On limitations of
transformations between
combinatorial problems

L
William Slough' and Karl Winklmanni

CU-CS-336-36 July 1986

Department of Computer Science, University of Missouri, Columbia, Missouri 65211 Work of this author was
supported in part by a Chevron Fellowship while he was at Washington State University. Some of the results reported
in this paper were obtained while this author was completing his PhD thesis under the direction of the second author
at Washington State University.

" Department of Computer Science, University of Colorado, Boulder, Colorado 80309. Work of this author was
supported in part by National Science Foundation Grants MCS-80004128, DCR-8202964, and DCR-8500741 and by
Grant -A-0369 of the Natural Sciences and Engineering Research Council of Canada and was conducted partly at
Washington State University and at the University of Alberta.

ABSTRACT

We define a class of “‘local transformations’” that includes many transforma-
tions from the NP-completeness literature. We then prove (without assuming
P+#NP) that this type of transformation is too weak to transform 3SAT or a
number of other NP-complete problems into 2SAT or a number of other prob-

lems in P. The proof uses concepts related to distributed computing.

(8

1. INTRODUCTION AND OVERVIEW

Let Il be an NP-complete problem and let [’ be a problem in P.
Then P#NP is equivalent to the statement that there is no polynomial-time
reduction, in the sense of Cook (1971), of I to [I". While a proof of P#NP, ie.,
a proof of nonexistence of polynomial-time reductions of Il to I’ for such a pair
of problems [l and [I’, seems to be beyond the reach of current techniques,
nonexistence results for interesting subclasses of polynomial-time reductions can
be proven, as we will show.

We formally define a class of “local transformations’” and then prove
that 3SAT, VERTEX COVER, and a number of other NP-complete problems can-
not be “locally transformed’” into 2SAT or a number of other problems in P.
(For definitions of these and other problems we refer the reader to Garey and
Johnson (1979).) This class of “local transformations” includes many transfor-
mations from the NP-completeness literature, especially transformations that
fall into the intuitive categories of ‘‘local-replacement transformations” and
“component-design transformations™.

This result is proven by showing that these transformations preserve
what we call “surface complexity”. This “surface complexity’’ is closely related
to the “communication” complexities of Yao (1979) and of Papadimitriou and
Sipser (1984). Thus, the proof of our main result demonstrates that concepts
from the theory of distributed computing can be used to obtain results in the
theory of NP-completeness, an observation which partly motivates this work.

The rest of this paper is organized as follows. Section 2 defines
“local transformations’”. Section 3 proves the main result for this fairly simple
class of transformations. Section 4 extends the class of transformations in ways
which capture substantially more transformations but do not spoil the proof of

the main result.

2. LOCAL TRANSFORMATIONS: DEFINITIONS
2.1. Motivation

Many of the transformations used in NP-completeness proofs in the
literature are of a “‘local” flavor: they can be carried out without ever looking
at the whole problem instance that is to be transformed; instead it suffices to
“slide a window’’ over the instance and to transform whatever ‘‘local’” piece is
visible in the window at any moment. This “‘local’”’ nature is especially prom-
inent in those transformations that have been called ‘local-replacement
transformations” or ‘“‘component-design transformations’’. The following infor-
mal characterization of local-replacement transformations is from Garey and

Johnson (1979):

“All we do is pick some aspect of the known NP-complete problem
instance to make up a collection of basic units, and we obtain the
corresponding instance of the target problem by replacing each
basic unit, in a uniform way, with a different structure.” (Garey
and Johnson (1979), p. 66, original italics.)

The transformations we consider apply to those combinatorial problems which
involve graphs, sets, and Boolean expressions. In the rest of this section we give
a formal definition of a class of “‘local transformations’”. This class includes
only a handful of transformations from the NP-completeness literature, but is
extended in Section 4 to include many more. This two-stage approach allows
the essentials of the proof of the main result to be presented without an exces-
sive amount of technical clutter. Afterwards, it will not be difficult to argue

that the class can be extended in ways which do not spoil the proof.

2.2. Local transformations between graph problems

The “basic units’’ mentioned above are vertex-induced subgraphs of
the graph to be transformed. An especially simple example is the transforma-
tion of VERTEX COVER to FEEDBACK ARC SET of Karp (1972), which is illus-
trated in Figure 1. In this example the “basic units’’ are the edges of the origi-
nal graph. Figure 2 shows a ‘“‘local-replacement rule’” that defines this transfor-

mation.t Figure 3 provides another example.

Any set .\ of such “local-replacement” rules defines a transformation

T

 on graphs. A graph G is transformed by applying each rule L—R of A to

every vertex-induced subgraph of G which is isomorphic to the left-hand side,

L, of the rule. All of this is made precise below.

A (finite, directed) graph G is a pair <V, A> where V is a finite set
and A is a binary relation on V. Elements of V are called vertices of G and
elements of A are called arcs of G. We use V to denote the set of vertices of
a graph G and A, to denote its set of arcs. The uniton G U H of two graphs G

and H is the graph <V, UV, A,UAy>. Two graphs G, and G, are 150-

morphic, G =G, if there is a bijection Y:V, — V. with A, =
“ 1 2 2

{<(u), Y v)>: <u,u>EA, }. Such a bijection ¥ is called an isomorphism

. .

from G| to G,. An automorphism on a graph G is an isomorphism from G to

itself. A path from a vertex u to a vertex v in a graph G is a sequence

U8y Vg Gy, © 70U with u=v,, v=v v,eV, for 1<i<k+1, and

aiEAGm{<vi’U;’+1>’<U"

1

v, >} for 1<i<k. The length of such a path is k.

+17

1 Strictly speaking, the transformation defined by this rule differs slightly from the one given in Karp (1972) by
ignoring isolated vertices. A second rule, with a single vertex as left-hand side, would make the two transformations
agree in their treatment of isolated vertices. For the correctness of the transformation, this is irrelevant.

U

Uy C

vy)Ty
v % >

Uy)T

w

1
wQ/

Wo

Figure 1.

Transforming VERTEX COVER to FEEDBACK ARC SET (Karp 1972).

a, b,
a O——Ob

Figure 2.
A local-replacement rule for transforming VERTEX COVER to FEEDBACK ARC SET.

a O—0Ob .__> a(Db

Figure 3.
A local-replacement rule for transforming VERTEX COVER to DOMINATING SET.

Note that the direction of an arc is of no concern in this definition of a path.
The distance between two vertices of a graph is the length of a shortest path
between the vertices. If no path exists the distance is regarded as infinite. The
diameter of a graph J is defined to be the largest distance between any two ver-

tices of J. The diameter of a disconnected graph J is infinite.

The set Vcomp of composite labels over an alphabet V is built up
inductively from V by forming sets. Formally, mep is the minimal set satisfy-

ing

(1) VgV __ ;and

comp

(2) if Sc Vwmp then S€ Vwmp.
Since sets can be used to encode other mathematical constructs, we may pre-

tend that, e.g., if V={a,b,c, * ** } then contains not only a, {a}, {a,c},

comp
@, {o}, {{a,b,c},of -+, but also a, <a,b>,0,1, avbv ¢, and any other
type of standard or non-standard mathematical construct and notation that we

might find useful. The function components:Vwmp — 2" is defined inductively

by

(1) components(v) = {v} for all ve€V; and

(2) components(S) = \Ucomponents(s) for all S€ Vcomp—V
SES

(To prevent confusion, we will avoid letting @ and a, denote two elements from
V, since this would make a, denote two different objects: the element of V that

is denoted by a. as well as the element of Vcomp—V that is obtained by putting

1

a subscript 1 on the element of V that is denoted by a.)

-6 -

Any function @ from an alphabet V to an alphabet V' naturally

induces a function — V! omp defined by

comp’ " comp 4

(1) d)camp(u) Y(v) for all v€V; and

() ,,,,(5) = {1

comp

camp(s) :5€5} forall €V, =V

A local-replacement rule is a pair L —R of graphs such that L is con-

nected and VR (v

L)comp’ A local-replacement rule L —R is applicable to a

graph J if L=J. The result of applying a local-replacement rule L —R tfo a
graph J with respect to an isomorphism ¥ from L to J is the graph K defined

by

Vg = {1/)wmp(v) tveV, }
and

AK = {<wcomp(u)’d)cgmp(v)> : <u,U>€ AR }-

Since we want transformations to be well-defined functions, the result of the
application of a rule L —R to a graph J should be independent of the choice of
isomorphism ¥ from L to J with respect to which the rule is applied. Local-
replacement rules that have this property are called deterministic. The follow-

ing observation characterizes them.

OBSERVATION 1 (Slough 1984). A local-replacement rule L —R is deterministic

if and only if for every automorphism % on L, ¥ is an automorphism on K.

b
“comp

A set \ of local-replacement rules is deterministic if each rule in \ is deter-

ministic and no two rules in \ have isomorphic left-hand sides. The

P
- -

transformation induced by a deterministic set \ of local-replacement rules is the

function 7, defined by

T,\(G) = U r_\(*[)
J

where the union is taken over all vertex-induced subgraphs J of G and where
r (J), for any graph J, denotes the (unique) result of applying a rule of \to J.
(Since A is deterministic, at most one rule of .\ can be applicable to any given

graph J. If no rule of .\ is applicable to J we let r (J) be the empty graph.)

OBSERVATION 2. Let G be a graph, let \ be a deterministic set of local-

replacement rules, and let v be a verter of T (G). Then components(v)CV,..

A transformation 7 of one graph problem into another is a local transformation
if =7, for some finite deterministic set .\ of local-replacement rules with the
property that the left-hand sides of all rules are connected graphs. (This con-

nectivity ‘gives 7, its local character.) We write [1 X ocal [l” to indicate that a

\

local transformation of [I into [1’ exists.

OBSERVATION 3 (Slough 1984). Let G and G' be two isomorphic graphs, let
1 Vo=V be an isomorphism from G fo G', and let T be a local transformation.

Then pbmmp, restricted to Vr(G), is an isomorphism from 7 G) to M G').

In various graph problems, an instance of the problem consists of a graph and
‘an integer, as in VERTEX COVER and GRAPH k-COLORABILITY, for example.
We extend our notion of local transformations to such problems by insisting

that the “graph portion’ of the transformation be a local transformation in the

-8 -

sense defined so far and by allowing the integer in the transformed instance to
be determined by any function of the original integer (if present) and of the

number of vertices and the number of edges in the original graph.

2.3. Local transformations involving set problems

3-DIMENSIONAL MATCHING (3DM) is one of the six “basic” NP-
complete problems considered in Garey and Johnson (1979) and is frequently
used to prove NP-completeness results. The class of local transformations, as
defined ‘in Section 2.2, does not include transformations involving 3DM for the
superficial reason that it is not a graph problem. However, an instance of 3DM,
which consists of three sets W, X, and Y of equal cardinality and a set
McWxXxY, may be viewed as a graph problem, not an uncommon view (see
Dyer and Frieze (1986), for example). Given such a representation, the
definition of local transformations between graph problems apply directly. To
be specific, let us choose the representation illustrated in Figure 4. For this to
work, it is necessary to make a distinction between vertices which represent ele-
ments from each of W, X, Y, and M. This could be achieved by “tagging’’ the
four types of vertices in different ways with additional vertices and edges.
Instead, we allow different types of vertices, shown in Figure 4 as circles, trian-
gles, diamonds, and boxes. Naturally, isomorphisms, which govern the applica-
tion of local-replacement rules, must not map vertices of one type to vertices of
another.

Instances of other kinds of set problems can be given a graph
representation in an obvious way. For example, EXACT COVER BY 3-SETS
(X3C), a generalization of 3DM, has a graph representation similar to that just

described with the exception that there are just two types of vertices, boxes and

-9 -

Jw,

) w,

Figure 4.

A graph representation for an instance of 3DM where W={w,, Wy

Y:{yly yg}y and *‘V[:{(wli Lo, yl)) (U)l, Ty, yg)) (wgy Zys yg)}

circles, corresponding to sets and elements, since there is no distinction between
the elements to be covered.

The transformation from X3C to PARTITION INTO TRIANGLES, as
described in Garey and Johnson (1979), pp. 68-69, is a prototypical example of a
local replacement transformation. The basic units involved in the transforma-
tion are the 3-element subsets in an X3C instance. This transformation may be
described using a single local-replacement rule, shown in Figure 5.

As was noted in Section 2.2, on occasion a transformation must pro-
duce an integer in the transformed instance. When this is necessary, a local
transformation involving set problems is free to use any function of the original
integer (if present) and the numbers of vertices of the different types and the

number of edges in the original instance.

2.4. Local transformations involving Boolean expressions

Transformations of 3SAT into other combinatorial problems typically
are of the “component-design’ variety: they construct a ‘‘truth-setting” com-
ponent for each variable and a ‘satisfaction-testing” component for each
clause. As an example, consider the transformation of 3SAT into VERTEX
COVER from Garey and Johnson (1979), pp. 54-56, illustrated in Figure 6. (This
is not the same transformation as the one in Karp (1972) via the CLIQUE prob-
lem.) In this transformation, each variable z of a Boolean expression E gets
transformed into twé adjacent vertices labeled r and z, and each clause C=(l,v

v 13) gets transformed into a 3-clique of vertices labeled ZIC, [,ZC, and [SC.

[

2

Finally, for every variable r and every clause C, the vertex labeled z gets con-
nected with every vertex labeled rc, and similarly the vertex labeled z gets

" -C . . =
connected with every vertex labeled z . The Boolean expression £ is satisfiable

- 10 -

Figure 5.

A local replacement rule for transforming X3C to PARTITION INTO TRIANGLES.

Figure 6.
Transforming 3SAT to VERTEX COVER (Garey and Johnson 1979). The dark

vertices form a vertex cover that corresponds to the satisfying assignment

(£, 7y Ty z,) = (true, true, false, false).

if and only if the graph thus constructed has a vertex cover whose size is the
number of variables in E plus twice the number of clauses. Choosing to make
variable z of E true corresponds to choosing the vertex labeled z to belong to

the vertex cover of the graph.

In a fashion analogous to the graph representation of set problems
discussed above, we choose some straightforward representation of Boolean
expressions in conjunctive normal form as graphs, illustrated in Figure 7. It is
convenient to use different types of vertices to represent variableé and clauses,
and different types of edges to indicate whether a variable occurs negated or
nonnegated in a clause. Naturally, isomorphisms, which govern the application
of local-replacement rules, must preserve types of edges as well as types of ver-
tices. With this graph representation of Boolean expressions in conjunctive nor-
mal form, the transformation of 3SAT to VERTEX COVER that was illustrated in
Figure 6 can be defined by a set of four local-replacement rules, which is shown
in Figure 8. (We are assuming that each clause has exactly three literals and
that no variable appears twice in a single clause. The four rules handle the

cases of 0, 1, 2, and 3 negations in a clause.)

If it is necessary for a local transformation to produce an integer in
the transformed instance, it is free to use ziny function of the original integer (if
present) and the numbers of vertices of each type and the numbers of edges of

each type in the original graph.

- 11 -

Figure 7.

A graph representation of the Boolean expression C A Cy A C,= (_zl VoI,V Is) A

(Zlv53vr4)A(fzvz3vf4).

z y 2 T z Yy y z z
@) (i (Y——“)/)———"O
C
Y
C . C\(A 2C

T z
<>——~—<\
C
I
y T T y y z z
O O— ¢ D —0
C
y
C xC, ZC
T T y y z z
C
Y
C C
Iz yA

Figure 8.
Local-replacement rules for transforming 3SAT to VERTEX COVER.

3. LoCcAL TRANSFORMATIONS: RESULTS
3.1. Surface complexity

Let [T be a set of graphs and let S be a set of vertices. We call two
graphs G and G' S-equivalent (with respect to I1), G z[”[q G’ if for all graphs H

with VGﬂVHQS and VG,OVHQS,
GuUHEIL iff G'uHEIL

A graph H is said to demonstrate the inequivalence G= gG’ if VonVycS and
VanVycs and exactly one of GUH and G'UH is in [I. Figure 9 provides an
illustration. If the instances of [l include an integer, then two graphs G and G’
are S-equivalent (with respect to Il), G Eg G', if for all graphs H with

VanVycS and Vi,nVECS and all integers k,
<GUH k>l iff <G'UH k>€ll.

With this type of graph problem, a graph H and integer k are said to demon-
strate the inequivalen‘ce G= {SIG’ if VonVgcS and VnVycS and exactly one
of <GUH,k> and <G'UH,k> is in [I. For either type of graph problem II, the
surface complezity (,T“(s) of [l is the binary logarithm of the number of
equivalence classes induced by the relation sﬁq, where S is any fixed set of s
vertices. This also defines surface complexity for any problem for which a
graph representation has been defined, as was done for families of sets and for
Boolean expressions in conjunctive normal form in Section 2. (There are prob-
lems Il for which the relation z[b; induces infinitely many equivalence classes.

One such problem is GRAPH AUTOMORPHISM. For all of the specific problems

S 192 -

-

(Oz,
G, < Oz,
(ER
Il(
z,(Hl
)T, T,(
Gz ()T,
()z,
4%
ng . Y H
>'—"'“"<)I3 ZE9< 2
(}Z_()xl
G DER

' Il(>r> H
GS (iz)xz Zy(3
e

Figure 9.
[lustrating the definition of zﬁ for TT = GRAPH 2-COLORABILITY and S =
, . oS

| through Gy is GL:HGQ.S i,

: : S S i S,
demogstrates the mefquwalences Gox,G, G= G, Go=G; Gy \5‘63’
Gy G, and G # !”(;GS. H, demonstrates the inequivalences G %Gy,

S S S v S . S .
GG,y Gox (G, G |Gy, GGy, and G =, G,. H, demonstrates the

2

{:z:l,:z:Z,a:g}. The only equivalence among G

same inequivalences among (/| through G as H,.

. . . S
[l mentioned in our results, the number of equivalence classes of = and hence

o4(s) are always finite.)

Surface complexity can be given the following computational
interpretation, which shows its connections to ideas from the theory of distri-
buted computing. Assume that a pipeline of two processes, process A followed
by process B, solves problem |l for graphs which have a vertex cutset that is a
subset of {vl, ce ,vs} and assume that the graphs are cut along this cutset
into two graphs, G and H, with process A receiving (an encoding of) G as
input and process B receiving (an encoding of) H (as well as an integer if the
instances of [l involve integers). Figure 10 provides an illustration. Process A
cannot afford to send the same message to process B for two inequivalent
graphs G and G’ because B might receive on its other input line a graph H
which demonstrates the inequivalence of G and G'. Conversely, process A can
afford to send the same message to B for any two equivalent graphs G and G'.
Thus, an optimal process A4, i.e., one that minimizes the number of bits sent in
a worst case, would tell B which equivalence class G belongs to, but nothing
more. Hence, the number of bits that process A has to pass on to process B, in

a worst-case instance with cutset {v *,v,}, is the surface complexity oy(s),

b
rounded up to the nearest integer. Thus, our surface complexity T is related
to the ‘“deterministic one-way’’ complexity of Yao (1979) and the one-way
“communication complexity’’ of Papadimitriou and Sipser (1984). A major
difference between o and both of these ‘“‘one-way complexities” is that T is a
function of surface size, not of problem size. This is crucial because only when
surface complexity is defined as a function of surface size do there exist
exponential differences such as the ones illustrated in Lemmas 2 and 3 below,

which will allow us to prove limitations of local transformations. Lakshmipathy

and Winklmann (to appear) investigate a complexity measure that is essentially

- 13 -

fcr‘[(s)] bits of

information about ¢

——— (GUH)ELL?

Figure 10.

A computational interpretation of fTH(s).

a two-way version of ;.

LEMMA 1. For all graph problems [l and all s>0, o,(s+1)20(s).

PROOF. G= gG' always implies G = [‘?'{”}G’ because any H which demonstrates

S‘\»{"}Gl.

the inequivalence G:+£G' also demonstrates the inequivalence G= |
(This can easily be verified from the definition of sg: VonV4SS and
VonVyeS trivially imply V,NnVycSuiv} and VN VycSu{v} and the state-
ment GUHEIl f G'UHEll does mnot involve S.) Hence the number of

equivalence classes of Eg cannot be smaller than the number of equivalence

classes of E[Sl .

In the following, 2-COLOR is an abbreviation for GRAPH 2-COLORABILITY.

LEMMA 2. = .
] O2—-COLOR(S) O(slogs)
PROOF. Consider the computational interpretation of o (s) given above. How

many bits of information are sufficient to determine the equivalence class of

s

=, coLop to which a graph G belongs? It is sufficient to know if G is 2-

colorable and, if so, which pairs of vertices in SNV, are connected in G by
paths of even lengths, which ones by paths of odd lengths, and which ones by
no paths at all. If S, and hence SNV, contains at most s vertices, this infor-
mation about paths can be packed into O(slogs) bits in the following fashion.
Being connected via an even-length path is an equivalence relation on SNV,
whose equivalence classes can be listed using O(slogs) bits. Since vertices from
any one of these equivalence classes can be connected via an odd-length path to
vertices in at most one other class, another O(slogs) bits suffice to indicate

which classes are thus connected. The lemma follows. O

- 14 -

LEMMA 3. o (s) =2,

3SAT
PROOF. For any Boolean expression E let V, denote the set of variables occur-
ring in £ and define an assignment g:S — {true,false} to be acceptable to E
if there is an assignment a,:Vy,—S — {true,false} (I for “interior”) such that

g Vg — {true,false } defined by

as(v) if veV,ynS,

gu(v))
a(v)if veVy—=S

satisfies E. Then two Boolean expressions E and E' are S-equivalent (with
respect to satisflability) if for all ag:S — {true,false b Qg is acceptable to E if
and only if it is acceptable to E'. For every set A of assignments o, there is a
Boolean expression E, in 3-cnf to which exactly the assignments in A are
acceptable. £, can, for example, be obtained by first constructing a Boolean
expression in disjunctive normal form which has one clause for each assignment
@, in A and to which exactly the assignments in A are acceptable, and then
converting this expression to 3-cnf with the same satisflability properties, using
standard techniques (see, e.g., Hoperoft and Ullman (1979), Theorems 13.2 and

13.3). Note that the size of the expression E, is of no concern since oy is not a

58
function of size. Since there are 2° different such sets A, the lemma fol-

lows. O

Lemmas 2 and 3 show that there is an exponential gap between the surface
complexities of 3SAT and GRAPH 2-COLORABILITY. We will show that local
transformations cannot bridge such gaps. It will be helpful to further restrict

3SAT to instances in which each variable occurs in at most d clauses, for some

- 15 -

constant d. Such a ‘‘degree-bound’ does not affect the surface complexity of

3SAT. This is stated in the following lemma.

LEMMA 4. gBSAT,sz(S) =27,

PROOF. In the graph representation of a Boolean expression in 3-cnf each
clause is represented by a vertex of degree 3, and each variable is represented
by a vertex whose degree is equal to the number of occurrences of that variable
in the expression. By introducing new variables, plus new clauses that force
these new variables to be equivalent to old ones, the number of occurrences of
any one variable, and hence the degree of any vertex in the graph representa-
tion, can be brought down to 9 (and even down to 5 if one allows clauses with

fewer than three literals). The surface complexity is not affected by this. O

3.2. Limitations of local transformations

A function o:IN—IN is at least ezponential if there is a constant

¢>1 such that o{s)>¢® for all but finitely many values of s.

LEMMA 5. Let Il be a degree-constrained graph problem whose surface complez-

ity o, is at least exponential and let [I' be a graph problem with [l < [,

=local

Then oy ts at least exponential.

PROOF. To describe the idea of the proof it helps to assume for a moment,

- 16 -

falsely, that 7 (GUH) = 7,(G)u 7, (H) for all graphs G and H.? Claim 1 will
show that this assumption is, in fact, quite close to being true. Consider two
graphs G and G’ with G = IS[G'. There must be a graph H which demonstrates

this inequivalence of G and G'. From our (false) assumption, it follows easily

S

that 7 (H) demonstrates the inequivalence 7,(G) = i T (G), for some set S

which is not too much larger than S and which depends on S and .\ but not on
G or G'. Thus, nonequivalence is preserved by 7,, which implies that the
number of equivalence classes does not decrease in the transformation 7,. A
weaker (but true) version of this will be stated in Claim 3. We also need to

show that S is not too much larger than S. This is stated in Claim 2.

As defined earlier, the diameter of a connected graph J is the largest
distance between any two vertices of J. The k-neighborhood of a vertex v in a
graph G, denoted by Né.(v), is the subgraph of G that is induced by the set of
those vertices of G whose distance to v is &k or less. The k-neighborhood of a

set S of vertices in a graph G, denoted by Né(S), is defined to be UN(k;(v)

vES

Let A\ be a deterministic set of local-replacement rules such that 7, is a
transformation of IT to [1". Let £ be the largest diameter of any left-hand side
of a rule in A. Let s>1, let S = {vl, SR ,vs} and let G be a collection of
graphs with oy (s)=log,| G| such that G % [5; G' for all G, G'eG with G=G'. (In
other words, G contains exactly one representative from each equivalence class

S
of z”.)

2 This assumption is false in general because some rule of \ may be applicable to a subgraph J of GUH which
is neither a subgraph of G nor a subgraph of H. It is true for local transformations \ in which all left-hand sides of
ruies are complete graphs, e.g., transformations which use a single edge as left-hand side of their only rule such as the
transformations of Figures 2 and 3.

CLAIM 1. Let G and H be two graphs with V NV,CS. Then

T (GUH) = r(G) U T (NS S)UH).

PROOF OF CLAIM 1. Let J be a vertex-induced subgraph of GUH to which a
rule of \ is applicable. We need to show that J is a vertex-induced subgraph
of at least one of the graphs G and Ng*I(S)UH. Assume otherwise. Since J is
not a vertex-induced subgraph of G, it must have a vertex u€& Veor—Ver andk
similarly, since J is not a vertex-induced subgraph of Né—l(S)UH, it must have

a vertex vEVGUﬁ—V The distance between two such vertices u and v

NE Y SwE"
is greater than k, i.e. greater than the diameter of any left-hand side of a rule

of \, which contradicts the assumption that some rule of \ was applicable to

J. Figure 11 provides an illustration. O

Let d be the bound on the degrees of vertices in instances of [l and let
s'=sxd®. Then ‘ VNéfI(S)l <s' for all graphs G in G. By renaming vertices if
necessary, we may assume that the vertices of Né_l(S) all belong to the set S’
= {v,, -+ v,y for all graphs GEG. Define S, ={v : v€ Vo for some graph J

and components(v)cS'}.

OBSERVATION 4. 15"\1 <cx| S!| =cxs!, where ¢ is a constant that depends only

on \.

CLAIM 2. Let GEG and let H be a graph with V nVycS. Then

)ﬂV gS_\.

(G r (Vg (S)uH)

PROOF OF CLAIM 2. To arrive at a contradiction, assume that there exists a

- 18 -

Figure 11.

Iustrating the proof of Claim 1. The shaded area is ‘*2—1(5).

vertex ve& Vr\(G)ﬂ Vr\(Nf;“‘(S)uH) with v€S . By the definition of S, this implies

that components(v)S'. Let z be an element of components(v)—S'. Since

UEVT\(G), we have z€V, (by Observation 2), and similarly, since

!

vEV we have z€V 4 . Henpe IE(VGQVN@”‘(S)L_;H)“S

r (Vg N(S)uH) N (S)uH

(VonVy)=S"c (V,nV,)—S, contradicting the assumption that VonVycsS. O

CLAM 3. Let G,G'SG with G+G' and N&'(S)=Ng '(S). Then

PROOF OF CLAIM 3. Let H be a graph which demonstrates the inequivalence

G=S G'. Claim 1 and the fact that Nj; '(S) = N (S) together imply that

T (GUH) = r‘\(G)urA\(Ng'l(S)uH)
and
r(GUH) = 7,(G) U (Ng (S)UH).

Since T, is a transformation from [l to [I’, exactly one of these two graphs is in

A
[['. By Claim 2,

nv cs

r(Ne H(S)uH) \

and

NV c S.\.

r(Ng (S)uA)

Hence, by definition, T_\(G)$[1}\ T.(G'), as demonstrated by the graph

T,\(NkG‘ﬁI(S)UH) u

Since the vertices of Ng—l(S) all belong to S' = {Ul’ - ,vs,} for all graphs G in
G, there are at most

- 19 -

V(e < 2 Ten(y) - T
n = n =0

N o
different graphs among {Ng_l(S) : GEG} and hence at least lGi/(Q(S)H)
graphs G in G with Ngdl(S)zNo for some fixed V,. Combined with Observa-

tion 4 and Claim 3 this implies that
NN o8 s’ 2
O-I“I’(CXS) = logg(! G] /(2)) = O-[I(S) - O(S)’

where ¢ is a constant that depends only on A. This, combined with the fact
that o is nondecreasing (Lemma 1), makes O at least exponential if, as

assumed in this lemma, oy is. This ends the proof of Lemma 5. O

MAIN RESULT, basic version. There are no local transformations of any problem
appearing in Table 1 into any problem among (d is a bound on the degree of ver-
tices):

2SAT,

GRAPH 2-COLORABILITY,

HAMILTONIAN CIRCUIT with d=2,

EULERIAN CIRCUIT,

VERTEX COVER with d=2,

GRAPH 3-COLORABILITY with d=3, and
FEEDBACK VERTEX SET with d=2.

PROOF. From Lemma 5 we know that local transformations preserve surface
complexity when applied to degree-constrained graph problems. Therefore it
suffices to show that all problems appearing in Table 1 have at least exponen-
tial surface complexities even when restricted to instances with some fixed

bound on the degrees of vertices, and that 2SAT and the other polynomial-time

290 -

From To Reference

3SAT VERTEX COVER Garey and Johnson
(1979)

3SAT INDEPENDENT SET Garey and Johnson
(1979) |

3SAT GRAPH Garey, Johnson, and

3-COLORABILITY Stockmeyer (1976)
3SAT MAXIMUM 2SAT Garey, Johnson, and

Stockmeyer (1978)

VERTEX COVER

FEEDBACK ARC SET

Karp (1972)

VERTEX COVER

FEEDBACK VERTEX
SET

Karp (1972)

VERTEX COVER

DOMINATING SET

Garey and Johnson
(1979) ¢

VERTEX COVER

VERTEX DELETION
FOR PROPERTY [1°

Krishnamoorthy
and Deo (1979)

VERTEX COVER

MiNiMUM COVER

Karp (1972)

|

Local transformations used in the basic version of the main

a i
) appears only as an exercise.

b) for 1 such as being a tree, being planar, acyclic, bipartite, outerp

being an interval subgraph.

Table 1.

lanar, transitively orientable, chordal, and

result.

solvable problems listed in the theorem have at most polynomial surface com-
plexities.

Degree-bounded 3SAT has exponential surface complexity by Lemma
4. The other problems in the first group have at least exponential surface com-
plexities because they can be reached from 3SAT by one or more local transfor-
mations which happen to preserve ‘“‘degree-boundedness’, meaning that if a set
of instances of an original problem has a bound on the degree of vertices then
so does the corresponding set of transformed instances, although the two
bounds need not be the same. (This is true of all local transformations which

do not use any vertices v with components(v)=g in their right-hand sides. The

D+1
degree of a vertex v with components(v)+y is bounded by b2® where d is

the degree bound of the original problem, D is the largest diameter of any left-
hand side of a rule in .\, and b is the largest vertex degree in any right-hand
side in \.) These transformations are listed in Table 1.

GRAPH 2-COLORABILITY has polynomial surface complexity by
Lemma 2. The other problems in that group have polynomial surface complexi-
ties by arguments similar to the proof of Lemma 2. To convince oneself of this
fact, it helps to think of the computational interpretation of; surface complexity
given earlier and to consider adapting algorithms for these problems to a pipe-

line of two processes. We omit further details. U

4. EXTENSIONS: DEPENDENCE ON ORDERING AND OTHER LAYOUT FEATURES
4.1. Motivation

Unlike the local transformations of the preceding sections, many
transformations of graph problems in the NP-completeness literature are not
functions on graphs. Instead, they are defined on graphs augmented by addi-
tional information such as an ordering of the vertices or the placement of cross-
overs in a layout of the graph. As long as this additional information does not
spoil the inherent local nature of these transformations, we should be able to
adapt our definitions to capture these transformations without spoiling the
proof of their limitations. Technically, these extensions are captured by letting
the left-hand sides of replacement rules refer to such ordering or other layout-

dependent information.

4.2. Dependence on orderings of vertices and edges

The ordering of the vertices of an input graph can be represented by
augmenting the graph with directed edges that are distinguished from the edges
already present in the graph. These “ordering’’ edges hook up the vertices of
the graph into a single chain. The first and the last vertex in the chain are
labeled first and last. In graphs with different types of vertices, each type of
vertex is ordered separately. Replacement rules may include vertex ordering
information by including such ordering edges. For all examples in this section,
these edges will be drawn with dotted lines. The labels first and last may also
appear within the left-hand side of a replacement rule. A rule is appiicablé to a

graph J if J is isomorphic to the left-hand side, L, of the rule where

isomorphisms must preserve all labels and all types of vertices and edges. No
further changes in the definitions are necessary. Ordering of edges is handled
analogously. There is a separate ordering for each type of vertex and there is,

for each vertex v, a separate ordering for each type of edge incident to v.

An example of a transformation which uses ordering of edges is the
transformation of GRAPH 3-COLORABILITY to GRAPH 3-COLORABILITY with
d=4 of Garey, Johnson, and Stockmeyer (1976). This transformation works by
replacing each vertex of degree d greater than four with an appropriate ‘‘vertex
substitute” containing d ‘outlet” vertices. Figure 12 illustrates local-

replacement rules for this transformation.

An example of a transformation that uses both vertex and edge ord-
erings is the transformation of 3SAT into DIRECTED HAMILTONIAN PATH of
Machtey and Young (1978), pp. 244-247. Figures 13a and 13b show some of the
local-replacement rules that define this transformation. Each clause is replaced
by what Machtey and Young call a ‘“‘three-lane carriageway (TLC)”. The
replacement rule shown in Figure 13a is one of four rules needed to describe the
clause replacement. (The right-hand side of this rule is a representative TLC.)
The four rules handle the cases of 0, 1, 2, or 3 variables appearing negated
within a clause. Each TLC has three ‘‘inputs’” and three “outputs’”. For a
Boolean expression in conjunctive normal form with m clauses and n variables,
a directed graph with m TLC’s and n+1 additional vertices, z;, 1<i<n+1, is
constructed, as follows. As indicated above, edch clause is replaced by a TLC
with three inputs and three outputs, labeled according to the literals which
appear in the clause. For each variable z, two paths are constructed: one
from z, to z, , which connects all TLC’s produced by clauses containing the

literal z,, and, similarly, one from z, to z;_, which connects all TLC’s produced

- 923 -

____> <u,w >1

<wv,u>) 0, J @, \})<u,w,z>
<w, > <w,w>, <u,w>g

<u,,w>2

_——% <u,w>,

<u,w>3

<lu,v,w> Q) \J \/ \\)<U,UJ,$>
<u,w>, <u,uw>g

O <w,u>

<u,w>

_____> <u,w>1 <u,w>2

'<w>3
<U,U,w>(J </ \g \\> () <z,u.>

Tu,w>y <waw>o <uz>

Figure 12.
Local-replacement rules for transforming GRAPH 3-COLORABILITY to GRAPH 3-
COLORABILITY with d=4. The given set of three rules is sufficient for all
instances in which every vertex has degree greater than 4. More rules are

needed to handle instances which contain vertices of lower degree.

T T
"R
C Ovy
— out
z zC

Figure 13a.
A local-replacement rule for transforming 3SAT to DIRECTED HAMILTONIAN

PATH. This is one of four similar rules for transforming clauses. Which one of

"the four rules applies depends on the number of negations in a clause.

— > >0
out in
Ip

,> 29:; ::)

last
O ____._>) >
last O Dut {)1
}

C

Figure 13b.

ocal-replacement rules for transforming 3SAT to DIRECTED HAMIL
e case of a

Four | TONIAN

PATH. These four rules handle the TLC connections for th

nonnegated variable; four others are needed for negated variables.

by clauses containing the literal 17: Two TLC’s are connected by introducing
an edge directed from an output to a corresponding input. (As a minor detail,
if some literal, say either z; or ;i, does not appear in any clause, the path from
z, to z,, just described connects no TLC's; i.e., the path is just the single edge
<z;, T;.> For the correctness of the transformation, it doesn’t matter

whether or not such a degenerate path is present. The rules in Figure 13b do

not produce such a degenerate path.)

4.3. Dependence on embedding

Transforming graph problems || into PLANAR |l is commonly done by
picking an arbitrary embedding of the graph in the plane and replacing each
crossover by a suitable planar graph. These transformations are about as local
in character as possible. In order to capture them, we let left-hand sides of
local-replacement rules have access to information about crossovers. This can
be achieved by replacing each crossover with a vertex of a new type and by ord-
ering the edges incident to that new vertex as they were ordered, say, clockwise,

in the embedding.

4.4. Further extensions

Further extensions are clearly possible. For example, any kind of
“local preprocessing’ of the input is likely to leave the proof of the main result
intact. As one specific example, consider the transformaticn of GRAPH 3-
COLORABILITY into PLANAR GRAPH 3-COLORABILITY described in Garey and

Johnson (1979), pp. 85-86. Like many “ll-into-PLANAR [l"”-transformations, it

- 241 -

works by replacing crossovers but it also requires an arbitrary orientation of the
edges of the input graph. Adding such an orientation is a perfect example of
““local preprocessing’’ and poses no problem for the main proof. As another
example, consider transforming instances of graph problems in which each ver-
tex has degree at most d into instances in which each vertex has exactly degree
d, e.g. transforming VERTEX COVER with a degree bound of 3 into 3-REGULAR
VERTEX COVER. Such a transformation is achieved by attaching copies of some
suitable graph to vertices whose degree needs to be increased, as shown in Fig-
ure 14 for VERTEX COVER, and is an intrinsically local transformation. The
difficulty in capturing such a transformation in our framework is that any rule
that is applicable to a vertex of degree, say, 2, will also be applicable to any
vertex of degree higher than 2. This problem is easily taken care of, by labeling
each vertex with its degree, for example. Again, this is a local kind of prepro-
cessing which does not spoil the proof of the main result.

t is worth noting that our notion of ‘“‘local’’ is based on the graph-
theoretic notion of ‘‘distance’” between two vertices. In other words, local
replacements act on subgraphs of bounded diameter. There are transformations
that are local in a different sense. Consider the transformation of VERTEX
COVER into INDEPENDENT SET (and vice versa) which replaces a graph by its
complement. This is not a graph-theoretically local transformation because it
puts edges between pairs of vertices which were at unbounded (even infinite)
distances from each other in the original graph. But it is very much a local
transformation in the sense that it works on small submatrices (1-by-1 subma-
trices, to be exact) of the adjacency matrix of the original graph. Still, it would
take a substantial change in our approach to capture this type of transforma-
tion. A similar situation arises in transformations that use ‘‘garbage collec-
tion’”’. An example is the transformation of 3SAT into 3DM in Garey and John-

son (1979), pp. 50-53.

a
ay
a a
O ————> O—
degree=2 a,
a
a, 8

Figure 14.
One of four local-replacement rules for transforming VERTEX COVER with d=3
to 3-REGULAR VERTEX COVER.

3-COLORABILITY

3-COLORABILITY

Stockmeyer (1976)

From To Reference Extension
3SAT 1-35AT Dyer and Frieze edge-ordering
(1986)
3SAT 3SAT, d=9 edge-ordering
GRAPH PLANAR GRAPH Garey, Johnson and | embedding,

edge-orientation

VERTEX COVER

PLANAR VERTEX
COVER

Garey, Johnson and
Stockmeyer (1976)

embedding

3-COLORABILITY

3-COLORARILITY, d=4

Stockmeyer (1976)

3SAT GRAPH Carey, Johnson and see footnote a
3-COLORABILITY Stockmeyer (1978)
GRAPH GRAPH Garey, Johnson and edge-ordering

MATCHING, d=3

(1986)

3SAT GrAPH GRUNDY van Leeuwen (1976) edge-ordering
NUMBERING or see Monien and
Sudborough (1981)
1-3SAT 3-DIMENSIONAL Dyer and Frieze

Table

2.

Local transformations used in the extended version of the main result.

(Continued on next page)

) This transformation needs to be modified to preserve de

applicable to the next entry in the table.

gree-boundedness, which is necessary to make Lemma 5

From

Reference

Extension

1-3SAT

PLANAR 1-38AT

Lichtenstein {1982)

embedding,
edge-ordering

3-DIMENSIONAL
MATCHING

ExactT 3-COVER

ExacT 3-COVER

SET PACKING

ExactT 3-COVER

HITTING SET

3SAT DIRECTED Machtey and Young | edge-ordering,
HAMILTONIAN PATH | (1978) vertex-ordering
DIRECTED UNDIRECTED Karp (1972)

HAMILTONIAN PATH

HAMILTONIAN PATH

VERTEX COVER

3-REGULAR VERTEX
COVER

Garey and Johnson,
unpublished

degree-
dependent

ExacT 3-COVER

PARTITION INTO
TRIANGLES

Garey and Johnson
(1979)

Table 2.

Local transformations used in the extended version of the main result.

MAIN RESULT, extended version. There are no local transformations of any
problem appearing in Table 2 into 2SAT or any of the other polynomial-time solv-

able problems listed in the basic version of the main result.

PROOF. All of the extensions discussed (types of vertices and edges, ordering of
vertices and edges, layout-dependence, edge-orientation, degree-dependence)
amount to augmenting the original instances by additional information. The
results are not affected as long as this preprocessing preserves degree-
boundedness and preserves surface complexity up to a polynomial, which is the
case with all the extensions discussed. We leave the verification of this claim to

the reader. O

5. REFERENCES

Cook, S. A. (1971), The complexity of theorem-proving procedures, in “Proc. 3rd
‘ Ann. ACM Symposium on Theory of Computing,” Assoc. for Comput-
ing Machinery, New York, 151-158.

Dyer, M. E., and Frieze, A. M. (1986), Planar 3DM is NP-complete, J. Algo-
rithms 7, 174-184.

Garey, M. R., and Johnson, D. S. (1979), “Computers and Intractability: A
Guide to the Theory of NP-Completeness,”” Prentice Hall, Englewood
Cliffs.

Garey, M. R., Johnson, D. S., and Stockmeyer, L. (1976), Some simplified NP-
complete graph problems, Theor. Comput. Sct. 1, 237-267.

Hoperoft, J. E., and Ullman, J. D. (1979), “Introduction to Automata Theory,
Languages, and Computation,” Addison Wesley, Reading.

Karp, R. M. (1972), Reducibility among combinatorial problems, in *‘Complexity
of Computer Computations’” (R. E. Miller and J. W. Thatcher, Eds.),
Plenum Press, New York, 85-104.

Krishnamoorthy, M. S., and Deo, N. (1979), Node-deletion NP-complete prob-
lems, SIAM J. Comput. 8, 619-625.

Lakshmipathy, N., and Winklmann, K. (to appear), ‘Global’ graph problems
tend to be intractable, J. Comput. System Scu.

van Leeuwen, J. (1976), Having a Grundy-numbering is NP-complete, Report
No. 207, Computer Science Department, The Pennsylvania State
University, University Park, Pennsylvania.

Lichtenstein, D. (1982), Planar formulae and their uses, SIAM J. Comp. 11,
329-343.

Machtey, M., and Young, P. (1978), “An Introduction to the General Theory of
Algorithms,” Elsevier North-Holland, New York.

Monien, B., and Sudborough, L. H. (1981), Bandwidth-constrained NP-complete
problems, in “Proc. 13th Ann. ACM Symposium on Theory of Com-
puting,”’ Assoc. for Computing Machinery, New York, 207-217.

Papadimitriou, C. H., and Sipser, M. (1984), Communication complexity, J.
Comput. System Sci. 28, 260-269.

Slough, W. A. (1984), “On the power of ‘locally defined’ transformations
between combinatorial problems,” PhD Thesis, Washington State
University.

Yao, A. C. (1979), Some complexity questions related to distributive computing,
in “Proc. 11th Ann. ACM Symposium on Theory of Computing,”
Assoc. for Computing Machinery, New York, 209-213.

