Concurrent Stochastic Methods for Global Optimization *

Richard H. Byrd
Cornelius L. Dert
Alexander H. G. Rinnooy Kan
Robert B. Schnabel

CU-CS-338-86

%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

* Research supported by AFOSR grant AFOSR-85-0251, ARO contract DAAG 29-84-K-0140, NSF grant DCR-84b3483, and NSF
cooperative agreement DCR-8420944.

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

Abstract

The global optimization problem, finding the lowest minimizer of a nonlinear function of several
variables that has multiple local minimizers, appears well suited to concurrent computation. This paper
presents a new parallel algorithm for the global optimization problem. The algorithm is a stochastic
method related to the multi-level single-linkage methods of Rinnooy Kan and Timmer for sequential
computers. Concurrency is achieved by partitioning the work of each of the three main parts of the algo-
rithm, sampling, local minimization start point selection, and multiple local minimizations, among the
processors. This parallelism is of a coarse grain type and is especially well suited to a local memory mul-
tiprocessing environment. The paper presents test results of a distributed implementation of this algo-
rithm on a local area network of computer workstations. It also summarizes the theoretical properties of
the algorithm.

1. Introduction

This paper presents a parallel algorithm for the global optimization problem. The algorithm is a
stochastic method related to the multi-level single-linkage method of Rinnooy Kan and Timmer [1984]
for sequential computers. The parallelism is of a coarse grain type and is especially well suited to a local
memory multiprocessing environment. The paper presents test results of a distﬁbqted implementation of
this algorithm on a local area network of computer workstations. It also summarizes the theoretical pro-

perties of the algorithm.

The global optimization problem is to find the lowest function value of a function that may have

multiple local minimizers. We denote the problem as follows:

given f(x):R*—>R and S cR”

find x, € § forwhich f(x,)<f(x) forall x e S . (1.1)

We refer to x , as the global minimizer of f (x) and f(x,) as the global minimum. The term "global" con-
trasts with a local minimizer of f (x), which is the lowest value of S (x) in some open neighborhood in S .
Thus a function may have multiple local minima but it can have only one global minimum value. In this
paper we assume that f (x) is a nonlinear, twice continuously differentiable function. We also assume
that the feasible region S is given by a set of lower and upper bounds on each variable, i.e.
S={x1L<x;<wu,i=1,---,n}

and that the global minimizer lies in the interior of S .

Global optimization problems of the above form occur in many practical applications including
data fitting, structural design, optimal control, econometrics, and many more (see e.g. Dixon and Szego
[1978]). Most optimization software, however, is only constructed to find local minimizers (see e.g. Gill,

Murray, and Wright [1981] or Dennis and Schnabel | 1983]). One reason is that it is difficult to construct

reliable algorithms for finding the global minimizer of general nonlinear functions. A second reason is
that it often is very expensive to solve the global optimization problem reliably, since it requires many
- evaluations of f (x) and many iterations and arithmetic operations within the optimization code itself. In
practical optimization applications, the evaluation of f (x) is often very expensive so that the large

number of function evaluations is the dominating expense.

There has been a moderate amount of work done in developing global optimization algorithms for
sequential computers. Among these approaches, we shall favor stochastic methods, which include some
random sampling of the function domain, because these methods provide some guarantee of their reliabil-

ity while still appearing at least as efficient as other approaches.

Due to the expensive nature of global optimization and the practical need to solve such problems,
there is ample incentive to devise parallel global optimization methods if they can lead to significantly

faster solution of this problem. It appears that the global optimization problem is well suited to parallel

solution in a number of ways.

In this paper we concentrate on the high level, coarse grain concurrency available within the global
optimization algorithm itself. Obvious opportunities for high level parallelism include conducting multi-
ple local minimizations concurrently, or evaluating f (x) at multiple random sample points concurrently.
Such an approach is intended to utilize multiple processors efficiently in solving the global optimization

problem whether or not the evaluation of f (x) is expensive.

An alternative, lower level use of parallelism in global optimization would be to apply a parallel
algorithm to evaluate f (x). In cases where the function evaluation is very expensive this approach might
be very effective. We do not pursue it for several reasons. First, parallelization of f (x) is strongly prob-

lem dependent and outside the realm of the optimization algorithm designer. Second, if one has an

efficient parallel code for evaluating f (x), then it can be used in conjunction with the approach presented
here. For example, if f (x) vectorizes well (as is often the case), then the appropriate computational
environment would be a multiprocessor where each node is a vector processor. In this environment the
function evaluations could be performed on individual vector processors while the higher level parallel-
ism in our algorithm could still be realized among these processors. Indeed, we believe that this compu-
tational environment (currently embodied by machines including the Cray X-MP and the Alliant) will be
a very important one in the future. In other cases where the computation of f (x) requires multiple proces-
sors, it would be possible to divide the processors into groups, with a group of processors being used to

evaluate f (x) and the groups themselves being used to implement the high level parallelism of our algo-

rithm.

The implementation of the type of coarse grain parallel algorithm we develop requires a computer
- capable of executing multiple independent instruction streams at the same time. In the taxonomy of
Flynn these are known as Multiple Instruction Multiple Data (MIMD) computers. The class of MIMD

computers includes both shared and local memory multiprocessors.

Shared memory multiprocessors are computers with multiple processors that are all connected, via
a switching network or global bus, to a shared memory which they all can access. The processors may
have local memory as well. Synchronization or communication between processors is carried out using

this shared memory and usually is nearly as fast as a local memory access.

Local memory multiprocessors are computers with multiple processors, each with its own local
memory, connected by some sort of interconnection network. Examples currently in use include the
hypercube computers pioneered at Caltech (Seitz [1985]) and local area networks of computers. On these

machines, synchronization or communication between processors is achieved by passing messages

between the processors. Generally message throughput rates are several orders of magnitude slower than
the arithmetic operation rate. Thus local memory multiprocessors are best suited to parallel algorithms
where, on the average, many instructions (say 1000 or more) are executed on individual processors in
between synchronization or communication points with other processors. Such algorithms are generally

referred to as medium grain or coarse grain parallel algorithms.

Since the global optimization problem is amenable to solution by a coarse grain parallel algorithm,
a local memory multiprocessor is an appropriate parallel environment for this problem. For this reason,
we have chosen to implement our parallel algorithm on the local area network of workstations that is

being used for parallel computation at the University of Colorado.

In summary, the goal of this research was to develop an efficient and reliable parallel algorithm for
the global optimization problem that is well suited to implementation in a local memory multiprocessing
environment. By rcliable, we mean that the algorithm should be successful in finding the global
minimum and preferably that there be some theoretical guarantee of this reliability. By efficient, ideally
we mean that our parallel algorithm, when implernented on P identical processors, should require 1/P of

the time that the best sequential algorithm would on one of these processors to solve the same problem.

To approach this efficiency goal, three important performance goals must be met. First, the algo-
rithm should keep all processors (nearly) fully busy, i.e. processbr idle time should be minimized.
Second, the algorithm should introduce little new work that was not required by the best sequential algo-
rithm; this rules out extensive overhead computations introduced in order to utilize multiple processors.
Third, the interprocess communication requirements, in this case the number of messages, should be

small. The experimental results in this paper will show that these goals have been met quite well.

In Section 2 we briefly describe sequential methods for global optimization, concentrating on the
approach from which our parallel algorithm is derived. Section 3 presents our parallel global optimiza-
tion method. In Section 4 we briefly summarize the theoretical properties of this method. In Section 5
we first describe the multiprocessing environment, a network of computer workstations, used in our
experiments. Then we present our computational results in this environment. Some comments on future

directions for this work are presented in Section 6.

2. Sequential global optimization methods

The methods that have been developed to solve the global optimization problem can be divided
into two main classes, deterministic methods and stochastic methods (Dixon and Szego, [1978]). This

section briefly surveys these methods, concentrating on those most closely related to our concurrent algo-

rithms.

Deterministic methods do not incorporate any random or stochastic features. A wide variety of
approaches are contained in this class, including trajectory methods (Branin [1972], Branin and Hoo
[1972]), deflation methods (Goldstein and Price [1971], Levy and Gomez [1985], Levy and Montalvo
[1985]), piecewise approximation methods (Shubert [1972]), and interval arithmetic methods (Hansen
[1980], Hansen and Sengupta [1980], Walster, Hansen, and Sengupta [1985]). Most of these methods
either do not provide a guarantee that they will find the global minimizer, or do so only at the expense of
making additional assumptions about f (x) which are difficult to verify in practice. The most common
such assumption is that some derivative of f (x) obeys a Lipschitz condition with a constant that is
bounded above by a known number. In addition, many deterministic methods tend to require a large

computational effort to find the global minimizer.

Stochastic methods differ in that they incorporate stochastic features, generally the sampling of
f (x) at randomly selected points in the feasible region. This enables these methods to provide a proba-
bilistic guarantee that the global minimizer will be found, assuming only that f (x) is continuously dif-
ferentiable. Generally, these methods combine the random sampling phase with a phase where local
minimization algorithms are performed from some of the sample points. The earliest stochastic methods,
such as random search (Brooks [1958], Anderssen [1972]), random direction (Devroye.[1979], Price
[1979], Solis and Wets [1981]) and simple multi-start methods, were rather crude and not computation-
ally efficient. More recent stochastic methods, such as those of Boender, Rinnooy Kan, Stougie, and
Timmer [1982], and Rinnooy Kan and Timmer [1984, 1985a, b, c], combine random search and local
minimization carefully and appear to be“quite efficient in computational experiments. In addition, they

also provide probabilistic guarantees of their computational efficiency.

Thus, modem stochastic methods appear to provide an attractive choice from both the theoretical
and computational points of view. For these reasons, we have chosen to base our concurrent global

optimization algorithms on a stochastic approach.

In particular, our concurrent method are most closely related to the recent multi-level single linkage
method of Rinnooy Kan and Timmer [1984]. This method appears to combine state-of-the-art computa-
tional performance with strong theoretical properties. The remainder of this section briefly reviews

sequential multi-level single linkage methods, with emphasis on aspects that will have importance for our

concurrent methods.

The multi-level single linkage method is an iterative algorithm. Each iteration consists of a sam-
pling phase, in which the function is evaluated at a number of randomly sampled points, followed by a

minimization phase, in which a local minimization procedure is started from a subset of the sample

points. A probabilistic stopping rule is applied to determine whether the algorithm should be continued,

and if it should, the next iteration is begun. An outline of the algorithm is given in Algorithm 2.1,

Several portions of Algorithm 2.1 require further elaboration. Most important to the practical and
theoretical success of the method is the selection of start points for local minimizations in Step 2. At
iteration &, each sample point x is selected as a start point for a local minimization if it has not been used
as a start point at a previous iteration, and if there is no sample point y within the critical distance r (k) of

x with a lower function value, i.e with

Flx —y 11 <r(k) and F&x)<f@).
The critical distance is given by

Algorithm 2.1 -- Muiti-Level Single Linkage Method for Global Optimization
Givenf : R"—R, feasible region S
At iteration number & :

1. Generate sample points and function values

Add N points, drawn from a uniform distribution over S, to the (initially empty) set of sample
points, and evaluate f (x) at each new sample point.

2. Select start points for local searches

[Optional: calculate a cut off level; all sample points with function values above this level will
be excluded from the start point selection].

Determine a (possibly empty) subset of the sample points from which to start local searches.
3. Perform local minimizations from all start points
4. Decide whether to stop

If stopping rule is satisfied, regard the lowest local minimizer found as the global minimizer,
otherwise go to Step 1.

r(k) =1 [D+4) m(S) o LN jun @1)
where m (S) denotes the Lebesque measure of S, I" denotes the gamma function, G is a positive constant,

and N is the sample size per iteration.

The above selection procedure may optionally be applied only to the YkN sample points with the
lowest function values, where Y is any fixed number in (0,1]. This corresponds to the application of a cut
off level to the sarﬁple. The use of a cut off level does not affect the theoretical realiability and efficiency

of the multi-level single linkage method, but appears to enhance its computational performance.

The local minimizations are performed by any standard unconstrained minimization code. The
theoretical analysis of the multi-level single linkage method simply assumes that the unconstrained
minimization code will find a local minimizer x* when started within the basin of x*, ie., the set of
points x from which all strictly descent paths converge only to x*. The methods of Rinnooy Kan and
Timmer [1985a,c] use the VA10AD variable metric subroutine from the Harwell Subroutine Library,
while the methods reported in this paper use the line-search BEGS code in the UNCMIN package of

Schnabel, Koontz, and Weiss [1985]. Both are well-tested and widely used codes.

A Bayesian stopping rule of Boender and Rinnooy Kan [1984] (see also (Zielinski [1981])) is
applied in Step 4. To explain this rule, let w denote the number of local minimizers found after k itera-
tions, and let s = YkN be the (reduced) sample size after k iterations. In addition, define the region of
attraction of a local minimizer x* for a particular local search method to be the set of all starting points x -
from which the local search method will converge to x*. Boender and Rinnooy Kan show that a Baye-

sian estimate of the total number of local minimizers is given by

e 22)

and that a Bayesian estimate of the portion of S covered by the regions of attraction of the local minimiz-

ers found so far is given by

(s—uszz;ll(ls)+w)' 2.3)

The stopping rule used is that the algorithm is terminated after the k£ iteration if and only if the estimate

given by (2.2) is greater than w by less than 0.5, and the estimate given by (2.3) is 2.995.

Strbng theoretical properties of the multi-level single linkage algorithm have been proven in Tim-
mer [19‘84], Rinnooy Kan and Timmer [1985b,c]. If the critical distance is given by (2.1) with ¢ > 0,
then with probability 1, all the isolated local minimizers of f (x) will be found within a finite number of
iterations. If ¢ > 4 in (2.1), then, even if the sampling continues forever, the total number of local
searches started by the algorithm will be finite with probability 1. Thus both the accuracy and the

efficiency of the method are guaranteed in a strong probabilistic sense.

Test results for the multi-level linkage algorithm are reported in Rinnooy Kan and Timmer
[1985a,c]. The algorithm has been tested on a standard set of test problems and compared with a number

of other approaches for global optimization. Overall, it seemed to offer the best combination of

efficiency and reliability of the methods tested.

3. A concurrent algorithm for stochastic global optimization

The global optimization problem seems conducive to solution by highly parallel algorithms in ways
that makes it suitable to a variety of parallel computing environments. In particular certain methods to
solve the problem can be decomposed into a number of relatively large and independent subtasks. Con-
current algorithms can exploit this coarse grain parallelism while requiring only infrequent interprocess
communication and little or no shared memory. Thus these algorithms seem well suited to a local

memory or shared memory multiprocessing environment. In this section we discuss one such global

10
optimization algorithm, a synchronous concurrent multi level single linkage method.

We can readily identify three sources of high level parallelism in the multi level single linkage
method. In the first phase of each iteration, the sampling phase, each processor can generate 1/P of the
sample points (P is the number of processors) and evaluate the function at each of them. In the second

“phase, start point selection, each processor can select start points from its own subsample. (Some check-
ing in other subsamples may be required; this is discussed later.) Finally in the third phase, local minimi-

zation, each processor can be responsible for one or more of the local searches.

An obvious mechanism for achieving this concurrency is to divide the feasible region into P subre-
gions of equal size, and assign each subregion to a different processor. Then the sampling phase can be
implemented concurrently simply by having each processor sample its subregion, and the major part of
the start point_sele‘ction can be accomplished by having all the processors concurrently generate the start
points for their subregions based on their own samples. It is possible, however, that the number of start
points for local searches may vary widely between subregions, and the lengths of local searches also may
vary widely. Thus it may not be advantageous to have each processor simply handle the local searches
for the start points from its own region. Instead, in our algorithm a master process collects all the start
points from all the subregions and then distributes them back to the processors as evenly as possible.
This is discussed in more detail below. The master process also coordinates the small amount of syn-

chronization and communication that is required.

At this point it may be useful to indicate a basic difference between the second source of parallel-
ism described above and the other two sources. The first and the third phases of the algorithm, sampling
and local minimization, are generally dominated by the costs of the evaluations of f (x). Thus our con-

current algorithm essentially is distributing these function evaluations among the processors. In the

11

second phase, start point selection, however, there are no function evaluations, and our concurrent algo-
rithm is carrying out part of the global optimization algorithm itself in parallel. The impact of the latter
type of concurrency relative to the former on the overall speedup of the algorithm clearly will be deter-
mined by the percentage of time spent in various phases of the algorithm; this in turn will depend on the
cost per function evaluation and the number of function evaluations required to solve a particular prob-
lem. The more time spent on function evaluations, the more important the concurrency from the sampling
and local minimization phases of the algorithm. In fact, if function evaluations are sufficiently expensive
it may be profitable - as discussed before - also to exploit a lower level of parallelism, performing parallel

function evaluations within the individual local minimizations (see Section 6).

A concurrent multi level single linkage algorithm employing P processors and making use of all
three high level sources of parallelism is outlined in Algorithm 3.1. The four basic steps of this algorithm
are identical to those of the sequential mult level single linkage algorithm, Algorithm 2.1. Concurrency
is achieved in the implementation of each of these steps, with the exception of Step 4, which hardly con-
tributes to the algorithm’s running time. The remainder of this section consists of a more detailed discus-
sion of Algorithm 3.1. In Subsections 3.1 - 3.3 we focus on the aspects where the concurrent algorithm
differs from the sequential method in Steps 1, 2, and 3, respectively. In Subsection 3.4 we make some

-comments on how the concurrent algorithm is expected to meet the goals of reliability and efficient utili-

zation of a local memory multiprocessing environment that were mentioned in the introductory section.

3.1 The generation of sample points and function values

In the sampling phase, cach processor i extends its set of sample points by N/P new points and

evaluates f (x) at each of them. Whereas the random sampling was done from a uniform distribution over

12

Algorithm 3.1 -- A Concurrent Multi-Level Single Linkage Method
for Global Optimization

Given f : R*—R, feasible region S and P processors

0. Partition S

Subdivide S into P equal size, regular shaped subregions S;, i = 1,...P, and assign subregion S; -
“to processor i fori =1,...,P.

At iteration number k& :

1. Generate sample points and function values
Fori =1,.,P
Add N/P points, drawn from a uniform distribution over subregion i, to the (initially
empty) set of sample points, and evaluate f (x) at cach new sample point.

2. Select start points for local searches
[Optional: calculate a cut off level; all sample points with function values above this level will
be excluded from the start point selection].
Fori =1,..,P
* Determine a (possible empty) set of start points in subregion i, disregarding sample in-
formation from all other subregions.
Resolve start points near borders between subregions.

3. Perform local minimizations from all start points
Collect all start points and distribute one to each processor, which performs a minimization

from that point. Issue a new start point to a processor as soon as it terminates its current local
search, until local searches from all start points have been completed.

4. Decide whether to stop

If stopping rule is satisfied, regard the lowest local minimizer found as the global minimizer,
otherwise go to Step 1.

the entire region S in the sequential method, in the concurrent algorithm each processor generates a ran-
dom sample from a uniform distribution over its own subregion S;. As will be discussed in Section 4,
this necessitates that the theoretical analysis of the algorithm be modified but it turns out not to alter the

theoretical properties of the method.

13

3.2 The selection of start points for local searches

The selection of start points for local minimizations is carried out in two phases (three if the
optional sample reduction procedure is applied). The first, local, phase is performed independently and
concurrently by each processor. Processor i selects the points in its own subregion S; which locally
satisfy the multi-level single linkage start point selection rule described in Section 2. That is, at iteration
k each sample point x € S; is selected as a candidate start point if it has not been used as a start pointin a
previous iteration, and if there is no sample point y e S; within the critical distance r(k) of x given by

equation (2.1) with a smaller function value.

For a given sample over the entire region S, any sample point that would be selected as a start point
by the sequential algorithm will also be selected as a candidate start point by this first start point selection -
phase of the concurrent algorithm. However, if x is within the critical distance of any border of its subre-
gion, it is possible that it will be selected as a candidate start point by the first phase of the concurrent
algorithm but not by the sequential algorithm, because some sample point in another subregion but within
the critical distance has a smaller function value. To prevent the initiation of unnecessary local searches
from these points, the local selection phase of the concurrent algorithm is followed by a second, global
selection step. First, all candidate start points within the critical distance of a border between subregions
are distributed to all processors. Then, each processor determines whether its sample contains a point
within the critical distance of one of these candidate start points with a lower function value. If $0, this
candidate point is not used as a start point for a local minimization. The remaining start points will be the

same ones that would have been selected from the same sample by the sequential method.

The start point selection procedure may optionally be preceded by a sample reduction procedure.

As in the sequential algorithm, the aim of this step is to retain only the YkN sample points with the lowest

14

function values in the entire region S, where ye (0,1) is fixed. In the sequential algorithm, a cut off level
equal to the YkN** lowest function value is determined and all sample points with higher function values
are eliminated. In order to determine a corresponding cut off level for the entire region S in the con-

current method, some exchange of information between subregions is required.

In order to keep both the interprocess communication and the computational costs of this ‘stép
small, the goal of the sample reduction phase for the concurrent algorithm is relaxed slightly. We require
that the cut off level be chosen so that the number of reduced sample points, i.e. all sample points with
function values below the cut off level, deviates from the target size YKN by at most ¢ykN for a fixed pre-
cision ¢<(0,1). This can be achieved by setting g = L(29ykN +P-1)/P| and requiring each subregion to
determine the (ig)* largest function value (i =1, ..., L AN/Q2OV%N+P—-1)}) and to report those to the
master process. The cut off level in each region is then taken to be equal to G largest function value in
this selection, where G is the integer closest to (2YkN —(P -1)(g—1))/(2g). Tt is not hard to see that this

procedure determines the cut off level within the relative accuracy required (Dert [1986]).

3.3 The local minimizations

The distribution of the computational effort in the local minimization phase is fairly straightfor-
ward. After all the local search start points have been identified in the previous step, all these points are
reported to the master process. The master process then distributes one start point to each processor, and
if there are more start points than processors, a processor that completes one local search it is given

another start point until they all have been processed.

As discussed in the beginning of this section, this phase may not keep all the processors equally

busy. The remaining issue is in what order to assign the local minimizations in order to keep processor

15

idle time as small as possible. If we knew in advance how long each local search would take, we could
use a scheduling heuristic to minimize the total time, and thus the idle time, needed to complete all
minimizations. A well known, simple heuristic with attractive theoretical properties for similar schedul-
ing problems is the longest processing time rule (see e.g. Frenk and Rinnooy Kan [1986]), which states

that the jobs should be scheduled in order of descending processing time.

In the case of local minimizations we do not know in advance how long each minimization will
take, so we cannot order the start points according to processing time. One crude way to estimate these
times is to guess that the higher the function value at the start point, the longer the minimization will take.
Our computational experiments indicate that the use of this heuristic has given slightly better results than

using an arbitrary ordering and at least as good results as any other heuristic we have attempted.

3.4 Comments

In this subsection we make some general remarks concemning the expected efficiency and reliability
of the concurrent global optimization algorithm that we have just described. We will also examine how

effectively the algorithm is likely to utilize a local memory multiprocessing environment.

From the point of view of the sample points that are used, the local minimizations that are per-
formed, and the answer that is found, the concurrent algorithm differs from the sequential one only in that
/it samples from a slightly different distributiori. Therefore we expect that the number of sample points,
function evaluations and local searches that are used by the sequential and concurrent methods on any
particular problem will be very similar. Furthermore we expect that the number of minimizers found by
the two methods will be roughly the same, and that they usually will find the same global minimizer.

This similarity between in two algorithms is reinforced by the theoretical analysis discussed in Section 4.

16

Let us now turn to the parallel characteristics of Algorithm 3.1. Notice that it requires very little
synchronization of processes or communication or sharing of information between them. Information is
‘exchanged at four places in the algorithm : after the local phase of Step 2 is completed, the candidate start
points within the critical distance of the subregion border must be collected and sent to the other subre-
gions; after the border resolution phase of Step 2 is completed, the final start points must be collected and
distributed to the processors; after tﬁe local minimizations are completed in Step 3 each process must
report the minimizers found to the process making the stopping test; and at the beginning of the next
iteration, some results from the previous iteration must be distributed to the processors. The only syn-
chronization requirements are inherent in these actions : the local phase of Step 2 must be completed by
all subregions before the global phase is begun, and all the local searches must be completed before the
stopping test is made. If sample reduction is used, the implementation of Algorithm 3.2 also requires that

every g function value from each subregion be collected from all processors and that the cut off level be

communicated back to each processor.

In our implementation, a master process, which resides on the same processor as one of the subre-
gion processes, takes care of the coordinating activities described above. It collects the candidate start
points that are near subregion borders and distributes them to the subregion processes when it has all of
them; it collects the start points and distributes them to the processors using the heuristic discussed in
Section 3.3; and when all local searches are completed, it performs the stopping test (two simple equa-
tions) and starts the next iteration if required. If sample reduction is used it also collects the function
value information from all subregions and, when it has all the information, it calculates the cut off level

and sends it back to all the processors.

This organization makes it clear that our concurrent algorithm requires very little shared informa-

tion, and therefore is well suited for implementation on a local memory multiprocessor. If a local

17

memory multiprocessor is used, at each iteration the number of messages received and sent by each
subregion process will be two plus the number of local searches conducted by that processor, plus one
- more if sample reduction is appliecd. At each iteration the master process will receive, and send, 2P mes- -
sages (3P with sample reduction) plus the total number of local searches for that iteration. The messages
all are s@ort, containing either one number, one n-vector, or a small number of n-vectors. Thus the total

interprocess communication requirements are quite small.

Finally, we will examine how much overhead is introduced by the parallelization of the algorithm

at Steps 1, 2, and 3 of Algorithm 3.1, and how fully we expect all processors to be utilized.

In Step 1 each processor samples N /P points and evaluates the function at each one of them. This
step requires no interprocess communication or parallel overhead, and is expected to achieve equal utili-

zation of all processors as long as the time required to evaluate J (x) at different points x is (nearly) uni-

form.

Now consider the start point selection step without sample reduction. Since the selection of candi-
date start points requires each processer to consider the same number of points (kN /P), we expect equal
utilization of all processors during this portion of Step 2. In our experience, the second part of the step, in
which the border points are resolved, requires very little running time in comparison. So in Step 2 we
introduce little parallel overhead or interprocess communication (each process has to send and read 1
message), and as in Step 1 we expect all processors to do the same amount of work. In fact, we will see
in Section 5 that Step 2 has the interesting effect of applying a divide and conquer strategy that actually

causes greater than linear speedup in comparison to some standard sequential implementations.

If Step 2 is run with a cut off level, however, the distribution of work among the processors may no

longer be uniform. This is because the reduced sample points may not be equally distributed among the

18

subregions and therefore the reduced sample size per processor may differ substantially. Processors han-
dling a subregion with a relatively small reduced sample size will complete the selection of candidate
~start points faster than processors with a large reduced sample. These processors will then be idle until all
processors have finished selecting their candidate start points and the border resolution phase can be

started. - The effects of this imbalance will be seen in some of the computational results in Section 5.

Recall, however, from the discussion at the beginning of this section, that the imbalance in utiliza-
tion of processors in Step 2 caused by the sample reduction phase becomes unimportant as the cost of
function evaluations rise. This is because the costs of Steps 1 and 3 then dominate the running time, and
the cost of Step 2, which involves no function evaluations, becomes insignificant. This phenomenon is

reflected in the simulated results for expensive functions given in Section 5.

The imbalance in Step 2 caused by sample reduction also would be less important if the processors
carly finishing could be employed in some other useful manner. To some extent this seems possible. If
the subregion handled by the early finishing processor contains a candidate start point that is not within
the critical distance of any subregion border, the processor could avoid being idle by starting a local

search from this point immediately. This possibility is also examined in Section 5.

Finally, consider Step 3, the local minimization phase. Again, the cost of interprocessor communi-
cation in this phase is small (one message sent and received for each local search) and no other parallel
overhead is introduced. As we have discussed previously, however, this step will probably not utilize all
processors evenly due to the uneven lengths of local searches, and the fact that the number of searches
may be less than the number of processors. This is one of the main effects that we will examine in Sec-
tion 5. We will also present some results about improving the efficiency of the local minimization phase

by introducing concurrency into the individual local minimizations.

19

In summary, the concurrent global optimization algorithm adds few new costs, either new opera-
- tions or interprocess communication, to those present in the sequential algorithm. In the sampling phase,
- and the start point selection phase if run without sample reduction, it appears to readily allow full utiliza--
tion of all processors. In the local minimization phase, and the start point selection phase if sample
reduction is used, the synchronization requirements may cause some processors to be idle at some times.
- In problems where function evaluation is expensive, the expense of the algorithm is dominated by the
sampling and local minimization steps, so that the efficiency of these steps is most important and the start

point selection step becomes relatively unimportant anyhow.

4. Theoretical properties of concurrent Multi Level Single Linkage

Although the concurrent and sequential multi level single linkage algorithms are very similar in
terms of the sampling and searching they perform, the assumptions under which the theoretical properties
of the sequential multi level single linkage algorithm are proven do not all hold for the concurrent
method. In particular, the analysis of the sequential method assumes that the sample points are drawn
from a uniform distribution over the feasible region §. In the concurrent algorithm this is no longer the

case; instead, the sample points are generated from uniform distributions over the subregions.

The analysis of the sequential multi level single linkage algorithm can be adapted, however, to
show that the two properties mentioned in Section 2 also hold for the concurrent algorithm we discussed
in Section 3. First, if the critical distance tends to O with increasing k , then with probability 1 all isolated
local minima with values below the cut off level will be identified in a finite number of iterations.
Second, if in (2.1) ¢ > 4, then if sampling continues forever, the number of local searches will be finite

with probability 1. The proofs for these results involve appropriate modifications of the proofs for the

20
sequential case; we refer to (Dert [1986]) for the details.

As in the sequential case, it is also possible to carry out a theoretical analysis of the expected run-
‘ning time of the algorithm. Through the use of appropriate data structures (cf Section 5.2), it can be
shown that the sequential algorithm requires a computational effort that in-expectation increases as a
linear function of the sample size. This result continues to hold for the concurrent version, even if a cut
off level has to be computed centrally. A crucial role in the required computation of every g value is
then played by a dynamic selection method by Postmus, Rinnooy Kan and Timmer [1983], whose

expected running time has very attractive properties. Again, we refer to (Dert [1986]) for full details.

5. Computational testing

We have implemented and tested the concurrent global optimization algorithm described in Section
3 on a network of computer workstations. - This section reports the results of these tests. First, we briefly

describe our parallel computing environment.

5.1 The Testing Environment

The University of Colbrado is engaged in a large research project on the use of a network of com-
puter workstations for concurrent computation. This project includes developing and implementing
numerical algorithms for important practical problems that are well suited to this loosely coupled mul-
tiprocessing environment. It also includes the development of systems and software support that will
make a network of computers easier to use for distributed concurrent computation. This project is sup-

ported by a Coordinated Experimental Research grant from the National Science Foundation as well as

21

individual research grants. The concurrent global optimization algorithm described in Section 3 is an

excellent candidate for solution in this environment.

Our current test environment consists of a network of Sun workstations, connected on an ethernet
and 'sharing several file servers. The experiments reported in Section 5.2 were conducted on a dedicated
subnet consisting of four or eight Sun-3 workstations. That is, when we conducted these experiments we
were the only users of these workstations and the subnet was physically disconnected from the remainder

of our computer network. Thus, the subnet functioned as a stand alone local memory multiprocessor.

Our ability to use the network of workstations for distributed concurrent processing is based upon
the Sun version of the Berkeley Unix 4.2 operating system, which each workstation runs. The Berkeley
Unix 4.2 operating system provides the basic interprocessor communication facility, the ability to send
messages between processes on different machines, that is needed to use a network of computers as a
multi-processor. In Berkeley Unix 4.2, this capability is provided by stream sockets, reliable point to
point connections between two processors, as well as datagram sockets. When combined with the Unix
fork and exec commands, these facilities allow a process on one computer to start a process on another

computer and subsequently to communicate with it.

Researchers in the Computer Science Department at the University of Colorado have built a distri-
buted processing utilities package, called DPUP, that makes a network of computers running the Berkeley
Unix 4.2 operating system easier to use for distributed concurrent processing (Gardner et al [1986]).
DPUP builds upon the interprocessor communication facilities in Berkeley 4.2 to provide two models of
concurrent computation. The first is a master-slave model where all processes are linked to one master in
a "spokes of a wheel" arrangement and all communication is through the master. The second is a broad-

cast model where each process is an equal member of a ring of processes and can send messages to all of

22

the processes at once. For both models, DPUP provides several basic concurrency capabilities including
the creation and termination of remote processes (with required communication connection automatically
established) and various means to send and receive messages. Our concurrent global optimization

software uses the master-slave model of DPUP.

5.2 Computational results

Both the sequential and the concurrent global optimization algorithms have been run on the test
problems given in Dixon and Szego [1978]. At present these seem to be the only widely accepted global
optimization test problems. The characteristics of these problems are summarized in Table 5.1. The prob-
lems are low dimensional (up to 6 variables) with only few minimizers (up to 10). In addition, evaluation
of the test functions is very cheap. These characteristics limit what one can determine from the test set,

and how one should interpret the computational results, in several ways.

The small number of variables and local minimizers limits the amount of parallelism that can be
obtained in solving the global optimization problem. The number of sample points required, the number
of local searches required, and often the number of iterations required would all be significantly higher
for more difficult problems, which in turn would enable the use of more concurrency. We are currently

attempting to obtain and construct more difficult test problems; we discuss this topic briefly in Section 6.

The fact that the evaluation of the test functions themselves is very cheap (sometimes requiring
only a few floating point operations) means that our timing results are not indicative of performance on
many real world problems where function evaluation is the dominant cost. Therefore we will report two
speedup measures. The first measure is the actual timed speedup, the time required by the sequential algo-

rithm to solve a problem divided by the time required by the concurrent algorithm to solve the same

23

problem, i.c.

. — _elapsed time sequential algorithm
Speedupiimed elapsed time concurrent algorithm 6.1
In many of our experiments this measure is dominated by the start point selection phase, which in fact
requires no function evaluations. Thus this measure is an interesting indication of how well we have sped

up the overhead calculations of the algorithm, and also gives some indication of how practical our

approach would be on small problems with very inexpensive function evaluations.

In many practical optimization problems, however, the evaluation of the objective function f (x) is
very expensive. The computational effort then will consist mainly of computing function values. So in
this case one is primarily interested in the distribution of function evaluations among the processors. To
- use our test results to indicate the speedup our concurrent algorithm would achieve on this type of prob-
lem, we introduce a second speedup measure. Let yy; ,j denote the number of function evaluations done by
the i processor at the j# iteration, and let the total number of processors and iterations be P and 1,

respectively. Then the speedup for expensive function evaluations may be approximated by

speedup expensive_func = i . 5.2)

This measure is the limit of the timed speedup ratio we would obtain on our test problems if the function
values were unchanged but the cost of each function evaluation was increased without bound. Contrary

to the first measure, it is independent of the speedup achieved during the start point selection phase.

Our test results are presented for four different modes of operation of the sequential and concurrent
algorithms : using 200 or 1000 sample points per iteration, and with and without sample reduction. When
sample reduction was used, the sample size was reduced to 100k points, where & is the iteration number.

The parameter ¢ was set to 4 in all cases. Since the algorithm is stochastic, the results are influenced to

24

some extent by the random sample that is generated. To dampen the effect of the variation in random

samples, 10 independent runs were performed for each problem/algorithm combination.

The reliability of each algorithm on each problem is summarized in Table 5.2, and the average -
~costs in function evaluations are given in Table 5.3. (These data are given for the 8 processor concurrent
algorithm but are very similar when using different numbers of processors.) On these simple test prob-
lems, using 200 sample points per iteration usually led the algorithm to require fewer total function
evaluations, although the reliability of the algorithm was somewhat better with 1000 points per iteration.
(The reliability results are similar to those reported in Rinnooy Kan and Timmer [1985a] and no attempt
was made to change the algorithm to improve upon them.) We consider the 1000 point per iteration size,
however, to be far more indicative of what would be required on problems with more variables or more
local minimizers. Therefore we consider the test results with 1000 sample points per iteration to be the
more impoytant ones. In general, using sample reduction appears to lead to a more efficient algorithm.
As discussed in Section 3.4, our concurrent start point selection algorithm may incur significant idle time
when used with sample reduction. This affects our timing results where the start point selection has a

. significant impact, but not the expensive function evaluation results where start point selection is

irrelevant.

‘When we first timed our concurrent global optimization algorithm (without sample reduction) on a
- network of 3 Sun-2 workstations, the speedups in comparison to the sequential algorithm on a Sun-2 were
consistently greater than 3. In fact, they generally ranged from about 3 to about 8. The reason for this
was fairly easy to see. A large portion of the time was being spent in the start point selection phase,
which in the sequential case used an O (N?) algorithm, where N is the number of sample points. The
concurrent algorithm was essentially applying one stage of divide and conquer to this algorithm, first

dividing the process into 3 equal parts (which reduces the total work of an O (N2) algorithm by a factor of

25

3 and thus would induce a speedup of 9 in our situation), and then applying the border resolution strategy
to patch together the 3 regions. But since the border resolution strategy is only applied to a small portion
~ of the original sample, its cost is small and the total speedup for the start point phase was still close to 9.
Indeed, when we modified the sequential algorithm to use the identical strategy, that is divide the feasible
region into 3 equal parts, do the start point selection in each separately, and then do border resolution, the
- sequential algorithm times dropped significantly and the speedups by the concurrent algorithm no longer

were greater than 3. Instead, they ranged from about 2 to 3.

From a theoretical point of view, it is known that one can do better than the straightforward O (N?)
algorithm for start point selection. Timmer [1984] shows that the spiral search technique of Bentley,
Weide and Yao [1980] can be applied so that the expected running time of the start point selection phase,
when totaled over all the iterations of the algorithm, is linear in the total number of sample points used.
We subseqpently implemented this technique in the manner suggested by Timmer. We found that it is
more efficient than the one stage divide and conquer strategy described above only for problems of very
small dimension. For example, with sample size 1000 and n=4, the time required by a 16 subdivision
divide and conquer algorithm is roughly equivalent to that required by spiral search, while when n=6 a 4
subdivision divide and conquer algorithm already is about as efficient as spiral search and a 16 subdivi-
- sion divide and conquer is about 4 times more efficient. Thus for our computational results on sequential
machines, we have chosen to use the one stage divide and conquer approach : when comparing to a P
processor concurrent algorithm, we use a sequential algorithm that also subdivides into P subregions in
the start point selection phase. (This accounts for the different times for the same sequential algorithms
in Tables 5.4 and 5.5.) Note that from a computational point of view, our research into concurrent global

optimization algorithm seems to have led to an improved sequential algorithm as well.

26

Tables 5.4 and 5.5 give the timed speedups of our concurrent global optimization algorithm using 4
and 8 processors, respectively. The differences between the times for the same sequential algorithms in
the two tables shows that they are dominated by the start point selection phase. In the two cases without
sample reduction, there often is almost a factor of two difference in the sequential times between Table
54 and\§‘5.5 . This is accounted for by the factor of nearly 2 reduction in the start point selection phase
when switching from the 4 subdivision to 8 subdivision sequential algorithm, as discussed above; the

times required by all other phases of the sequential algorithm are identical in the two cases but take a

small portion of the total.

The times for 4 processors without sample reduction show good speedup. This is especially true
with sample size 1000 where the speedups average about 3.6. In this case the start point selection phase
is dominant and is paralielized almost fully. Recall that this sample size is more indicative of the sample
size that \yould be used on most real-world problems. For sample size 200 the speedups are somewhat
less good, averaging about 2.8. Here the total running time has become small enough that the idle time in
the search phase and the small communications overhead begins to have an effect. When sample reduc-
tion is used, the speedups are a little lower still, averaging about 2.3 and 2.5 for the two sample sizes.
This reduction in speedup is caused mainly by the inefficiency in start point selection phase when sample
-reduction is used; the various subregions often turn out to have quite different reduced sample sizes and
thus all but one processor must wait until the processor with the most reduced sample points selects its
candidate start points. Recall that since the start point selection phase requires no function evaluations,
the algorithmic aspects that mainly determine these timing results will be irrelevant in the expensive

function results.

The speedups for 8 processors are still quite good with 1000 sample points and no sample reduc-

tion, averaging about 6.2. By comparison to the 8 processor line for this algorithm in Table 5.6, it is seen

27

that these speedups are fairly close to the expensive function limits. The reason is that with 8 processors,
the start point selection time per processor has become relatively small and the sampling and search
phases are beginning to dominate. The limit in the parallelism is caused by the small total number of

local searches (usually there are fewer than 8) and the unequal lengths of the searches.

The speedups for the other algorithms with 8 processors are not very good, averaging 3.0 for 200
points without sample reduction and 2.3 and 3.1 for the two algorithms with sample reduction. The main
reason for these results is that the run times are so small that the interprocessor communication overhead
and the idle times in the search phase have a large effect. Indeed, in the case of 200 points with sample
reduction, the run times with 8 processors are essentially the same as with 4 processors. A careful break-
down of these times showed that the increase in interprocess communication times when going from 4 to
8 processors was a few tenths of a second, and offset the small decreases that were possible in the sam-
pling, start point selection, and search phases of the algorithm. This demonstrates the limit to the grain of
parallelism that is effective in our multicomputer multiprocessing environment, and is simply a conse-

quence of the very inexpensive function evaluations.

The expensive function evaluation speedups for cach algorithm are given in Table 5.6. Note that
once we have run our global optimization algorithm on a particular problem with any particular number
of processors, we know the total number of iterations it will use, the total number of sample points it will
use, and the number and length of local searches it will perform at each iteration, regardless of the
number of processors. (There can be slight variations due to the stochastic effects and the effect of
requiring an equal number of sample points per subregion.) Thus, given the rule for ordering and distri-
buting local searches in the concurrent algorithm, we can calculate the expensive function speedup on this
problem for any other number of processors from equation (5.2). We use this flexibility to calculate

expensive function speedups, for each problem and algorithm, for 2, 4, 8, 16, 32, and 64 processors. (The

28

data from the 8 processor concurrent algorithm is used.) In addition, the speedup with the number of pro-
cessors equal to the number of sample points per iteration, 200 or 1000, is given. Since the number of
local searches per iteration is always far less than 200, the cost of an iteration of the concurrent algorithm
in this case is 1 (for the sampling phase) plus the number of function evaluations in the longest local
~search. This is the limiting speedup for this algorithm; i.e. if more processors were available the expen-

sive function speedup would not change.

For the algorithms with 1000 sample points per iteration, the expensive function speedups are rea-
sonably high, whether or not sample reduction is used. With 8 processors most problems make at least
80% utilization of the processors, with 16 processors the utilization is generally at least 60%, and even
with 32 processors the utilization is often around 50%. The limiting speedups (for 1000 processors) are
over 20 in most cases. Since the maximum parallelism in the local search phase is generally between 5
and 10, thé sampling phase is having a large effect; in the problem with the longest searches, Hartman 6,
the speedups are lower. The effect of sample reduction on the speedups is uneven; reducing the sample
tends to reduce the number of local searches which reduces parallelism, but the length of the longest

search sometimes decreases which increases the speedup.

When 200 sample points per iteration are used, the expensive function speedups are much lower,
- with limiting speedups between 5 and 10. In this case the sampling phase is a much smaller portion of
the algorithm and the local search phase dominates. The speedups are simply a reflection of the small
number of local searches. The concurrency in this case could be improved by parallelizing the individual

local searches; this is discussed briefly in Section 6.

Taken together, these results confirm that our concurrent global optimization algorithm is able to

exploit parallelism reasonably well, to the extent that it is available in the problem. The parallelism that

29

is possible is limited by the number of variables, the number of local minimizers, and the expense of the
function evaluations. It appears that it is possible to obtain good utilization of a moderate number of pro-
cessors even for problems with inexpensive function evaluations, and that quite effective use of multiple
processors can be made for problems with expensive function evaluations. Besides the inherent limita-
tions of the problem, the main deterents from achieving even higher speedups with the current algorithm
are the sequential nature of the individual local searches, and the imbalance in the start point selection
phase when sample reduction is used. In the next section we briefly discuss several techniques for intro-

ducing additional concurrency into the global optimization algorithm that deal with these problems.

30

Table 5.1 -- Test Problem Data

Problem Number of Number of
Name Abbreviation Variables Local Minimizers
Goldstein-Price GP 2 4
Branin BR 2 3
Hartman 3 H3 3 4
Hartman 6 H6 6 4
Shekel 5 S5 4 5

Shekel 7 S7 4 7

Shekel 10 S10 4 10

31

Table 5.2 -- Number Times Global Minimizer Found in 10 Runs

(8 processors)

Problem
GP BR H3 H6 S5 S7 S10
200 points per iteration, 10 10 10 10 8 6 6
no sample reduction
1000 points per iteration, 10 10 10 10 10 7 7
no sample reduction
200 points per iteration, 10 10 10 10 8 6 6
sample reduction to 100
1000 points per iteration, 10 10 10 10 10 7 7
sample reduction to 100

32

Table 5.3 -- Number of Function Evaluations, Averaged over 10 Runs

(8 Processors)

Problem

GP BR H3 H6 S5 S7 S10

200 points per iteration, 412 306 380 1522 487 469 447
no sample reduction

1000 points per iteration, 1420 1150 1213 | 3104 1395 1346 1375
no sample reduction

200 points per iteration, 376 261 307 658 327 330 327
sample reduction to 100

1000 points per iteration, 1112 1064 | 1161 1972 1177 1203 1884
sample reduction to 100

33

Table 5.4 -- Times and Speedups on 4 Processors, Averaged over 10 Runs
(times in seconds)
Problem

GP BR H3 H6 S5 S7 S10

200 points per iteration,
no sample reduction

Sequential Time 4.7 5.0 9.0 31.2 9.3 10.1 10.9
Concurrent Time 1.6 1.7 3.2 10.0 3.7 3.8 3.6
Speedup 29 3.0 2.8 3.1 2.5 2.7 3.0

1000 points per iteration,
no sample reduction

Sequential Time 142.2 | 152.1 184.0 | 3390 | 186.1 | 189.0 188.0
Concurrent Time 38.0 40.9 55.8 98.8 51.3 51.2 51.1
Speedup 3.7 3.7 3.3 3.4 3.6 3.7 37

200 points per iteration,
sample reduction to 100

Sequential Time 1.6 1.8 4.2 16.9 3.2 3.7 4.3
Concurrent Time 1.0 1.1 1.7 53 1.5 1.6 1.7
Speedup 1.6 1.6 2.5 3.2 2.1 2.3 2.5

1000 points per iteration,
sample reduction to 100
Sequential Time 4.0 4.0 9.1 243 6.3 7.5 17.0
Concurrent Time 1.8 2.0 3.7 7.9 2.5 2.8 5.2
Speedup 2.2 2.0 2.5 3.1 2.5 2.7 33

Table 5.5 -- Times and Speedups on 8 Processors, Averaged over 10 Runs
(times in seconds)

34

Problem
GP BR | H3 H6 S5 S7 S10
200 points per iteration,
no sample reduction
Sequential Time 2.7 3.1 5.1 27.7 6.0 6.5 6.9
Concurrent Time 1.2 1.2 1.7 5.8 2.2 2.3 2.2
Speedup 23 2.6 3.0 4.8 2.7 2.8 3.1
1000 points per iteration,
no sample reduction
Sequential Time 68.3 | 74.0 76.7 | 223.0 | 947 | 94.8 97.6
Concurrent Time 11.7 | 109 12.3 40.7 | 51.1 | 152 14.5
Speedup 5.8 6.8 6.2 55 6.3 6.2 6.7
200 points per iteration,
sample reduction to 100
Sequential Time 1.5 1.5 3.7 15.7 3.0 3.6 3.8
Concurrent Time 1.1 1.0 1.8 35 1.5 1.6 1.7
Speedup 14 1.5 2.1 4.5 2.0 2.3 2.2
1000 points per iteration,
sample reduction to 100
Sequential Time 4.0 4.0 9.1 23.5 6.3 7.6 17.4
Concurrent Time 1.9 2.0 2.9 5.5 2.0 24 4.5
Speedup 2.1 2.0 3.1 4.3 32 32 39

35

Table 5.6 -- Simulated Speedups for Expensive Function Evaluations

Averaged Over 10 Runs

Problem
Number of
Processors GP BR H3 H6 S5 S7 S10
200 points

per iteration, 2 1.9 1.9 1.9 2.0 1.8 1.8 1.9
no sample 4 34 3.5 3.3 3.6 2.7 3.0 3.1
reduction 8 4.6 5.0 4.8 6.1 3.5 3.9 4.1
16 54 6.4 5.7 8.6 4.1 4.6 4.8
32 5.9 7.4 6.3 9.6 4.4 5.1 53
64 6.1 8.0 6.6 9.8 4.6 5.3 55
200 6.3 8.4 6.9 | 10.0 4.8 5.5 5.7

1000 points
per iteration, 2 2.0 2.0 2.0 2.0 2.0 2.0 2.0
no sample 4 3.9 3.9 3.8 3.8 3.6 3.6 3.7
reduction 8 7.1 7.1 6.7 6.8 6.0 6.3 6.5
16 11.0 | 11.2 | 103 | 11.7 8.9 9.4 9.5
32 146 | 159 | 140 | 154 | 120 | 125 | 124
64 175 | 202 | 173 | 16.7 | 146 | 152 | 149
1000 214 | 27.0 | 21.6 | 18.1 | 18.3 | 18.7 | 179

200 points

per iteration, 2 1.9 1.9 1.9 1.9 1.9 1.9 1.9
sample reduction 4 33 3.4 3.0 3.2 3.0 3.3 3.1
to 100 8 4.4 5.0 4.0 4.3 4.1 5.1 4.1
16 5.1 6.7 4.8 4.9 4.9 6.6 5.0
32 5.6 7.9 5.3 5.1 54 7.1 5.6
64 5.9 8.8 5.6 53 5.7 7.4 5.9
200 6.1 9.4 59 5.3 6.0 7.7 6.2

1000 points
per iteration, 2.0 2.0 2.0 2.0 2.0 2.0 2.0

to 100 6.8 6.9 6.5 6.5 6.8 6.7 6.8
11.1 | 11.8 | 10.1 9.7 | 106 | 104 | 11.0
32 162 | 180 | 139 | 114 | 147 | 142 | 15.7
64 214 | 248 | 172 | 126 | 184 | 17.5 | 203
1000 29.9 | 37.0 | 21.7 | 13.8 | 23.7 | 22.0 | 27.7

2

sample reduction 4 3.8 3.8 3.8 3.7 3.8 3.8 3.8
8
6

36

6. Future research directions

The concurrent global optimization algorithm discussed in this paper appears to have two important
limitations. First, the amount of parallelism is limited by the number of local minimizations at each itera-
~tion and possibly by the distribution of their lengths. Secondly, the sampling effort is distributed uni-
formly over the entire feasible region regardless of the characteristics of the objective function. (This

limitation is shared by the sequential algorithm.) We are working on ways to overcome both limitations.

When function evaluation is expensive, one way to introduce more parallelism into the local
minimization phase of our algorithm is to distribute the gradient calculations (assuming they are done by
finite differences as is often the case) among various processors. This has the potential to increase the
parallelism obtained by up to a factor of n, although a speedup of about »/2 is the most one can expect if
each gradient evaluation is preceded by a function evaluation that is performed sequentially. If there arc
not enoughi“zprocessors to evaluate n function values for each local search simultaneously, then a stratégy
for ordering function and gradient evaluations is required, and this strategy may also be used to attempt to
give the longer local searches higher priority. We have conducted some preliminary tests of such a stra-
tegy on the test problems of Section 5. Our indications are that it can significantly increase the speedup
of the local minimization phase of each iteration, if function evaluation is expensive and the number of
processors significantly exceeds the number of local searches for that iteration. Further modifications,
including conducting function and gradient evaluations simultaneously before it is known whether the
gradient actually is needed and using multiple gradient values at an iteration, are currently being investi-

gated in the contexts of local and global minimization.

A second approach for obtaining more parallelism in global optimization is to move towards a

more asynchronous algorithm. By this we mean that there are fewer synchronization points where a task

37

on one processor cannot start until a task on another processor has completed. In our concurrent global
optimization algorithm, these synchronization points occur at the end of the start point selection phase
before the local minimization phase can begin, and at the end of the local minimization phase before the
next iteration can begin. One way to do reduce synchronization within the framework of a concurrent
multi-level single-linkage algorithm is to make cach subregion autonomous, meaning that it decides on its
own to conduct searches or whether to go on to the next iteration. Instead of the synchronization in our
present algorithm, in this approach a scheduler process distributes the local minimization tasks and sam-
pling / start point selection tasks that are generated. This approach also naturally permits work to be con-

centrated in subregions of greatest interest. We currently are developing such an algorithm.

Finally, there is an important need for more difficult global optimization test problems. We have
" begun to construct such problems ourselves by subdividing # dimensional regions into a large number
(say 2") of n dimensional subregions, and defining the objective function to be a separate function with
one local minimizer in each of these subregions. The resultant, overall function is discontinuous at the
boundaries of these subregions but this doesn’t adversely affect the global optimization algorithm since
local searches do not attempt to cross these boundaries. In our experience so far, the results of running
the concurrent algorithm described in this paper on such functions are as expected. Since there are con-
siderably more local searches than on the problems in Section 5, it is possible to achieve higher parallel-
ism in the search phase and overall. The real need, however, is for more difficult test problems drawn

from actual applications.

38

7. References
R.S. Anderssen [1972], "Global optimization," in R.S.Anderssen, L.S. Jennings and D.M. Ryan (eds.),
Optimization (University of Queensland Press).

C.G.E. Boender [1984], "The gernalized multinormial distribution: a Bayesian analysis and applications,"
Ph.D. thesis, Econometric Institute, Erasmus University, The Netherlands.

C.G.E. Boender and A.H.G. Rinnooy Kan [1983], "Bayesian stopping rules for a class of stochastic glo-
bal optimization methods", Technical Report, Erasmus University Rotterdam, The Netherlands.

C. G.E. Boender, A. H. G. Rinnooy Kan, L. Stougie, and G. T. Timmer [1982], "A stochastic method for
global optimization", Mathematical Programming 22, pp. 125-140.

F.H. Branin [1972], "Widely convergent methods for finding multiple solutions of simultaneous nonlinear
cquations”, IBM Journal of Research Developments pp. 504-522.

F.H. Branin and S.K. Hoo [1972], "A method for finding multiple extreme of a function of n variables",
in Numerical Methods of Nonlinear Optimization, F.A. Lootsma, ed., Academic Press, London.

S.H. Brooks [1958], "A discussion of random methods for seeking maxima", Operations Research 6, pp.
244-251.

J. E. Dennis Jr. and R. B. Schnabel [1983], Numerical Methods Jor Nonlinear Equations and Uncon-
strained Optimization, Prentice-Hall, Englewood Cliffs, New J ersey.

C. L. Dert [1986], "A parallel algorithm for global optimization", Masters thesis, Econometric Institute,
Erasmus University, The Netherlands.

L. Devroye [1979], "A bibliography on random search", Technical Report, McGill University, Montreal.

L.C.W. Dixon and G.P. Szego (eds.) [1978], Towards Global Optimization 2, North-Holland, Amster-
dam.

JB.E. Frenk and A.H.G. Rinnooy Kan, "The asymptotic optimality of the LPT rule", Mathematics of
Operations Research (to appear).

T. J. Gardner, I. M. Gerard, C. R. Mowers, E. Nemeth, and R. B. Schnabel [1986], "DPUP: A distributed
processing utilities package", Technical Report CU-CS-337-86,

P.E. Gill, W. Murray and M. H. Wright [1981], Practical Optimization, Academic Press, London.

39

A.A. Goldstein and J.F. Price [1971], "On descent from local minima", Mathematics of Computation 25,
pp. 569-574.

E.R. Hansen [1980], "Global optimization using interval analysis -- The multidimensional case", Numeri-
cal Math 34, pp. 247-270.

E.R. Hansen and S. Sengupta [1980], "Global constrained optimization using interval analysis", in /nter-
val Mathematics, K. Nickel, ed., Academic Press.

A.V. Levy and S. Gomez [1985], "The tunneling method applied to global optimization", in Numerical
Optimization 1984, P.T. Boggs, R.H. Byrd and R.B. Schnabel, eds., SIAM, Philadelphia, pp. 213-244.

A.V. Levy and A. Montalvo [1985], "The tunneling algorithm for the global minimization of functions", i
"SIAM Journal on Scientific and Statistical Computing" 6, pp. 15-29.

J.T. Postmus, A.H.G. Rinnooy Kan, and G.T. Timmer [1983], "An efficient dynamic selection method",
Communications of the ACM, 26 pp. 878-881.

W.L. Price [1978], A controlled random search procedure for global optimization", in Dixon and Szego
[1978].

A.H.G. Rinnooy Kan and G.T. Timmer [1984], "Stochastic methods for global optimization", to appear in
the American Journal of Mathematical and Management Sciences.

AH.G. Rinnooy Kan and G.T. Timmer [1985a], "A stochastic approach to global optimization,” in

Numerical Optimization 1984, P. Boggs, R. Byrd and R.B. Schnabel, eds., SIAM, Philadelphia, pp. 245-
262.

A.H.G. Rinnooy Kan and G.T. Timmer [1985b], "Stochastic global optimization methods -- Part I: clus-
tering methods," Report 85391A, Econometric Institute, Erasmus University, The Netherlands.

A H.G. Rinnooy Kan and G.T. Timmer [1985c], "Stochastic global optimization methods -- Part II:
multi-level methods," Report 85401A, Econometric Institute, Erasmus University, The Netherlands.

G. Th. Timmer [1984], "Global optimization : a Bayesian approach,” Ph.D. thesis, Econometric Institute,
Erasmus University, The Netherlands.

C. L. Seitz [1985], "The cosmic cube", Communications of the ACM 28, pp. 22-33.

B.O. Shubert [1972], "A sequential method secking the global maximum of function”, SIAM Journal on
Numerical Analysis 9 pp. 379-388.

40

F.J. Solis and R.J.E. Wets [1981], "Minimization by random search techniques”, Mathematics of Opera-
tions Research 6, pp. 19-30.

G.W. Walster, E.R. Hansen, and S. Sengupta [1985], "Test results for a global optimization algorithm", in
Numerical Optimization 1984, P. Boggs, R.H. Byrd and R.B. Schnabel, eds., SIAM, Philadelphia, pp.
272-287.

R. Zielinski [1981], "A stochastic estimate of the structure of multi-external problems", Mathematical
Programming 22, pp. 104-116.

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDA-
TIONS EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE
AUTHOR AND DO NOT NECESSARILY REFLECT THE VIEWS OF THE
NATIONAL SCIENCE FOUNDATION.

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN
OFFICIAL DEPARTMENT OF THE ARMY POSITION, UNLESS SO DESIG-
NATED BY OTHER AUTHORIZED DOCUMENTS.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORY NUMBER 2. GOVY ACCESSION NO.| 3 RECIPIENT'S CATALOG NUMBER
CU-CS-338-86 N/A

4. YITLE (mnd Subtitlie) 5. TYPE OF REPORT & PERIOD COVERED

Concurrent Stochastic Methods for Global

Optimization -
6§ PERFOHMING ORG. REPORT NUMBER
7. AUTHOR(s) ‘ 8 CONTRACT OR GRANT NUMBER(S)
Richard H. Byrd Robert B. Schnabel

Cornelius L. Dert DAAG-29-84-K~0140

Alexander H.G. Rinnooy Kan

9. PERFORMING ORGANIZATION NAME AND ADDRESS 0. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBE RS

. CONTROLLING OFFICE NAME AND ADDRESS 2. REPORT DATE
U. S. Army Research Office
Post Office Box 12211 '3, NUMBER OF PAGES
Research Triangle Park, NC 27709 40

T4 MONITORING AGENCY NAME & ADORESS(/{ di{ferent (rom Controlling Oftice) 1S. SECURITY CL ASS. (of thie report)

Unclassified

'Sa. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

6. DISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited.
y

'7. DISTRIBUYION STATEMENT (of the abetract entered in Block 20, it difterent from Report)

NA

18. SUPPLEMENTARY NOTES
The view, opinions, and/or findings contained in this report are those of the
autbor(s) and should not be construed as an official Department of the Army
Posttion, policy, or decision, unless so designated by other documentation.

19

KEY WORDS (Continue on reverse aide If necessary and fdentily oy oiock n\mo&)

global optimization, parallel, concurrent, stochastic, network of computers

20. ABSTRACT (Corttns oz reverss stdy i/ neceecary aod iderue!(fy by biock number)

See Attached.

F ORe
DD |23 1473 eormow oF 1 wov 6815 oBsoLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF TMIS PAGE (Whens Date Enterad)

