%=> ). Therefore for every finite set X of events:
not (g must X). This implies (s,X)e FAILURE (p), as required.

(B) Assume that for all finite sets X of events: (s,X)e FAILURE (p). We must show that
s € TRACE (p). If p?s then s € TRACE (p) is immediate. Hence we assume pés. Consider the set

X ={aeA|p 2% }. Since the LTS is finite-choice, this set is finite, so (s,X)e FAILURE (p).

This implies that there is at least one process ¢ such that p == q and not(q mustX). Let q be
such a process which minimizes the size of the finite set ¥ = {ate A| g =% )} (a subset of X).

Notice that the minimality condition implies that whenever ¢ = r, then (aeAd|lr2s) =7

Hence, if Y is nonempty, then (¢ must ¥), which implies (¢ must X). But since not (g must X), it
follows that Y is empty; in other words, g is stopped, and so s € TRACE ®@). [



Lemma 3.2. Let s be a string of events and p be a process in a finite-choice LTS. Then

pls iff foralls: ste TRACE ().

Proof: (A) Suppose p‘is , and let ¢ be a string of events. Then p‘ist, which implies sz € TRACE (p).
(B) Suppose for every string of events 7, that st € TRACE (p). Hence {a| p £%> } includes every

event, hence it is infinite. Since the LTS is finite-choice, this implies st' O
The fact that there are an infinite number of events is critical to the proof of part (B) in Lemma 3.2.
This is the only place in the paper where this fact is used. If we are willing to accept Lemma 3.2 as

an axiom, then the results of this section apply to any LTS, whether or not the event set is infinite.

Lemma 3.3. Let p and q be processes in a finite-choice LTS. Then (p L rawore 0y implies
(p Ly,

Proof: Assume p L LU 5 Then for every sting s of events:

s € TRACE (q) implies forallX:(s,X)e FAILURE (g) (byLemma 3.1)
implies forall X, (s,X)e FAILURE (p) (since p L rawwre )

implies 5 €« TRACE (p) (by Lemma 3.1)
Therefore, TRACE (p) 2 TRACE (g)andp Cmaag. [

Lemma 3.4. Let p and q be processes in a finite-choice LTS. Then (p L Fau=e g if and only if
p Lowstg).



10

Proof: (A) Assume (p L2 g), To prove (p L ™Tg), let 5 be a finite string of events with p@s ,
and let X be a finite subset of events. We must prove that (i) (q!]s), and also (i)
((p after s) must X) implies ((¢ after s) must X):
(1) From Lemma 3.2, there exists a string ¢ such that st € TRACE (p). From Lemma 3.3, this implies
that sz is also not in TRACE (gq). Hence (again by Lemma 3.2), we have q‘l]s.
(ii) Assume ((p after s) mustX) so that (s,X)&FAILURE (p). Since p L maume g thig implies
that (s,X) is also not in FAILURE (q). This (together with q@s) implies that
((g after s) must X)), as required.
(B) Assume (p L *“Tg) and suppose that (s,X)&FAILURE (p). To prove (p L raLue ¢) we must
show that (s,X)e&FAILURE (). Now, if (p?s) then (s,X)e FAILURE (p) is. immediate (by
Definition 2.5). Hence, we need only consider the case when (p\Ls), which also implies (qu). In
this case we have ((p after s) must X ), which implies ((g after s) must X), and this implies that
(s,X)&€FAILURE (q), as required. B

Lemma 3.5. Let p and q be processes in an LTS. Then (p = ™<= q) implies (p L= q).

Proof: Immediate from the definitions of the trace and empty-string pre-orders. 0

Theorem 3.6. Ler L be a finite-choice LTS system with contexts, such that the following property
holds: '
Forall s and X, there exists a context Cyx, such that for all processes p,
[ (s,X)e FAILURE (p)] iff [ee TRACE (Cx[p])].
Then the pre-orders (C s [is [rawme [TMUST) are jdentical in L.

Proof: From the previous lemmas, we have the following results (where < means the relation on the
left is smaller):

L wost equals £ PALRe (Lemma 3.4) hence also £ ust equals L pawrs
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Craame o [T (Lemma 3.3) hence also L FALwRe < [ TRace

L™ < s (Lemma 3.5) hence also £ s g 3s

It only remains to show that (L 2 < L Fauere) 55 assume p L & ¢ for some processes p and q.

Then for every context D, string s, and finite set X of events, we have:
(s,X)e FAILURE D[q])
, o
e TRACE (Cx[DlgID
implies
ee TRACE Cx[D[p1D
iff
(s,X)e FAILURE D[p)).
This is just p L AL g Therefore L5 < L fawve 0

4. CCS and CSP Processes

This section shows that Milner’s CCS [15] is an LTS with contexts that meets the requirements
of Theorem 3.6. Therefore, the four context pre-orders are identical on these processes. The same

result is shown to hold for the operatonal model of CSP presented by Brookes, Roscoe and Walker
(8].
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4.1. The Finite-Choice LTS Formed by CCS Processes

The CCS model used here is taken from DeNicola and Hennessy’s paper [18] (where they
introduced the MUST pre-order). To make this paper more self-contained, these definitions are
recapitulated here, with excerpts from [18]. If you are already familiar with these definitions, then
skip to Lemma 4.1.

Actions: Let A be an infinite set, and for each ate A, let & be a new element not in A. We
define A to be {&'i oe A}. We extend the ~ operation to all of AUA by defining & to be o.. The
set of actions is the set AUAU{t}. We assume that T is not in A or A. A relabeling is a partial
functon R :A —A such that R (t) =1, and for every event o if R () is defined then so is R (&), and
R(@ =R @) | |

Processes: Process are closed CCS terms, which are defined using the set A of actions and an
infinite set V' of variables. Before we define processes, we give a recursive definition of process

expressions:

A. NIL and Q are process expressions. (Intuitively, NIL is a process which cannot perform an

action; Q is a process that always diverges.)

B. If pis a process expression and o is an action, then (o) is a process expression. (Intuitively,

ap 1s a process which can transform into p via an « action.)

C. If pisaprocess expression and S is a relabeling, then S(p) is a process expression. (Intuitively,
S(p) is like p, but its actions have been relabeled according to S. DeNicola and Hennessy use

the notation p[S], which we avoid to eliminate confusion with the notation for contexts.)

D. If p and g are process expressions, then so are (p+q) and (| q). (Intuitively, p+q¢ is an exter-
nal nondeterministic choice between p and g. It can perform actions of either por q. The pro-

cess p| ¢ results from running p and g in parallel, and allowing them to communicate.)

E. Each variable x is a process expression. If p is a process expression and x is a variable, then

rec x.p is also a process expression. (Intuitively, this is a recursive process, defined as the solu-

tion to the equationx =p.)  []
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The operation rec x.r binds occurrences of x in the subterm ¢. This gives rise to the usual notions of
free and bound variables in a term. The processes which we will use in this section are the process
expressions with no free variables, called closed process expressions. As usual, operations in pro-
cess expressions are given precedences. Concatenation of an action on the left (as in op) has highest
precedence, followed by | , + and recx (in that order). These precedences will be used to omit
parenthesis when possible. Also, occurrences of NIL are usually omitted so that ((cNVIL)+(BNIL)) is
written o+f3.

Transitions: For any action «, the transition reladon % is the relaton from Definition 2.1.1

of DeNicola and Hennessy’s paper, and repeated here: Let -%> be the least relation over closed

terms which satisfies:

@) op =>p; .

p1+p22>q,
p2+p1 > q,
(i) p1 =» ¢ implies

pilp2E>4qlp2

p2p12>palq;

(iii) p %> ¢ and S (o) defined, implies S (p ) @55 (¢);

v)p1 2> qi1andpy 2> g5, impliespy py <> g ¢

(v) Let ¢” be the expression obtained from ¢ by replacing every free occurrence of x by rec x.z.



14

Ift’ 2> g, thenrecx.s %> q.

Divergence Predicate: The divergence predicate is the predicate? defined at the bottom of page

91 in DeNicola and Hennessy’s paper. Itis straightforward to show that it meets the requirement in
Definition 2.1 for a divergence predicate. The results of this section depend only on this require-

ment and on the following observation about the divergence predicate:
ifpp <> p; <> py = - isaninfinite CCS computation sequence, then pg?.
This property will be used in the proof of Lemma 4.1.

Contexts: Contexts are CCS process expressions, formed with one free variable (see page 92
(18] or Definition 2.2.3 in [17]). For example, the CCS term B+cax is the context with

Clp]=B+ap, for any process p. These contexts are closed under composition.

With the above definitions, CCS processes form an LTS with contexts. The next lemma
demonstrates the fact that this LTS is finite-choice.

Lemma 4.1. (CCS is a finite-choice LTS.) Let p be a CCS process and s a string of events, such that

B ={a|p £} is infinite. Thenp?s.

Proof: Note that the set B is equal to {&| 3r:p == r andr %> and o#7T}. Also, an induction

4

on the definition of processes shows that for any process r, the set {a] » %> } is finite. Therefore,

since B is infinite, the set {r| p <=> r} is also infinite. Thus, there must be arbitrarily long CCS

computation sequences of the form

% QL. %

Pn

where the visible part of ot; ay - - - o, is 5. (These must become arbitrarily long because if their

length were bounded then there would be only a finite number of different sequences and the set

{rl p == r} would be finite.) If these sequences become arbitrarily long, then they must also con-
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tain arbitrarily long subsequences which contain only t-moves. This implies that there is a process g

and a prefix 7 of s such that there are arbitrarily long CCS computation sequences of the form
P=q>q1<>qy .
This implies that ¢ is the starting point of an infinite CCS computation sequence of the form

T i3 T

q1 q2

i

> -+ -. As pointed out above, this implies q?. Hence, th which implies st.

q

4.2 The Four Context Pre-orders on CCS Processes

In order to show that the four context pre-orders are identical on CCS processes, we only need
to demonstrate the hypothesis of Theorem 3.6. For this purpose, let s be any string of events and let
X be a finite set of events. We must find a context Cg such that for any process p:
(s,X)e FAILURE (p)if and only if e TRACE (C¢x [p1). This context is defined as follows:

e  Let o be some event such that neither o nor o appear in the set X or the string s.

e LetS:A —A be any relabeling function which is totally defined, is the identity on events of X

and s, and such that neither o« nor ¢ is in the image of S.

o LetT:A —A De the partial function which is the identity for T, & and &, and undefined every-

where else.

e Letoa;---a, =5 be the individual events of s, let X be the set {¥1," - ,%}, and define two

processes 71 and 7 by the synchronization trees in Figures 1 and 2. (Note that r; e ra.)



FIGURE 1.

FIGURE 2.

e Let Cx:P — P be the context defined by Cox [p1=T(S ()| ry).

The next two lemmas show that the context C¢ meets the iff requirement stated above.

16
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Lemma 4.2. Let p be any CCS process. Ifee TRACE (Cgx(p]) then (s,X) e FAILURE (p).

Proof: If p?s, then (s,X)e FAILURE (p) is immediate from Definition 2.5. So, we assume p!’s,
which also implies Csx[p]L. From this (and Definition 2.2), it follows that the only way for

€€ TRACE (Csx[p]) to hold is if there is a stopped process ¢ such that Cex[p] => ¢. From the
definition of CCS transitons (Definition 2.1.1 in DeNicola and Hennessy), q must have the form

q=T(S[p"]| r") for some processes p’ and r’, where there is some string r with S pl== Slp’]

and ry L (Here 7 is obtained from # by replacing each event in ¢ by its complement, as usually

defined in CCS [18, page 89].) Note these facts aboutp’, r’, and r:

Fact 1: not (r” £= ) — since otherwise ¢ is not stopped.
Fact 2: The transformation 7| ==> r” does not include any o event — since otherwise z must con-

tain an & event which cannot occur in a transformation S [p]1 == S[p’]. (Recall that o is not in the

image of S.)

Fact 3: r"=ry — since r’=r, is the only process such that r, ==> r’, which meets both Facts 1

and 2.

Fact 4: For all Be X: not (p” &= ) — otherwise g is not stopped. (Since r’ =rj, ¢ would be able

to do a communication step between p ” and r’, followed by an o event).

Now, 7'=5 is immediate from Fact 3, and this implies that t =5. Hence S[p] == S[p’]. Since S

is the identity on events of s, this implies p =%=> p’. Finally, this (together with Fact 4) implies that

(s,X) e FAILURE (p), as required. 0
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Lemma 4.3. Let p be any process. If (s,X)e FAILURE (p) then ee TRACE (Csx[p]).

Proof:

Case 1: p!}s. In this case, there is some process p” such that p <= p’ and not(p’ must X). From

the definitdon of must, there is a process q such that p” == ¢ and not(q =% ) for any ae X.
Now, g cannot be transformed by any event of X, so neither can S(q) since S is the identity on X.

This implies that T(S(g)| r) is stopped. Finally, since | ==> r,, we have:

Cxlpl=TE@) r)=TE @ r =TS )| rp.

The last process in this derivation is stopped, therefore € € TRACE (Cx [p]), as required.

Case 2: p?s - In this case there is some decomposition of s, say s =515, such thatp == p’ and

( ')? (for some process p”). From the definition of CCS transitions, it follows that

Cxlpl =TS @) r)=>TES @ r),

where r” is the process such that | ==> r’. Moreover, (p ’)T implies T(S{(p")| r’)?, hence also

Cxlp J‘i. By Definition 2.2, this implies that ee TRACE (Cgx [p]), as required. 0

From these two lemmas and Theorem 3.6, follows the main result of this section:

Theorem d.4. The four context pre-orders are identical in CCS processes.
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4.3. CSP Processes

A model of Hoare’s communicating sequential processes (CSP) based on failures was proposed
by Brookes, Hoare and Roscoe [6]. Later this model was improved by Brookes and Roscoe to take
divergence into account [7], and this model has been expressed as a labeled transition system by
Brookes, Roscoe and Walker [8]. This labeled transition system meets the requirements of Theorem
3.6, so that that four context pre-orders are again identical. We provide the proof in more informal

terms than the previous section on CCS.

The labeled transition system is formed by taking the set of closed CSP-terms as processes [8,
Section 1]. The set of actions is the alphabet A+ of visible actions plus T which underlies the CSP-

terms. As in Secton 4.2 of this paper, we only consider the case where A+ is infinite. For any
action e A*, the ransition relation % is the relation which defined in Section 2 of (8] (and writ-
ten with the same notation as here). The divergence predicate is defined by po? if and only if there

exist processes pi, pg, p3 - -+ such thatpg > pq <> p, %> --- isan infinite CSP computation

sequence [8, Section 2]. Because of this property, the proof of Lemma 4.1 also applies to CSP
processes: i.e., CSP forms a finite-choice LTS. (The finite-choice property also follows from

Lemma 4 in [8].) A context is a CSP-term formed with one free variable.

In order to show that the four context pre-orders are identical on CSP processes, we need to
demonstrate the hypothesis of Theorem 3.6. For this purpose, let s be any string of events and let X
be a finite set of events. We must find a context Csx such that for any process p:
(s,X)e FAILURE (p) if and only if ee TRACE (C sx[p]). This context is similar to that given in
Section 4.2, making use of some fixed event & which appears in neither s nor X; specifically, C,x is
defined by:

Cxlpl = Gplallary,

where A is the set of all events, and S, B, and ri are defined as follows: S:A — A4 is an alphabet
transformation [8, Section 1] which is the identity on events of X and s, and such that o is not in the
image of S. B =A —{a} is the set of all events except .. The process r is a process with the syn-

chronization tree of Figure 3 (where &, - - - a, is the string s, and X is the set (% -



FIGURE 3.

The CSP synchronous parallel composition operation || 4 has an effect similar to the restriction

function T combined with the CCS parallel composition in Section 4.2. The proof that Cix meets
the hypothesis of Theorem 3.6 follows the same line taken in Section 4.2. Thus, the four context

pre-orders are identical for this variant of CSP.

5. Discussion

The main result shows that for certain labeled transition systems (such as CCS and CSp),
Jailure semantics and must testing semantics are identical to the semantics obtained by considering
only traces of events that a process can perform in various contexts. In fact, this equivalence holds
if we only consider the empty trace. Several similar results have appeared recently. Pnueli [19]
states the equivalence of trace semantics and the must testing semantics for a CCS-like language
without recursion, restriction, relabeling, or the silent t-action. A recent paper by DeBakker, Meyer
and Olderog [3] shows an equivalence between a stream-based order (similar to traces) and an order
based on observations. In both of these cases, an appeal is made to the naturalness of trace seman-
tics — and Hennessy makes a similar statement in the ttle of a recent note: "Why Testing
Equivalence is Natural" [12]. In this note Hennessy shows that a variety of pre-orders (including
one based on traces) coincide with the MUST pre-order for certain CCS processes. To quote Pnueli
[19] on traces:



"An argument that we may advance in order to claim that trace congruence is the right
equivalence relation is that when we observe a complete system from outside, the only
observable behavior is given by the maximal traces. Specifying an internal module, we
only need as much detail that will guarantee replaceability. That is, two alternate
modules that agree on this level of detail should be completely interchangeable in the
sense that exchanging one by the other will not change the external behavior. Hence
trace congruence seems to be precisely the relation we are looking for."

Thus, the main result of this paper is both a characterization and a justification for failures and must
testing. '

The conditions under which the main result holds are explicitly stated in Section 3. It seems
reasonable to expect other variations on CCS to meet these conditions. In particular, the various fair
nouons of parallel merge may meet these conditions, although care must be taken that the resulting
LTS is finite-choice. The synchronous merge of SCCS [16] also may be modified to meet these con-

ditions.
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