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0. INTRODUCTION

The aim of this lecture is to discuss the behaviour of elementary net sys-
tems which were presented as a simple model of distributed systems in the lec-

ture by P.S. Thiagarajan.

There are at least two reasons for formalizing the notion of the behaviour
of an EN system. First of all one should be able to express formally what a
given EN system does (how does it behave). Secondly, one gets a formal tool

for comparing EN systems with each other.

Clearly, the question "What is the behaviour of an EN system ?" is strongly
related to the question "How can the behaviour of an EN system be observed ?".

The relationship of these two questions is strongly reflected in our lecture.

Actually our point of departure is to distinguish between sequential and
non-sequential observations and then to identify records of such observations

with the system behaviour.

In the sequential point of view each record of the behaviour of an EN sys-
tem is a string of event occurrences (called a firing sequence ) as registered by a

sequential observer.

In the non-sequential point of view one can either record all non-sequential
observations of event occurrences (called firing traces ) or proceeding in a more
detailed fashion one can record all non-sequential observations of event

occurrences together with the resulting holdings of conditions; such records are
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called processes.

During the lecture we discuss the two approaches and compare them with

each other.

Our way of defining the behaviour of EN systems is not the only one dis-
cussed in the literature. Some of the other approaches will be discussed in the
lectures by C. Fernandez, M. Jantzen, and R. Valk. Even within the above
sketched methodology we consider finite behaviours only ; consequently we will
consider finite words and finite nets only. Some aspects of extending our con-
siderations to the infinite case (infinite stretches of behaviour) will be discussed

in the lectures by C. Fernandez and R. Valk.

We end this introduction with the following remarks.
(1) Obviously, this lecture directly continues the lecture by P.S. Thiagarajan -
hence we build on notions and notations introduced there.
(2) These notes are meant only as the underlying material for the lecture -

considered on its own they may be incomplete.
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1. PRELIMINARIES

Although we assume the reader to be familiar with basic mathematical
notions (sets, graphs, bipartite graphs, node- and edge-labeled graphs, graph
isomorphisms, etc.) we recall a number of them in this section in order to estab-
lish our notation and terminology and’ also because some of these notions are

used in our paper in a specific way.

When dealing with sets we will often identify a singleton set {x} with its ele-
ment x - this however should not lead to confusion. For a set X, [Xl denotes

its cardinality.

For an alphabet ¥, ¥* denotes the set of all finite words over ¥ and A

denotes the empty word.

We will deal with various kinds of graphs. Instead of adopting one general
definition, it will be more convenient to develop various notions of graphs and

introduce a specific notation for each notion.

A ( directed ) graph is an ordered pair g = (V,Y) where V is the set of
nodes and Y C VxV is the set of edges. Unless explicitly stated otherwise we
deal with nonempty graphs only (i.e., we assume that V # ?). A ( directed )

path in g is a sequence of nodes 7m=v “+,v,, n>1 , such that

0’
(vi,v, ) €Y for all 0 <i<njif vg=v, then 7is a ( directed ) circuit. g is

said to be acyclic iff no path in g is a circuit.



-4

We discuss now other kinds of graphs used in these notes.

A bipartite graph is a triplet (V,,V,,Y) where V, # ) Vi, # o,
V,NV,= @, (V,UV,,Y)is agraph and Y C (V,xV,) U (V,xV,).

Remark 1.1. Our definition of a bipartite graph differs somewhat from the
conventional definition mostly used in the literature : we consider the two sets
partitioning the set of all nodes to be an ordered pair (V,,V,) so that we can

distinguish between (and unambiguously refer to) them. This slight definitional

difference is quite crucial when we use bipartite graphs to deal with nets. O

The terminology concerning paths is carried over to a bipartite graph
(V,,V,,Y) by viewing it as a graph (V,UV,,Y).

Let g = (Vl ,V2,Y) be a bipartite graph and let W € {V1 ,V2}. The
W-contraction of g , denoted ctr, (g) , is the graph {(V,UV,) — W, Yy}, where

(v,v') € Yy iff there exists a w € W such that (v,w) €Y and (w,v) €Y.

Let Y be an alphabet. A node L-labeled graph is a triplet (V,Y, ), where
(V,Y) is a graph and ¢ : V — ¥ is the ( node ) labeling function. A node
3-labeled bipartite graph is a 4-tuple (V,,V,,Y, ¢) where (V,UV,,Y,d) is a
node Y-labeled graph such that &(V,)No(V,) = @O. An edge Y-labeled initial-
ized graph is a triplet g=(V,Y,Vm) where V %= @ is the set of nodes,
Y C VxEXxV is the set of X-labeled edges and v, € V is the initial node;
rlab(g) denotes the set {c € X | (v,0,v!) € Y for somev,v' € V}. In all the

terminology above we may replace " Y-labeled” by "labeled" whenever ¥ is clear



from the context.
Let g, =(V,,Y,,#,) be a node 2 -labeled graph and g, = (V,,Y,,0,) a
node ,-labeled graph.
We say that g, and g, are isomorphic, written g, 1som g, iff
there exists a bijection ov: V, — V, such that
(Vv € V)[y(Av)) = ¢4(v)] and
(v, v eV (v,v) €Y, iff ((v), (V) €Y, ].
We say that g, and g, are label-isomorphic and write g, lisom g, iff there exist
bijections & : V, =V, and [: ¢ (V) — ¢,(V,) such that
(Vv e V))[d,(a(v)) = B(,(v))] and
(Vv,v' e V)[(v,v) €Y, iff (afv),o(¥)) €Y,].
Let g =(V,,V,,Y,,6) be a node X -labeled bipartite graph and
g, = (W,,W,,Y,,d,) a node ¥,-labeled bipartite graph. We say that g and g,
are label-isomorphic, written g, lisom g, , iff there exist bijections
a:V,UV, =W UW, and 8: ¢,(V,UV,) — &,(W,UW,) such that
(Vv eV ,uV,)veV, iff ofv) €W, ],
(Vv € V,UV,)] dy(o(v) = 8(6,(v)) ] and
(Wv, v € VUV (v,v) €Y, iff (v), (V) €Y, | .
Let g, =(V,,Y,,v;) be an edge 2, -labeled initialized graph and
g, = (V,,Y,,v,) be an edge 3.,-labeled initialized graph. We say that g, and g,

are label-isomorphic, written g, lisom g,, iff there exist bijections
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a:V, =V, and §: rlab(g,) — rlab(g,) such that

oz(vl) =v, and

(Wv,v' €V ))(Vo € rlab(g,))| (v,o,v) €Y, iff (afv),5(0),v)) €Y, ].
In these notes we will deal with partially ordered sets ( posets ) and with

labeled partially ordered sets ( labeled posets ).

A poset is a graph g =(V,Y) such that Y is a transitive, antisymmetric
and reflexive relation. A  X-labeled poset is a node X-labeled graph
g =(V,Y, ®) such that (V,Y) is a poset. Whenever X is clear from the context

we may use the phrase "labeled" rather than ">-labeled".

With each acyclic graph g = (V,Y) we associate the poset (V,Y") where
Y™ is the transitive and reflexive closure of Y; this poset is denoted by < o

Similarly with each 3-labeled acyclic graph g =(V,Y,¢) we associate the

labeled poset (V,Y’I< , ®) which we also denote by < :

Remark 1.2. For the sake of notational simplicity we will sometimes write
X Sgy (where x,y €V and V,g, Sg are as above) rather than to write

x Y* y ; this however should not lead to confusion. O

In this lecture we will often consider the set of all (node-labeled) graphs
isomorphic to a given (node-labeled) graph g ; this set is denoted by g and it is
referred to as an abstract ( node—labeled ) graph. To avoid set theoretical
difficulties we will assume that the nodes of all (node-labeled) graphs we con-

sider are taken from one fixed countable set of elements.



2. ON THE SIMILARITY OF EN SYSTEMS

In this section we will be concerned with establishing criteria for the "simi-
larity'" of EN systems without defining first their behaviour. Rather, we do it by
considering two basic components of an EN system - the static structure and the

distributed state space.

For an EN system N its static structure is given by the underlying set N
and so the notion of the structural similarity of EN systems is based on the
standard notion of isomorphism of bipartite graphs.

Definition 2.1. Let N, = (B,,E,,F,C,) and N, = (B,,E,,F,,C,) be EN
systems. We say that N, and N, are structurally similar, denoted N, =N, ,

iff there exists a bijection o : XN1 — XN2 such that
(7x,y € Xy)[ (x € B, iff o(x) €B,) and ((x,y) € F, iff (o(x),y)) €F, )]
and
ofC,))=C,. O
The distributed state space of an EN system NN is given by its case graph.

The notion of the case graph of an EN system was discussed already in the lec-

ture by P.S. Thiagarajan - we given now the formal definition.

Definition 2.2. Let N = (B,E,F,C, ) be an EN system. The case graph of
N, denoted CG,, is the initialized edge-labeled graph (V,Y,v, ), where

V=0, Y={C,,U,C,) | C,[U>C,}andv, =C,. O

in
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The notion of the state space similarity is based on the (label-) isomor-

phism of case graphs.

Definition 2.3. EN systems N,, N, are state space similar, denoted

N, = N,, iff CGN1 lisom CGN2 . O

Now we return to the "complement construction" discussed in the lecture
by P.S. Thiagarajan. This construction converts an arbitrary EN system into a
contact-free EN system and it was argued that the resulting system is

"equivalent" to the original system. Now we can formalize this claim.

Theorem 2.1.

(1) Let N be an EN system and let N’ be the EN system obtained by applying

the complement construction to N. Then N = N’.

(2) For every EN system N there exists a contact-free EN system N’ such that
N=N. O
In the sequel of these notes, unless explicitly stated otherwise, we will con-

sider contact-free EN systems only. This restriction is quite essential and we

will discuss it in more detail in Section 6.
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3. SEQUENTIAL OBSERVATIONS OF EVENT OCCURRENCES

Perhaps the simplest way to define the behaviour of an EN system is
through sequential observers. Each record of an observation by a sequential
observer is a string of event occurrences (called a firing sequence). The collec-

tion of all such records represents the behaviour of the system.

Definition 3.1. Let N = (B,E,F,C, ) be an EN system. p € E* is a firing

sequence of N iff

either p = A
or p=e; **'e,n >1, e, ' ',e, €E and there exists a sequence of cases
Cy,Cyy o+, C, in C)y such that CO=Cmadej_l[ej>Cj for1 <j<n. O

We will use FS(N) to denote the set of firing sequences of N .

Firing sequences can be interpreted as walks in the restricted state space of
an EN system. In order to formalize this statement we need the following

notion.

Definition 3.2. Let N = (B,E,F,Cm) be an EN system. The sequential
case graph of N, denoted SCG, , is the edge-labeled initialized graph
(V,Y,v, ) where
V=20C,

Y ={(C,,U,C,) | C,[U>C,and |U| =1}andv, =C, . O

1n
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Now we can interpret firing sequences as follows:
p is a firing sequence of an EN system N iff p is the sequence of edge-labels
corresponding to a path in SCG,, starting from its initial node (recall our con-

vention that we often identify singleton sets with their elements).

Ezample 3.1. Consider the following EN system N, = (B,,E ,F,, C):

Figure 3.1
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Then CGNl is as follows :

Figure 3.2
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and SCGN is as follows :
1

Figure 3.3

Since we have

{by,by}le; > {bg, by},

{bs,b,}[e; > {bs,b,},

{bs,b,}[e; > {bs,b,}, and

{bs,b,}[e, > {b,,b,},

each of the following strings :

A,e , ee,, e e, eeee,

is a firing sequence of N, ; it is easily seen that each of these strings is the

sequence of edge labels corresponding to a path in SCGN1 . O
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SCG, has a finite number of nodes and a finite number of edges labeled by
events from N (actually by singleton sets consisting of events from N - but this
difference is neglected in our considerations). Hence one can consider SCG to
be the transition diagram of a finite state automaton where the initial node
corresponds to the initial state of the automaton and all the nodes (states) are

terminal.
Thus the following result is obvious.

Theorem 3.1. For an EN system N, the set FS(V) is a prefix closed regu-

lar language. O

Clearly, representing the behaviour of an EN system N via its firing
sequences provides an important insight - e.g., it tells us about all the "sequen-
tial walks" (trajectories) in the state space of N. However there are some seri-
ous problems concerning this representation. A firing sequence records an
observation by a sequential observer of a system that (in general) is basically
non-sequential. It may happen that within a firing sequence there is a subse-
quence e, e, while in the system considered (observed) these two occurrences are
cconcurrent. Thus the linear order of event occurrences in a firing sequence
does not necessarily reflect the causal order enforced by the system on event

occurrences.

Consequently, the description of the system behaviour via firing sequences

will be really valuable if the causal (in general partial) order of events can be
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extracted from firing sequences. In order to do so one has to augment the
"observational" description of the system with some structural information
about the system (i.e. information based on the underlying net of the system

only).

An elegant approach to this problem is provided by the theory of traces.
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4. TRACES AND DEPENDENCY GRAPHS

In this section we will briefly review the basic notions of the theory of
traces to the extent that they are needed for our purpose. More advanced

issues of this theory will be discussed in the lecture by A. Mazurkiewicz.

Definition 4.1.
(i) Let 3 be an alphabet. An independence relation ( over X ) is a symmetric
and irreflexive binary relation over ¥ . A dependence relation ( over X ) is a
symmetric and reflexive binary relation over . .
(i) A reliance alphabet is a triple (X,1,D), where X is an alphabet, I is an
independence relation over >, and D is a dependence relation over ¥ such that

[UD =XxY and IND = @. O

o . . . . ok
An independence relation over X induces two important relations over X° .

Definition 4.2. Let Z = (2,I,D) be a reliance alphabet.
(i) The relation =, C ¥ x ¥* is defined by :
(Vp,p € X5 p= o iff
(Epl,p2 € Z*)(Et(a,b) €I)|[p=rp,abp, and p' =p bap,|].
(ii) The relation il C ¥* x ¥* is the least equivalence relation over ¥ contain-

ing=,. 0

*
In the notation as above we say that p and p' are I-equivalent iff pzlp’.

*
We use [p]; to denote the equivalence class of = containing p and we use o (1)
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to denote the set of all equivalence classes of I.

Remark 4.1. In the above we have used the notations like =, il’ and [p);
which formally speaking are not correct; rather one should use the notations
like =, , ik—_-z , and [p], , respectively. However we have decided on this slight
abuse of notation for didactical reasons. In the context of a given reliance
alphabet 7 = (3,1,D) some of the notions we will consider will explicitly

depend on I while other will explicitly depend on D - to make this apparent we

will subscript our notation for the former by I and for the latter by D . O

Ezample 4.1. Consider the reliance alphabet Z, =(X,,I,,D,), where
¥, ={a,b,c,d} and
I, = {(a,b), (ba), (a,d), (d,a), (b,c), (¢,b)} ,
and the string p; =abcad.
Then
,01'=Il bacad'=11 bacda and consequently p, ill bacda .

As a matter of fact

[,01]Il = {abcad, bacad, bacda, abeda, acbda, acabd, acbad} . O

We are ready now to define the notions of a trace and a trace language.

Definition 4.3. Let Z = (X,1,D) be a reliance alphabet. An element of
O(I) is called a trace ( over 1) and a subset of O(I) is called a trace language

(overl). O
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For a reliance alphabet Z = (X,I,D) , a string language K C >* may be

X
partitioned by =, in either a "consistent” or an "inconsistent" way.

Definition 4.4. Let Z = (X,1,D) be a reliance alphabet and let K C ¥
We say that K is I - consistent iff

(7t € O(D)] either tNK = @Y ort CK|. O

Ezample 4.2. Consider the reliance alphabet Z, from Example 4.1 and con-

sider the language K = {abcad, acabd, daa} . Then K is not I -consistent
because [,01}Il NK %= § while [,01}Il /1}4 K (where p; = abcad).
On the other hand,

K' = {abcad, bacad, bacda, abcda, acbda, acabd, acbad, cbd, bed}

is Z -consistent since K' = [p,[; U [cbd];. O

Given a reliance alphabet 7 = (X,1,D) a string language K C 3* induces

a trace language over Z as follows.
Definition 4.5. Let Z = (X,1,D) be a reliance alphabet and let K C ¥F,

The trace language of K ( over 1) denoted [K], is the trace language

{x;|xeK}. O

Now we can use classes of string languages to define classes of trace
languages. In particular we can transfer the notion of regularity of string

languages into the framework of trace languages as follows.
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Definition 4.6. Let Z = (X,1,D) be a reliance alphabet and let T C O(I).

a
We say that T is regular iff there exists a regular K C ¥ such that T = [K],.

Ezxample 4.3. Let Z ,K,K'and p, be as in Example 4.2. Then
K]y = {lpy];, [daal; } and [K'|; = {[p,]}, [ebd]; } ;
since both K and K' are regular (even finite),

[K]; and [K']; are regular trace languages. O

Each trace may be viewed as an abstract acyclic node-labeled directed
graph and consequently as an abstract labeled poset. This fact is crucial in
applying the theory of traces to define the non-sequential behaviour of EN sys-

tems.

Definition 4.7. Let Z = (X,1,D) be a reliance alphabet and let p € ¥* .
(i) If p = A then the canonical dependency graph of p is the empty graph and
the canonical labeled poset of p is the empty poset.
(ii) Let p = 0, ...0, for some n > 1,0,,...,0, € 2.
The canonical dependency graph of p is the X-labeled graph (V,Y, ¢) defined by:
(1) V={1,.,n},
(2) (Vie{l,.,np)[ &) =0 ],
(3) (Wi, € {1,...n})[(i,j) €Y iff (i <jand (Ui’aj) eD)].
The canonical labeled poset of p is the labeled poset determined by the canoni-

cal dependency graph of p. O
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The canonical dependency graph of p is denoted by < p > and the

canonical labeled poset of p is denoted by << p >> ;.

Remark 4.2. It is important to notice that while D is reflexive, <p > is

irreflexive. O
The basic property of the above construction is the following.
Lemma 4.1. Let Z = (X,1,D) be a reliance alphabet and let p,p' € >F,

Then

<p>pisom < p > iff [ =[], O

Thus for a trace t = [p|; € O(I), < p > is an "isomorphic invariant” of ¢
- it does not depend (up to an isomorphism) on the choice of a representative of

t.

Ezample 4.4. Let Z, and p, be as in Example 4.1.

Then <p, > D, is as follows :
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Figure 4.1

For p, = bacda, < p, > D, is as follows :

Figure 4.2

We notice that p, ‘il Py (see Example 4.1) and indeed, according to Lemma

4.1, we have <p, > D, isom < py > D, i to see this consider the bijection «
between the nodes of < p, >, and the nodes of <p, >Dl defined by:
1

1) =2,0(2) =1,¢(3) =3,0(4) =5 and o(5) = 4.
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Clearly, << p;, >> D, is as follows :

Figure 4.3

while << p, >> D, is as follows :

Figure 4.4



-29.

Definition 4.8. Let Z = (X,1,D) be a reliance alphabet
(i) Let t € O(I).
The abstract dependency graph of t, denoted adg(t) , is the abstract node-
labeled graph —<_p—>D, where p €t .
The abstract labeled poset of t , deno&ted alp(t) , is the abstract labeled poset
—ZZ—,O.—;S; , where p € t.
(ii) Let T C (1) .
The set of abstract dependency graphs of T, denoted ADG(T), is the set
{adg(t) | t €T} .
The set of abstract labeled posets of T, denoted ALP(T), is the set

{alp(t) | t€T}. O

Remark 4.3.
(1) Note that Lemma 4.1 guarantees that the notions of the abstract depen-

dency graph and of the abstract labeled poset of a trace are well-defined; i.e.,

given p, p' €t, <p>p= <p >pand << p>>,= <<p'>>.

(2) Since we are mostly interested in abstract dependency graphs and abstract
labeled posets we will often skip the adjective "abstract” and talk simply about
dependency graphs and labeled posets of traces. Whenever we need to talk
about a representative of the abstract dependency graph (abstract labeled
poset) of a trace we will use the adjective "concrete” ; thus a concrete depen-
dency graph of a trace t is an element of adg(t) - in particular, < p > for a

p in t is a concrete dependency graph of t . O
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5. EXTRACTING CAUSAL ORDERS FROM SEQUENTIAL OB-

SERVATIONS

We return now to the problem of extracting causal order of events from
firing sequences using the theory of traces. The obvious first step in this direc-
tion is to associate an independence relation with an EN system.

Definition 5.1. Let N = (B,E,F,C, ) be an EN system. The independence
relation induced by N, denoted I, , is the binary relation over E defined by:
(Ve,,e, € E)[(e,,e,) €1y iff (‘eIUe;) N ('e2Ue2°) = ¢] .

The reliance alphabet induced by N, denoted Z, is the triplet (E,I D)

where D, = E x E —1I, is the dependence relation induced by N . U

One can easily verify that 7, is indeed a reliance alphabet (i.e. that I is

a symmetric and irreflexive relation) .

The independence relation I, for an EN system N is well-chosen in the fol-

lowing sense.

Theorem 5.1. Let N be an EN system. Then FS(N) is [, -consistent. O

Hence if a firing sequence p is observable in N then so is every firing

sequence that is I ,-equivalent with p !
Ezample 5.1. Consider the EN system N, from Example 3.1. Then

INl = {(el,e3), (es,el) ) (el,es) s (e5,e1) ’ (93»94) ) (e4,e3) ’ (64365) ’ (65’34)} ’
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Zy = (B;,Ty ,Dy).

Clearly, e, e;e e, e, € FS(N,) .

It is easily verified that

[e1e3e5e4e2]1N = {eje e ee,, eeee e
1

385€184 3€1€5€4C9 ) €135,y , €3€,€,85€,, €,€3€,€5€9,

3€1€4%5
ee e.ece,} .

By Theorem 5.1, [e e.e

183 5e4e2]IN C FS(N,) and indeed it is easily verified that

each element of {e1e3e5e4e2]1N is the sequence of edge labels corresponding to a

1

path in SCG,, (see Example 3.1) and thus is a firing sequence of vV, . O
1

Now we can transform the set of firing sequences of an EN system into its
set of traces, the set of abstract dependency graphs and the set of abstract

labeled posets.

Definition 5.2. Let N be an EN system.
(i) The set of firing traces of N, denoted FT(N), is the trace language
FS(V)],,
(ii) The set of abstract firing dependency graphs of N, denoted AFD(N) , is the
set ADG(FT(N)) .
(iii) The set of abstract firing labeled posets of N, denoted AFLP(N) , is the set

ALP(FT(N)).
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Ezample 5.2. Let N, be the EN system from Example 3.1. The following
are some of the concrete firing dependency graphs of N, (see Example 5.1 for

DNX):

Figure 5.1
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The corresponding concrete labeled posets are:

Figure 5.2
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The following result follows directly from Theorem 3.1.

Theorem 5.2. FT(N) is regular for each EN system N . O
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6. NON-SEQUENTIAL OBSERVATIONS OF EVENT OCCUR-

RENCES AND CONDITION HOLDINGS

We will consider now a representation of the non-sequential behaviour of
an EN system that is more detailed than the one obtained via firing traces.
The idea is to "run" the system - resolving conflicts in an arbitrary fashion as
and when they arise - and record non-sequential occurrences by events together
with the resulting holdings of conditions during such a run. Now the records are
non-sequential to start with and the resulting objects (called processes ) are

based on a special kind of nets called occurrence nets.

Definition 6.1. An occurrence net is a net N = (8,T,F) which satisfies
(i) (/s €8S)[|s| <1land |s*] <1].

(i) (Vxy € Xy)l(xy) EF" => (yx) ¢F'|. O

An occurrence net is meant to model a non-sequential stretch of history
and hence it is required to be acyclic. In such a history - where all conflicts
have been resolved - every condition begins (ceases) to hold as the result of a
unique event occurrence. Consequently every condition is required to be non-

branching both at the input and output side.

Also, we do not consider events with empty output sets. Thus for the

sequel we will additionally assume that if N = (S,T,F) is an occurrence net then:

(i) (Wt €Tt # O] .
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Since an occurrence net is a bipartite graph the notion of a node-labeled
occurrence net should be clear. Now we can define a process of an EN system

as a node-labeled occurrence net satisfying certain "consistency requirements".
We will use °N to denote the set {x € Xy | x= @ b
Definition 6.2. Let N = (B,E,F,C. ) be an EN system and N = (S,T,H,¢) a
node-labeled occurrence net.
N is a process of N iff
(i) #(8) B and ¢(T) C E.
(ii) (Vs;8, € 8)[P(s,) = #(s,) = eithers;, < (s, ors, < 5]
(iii) (7t € T)[("t) = "d(t) and #(t") = 4(t)"] .

() 4°N) CC,, . D

We use P(N) to denote the set of all processes of N .
It is easily seen that if N is a process, then "t # @ for every t € Ty -

Ezample 6.1. Consider the EN system N, from Example 3.1.
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Then the following node-labeled occurrencce net N, = (S,,T,,H,,¢,) :

Figure 6.1

is a process of N, ; here we use the graphical convention that the identity of an
element of N, (an S-element or a T-element) is indicated within a node
representing it (a circle or a box respectively) while the label of the element

(i.e., the value of ¢,) is written next to the node representing the element.

It is easily seen that the labeling ¢, of the occurrence net (S,,T;,H,)

satisfies conditions (i) through (iv) of the above definition.

N, records non-sequential occurrences of events e,, e, e;, e, together with

the holdings of appropriate conditions during a run of N, transforming the case

{b,,b,} into the case {b,b,}.
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Also the following occurrence net N, = (S,,T,,H,,¢,) :

Figure 6.2

is a process of N,. It records sequential occurrences of events (an occurrence of
e, followed by an occurrence of e; followed by an occurrence of e, ) together
with the holdings of appropriate conditions during a run of N, transforming the

subcase {b,} (of the case {b,,b,} ) into the subcase {b,} (of the case {b},b,}).

a

A useful intuition behind the notion of the process is this : if we mark the
conditions in °N and play the token game on N , then this particular game
should also be "permitted" by N . This intuition is formalized as follows. (A
slice of an occurrence net N, or of a node labeled occurrence net N, is a maxi-

mal anti-chain consisting of S-elements only.)

Theorem 6.1. Let N be an EN system, N = (S,T,F,¢) a process of N and

S’ a slice of N. Then there exists a C € C), such that ¢(S') C C. O
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The notion of a process as a formalization of a behaviour of an EN system
is too detailed : it turns out that two EN systems without "redundant events"

with label-isomorphic sets of processes are structurally similar.

In order to formalize the notion of an EN system without "redundant

events'" we need the following definition.
Definition 6.3. Let N be an EN system. The set of active events of N,

denoted ev(N), is the set I l U. O

Ue U,

It is easily seen that, in general, ev(N) may be a strict subset of E; .

The label-isomorphism of sets of processes is understood as follows. Let W,
be a set of node 2. -labeled bipartite graphs and W, be a set of node Y,-labeled
bipartite graphs. We say that W, and W, are label-isomorphuc iff there exists a
function v : >, — %, and a bijection 6 : W, — W, such that for each g € W, g
and ¢(g) are label-isomorphic where the bijection involved between the labels of

g - say Zg - and the labels of d(g) is 7 restricted to Zg .
We are ready now to formalize the above mentioned result.

Theorem 6.2. Let N, and N, be EN systems such that ev(N,) = Ey, and

ev(N,) = E, . Then P(N)) is label-isomorphic with P(N,) iff N, =N,. O

2

Although the process representation of the behaviour of an EN system is

too detailed (as manifested by the above result) the notion of a process is very
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useful. Indeed a theory of non-sequential processes based on occurrence nets
can be built up without tying ourselves down to a system model. This theory

will be discussed in the lecture by C. Fernandez.

To overcome the rather undesirable identification of an EN system with its
(process) behaviour one tries to get rid of too detailed information recorded
within a process. The obvious way to do it is to dispose of recording of the

holdings of conditions during a run of the system.

This leads us to the following definition.

Definition 6.4. Let N be an EN system and let N = (S,T,F,¢) be a process
of N.
(i) The S-contracted version of N is a contracted process of N ; the set of all
contracted processes of N is denoted by CP(N).
(i) The elementary event structure of N, denoted ees(N), is the labeled poset

< ctry(N) the set of all elementary event structures of processes of N is

denoted by EES(N) . O

By considering contracted processes, rather than processes, one disposes of
the identification of an EN system with its behaviour. Now a given behaviour
can be realized by (essentially) different EN systems.

Theorem 6.3. There exist EN systems N, and N, such that
ev(N,) = Ey ev(N,) = Ey, and CP(N,) is label-isomorphic with CP(N,) while

it is not true that N1 = N2 . g
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In developing the theory of behaviour of EN systems we have assumed that
we deal with contact-free systems only. Now we can, somewhat informally, give

(some of the) reasons for this assumption.

Consider the following EN system N, :

Figure 6.3

It is clear that this system can have arbitrarily long stretches of behaviour
(e.g. the sequence of steps {e e}, {e,e,} may be repeated arbitrarily many

times).

On the other hand, if we would like to apply our definition of a process to

N, then we get only a finite set of abstract processes for N, !

Here they are (since we consider abstract processes we indicate only the
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labels of the elements of the occurrence nets) :

Figure 6.4

We note that, e.g., if we consider two possible "elementary’ extensions of
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Figure 6.5

then we get node-labeled occurrence nets which are not processes of N, ; condi-
tion (ii) of Definition 6.2 is violated : in N,' we have two places labeled by b,

which are not ordered in < ., , and in N; we have two places labeled by b,
3

which are not ordered in < .+ .
3

On the other hand if we apply the standard complement construction to

N, we obtain the EN system N,':

Figure 6.6

for which the set of processes is infinite.

Here, e.g., the process "corresponding to" the node-labeled occurrence net

N.’ is the following node-labeled occurrence net N, :

3
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Figure 6.7

Now the two places labeled by b, are ordered in <

N,
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7. COMPARING SEQUENTIAL AND NON-SEQUENTIAL AP-

PROACHES

We have discussed two essentially different ways (methodologies) of
representing the behaviour of an EN system N.
(1) Obtain the firing sequences of the system. Then use the dependence relation
Dy to break these strings into dependency graphs of N to obtain AFD(N) and

subsequently AFLP(N).

This methodology can be illustrated as follows:
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Figure 7.1

(2) Obtain the processes of N. Then use the (S-)contraction to obtain CP(N)

and consequently EES(N) .

This methodology can be illustrated as follows:

Figure 7.2

The following result provides the comparison of these approaches (in what

follows, i denotes the equality of two sets of node labeled graphs modulo the
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empty graph A ) .
Theorem 7.1.

(1) There exists an EN system N such that AFD(N) ¥CP(N).

(2) For each EN system N, AFLP(N) i EES(N). O

Hence we have the following situation:

Figure 7.3
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8. BIBLIOGRAPHICAL NOTES

The material presented here follows very closely [RT] where also the notion

of an EN system was formulated.

Expressing the behaviour of Petri nets by the sets of firing sequences was
the topic of very extensive investigation in 1970’s. The major work that ini-
tiated this research is due to Hack [H]. Typical work on firing sequences and
their generalizations is presented in [J], [JV], [P], [RV], and [S1]. Unfortunately
little is known about the sets of firing sequences of EN systems (or C/E sys-
te;ns).‘ The topic of firing sequences will be discussed in more depth in the lec-

tures by M. Jantzen and R. Valk.

The theory of traces is due to A. Mazurkiewicz [M1]. An interesting appli-
cation of the theory of traces to the problem of decomposition of C/E systems is
presented in [M2]. A survey of the theory of traces stressing the relationship to

the theory of C/E systems is presented in [AR]. The basic properties of depen-
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dency graphs are studied in [ER]. The major issues of the theory of traces will

be presented in the lecture by A. Mazurkiewicz.

The notion of a process (for C/E systems) was introduced by C.A. Petri in
[Pt]. Typical work on the theory of processes is presented in B, [FT], R}, and
[S2]. The notion of a process for P/T systems is formulated in [GR]. The lec-
ture by C. Fernandez will investigate many important issues in the theory of

processes.
Elementary event structures were formulated in [NPW]|.

The relationship between the sequential and the non-sequential behaviour
as discussed in our lecture (and illustrated by the final diagram of Section 7) is
established in [AR] (for the case of C/E systems). Related work - mainly for

P /T systems - is presented in [BF].
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