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1. Background

Software environment research is directed towards establishing effective ways of
integrating software tools in support of software processes such as development
and maintenance. It has been observed (eg. [Boehm 83]) that the development
of a large software system usually costs between $50 to $400 per line, yet the
quality of the end product is often disturbingly low. Further, it is generally
agreed that the cost of maintenance of software systems over their lifetime usu-
ally far exceeds original development costs. In addition, the cost of software
has been steadily increasing over the past decade. Most observers place the
blame for the twin problems of high cost and low quality on the lack of an ord-
erly, systematic methodology for developing software and the lack of effective
software tools capable of exploiting computing power in the software develop-
ment process. There has been no lack of work in the areas of development of
software methodologies and tools during the past decade. Little of this work,
however, has wound up being exploited widely in practice.

A common complaint about most current software methodologies is that they
are not well supported by tools. Thus, especially because they tend to stress
the importance of large and complex documentation of software lifecycle pro-
ducts, these methodologies are usually difficult and onerous to adhere to
without significant tool support. In the area of tools there is a complementary
complaint that the welter of existing tools is not well integrated and coordi-
nated. Tools usually do not support any specific rational methodology, and
further are rarely well integrated with each other.

As a result, software continues to be developed with largely manual and ad hoc
procedures. Even where promising development methodologies are in place, it is
rare for them to be adequately supported by tools. As a result it is difficult to
experimentally and empirically determine how good these methodologies are,
and whether they should be promulgated more widely. It is similarly difficult to
definitively evaluate individual tools, as they are often not clearly related to
well-defined software tasks within existing methodological frameworks. Thus,
they are usually not directly comparable to existng manual procedures or more
rudimentary tools. There has been a growing concensus that the emergence of
effective software environments will catalyze improvments in software metho-
dologies and tools alike by serving as the framework for the development of
entire methodologies which are well supported by comprehensive toolsets. Such
environments could then also serve as experimental and evaluative testbeds.

This paper describes a software environments research project which is aimed
at gaining a better understanding of the architectural principles which must
underly mechanisms for the effective integration of software tools in such a way
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as to facilitate and enable the sort of experimentation and evaluation that has
just been described. Our approach to this problem has been to create an inno-
vative tool integration mechanism and then use it experimentally to integrate
some diverse collections of software tools. The integration mechanism is called
Odin. We believe that it can fairly and profitably be viewed as a language and
interpretation system for what DeRemer and Kron have called "programming in
the large" [DeK 75].

Odin was first used as the basis for the effective and successful integration of a
family of Fortran development, testing and maintenance tools in the Toolpack
project [Osterweil 83]. It was subsequently used to effectively integrate a family
of diverse tools to support software development in ¢ [KrnRitch 78], and a fam-
ily of tools to support the creation of attribute grammars. The Odin architec-
ture, our experiences in exploiting it, and the conclusions about the Odin archi-
tecture and principles to which these experiences have led us are the subjects of
this paper.

2. The Odin Tool Integration Philosophy.

The Odin environment integration mechanism originally emerged in the context
of the Toolpack project [Osterweil 83|, which required an effective and sys-
tematic way in which to integrate a collection of tools for supporting the
development, testing and maintenance of Fortran code. A major Toolpack pro-
ject goal was to take a number of existing, and a variety of proposed,
mathematical software development tool capabilities and effectively integrate
them in a flexible, extensible way, thereby creating a Fortran software environ-
ment. At the time (1979) much had been written about software environments,
but very few had been built, and there were virtually no successful environment
architectural paradigms to serve as guides to our work. Thus, the establish-
ment and experimental evaluation of an innovative environment integration
paradigm became another major goal of the Toolpack project.

We adopted as a key architectural premise the suggestion which had been made
by a number of authors ([Osterweil 81], [Riddle 83|, [Buxton 80]), that an
environment must be data centered, rather than tool centered. Although this
seemed a bit surprising at first, it was certainly consistent with previous suc-
cessful experience. A common characteristic of the most successful past appli-
cations of computer systems (eg. in banking, insurance and government) is that
these applications have all been data centered. Computer people have
encouraged the users of these systems to think of their work as being aimed at
the creation and maintenance of large central repositories of information, and
this approach has been quite successful. How paradoxical that we ourselves
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have been slow to adopt this paradigm. Yet our own business seems most obvi-
ously to be information centered.

The Odin project elected to take this premise quite seriously, and to adopt the
philosophy that the purpose of a software environment is to create and manage
the repository of information needed to effectively build and maintain software.
Thus we envisioned Odin-integrated environments to be collections of tools
which are best thought of as satellites around a large structured respository of
software data, and a command language which is best though of as a mechan-
ism for using the tools implicitly to maintain that data repository.

Accordingly, one of the first design issues was to determine the information that
should comprise the central data repository and the organizational structure
that should be imposed upon that information. We concluded that a software
data repository is best thought of as a store of software objects, in which the
objects are those which are the inputs to, and outputs from, the various tools to
be integrated. This suggests, for example, that such entities as program source
text, derived views of the text (such as parse trees, symbol tables and flow
graphs), and such non-traditional items as documentation, test data, test
results, and program structure representations should be the sorts of objects
which populate the data repository of a software development, testing and
maintenance environment.

Accordingly we designed Odin to manage a repository of these relatively large-
grained software objects by coordinating and managing the application of such
corresponding large grained tools as parsers, instrumentors, prettyprinters and
data flow analyzers. >From the Odin perspective, each software object is
profitably viewed as an operand, and the tools which manipulate the objects
should then be considered to be operators capable of aiding in creating and
maintaining the validity and correctness of these objects. An important feature
of this approach is that it deemphasizes the importance of tools, freeing users
of the need to become expert in combining and interfacing tools. In fact, as
shall be described subsequently, Odin encourages the synthesis of larger tool
functions out of the functions of smaller tool fragments in ways which should be
of no direct concern to end users. By supporting the composition of tools out of
fragments Odin has more flexibility in efficiently managing its object store.
This approach also makes it easier for users to configure and adjust individual
tools so as to extract the maximum utility from them, but does not oblige users
to become tool experts.

The foregoing characterization should suggest that Odin can also be thought as
an interpreter for a high level command language whose operands are the vari-
ous software objects in the data repository and whose operators are the various
tool fragments used to construct the tools in the toolset . In fact, this view is
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extremely useful. Later it shall be shown that these operands can be aggre-
gated into stuctures, that the operands are best thought of as being typed, that
the set of types is extensible, and that the tool operators enforce a strong typ-
ing discipline upon the user. Further, we shall indicate that the command
language processor is profitably viewed as a compiler that is decomposed into
the usual compilation subphases, but which emphasizes the importance of
effective optimization through such strategies as lazy evaluation.

3. Related Work.

Before proceeding to a detailed description of the Odin architecture, it seems
important to compare our approach to that taken in some other projects aimed
at furnishing effective support for software development and maintenance
activities. As we characterize our approach as one in which tools are integrated
into an object centered environment, we shall divide this section into two
parts--one discussing other environment efforts, and one discussing previous
work on object management systems.

3.1. Other Software Environment Projects.

As stated earlier, few environments have been in existence for very long,
although there has been a flurry of activity in this area within the past couple
of years. In the following subsections we divide these past approaches into intel-
ligent editing approaches, incremental compiler approaches, database
approaches, and very early integrated tool system approaches.

3.1.1. Intelligent Editing Systems

Many of the earliest systems which were called environments were centered
around tools which have come to be called syntax directed editors or intelligent
editors. The the Cornell Program Synthesizer [Teitelbaum 81], Gandalf [Haber-
mann 79] and Mentor [Donzeau-Gouge 84| are examples of such systems. An
intelligent editing system is aimed at supplying to the code writer all of the
capabilities of a line or screen editor, plus certain additional text generation
and error detection capabilities. The idea of such a system is to implement a
language sensitive editor which embodies an understanding of the rules of the
language in which the user is writing his or her code and to use these rules
effectively to speed the text input process and to help assure the correctness of
the program being created.

Clearly such a system must incorporate at least a syntax analyzer to
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incrementally parse input text as it is received from the user. As the input text
is successfully formed by the parser into recognizable language constructs, the
intelligent editor responds by either helping the user to proceed more quickly
and effectively or by advising the user of errors that must be corrected. The
intelligent editor may, for example, automatically complete the construct which
the user is building (eg. if the user is in the process of inputting a long key-
word), prompt the user for additional input required to correctly complete the
construct (eg. if the user is in the process of keying in an if__then___else ), or
reject as incorrect new input which is inconsistent with the pattern of con-
structs already keyed in and accepted by the intelligent editor.

Thus it is seen that intelligent editors integrate smoothly and effectively at least
two tools--namely an editor and a parser-- behind a comfortable and friendly
user interface. In fact many of these systems integrate powerful and sophisti-
cated viewing devices as well. The intelligent editor’s user interface is often
through a tool which makes intelligent choices about emphasizing the structure
of the program being edited by suppressing detail according to strategic rules.
This process has been referred to as holophrasting.

Some intelligent editors go even farther, attempting to integrate semantic
analyzers as well. This is an extension of the philosophy that the tool should
detect and prevent errors as soon as they can be detected. In this case, how-
ever, the errors in question are semantic errors. Thus these systems hold and
incrementally update a semantic model of the program being evolved. This can
be unwieldy. Further it has been observed that often a program can fall into a
semantically inconsistent state while the user is in the process of changing more
than one statement to correct an error. Under such circumstances the very
power of the editor may prove counterproductive, making it hard or impossible
for the user to edit in needed changes.

3.1.2. Incremental Compilation Systems

Once one has considered the integration of semantic analysis into an editing
and parsing tool suite, the extension of the tool suite to include full compilation
and interactive execution seems to be the next logical step. Systems such as
Arcturus [Taylor 84] Interlisp [Teitelman 81] and Cedar [Teitelman 84] are
examples of such systems, which have been referred to as incremental compilers.
Such systems are able to facilitate the process of checking evolving programs for
errors by having actual test data run through the programs. These systems
convey the impression of support for the code creation process through a device
that presents itself to the user as a very powerful editor. In reality these sys-
tems offer far more than just editing and compilation support, however. The
ability to interact with the executing program makes these systems very



powerful debugging and checkout systems as well.

Another important feature of these systems is that their user interfaces provide
an exceptionally smooth and uniform appearance to users. The basic philoso-
phy of the user interface is that it should suggest to the user that the user is
more or less continually producing code in the subject language--whether the
user is using that language to actually create end-product code or to control the
environment itself. Thus the Interlisp user controls the actions of Interlisp by
creating Lisp expressions. The Arcturus user control Arcturus by creating Ada
expressions. In both cases these utterances can themselves be altered and
maintained by environment tools as well. The net effect is that the users of
these environments are encouraged to feel that they are always programming in
the target language--whether they are programming user systems or
"progamming-in-the-large" to control their environment and its tool suite.

Unfortunately it is this very focus on the programming activity which seems to
most sharply restrict the prospects of being able to extend the range of these
environments to cover more of the software lifecycle. Because systems such as
Interlisp and Arcturus are so sharply and effectively directed towards support of
coding, we are pessimistic that they could be extended smoothly to support such
other activities as comprehensive testing or maintenance.

We believe it is important for the user to have an interface to an editor which
facilitates the code creation process, and these systems offer that most hand-
somely. We also believe, however, that it is equally important for the user to
have an interface to a testing system which facilitates the testing process. We
are doubtful that one single user interface is likely to be effective in supporting
both types of interactions, however. We believe that users engaged in the vari-
ous activities entailed by software development and maintenance are guided by
particular mental models adapted to these tasks. An environment's tols and
data items should be aimed at the effective support of the creation and mainte-
nance of these models. Thus, it seems likely that users would be handicapped
rather than helped by having to attempt to do testing while faced with a user
interface which fosters the more effective creation of code. In an important
sense it seems that it is the very tightness of the integration of tool capabilities
that works most tellingly against the possibility of effectively integrating
markedly different types of tools into an environment. Thus our primary con-
cern about these powerful incremental compilation systems, and our primary
reason for rejecting this approach ourselves, was that it did not seem to offer
the prospect of being as smoothly extensible across the expected range of tools
needed by Toolpack as we believed was necessary.



3.1.3. Early Tool Collections

Clearly we have betrayed our prejudice towards designing environments which
are collections of decoupled tool capabilities, centered around a data repository.
We believe this approach results in systems which are more flexible and extensi-
ble, enabling users to assemble and combine tools in ways which are likely to be
better adapted to their needs and idiosyncrasies, and which are better focussed
on the information centered and driven paradigm of software development.

One of the first system designs to recognze and capitalize on the importance of
the decoupled tool approach was the Unix (TM) operating system [Kernighan
81]. Unix users are strongly urged in the direction of thinking of the operating
system as a collection of small tools which are to be assembled into larger tool
capabilities in whichever ways the user may see fit. Unfortunately Unix fosters
a naive and inadequate view of the complexity of the data objects and struc-
tures which tools must create and pass back and forth between each other.
Unix tools communicate with each other most easily through pipes, which are
conduits for single files of text information. As long as users are able to comfort-
ably model their needs and activities in terms of text files, and as long as users
are able to comfortably model their tool needs as being text manipulation
chores, Unix is likely to remain an adequate environment. Thus, for example,
Unix seems to provide a reasonable environment for straightforward office
chores.

The needs of software developers are far more demanding, however. Software
development systems, as has been seen, ordinarily encompass such tools as
parsers, semantic analyzers and testing systems. These tools create and con-
sume such files as parse trees, semantic attribute tables and graph structures of
various kinds. These files are not best thought of as being text files. Further a
parsing, compilation or testing system requires multiple input files and should
be expected to produce multiple output files. Thus, while the Unix model of
readily assembled tool fragments is a good one, the Unix model of the tools as
having trivial interfaces to each other severely hampers its application to the
support of software development. In addition, the Unix focus on tools and rela-
tive deemphasis of the data objects which they manipulate seems to us to direct
the user’s attention in the wrong direction.

3.1.4. Database Systems

There have been some systems which have attempted to place what we would
consider to be a suitable emphasis on the data centered nature of software
development. One excellent example is the Troll /USE system [Wasserman 83|
which is quite effective in supporting the creation of relational databases but



seems rather less effective in supporting the creation of algorithmic code.
Troll /USE is surely an interesting approach, but it seems to us to invite the
risk of suggesting to users that they might have to abandon algorithmic coding
if they are to capitalize on tools effectively. We sought to create a system
which effectively conveys the importance and effectiveness of the data-centered
approach to software development in the context of coding with a classical algo-
rithmic language.

A system which adopted just this sort of approach was the Joseph system [Rid-
dle 83]. In Joseph, the focus was the creation and maintenance of a large rela-
tional database of information about the status of the software under develop-
ment. This information ranged from management information to requirements
information to information about design and coding. Joseph appeared, in early
use, to be hampered by the fact that the information in its database was of too
small a granularity. As the size of the database grew and the need for updates
to the database continued and grew with the progress of the project, it became
increasingly common for even minor updates to require frustratingly large
amounts of time for database updates. Joseph seems to have been an early
step very much in the right direction, but it did point out the importance of
selecting an appropriate granularity for a data-centered environment.

3.2. Object Oriented Software Support Systems.

As previously indicated, the approach we elected to take was to construct Odin
as a system for managing large-grained objects. Here we describe some past
projects in which the management of large software objects was used as the
basis for effective support of software activities.

3.2.1. Earliest Efforts.

The first software object managers were programmers themselves. The major
software objects were source code, compiled object code and test data. The
source code was stored in one box of cards and the compiled object code was
stored in another box, preferably nearby. When the source code was modified,
it was up to the programmer to produce a box of cards with the new object
code and to throw out the box of cards with the old object code.

The development of reliable random access mass storage devices decreased the
physical storage space associated with software objects. Rather than carrying
decks of cards (or reels of tape) to the appropriate input device, the program-
mer could simply name the object desired, and the operating system would
retrieve the appropriate information from the disk file with the specified name.
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This made it possible for a single programmer to have access to hundreds or
even thousands of software objects simultaneously.

One problem with the early software object managment schemes was that they
did not capture the evolutionary character of software objects. Each software
object, whether it was stored in a box of cards, a reel of tape, or a file on a
disk, only contained the view of the object at a single point in its evolutionary
history.

One of the early approaches to this problem appeared in Control Data
Corporation’s Update and Modify systems [CDC76]. In these systems, a
modification to a software object would be specified as a set of additions and
deletions. These modifications would be stored in the software object, rather
than actually performed on the object, thereby allowing for retrieval of an arbi-
trary version of that object.

An extension of this approach appears in SCCS (Source Code Control System)
Rochkind75] |[Glasser78]. In SCCS, the user prepares a new version using a
text editor, and then enters this new version through a "check-in" operation.
SCCS automatically computes a minimal set of additions, deletions, and
replacements that will convert the previous version into the new version.

There have been a number of new systems providing extended or modified facili-
ties for storing and accessing multiple versions in a single software object.
Tichy’s Revision Control System [Tichy82| for example, stores a complete copy
of the most recent version rather the original version. "Reverse deltas" are then
stored to allow retrieval of earlier versions. In addition, versions can be given a
symbolic attribute such as "Stable" or "Experimental”, and then requests such
as "the most recent Stable version created by John Smith" can be used to
retrieve a specific version. Further extensions to the features provided by SCCS
and RCS are provided in Digital Corporation’s Code Management System
[DEC84] designed for use on their VAX line of minicomputers, and AT&T's
Change Control System [Bazelmans85] which is a proprietary system used inter-
nally at Bell Laboratories.

Concurrent with development of methods for capturing the temporal develop-
ment of an individual software object was the development of systems for cap-
turing the relationships between these software objects. Initially, software
objects that were stored on a tape or disk appeared simply as a sequence of
files. An improvement over this representation was the development of
hierarchical file systems, where sets of files were collected together into special
files called "directories". Since one of the files in a directory in turn could be
another directory, this allowed sets of files to be both grouped and nested. A
popular example of such a hierarchical file system is found in the Unix
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operating system [Ritchie78].

One advantage of a hierarchical file system is that it is very straightforward to
develop naming conventions for the software objects that allow a variety of
operations to be performed on sets of files, where the sets of files for a given
operation are determined by their grouping in the file system rather than expli-
cit specification by the user. An example of this approach is found in [Cargill79],
where compilation is performed by specifying a root directory from which a tool
called the "Inclusion Builder' determines the appropriate source files to compile.

The limitations of relying upon a simple tree structure as the basis for storing
and displaying software objects encouraged the development of database sys-
tems for managing large software objects. An early example of this approach
appears in White’s PLISS system [White77]. When a module is added to this
system, the list of all modules referenced by the module and the list of all
modules which reference the module are automatically computed. Information
about a module, including a graphical description of the reference lists, can
then be obtained through the use of "Picture” and "Inquiry" requests. Later
systems incorporated increasing levels of detail about the software objects, and
dealt with increasingly finer grained objects. A recent example of such a system
appears in Linton’s work with relational databases [Linton84|, where the
software objects appear as tuples in relations.

3.2.2. Automated Object Managers.

A result of the increasing complexity of software objects is that it is increas-
ingly infeasible for a programmer to effectively manage software objects
without assistance. Instead of a few boxes of cards and the associated boxes of
object code, the programmer is now faced with software systems composed of
complicated hierarchies and networks of objects, where each object in turn con-
sists of a complex set of named and numbered versions. The logical solution is
to try to automate the process of object management.

Initially, automatic object management consisted of the use of command
scripts. The sequence of commands necessary to build and manipulate the
software objects was stored in a command script, which would then be invoked
by the programmer when necessary. The problem with this approach is that
unless the software objects being manipulated are few and simple, command
scripts are inflexible, non-descriptive, and inefficient.

Command scripts are inflexible because the language understood by the operat-
ing system which must interpret them is usually quite primitive. This results in
the need to create variants of commonly used command files, in order to satisfy
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the needs of different users. For example, one user might want to use an optim-
izing compiler on a few critical segments of a software system, while using
another compiler for the rest. Although some methods of parameterizing com-
mand scripts are usually available, there are inevitably variant actions that
cannot be performed without modifying the command scripts themselves.

Command scripts are non-descriptive because they describe how to build some-
thing, not what that thing is. It is usually difficult (if not impossible) to analyze
a command script to determine whether a system is "consistent” according to
some criterion. This implies that another object containing a system descrip-
tion must be maintained. This requires that the programmer be familiar with
two different languages (the command language and the system description
language). In addition, the programmer must always ensure that a modification
to the system description be reflected by the appropriate modification to the
command scripts.

The most severe problem with command scripts, however, is that they are
inefficient. In practice, programmers are willing to maintain several sets of
command scripts and separate system description files, but waiting for three
hours for a system to be ready for testing after a single line of source code has
been modified will be unacceptable. The inefficiency of command scripts stems
from the difficulty of specifying re-use of information. A variety of intermediate
objects, such as compiled object versions of source code, are usually created
during the execution of command scripts, and many of these objects generally
remain valid for reuse during later invocations of these command scripts. The
difficulty of detecting which objects are still valid causes most command scripts
to be designed to use the safe approach of recomputing all intermediate objects.
The high cost of unnecessarily recomputing intermediate objects often
encourages the programmer to explicitly take back control of object manage-
ment, thereby inviting the risk of introducing subtle errors through incorrect
object management. This often leads to the approach in which the command
script for building the system is invoked whenever a bug is found, just in case
the bug has been caused by incorrect object management.

A significantly better approach to object management involves the use of a sys-
tem explicitly designed to re-use exactly those intermediate objects that are still
valid. Initially such systems were developed to handle a specific class of inter-
mediate objects. For example, the System Building System [DeJong73| was
designed to manage only object code objects produced from PL/I source code.
In response to a request to recompile a given software system, SBS would only
recompile files that had been modified, and would re-use any object code that
was still valid from previous computations. Later systems of this kind such as
the Software Development Control System [Haberman79] were designed with
explicit knowledge of version control, to allow efficient management of the
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3.2.2.1. Large Software Systems

The problem of efficient management of large software objects is especially
severe for large software systems. Techniques that are successful for medium-
size systems (10-50k lines of code) are often insufficient for large systems (1 mil-
lion lines of code). In particular, more detailed analysis of which derived
objects are still valid after a change to the system is often necessary, in order to
minimize the recomputation following the change. The computation in this case
has inevitably been compilation, therefore the objects being managed are com-
piled versions of source code. Among the systems specifically designed to cope
with this problem were the Intermetrics Pascal system [Avakian82], the CHILL
Compiling System [Rudmik82], and and ADA Language System [Thall83]. In
the Intermetrics system, the process of deciding which pieces of object code are
valid after a source level modification is complicated by the lack of modular
interface specifications in the Pascal language. This results in the presence of a
system wide "compool"” structure containing the definitions of all symbols that
are referenced by modules other than the modules in which they are declared.
The need to recompile this compool structure (90 megabytes for a 1 million line
software system) after a change to any symbol is a serious impediment to
effective use of the Intermetrics system.

3.2.3. General Object Mangers

The major problem with special purpose object managers is that they are not
extensible. Only the objects for which the system was initially designed can be
managed. This problem motivated the development of general purpose software
object managers that were intended to manage arbitrary objects produced by
arbitrary software tools.

The first successful general purpose software object manager was the Make sys-
tem [Feldman79]. The objects in this system are host system files, and the rules
specifying the relationships between objects are specified in a text file called a
"Makefile". The importance of such a general purpose object manager is indi-
cated by the continued widespread use of the original Make system, as well as
by the large number of successors which either provide extensions to the basic
Make system or are just re-implementations for different operating systems.

One common extension to Make was to integrate it with a version control sys-
tem. An example of merging Make with the SCCS version control system
appears in the Software Manufacturing Facility [Cristofor80]. The Build
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software construction tool |[Erikson84| provides an alternative mechanism for
manipulating several versions of software objects by allowing multiple default
paths on which software objects can be placed. An example of a simple re-
implementation of the Make system appears in Digital Equipment Corporation’s
Module Management System [DEC84b].

A central characteristic of the Make system and its variants is the use of the
host file system as a repository of information about current software objects.
This provides many of both the strengths and weaknesses of these systems.
The principal strengths are that such systems are extremely compact and
efficient - they depend on the operating system (ie. the host file system) to
maintain needed information. In addition, user provided tools can simply
retrieve and store their information in the host file system, allowing most stan-
dalone tools to be conveniently integrated into the Make system without
modification. The pricipal weakness of this approach is that only the informa-
tion provided by the operating system about the file system can be used to store
and retrieve information about the software objects. If a desired object manag-
ment capability depends on having more information about the software objects
than is provided by the operating system, then that capability cannot be pro-
vided.

One description of how additional information could be used to support a more
general software object manager appears in [Huff81]. A more comprehensive
treatment of this subject is provided by Cooprider in his PhD thesis
[Cooprider79]. Both of these treatments suffer from the absence of an actual
implementation of the ideas presented. In some cases the ideas are too vague to
be evaluated, and in others cases the feasibility of a successful implementation
is doubtful. A more concrete approach to this problem is provided by the Sys-
tem Modeler [Schmidt82] [Lampson83a] [Lampson83b| developed at Xerox for
the Cedar programming environment. This system provides basically the same
object management features as Make, except that these features are specifically
tailored for the Cedar programming environment. In particular, the Cedar edi-
tor and the compiler/linker for the Cedar language, Mesa, are explicitly sup-
ported. An important extension present in the System Modeler is that it sup-
ports object management in a distributed network of homogeneous computers.
Another object management system that significantly extends the features pro-
vided by Make appears in Apollo’'s DSEE (Domain Software Engineering
Environment) [Leblang84] [Leblang85a] [Leblang85b|.

One significant problem with all of the existing software object managers is that
they fail to successfully separate declarative information about the objects from
algorithmic information about the tools that manipulate the objects. Instead,
this information is combined into a single text object - a "Makefile" for the
Make system, and a "System Model" for both the System Modeler and the
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DSEE. Both Make and DSEE contain mechanisms for providing "default” rules,
but the semantics of these rules are too simple to allow for the specification of
complex tools. This means that the use of a complex tool must be specified
repeatedly in each Makefile or System Model. Unfortunately these are precisely
the tools that the user would most prefer NOT to specify - both because of the
needless complication to the object descriptions, as well as the expense involved
in updating all of these specifications when the interface to such a tool is
modified. Instead of allowing a single tool expert to precisely specify the inter-
face to a given tool, each programmer that wishes to use the tool in a Makefile
or System Model must be capable of providing that specification. In compila-
tion environments, where most tools have the comparatively simple interface of
a compiler or linker, this problem is a relatively minor one. In environments
intended to support a complex and fluctuating set of tools (such as the Tool-
pack system), the problem becomes critical.

4, Overview of the Odin Architecture

As observed earlier Odin’s central architectural notion is that an environment is
best thought of as a system for managing the large grained software objects
which are the embodiment of the information needed in the process of creating
and maintaining a software product. That being the case, it seemed natural to
us to center our architecture around the objects needed to develop software
rather than the functional capabilities (eg. the tools) needed to build and main-
tain these objects. Thus, the Odin architecture is strongly object-centered.
This impression is fostered and reinforced by the command language by which
the user operates Odin (and the tools which it integrates). This language has as
its philosophical basis and goal the creation of objects which the user specifies
in response to perceived needs for information which those objects contain.

Requested objects are generally best created by the action of tools. Thus it
may seem that an object-centered command language is isomorphic to an algo-
rithmic or functional command language. As noted above, however, there is an
important difference which becomes clear when one considers that it is often
easy for the user to conceive of and describe an important object which may
require lengthy and complex tool operations for its creation. For example, it
may be easy for a user to conceive of and describe the output from a program
test run but it may be quite hard to describe the intricate steps required in
order to build the program source text out of a variety of files and libraries and
then execute the program. The Odin philosophy is that users should be
encouraged to think of these important objects, describe them tersely, and then
have Odin-integrated tools build the requested objects as painlessly and noise-
lessly as possible. Further, as also noted above, a focus on specification of the
objects required also opens the important possibility that the automatic object
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management system can orchestrate and effect important intermediate object
reuse leading to significant efficiencies.

Another key aspect of the Odin philosophy is that tool use should be
encouraged as much as possible, and stumbling blocks to the use of tools should
be removed as effectively as possible. Thus, Odin encourages the composition of
tool capabilities. In particular the Odin command language makes it quite easy
to apply one tool to the output of another. From the point of view of the user,
this entails thinking of the object produced by a tool as a derivation of the
object or objects which were taken as input by the tool. Thus the product of a
tool is an object derived by the tool, and that object can be the basis for
further derivations. We believe that this is quite consistent with the mental
models which tool users exploit when managing the development of software.
Effective software development requires the creation and use of a variety of
views and versions of the program object under development. Some of these
views and versions are easily obtained by the action of readily accessible tools
(eg. a compiler, prettyprinter). Some are currently most readily derived by
manual or mental processes. Some are very hard to derive at all because they
involve exactly the sort of composition of powerful tools which has just been
described. As a result, at present, some of these mental models do not get con-
structed at all and some are constructed incompletely or incorrectly. What-
ever models the user is able to conjure up, they are stored and managed in a
haphazard, manual, and error-prone way.

Our approach to this problem is to conceive of all such models, mental or other-
wise, as objects, store them in a central repository, consider all of them to have
been created from each other by the action of a tool or sequences of tools
(except for a few "atomic" objects, which have been externally inserted into the
information repository), and to save the user the burden of constructing them
and maintaining their consistency with each other as the software development
or maintenance process proceeds and necessitates changes. It is important to
note that the objects we are discussing here may well be objects which are only
evolved by laborious processes over long periods of time (eg. days, weeks or
months). Such objects, and the many intermediate objects from which they are
built are usually referred to as persistent objects. Thus the ability to manage
such persistent objects is required in order to effectively support the view of
software development and maintenance which we have just espoused.

Thus, we designed Odin to be a system for effectively managing large-grained
persistent software objects and controlling this process through a powerful and
conceptually suggestive command language.

In spite of the elegant and simple user view of tool application and object gen-
eration which the foregoing architecture presents, we nevertheless expected that
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there would be considerable reticence to exploit it because of residual prejudices
that tools are expensive to use. Indeed, tools, especially the powerful tools that
were proposed for Toolpack, are expensive. Their purpose is to derive analytic
information which may be abstracted from voluminous details. This is rarely
inexpensive. On the other hand our experience has shown that often a variety
of powerful, high level tools all rely upon identical or simiar bodies of lower
level information. These bodies of lower level information should be viewed as
objects which have been derived by low-level tools (eg. parsers and lexical
analyzers). Thus the Odin strategy is to maintain such low-level objects as per-
sistent objects once they have been created as part of the operation of a high
level tool in the expectation that they will be of use as the basis for the opera-
tion of another high level tool. This strategy may be viewed as an optimization
process where what is being optimized is the use of intermediate information
across the extent of an entire software development activity. Accordingly Odin
should be viewed as an optimizing persistent object creation and management
system.

Another key philosophical component of the Odin architecture is that it sup-
ports and facilitates additions and alterations to the suite of tools and object
types which it integrates. Although we feel that the Odin approach is capable
of supporting a superior approach to making tool support available to end
users, we also realize that it is just a small step toward the ultimate goal of
providing appropriate automated support for software development and mainte-
nance. In order to reach this ultimate goal it will be necessary to provide tool
support on a scale far more massive than what we have achieved in our early
work. Further it will be necessary to see that different users are able to tailor
their tool support systems to meet their needs as their sophistication grows and
as the natures of their various jobs change.

When viewed in this larger context, it becomes clear that the creator of an
environment must be worried about producing something which may turn out to
be provocative for a short time, but unacceptably constraining and under-
powered afterwards. This suggests that current environments must be designed
to be extensible. In fact, we realized very early in the Toolpack project that
tools would have to be integrated incrementally, as some were initially available
and others were to be provided at various intervals during the progress of the
project. Thus a key requirement on Odin was that it support tool function
extensibility. This requirement has been met by Odin, as we have already
created integrated toolsets in which the original suite of tools was systemati-
cally and incrementally augmented without undue disruption or trauma to
users. In some cases the augmentations were considerable in size and variety.
In addition a number of the added tools were ones whose inclusion was not ori-
ginally anticipated or planned for. Our experience to date indicates that the
addition of new tools can be so effortless that experimentation with improved or
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competing tools seems quite feasible. This suggests that our system might well
prove to be useful as a basis for the sort of testing and experimentation with
tools and methodologies which was advocated earlier in this paper.

5. The Design of the Odin Object Manager.

In designing and building the Odin prototype we rapidly came to understand
that in order to effect the user view previously described it would be necessary
to think of Odin as a system that manages not only software objects, but also
the dependency and derivation relations among these various objects. In fact,
by the end of the project it became clear that what was developed was not just
an object structure, but also an ad hoc type structure for the software objects
and tools managed by Odin.

The distinction is a necessary one if Odin is to be thought of as a system for
integrating arbitrary collections of tools rather than a single, fixed, given collec-
tion of tools. In the latter case, the collection of tools can be taken as fixed and
immutable, and the relations of the various tools and the types of objects they
manipulated can be "hard-coded." We sought to study the principles underlying
the effective integration of general toolsets, however. In addition, we recognized
that at least for the present any collection of tools would have to grow and
change incrementally in order to remain useful to its users. Both of these cir-
cumstances dictate a need for a system in which the structure of tool and
object type interrelation and interdependency is to be separately maintained
and maintainable.

Thus, this section will center on the description of two structures--1)the struc-
ture of the objects which are maintained by any single, specific Odin-integrated
environment and 2)the structure of the types of these objects and the tools by
which these objects are created and manipulated. The distinction between
these two structures and the close working relation between them will be
explained in the first two subsections. Following these two subsections will be
subsections discussing the two languages for the description and manipulation
of these two structures.

5.1. Software Object Management in Odin.

As observed above, the goal of the Odin architecture is to encourage the user to
think of his or her work as much as possible as a process of creating and access-
ing software objects and to carry out that work by manipulating those objects
as directly as possible. Our aim is to ask the user to specify as little
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information as possible about how to produce these objects and to insulate him
or her as much as possible from the work entailed. In some cases, it may be
that the requested object or objects are persistent objects which have been
requested before, and stored for future reuse. In this case, Odin will rapidly
access them and provide them. In other cases it may be that the requested
objects must be built essentially from scratch, perhaps because neither they, nor
anything remotely like them have ever been requested before. In this case,
Odin will determine the procedure by which they can be most effectively
created, execute that procedure, present the requested objects and store them
away for possible future reuse.

Our assumption is that, in most cases, the requested objects will be "similar" to
objects which have been requested before. This may arise because objects form-
erly created have been altered, for example by editing, or because the requested
objects are derivations of objects requested earlier. No matter what the rea-
son, this is the most interesting case. In this case Odin will determine how simi-
lar the requested object or objects are to objects already created and stored.
Odin will then take considerable pains to assure that the requested objects are
created by making the most effective use possible of information already at
hand.

In each of these three cases the Odin command interpreter’s strategy is the
same. The strategy involves carefully naming each object in its store in such a
way that the name accurately reflects the way in which the object either has
been, or could be, derived from the most elementary objects in the store by a
sequence of tool fragments. This fully elaborated name then suffices as a guide
which can be used to effectively and efficiently search the object store. If the
requested object is already there the search terminates with a pointer to it. If
it is not, the search terminates at an object or objects which represent(s) some
progress from the store's most elementary objects towards what has been
requested. Odin then uses the fully elaborated and derived name to provide a
prescription of the sequence of tool fragments which must be invoked to take
the already-existing object(s) and derive them into what has been requested.

An illustration should be helpful here. Suppose that the user is interested in
viewing a prettyprinted version of a program named "joe", which had previously
been prepared for a dynamic debugging session through the actions of a
dynamic instrumentation tool. The user would request the object:

joe : ins : fmt
namely, the object which results from starting with joe, then producing an

instrumented (ins) version of that, and then producing from that a formatted
(fmt) version. It should be noted that although the user’s view is that this
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object has been created by the sequential execution of two tools--an instrumen-
tor and then a formatter, the Odin strategy is to encourage the implementation
of each of these two tools by the sequential execution of several smaller tool
fragments. Thus in Toolpack/IST, the Toolpack toolset integrated under
Odin, instrumentation is accomplished by the sequence: lexical analysis, parsing,
semantic analysis, and then finally instrumentation. Formatting is accom-
plished by the sequence: lexical analysis, parsing and then formatting. Thus the
object which the user requested is actually built by the sequential execution of
at least half a dozen tool fragments, most of which are unseen by, and presum-
ably unknown to, the user.

The process by which Odin translates the user’s name into this tool fragment
execution sequence entails the creation of the canonical internal name of the
object which the user’s request has described and then a search for an optimal
sequence of tool executions capable of building the described object from the
objects currently on hand in the store. The organization of the store is
designed to effectively support searches for derived objects, and will be
described shortly. If the search reveals the presence of the object which the user
has requested in the store, that object is immediately returned to the user. If
joe is present in the store, but none of joe’s derivatives are present, then Odin
constructs a procedure for building the requested object from joe. Along the
way, each of the following objects (and a number of others) are also built:

joe : lex (joe’s token list)

joe : prs (joe’s parse tree)

joe : nag (joe’s semantic attribute table)
joe :ins (instrumented version of joe)
joe : ins : lex (token list for instrumented

version of joe)

All are stored for possible reuse at some time in the future. If "joe : ins" is
present in the store (eg. because the user had previously requested the execution
of the instrumented version of "joe'"), then Odin would use this object a the
basis for a much simpler and faster derivation procedure, namely the execution
only of the lexical analyzer and the formatter using what the user would call

joe : ins
as input.
" The key to understanding how the above intelligent object derivation process

works is an understanding of the organization of the underlying Odin software
object structure, the derivative forest. This structure is detailed next.
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5.1.1. The Odin Derivative Forest.

The derivative forest is a structure that indicates which objects in the Odin
information store have been produced from which other objects in the store.
Odin assumes that the object store consists of two different classes of objects--
atomic objects and derived objects. Atomic objects are those which have
entered the store either by means of a synthesis process such as text-editing or
by explicit importation from an external store such as the host file system.
Atomic object are object which Odin realizes it cannot reproduce on its own.
Derived objects, on the other hand, are those which have been created as the
direct result of the execution of tools or tool fragments incorporated by Odin.
The derivative forest organizes all objects in the file store into a collection of
trees, such that each atomic object is the root of a tree consisting of all the
objects which have been derived, directly or indirectly, from the root object by
tool invocation sequences.

Figure 1 is an illustration of a portion of such a derivation forest. In Figure 1,
note that "sam", "joe", and "bob' are all atomic objects (in this case, each is a
body of source code). The tree rooted by "sam" has two subtrees, each consist-
ing of a single node. One node, labelled "prs", represents the parse tree derived
from the "sam' source code by the Toolpack/IST parser tool. The other node,
labelled "ins", represents the instrumented version of "sam" which has been
derived using an instrumentation tool. The tree rooted by "bob" has one sub-
tree whose root is labelled "fmt". This indicates that a formatted version of
"bob" has been derived and stored. The node representing this formatted ver-
sion is, in turn, the root of a subtree which contains two other nodes-- labelled
"prs" and "ins". These two nodes represent further derivations, namely the
parse tree and the instrumented version of the formatted version of the original
"bob" source code.

5.1.1.1. Object parameterization.

Finally, note that the tree rooted at "joe'" illustrates yet another descriptive and
representational feature of Odin--namely the use of parameterized object
descriptions. The subtree of "joe" rooted at "ins" has two sub-subtrees, each
representing a different derivation of "joe" by the instrumentor. Often there is a
variety of additional information that can be associated with an object which
will affect the derivatives produced from that object. In Odin, this additional
information is associated with an object as the "parameters” of that object.
For example a debug parameter could cause the compile derivative to contain
run-time checks; a library parameter could cause the load derivative to have
undefined externals satisfied from a non-default library; and a format parame-
ter could cause all printable derivatives to be generated in line-printer format.
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In the example, the user has specified explicit parameterization for one deriva-
tion of the instrumented version of "joe : ins'. This instrumented version,
denoted "no_comments" is presumably a version which the instrumenter will
produce upon request which has no comments imbedded within it. The other
instrumented version does not have an explicit parameter attached to it, but
instead is parameterized by default parameterization.

A parameterized object is specified by augmenting the specification of the
object by a '+’ and the parameter. The paramenter specification is actually
appended to the end of the specification of the object which is to be taken as
input to the tool which is to interpret the parameter, and just before the
specification of that tool. This is intended to underscore the fact that the
parameterization is reasonably considered to be input to the tool, along with
the contents of the object.

Thus, for example, the "no_comments" paramenter would be incorporated into
the specification of object "joe : ins" as follows :

joe +no_comments : ins

It is often the case that a value should be associated with a given parameter.
Such a value can be specified by appending to the parameter an equal-sign
('=") and the value. For example, if array bound violations are to be checked
or if dereferencing of nil pointers are to be checked for the object "joe", then
respectively

joe +debug=arrays
or

joe +debug=nilref
would be specified.
If the value associated with a parameter is contained in another Odin object,
the value is specified as the Odin object surrounded by parentheses. For exam-
ple, suppose that there is a derivation named "lib" that will produce a library
from source code. Then the result of running "joe" using the library produced

from an object called "util" would be specified as :

joe +lib=(util : lib) : run
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It is important to note that the derivative forest keeps families of objects stored
together in a way which is conceptually clean and logical, and also in a way
that makes it easy for the Odin object manager to quickly and easily find
objects which have been requested either directly or indirectly. Objects which
have previously been created can be rapidly returned to the user, and instruc-
tions for the creation of objects which have not previously been created can be
rapidly synthesized.

5.1.2. Alteration of Objects.

A significant complication to the above process of creating, controlling and reus-
ing derived objects arises from considering the effect of altering objects, for
example by a process such as editing. Under Odin, when an atomic object (for
example source text) is modified (for example by a text editor), the resulting
source text object is considered to be a new object which is a version of the ori-
ginal object. The user may specify a name for this new version, in which case it
becomes a new atomic object and the root of a (temporarily descendantless)
derivative tree. If the user does not specify a name for this new version, then it
automatically replaces the object which was the original version. In this case,
however, it is not safe to assume that objects which are derivations of the origi-
nal version (descendants of the original object in its derivative tree) are correct
derivatives of the object which is the new root of the derivative tree.

Odin assures that the potential problem will be recognized by assigning a date
and time stamp to each object under its control. Whenever a derived object is
found to be older than any of the objects which are ancestors in its derivative
tree, that derived object is treated with suspicion. In particular, if the user
requests "sam : ins" and Odin finds that "sam : ins" already exists in the file
store, the requested object is not automatically returned to the user as stated
above. Instead, Odin first compares the time and date stamps of "sam" and
"sam : ins". If the time and date stamp on "sam'" indicates that it is newer
than "sam : ins" a rederivation process is begun.

It is tempting to suggest that this comparison process be avoided by the simple
expedient of always deleting all derivatives of an atomic object which has been
edited. Odin does not do this because some editing procedures result in
superficial changes that do not alter some or all of the atomic object’s deriva-
tions. Odin incorporates difference analyzers that attempt to make this deter-
mination in an attempt to aviod potentially costly rederivations which might
not be necessary.

In the example just given, for instance, it may be that the user’s editing of
"sam' has only altered comment lines. In this case the previous scan table,
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parse tree, symbol table and instrumentation are still correct derivations of the
edited version of "sam'. Odin will detect this and save most of the work of

rederivation.

The process is as follows. First Odin recognizes that the present version of the
"sam' object is new. As a result it invokes the scanner to rederive the sen_cmt
and sen_tab derivatives. Having done this, it compares these new derivatives
to the old derivatives. This comparison reveals that the new scn_cmt object is
different, but the new sen_tab object is not. Thus Odin replaces the old
sen_cmt object with the new version, but merely updates the time and date
stamp on the old sen_tab object, indicating that it is a correct derivation of the
new 'sam' object. Further, Odin now recognizes that derivations of "sam :
sen_tab", such as the prs_sym and prs_nod objects are also correct derivations
of "sam' and it updates their time and date stamps as well without rederiving
them. Finally Odin will recognize that "sam : ins" is also a correct derivation
and will update its time and date stamp without rederiving it. Thus only the
scanner tool fragment has been rerun in response to this superficial editing of
"sam'". Even this relatively minor rederivation, moreover, is carried out only in
response to a user request for that derived object, or one of its descendants.

5.1.2.1. Trustworthiness and Validity of Objects.

The preceding discussion should have suggested that there are significant com-
plexities involved in correctly and efficiently managing the effects of changes
made to the objects of the object store. One of the most important mechanisms
used to facilitate these activities is the simple expedient of attaching to each
object an attribute intended to indicate how much confidence should be
accorded the object. Associated with this information there is also a mechan-
isms for speeding the delivery of information about changes in the status of the
object to all other objects which should need to know this information.

The basis for this mechanism is a status level attribute, attached to each object
by Odin. The status level may be viewed as an enumerated type whose values
are OK, WARNING, ERROR, NOREAD, NOFILE, and ABORT. OK is con-
sidered the highest status level and ABORT the lowest. The status of a atomic
object is always OK. The status of a given derived object depends on the
results of the tool fragments needed to produce that object. If any tool gen-
erated warning messages, the status level of the given object is at most WARN-
ING. If any tool fragment generated error messages, the status level of the
given object is at most ERROR. If any object that was needed to generate the
given object was not readable, the status level of the given object is at most
NOREAD. If any object that was needed to generate the given object did not
exist, the status level of the given object is at most NOFILE. If any object that
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was needed to generate the given object had status level ERROR, then the
status level of the given object is set to be ABORT.

If the status level of an object is less than OK, the status level is indicated
whenever that object is requested. The actual warning or error messages that
were produced are considered to be objects in the Odin object store. These
objects are specified by appending the ": warn" and ": err” derivations respec-
tively to specifications of the objects to which they apply. Thus, if the request
for the object,

joe : run

indicated that abort status was set for that object, the errors that caused the
generation of the abort status would be the contents of the object,

joe : run : err

The error object is always a subset of the warnings object. The difference
between an error and a warning is that an error prevents the tool from generat-
ing its output, while a warning indicates that although output was generated, it
might be faulty.

One important way in which Odin makes use of status level attributes is by
broadcasting the news that key objects have been changed to derived objects to
which such changes are expected to be particularly significant. Such derivations
are said to be related to such key higher level objects by a "sentinel” relation.
The existence of a sentinel relation between such pairs of objects effects the
automatic rederivation of derived objects and the automatic reporting of
sufficiently low status level of any such rederivations. Sentinel relations are
used to construct a network of constraints among the objects in Odin’s store, as
the store itself is being built up. The purpose of this network is to facilitate the
early, effective and effortless detection of changes to a higher level object which
cause errors in key derivations of those objects.

For example, suppose

thesis.txt :spell
prog.c +input=(thesis.txt) :run

are two Odin objects each of which is derived from the object "thesis.text". If
these objects are related to “thesis.text" by sentinels, then whenever a
modification to 'thesis.text" causes the status level of a derived object to
become ERROR or less, Odin will generate an error message indicating the
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objects for which this has happened. In the above examples, assume that the
":spell" object receives ERROR status if any spelling errors are detected, and
that the ":run' object receives ERROR status if any error messages are gen-
erated in the attempt to compile and run "prog.c” with input object "thesis.txt".
Then if "thesis.txt" is modified, the presence of the sentinel relation between
this atomic object and each of the two derived objects will cause Odin to
automatically rederive those objects and automatically check that the
"thesis.txt" object is spelled correctly, and that it is acceptable to the "prog.c”
program.

5.1.8. Compound Objects.

The objects managed by Odin may be either compund objects or simple objects.
The previous discussions of objects implicitly assumed that the objects under
discussion were simple objects--that is that the objects had no internal fine
structure that was visible or of interest to the object managment system. In
fact some objects may have such a fine structure, in which case they are called
compound objects.

Compound objects may arise in essentially two ways--either through the action
of tools or through explicit construction by users. When compound objects are
created by tools they are generally treated as monoliths by the Odin object
manager. When they are created by users Odin generally has much more flexi-
bility in handling them and is often able to achieve significant efficiencies.

5.1.8.1. Tool Generated Compound Objects.

The most common way in which tools effect the insertion of a compound object
into Odin’s object store is when a source text synthsizer such as an editor pro-
duces more than one compilation unit, or when an object input utility tool
draws such an object in from the host system’s file store. In either case, Odin is
made aware of the internal structure of this object by a tool which has special
knowledge of the original object and is capable of detecting fine structure in
objects of this type (an example of such a tool would be a source text "splitter”
which can identify separate compilation units in a source text object).

Odin employs other tools to enable users to extract components from such com-
pound objects as well. To enable this, Odin associates a "key" with every Odin
object. A atomic object is given a key based on the object’s name. A derived
object is given a default key equal to the key of the atomic object from which it
was derived. For example, the key of the atomic object "joe" will, barring
unusual circumstances, also be "joe." The key of "joe : run" would also be "joe".
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In case a derived object is a compound object, the key for each element of the
derived compound object is generated by a tool that derives names for the com-
pound object. For example, suppose "joe : output" specifies the output object
generated when executing the object "joe", and this derived object is a com-
pound object because the nature of joe is that it generates more than one out-
put object. The most useful and more likely situation is that the creator of the
tool which derives ":output” objects has also supplied another special purpose
tool which extracts from such compound objects especially meaningful names to
be used as keys to those objects. For example, if the tool is one which produces
formatted versions of input source text procedures, then the tool which creates
key names would most likely be a tool which finds the names of all of the indivi-
dual procedures.

Once a set of keys representing the components of a compound object has been
determined, they can be used to extract these components. The objects within
a compound object having a certain key can be specified by appending to the
name of the compound object an at-sign ('(@’) and the key. For example, sup-
pose that running "joe : output' produces three output objects whose key values
are "DATA", "source.list", and "source.errors’. These three objects could be
specified as the three Odin objects,

joe : output @WDATA
joe : output (@source.list
joe : output @source.errors

5.1.3.2. User-Created Compound Objects.

The other principal way in which compound objects enter the Odin object store
is through their explicit creation by users. The capability upon which this rests
is the ability to to define objects which consist of pointers to other objects.
Such objects have type "ref". For example, in Figure 2 the objects “sally” and
"jane'" are 'ref" objects. The object "sally" consists of pointers to the three
objects-- "sam", "joe" and "bob". The object called "jane" consists of pointers
to "bob" and "tim".

Once compound objects have entered the Odin object store, other compound
objects can be created from them by the action of tools. Thus, the application
of an Odin tool to an input compound object generally results in the creation of
an output compound object which can invariably be thought of as the composi-
tion of the various objects resulting from the application of the tool to each of
the components of the original input compound object. For example if the user
requests the object
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sally : ins
Odin produces a compound object consisting of pointers to
sam:ins  joe : ins bob : ins

In order to do this, of course, Odin first has to be sure that the "scn_tab",
"prs_sym' and "prs_nod" objects are created for each of "sam", "joe" and "bob".
All of these derived objects are stored as descendents of the "sam", "joe" and
"bob" "f77" atomic objects. The object "sally : ins" is itself stored as an object
which has been derived from the atomic object "sally". It consists of pointers to
the derived objects

sam : ins  joe : ins bob : ins

which reside in their respective derivative trees. Clearly if any or all of these
individual "ins" objects had been created previously, Odin would recognize this
and not go through the process of recreating them by the reapplication of tool
fragments.
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In addition, these derived objects, once created, are available for reuse in the
context of responding to user requests made indirectly through other "ref" files.
In the example shown in Figure 2, suppose the user requests the object "jane :
ins" after requesting "sally : ins". As the request for "sally : ins" has resulted in
the creation of "bob : ins", Odin needs only to create a pointer to that existing
object and create the "tim : ins" object in order to satisfy the user’s request for
"jane : ins". Thus Odin supports the ability to aggregate objects in overlapping
ways, without incurring inefficiencies due to needless repetition of work.

These "ref' objects can be used to define hierarchies of objects, by having a
"ref'" object contain other "ref" objects (as long as such definitions do not
become recursive). This capability has proven quite useful, as support libraries
have been stored as 'ref" files, which have then, in turn, been included in higher
level "ref" files which also incorporate pointers to clusters of source code objects
comprising various functional pieces of a program. Pointers to these "ref" files
are, in turn, included in still higher level "ref" files corresponding to, perhaps,
major functional pieces of the program. Finally, the entire program is itself
represented by one "ref" object consisting of pointers to high level "ref" objects
representing major program constituents.

In constructing this hierarchy, the user need not be unduly concerned with
assuring that the constituent objects are mutually disjoint, as no inefliciencies
in tool application would result from this. Instead the hierarchical structure is
free to reflect the program’s logical structure. Such tool applications become
very easy to request, as the user simply applies needed tools to the highest level
"ref" object. In the case of a program which is under maintenance, and for
which such tool applications have been done in the past, it is often the case
that the many of the objects which the user is indirectly requesting have
already been created. In this case these objects are not rederived. Only objects
which have not previously been created, or which have been made obsolete by
alterations to the atomic objects from which they had previously been created,
need be created. In the usual maintenance scenario, the determination of which
objects need to be recreated is a painstaking and perilous one. Most users elect
to avoid it and its risks by doing massive rederivations, often needlessly dupli-
cating considerable previous work. Through Odin the user is assured that only
those objects which must be rederived will be rederived. The user simply makes
one terse command. This relatively painless and extremely powerful mechanism
for the control of derived objects has proven to be one of the most powerful and
appealing features of Odin-integrated toolsets.

There is also no requirement that the objects to which the pointers in a "ref"
object point be of the same type. Thus, we see that "ref" objects enable the
creation of logical records and stuctures. This gives the Odin command
language the ability to manipulate complex structures of objects of
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heterogeneous types quite simply.

5.2. The Odin Dependency Graph.

The foregoing discussion of how users can employ Odin to manage complex tool
and object configurations intelligently has now prepared us to discuss the way
in which a different but related structure, namely the Dependency Graph, is
used as the basis for this process.

The previous subsection has indicated that Odin is designed to help the user to
use powerful and complex tools to create large and possibly intricate structures
of software objects. Wherever possible users are shielded from the need to
understand and master complex tool interactions. Further, users are also
prevented from attempting to misuse tools, for example by applying a tool to an
inappropriate argument object (eg. attempting to use a text editor on a
flowgraph). The mechanisms for guiding proper application of tools and for
forestalling inappropriate tool use is the same--a primitive typing mechanism.

The objects which the Odin user creates and organizes by means of the previ-
ously described Derivative Forest are best considered to be instances of data
types, and tool fragments are considered to be operators which transform
instances of the various types into instances of other types. The tool fragments
(operators) integrated under Odin accept as inputs only operands of prespecified
types. Odin is responsible for furnishing only objects of those types. This may
involve casting inappropriately typed objects where necessary and possible.
Where such casting is not possible, Odin is responsible for advising the user and
attempting to provide help in forming an acceptable request.

The focus of the Odin typing and casting mechanism is the Odin Dependency
Graph. This is the structure which Odin uses in order to retain a record of
which tool fragments are currently incorporated into the system, which types of
objects they produce and require, and the way in which these various tool frag-
ments can be synthesized and concatenated to effect the higher level tool func-
tionality which users are able to request. The nodes of the Dependency Graph
represent the range of possible types of objects in the object store and the edges
represent ways in which objects of one type can be transformed into new
objects (perhaps of different types).

These transformations can be achieved in two different ways-- by casting and
by derivation. Existing objects can be retyped by casting them from their
present type to a new type. This is often useful when Odin determines that
some existing object is the needed input to a particular tool fragment, but that
the object is not of the type required by the tool fragment. Casting the object
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from its current type to a new type does not alter the contents of the object,
but retyping it enables different tool fragments to use it as input.

For example, in Toolpack/IST the scanner tool fragment accepts as input
source text files. These files have type "f77" (Fortran 77 text). On the other
hand, the output of the formatter tool (fmt) and the instrumentation tool (ins)
are both source text, but are typed "fmt" and "ins" in order to facilitate the
work of the Odin command interpreter when it is looking in the object store to
see if these objects exist. Clearly objects of type "fmt" and "ins" should be con-
sidered legal inputs to the scanner. All that is needed is to convert their type
(but not their contents) to type "f77". This is indicated by specifying that it is
possible to cast objects of type "fmt" to type "f77" and objects of type "ins" to
type "f77".

New objects can be created from existing objects by the action of tool frag-
ments. In this case, the new objects are said to be derived from the existing
objects. In the Odin Dependency Graph the nodes are the various types objects
of which can be managed by Odin. The edges represent the various derivation
and casting relations which can be effected either by, or in support of, the vari-
ous tool fragments which Odin manages.

Figure 3 shows a part of the Dependency Graph which represents the tool frag-
ments and object types managed by Odin to form Toolpack. In this figure cast
relations are shown as dotted edges and derivation relations are represented by
solid edges. This example is sufficient to support a more careful and satisfying
explanation of how the Odin command interpreter is able to effectively reuse
previously created persistent objects as was indicated earlier in this paper.

Earlier we indicated that the user could effect the creation of the formatted ver-
sion of the instrumented version of a body of source text named joe by typing
the command

joe : ins : fmt

This command would create a Derivative tree which is a supertree of the mid-
dle tree of Figure 1. Initially suppose that the middle tree of the Derivative
Forest of Figure 1 consists only of the root, namely the atomic source text
object, "joe", when the user gives the command. In this case, Odin first exam-
ines the Derivative Tree to see if file "joe : ins : fmt" has already been created.
This search quickly terminates with a negative result as "joe" has no descen-
dents at all. Odin next determines that "joe : ins : fmt" can not be built until
"joe : ins" is built and concentrates on determining how to construct "joe : ins"
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first. Odin consults the Dependency Graph to determine this. The Dependency
Graph in Figure 3 shows that an object of type "ins" (such as "joe : ins") is
derived from an object of type "f77", an object of type "prs_sym" (parser sym-
bol table), and an object of type "prs_nod" (parse tree). An associated table
(not shown here) indicates that the tool fragment which is able to produce both
parser symbol tables and parse trees is the parser. Thus Odin infers that the
creation of "joe : ins" requires the application of the parser.

Odin next determines the input objects required by the parse to see that they
are present. In this case Odin discovers that the parser requires as input an
object of type "sen_tab" (scanner table). This object is not present either (or
else it would be shown as a descendent of the atomic object, "joe"). Thus "joe
: sen_tab" must also be built. The associated table (not shown here) indicates
that the scanner table is built by the lexical analysis (scanner) tool fragment
using an "f77" source text object as input. Thus Odin infers that the scanner
tool fragment must be invoked before the parser fragment. Odin searches to
see if the input to the scanner is present. In this case, the Dependency Graph
indicates that the input to the scanner must be an object of type "t77" and
"joe' is an object of that type. Thus Odin now has determined that "joe : ins"
can be built from the existing objects by first invoking the scanner using "joe"
as input, and then invoking the parser, using "joe", "joe : prs_sym' and "joe :
prs_nod' as inputs.

Now Odin is able to direct its attention to the task of creating "joe : ins : fmt".
Odin now is able to assume that "joe : ins" has already been created, along with
the various other objects necessary for the creation of "joe : ins". Specifically,
when this process has terminated the Derivative Tree rooted at "joe" will
appear as shown in Figure 4. The following objects will at that time all be
direct descendants of "joe" --

joe :scn_emt  (comments imbedded in joe source text)

joe : scn_tab (joe’s scanner table, sometimes referred to
as the token list)

joe : prs_sym (joe’s symbol table)

joe : prs_nod (joe’s parse tree)

joe :ins (instrumented version of joe)
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The desired object, "joe : ins : fmt", must be created as a node of a subtree
rooted at "joe : ins", but it is unclear whether or not Odin can create the
desired object immediately. Odin now examines the Dependency Graph and
notes that an object of type "fmt" can be derived from an object of type "f77"
and an object of type "sen_tab" by using the formatting tool fragment. As "joe
: ins" is not of either type, some work must be done. In particular the object of
type "scn_tab" can be created by the scanner from an object of type "f77", indi-
cating that Odin will have to invoke the scanner on some source text. Unfor-
tunately, "joe : ins" is not of type "f77". Here, however, Odin determines that
"joe : ins" is of type "ins" and that objects of type "ins" can be cast to objects
of type "f77". Thus Odin determines that the scanner can in fact be applied
directly to "joe : ins'", to create "joe : ins : sen_tab". That object, along with
"joe : ins" (cast to type "f77"), are sufficient inputs to enable the formatter to
execute, thereby producing the final object "joe : ins : fmt".

It should now be clear that this whole process would be significantly expedited
if "joe : ins" were already in the object store at the time the user requested "joe
: ins : fmt". In this case, Odin’s initial search for "joe : ins" would have been
successful, as "joe : ins" would be a direct descendant of "joe". Odin would
then have determined that only the scanner and formatter would have had to

be invoked in order to build the requested object.

5.3. Extensibility.

This is an opportune time to indicate the manner in which Odin serves as an
excellent vehicle for facilitating the flexibility and extensibility of toolsets which
it integrates. The basis for the extensibility of Odin is the Dependency Graph
just described. This graph indicates the way in which objects of any type can
be built from other objects, perhaps of a variety of types. It is important to
note that this Dependency Graph is accessed and maintained by the Odin com-
mand interpreter and is not accessible to the various tool fragments themselves.
Further, the various tool support libraries through which the tool fragments
access objects force the tool fragments to access only needed objects and isolate
the tool fragments from any direct contact with other tool fragments. Thus
tool fragments have no knowledge of the sequence in which they may be called,
and are prevented from establishing reliance, explicit or implicit, upon other
tool fragments. As a result any tool fragment can always be replaced by
another provided that the replacement produces objects of the same types as
that produced by the original, and draws upon objects created by the other tool
fragments in the toolset. This effects a great deal of flexibility in upgrading or
correcting existing tool fragments.

Beyond that, this architectural device also makes it relatively straightforward
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to integrate a new tool fragment into an existing toolset. The new tool frag-
ment must first be characterized in terms of the object types it requires as
input and produces as output. Its input object types must all be types already
produced by existing tool fragments. Its output types may be either partially or
totally new. If some output object types are new, then new nodes must be
inserted into the Dependency Graph to represent them. Edges connecting the
input types to the output types--new and old--must then be inserted into the
Dependency Graph as well. Once this has been done Odin has complete
knowledge of when to invoke the new tool fragment, and how to optimize the
creation of objects which it produces.

In Odin the Dependency Graph is specified through the use of a Specification
Language and is instantiated by means of a processor for translating such
specifications into the actual graphs. The language is described in some detail
in a later section of this paper. Specifications in this language are relatively
straightforward to alter by the use of a text editor. Thus the process of alter-
ing or extendng an Odin-integrated toolset centers on making alterations to the
Dependency Graph and supplying the new tool fragment(s) in an appropriate
fashion.

Alterations to the Dependency Graph can currently be effected by using a text
editor to modify the graph specification and then rerunning the tool used to
construet the Dependency Graph from its specification. Supplying the new tool
fragment is easily done by placing an executable version of it someplace where
the Odin command interpreter can effect its execution.

Supplying the tool fragment in an appropriate fashion should entail more than
this, however. As observed earlier Odin’s object store contains typed objects,
where the type structure is specified by the Dependency Graph. In order for
this typing structure to most effectively support the flexibility needed in a pro-
totype integrated toolset, the implementations of the various types should be
concealed from the tools which use them. Thus, it is most preferable for types
to be defined as abstract data types (ADT’s) in terms of clusters of accessing
functions. When types are defined in this way, their implementation structures
are more effectively hidden from using tools, and can therefore be modified tran-
sparently to those tools. Thus, for example, the internal representation of a
data type might be altered to make accesses more efficient, to reduce storage
costs, or to enable the incorporation of tool fragments which create instances of
the type more efficiently. All of these sorts of changes to the toolset are made
possible if the type is defined in terms of accessing cluster functions. Thus it is
most preferable that new tool fragments which create new data types be sup-
plied not simply as a single executable capable of generating instances of that
type, but rather in the form of a collection of executables.
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The collection should include a cluster of accessing functions representing the
primitive accessing capabilities for the new type, as well as the executable
which creates instances of the type. The executable should be designed so that
it creates instances of the new type by invoking the appropriate type accessing
primitives, and so that any uses which it makes of objects of the new type are
made through appropriate primitives as well. The cluster of accessing primi-
tives, of course, must be made available to writers of future tools which intend
to build upon objects of the new type. Ideally Odin should take a positive role
in enforcing the use of accessing primitives by all tools and tool fragments.
Presently this enforcement is carried out informally in the Odin-integrated tool-
sets that have been constructed to date.

Our experience to date indicates that Odin is indeed a vehicle for readily
extending and modifying integrated toolsets. We have succeeded in incrmentally
incorporating dozens of tools and tool fragments into Toolpack /IST--some
which we produced ourselves and some which we captured from host environ-
ments. New tool fragments have been incorporated into Toolpack /IST in as lit-
tle as five minutes. In Toolpack we have attempted to treat object types as
data abstractions, but this has been done on a largely voluntary basis, due in
large measure to the fact that many important Toolpack tools were captured
from host environments and could not be altered to sharpen the boundaries
between ADT accessing functions and functional tool capabilities.

6. The Odin Request Language

As observed earlier, the goal of a software environment should be to serve as a
positive, painless aid to the user in effectively gaining access to software objects
which contain needed information. To that end, the role of the language which
the user is to employ should be to effect that access quickly and painlessly.
Accordingly, the language which is provided as the user’s vehicle for creating
and accessing software objects--called the Request Language--is an imperative
object oriented language. This section presents a very brief overview of the
Request Language. Further details can be found in [Clemm 86] and [ClemOst
86).

The Request Language offers the user the use of two different Basic
Commands--Display and Transfer--and a variety of Utility Commands.

6.1. The Display Command.

The display command prints out an Odin object to the current standard output
device, normally a terminal screen. This command is implicitly invoked, being
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automatically invoked whenever an Odin object is specified. The key to under-
standing how objects are specified in the Odin command language is to recall
that all objects are considered to be the outputs from tools and tool fragments.
Thus each object is specified by naming the root object in the derivative tree in
which it is contained and by appending to that name the names of key nodes in
the derivative tree which are needed to unambiguously specify the requested
object. The names of these appended nodes are separated from each other and
from the name of the derivative tree by a punctuator, currently the colon (:).

Thus, if "joe" is the name of a derivative tree corresponding to a source text
object, then if the user specifies

joe

Odin will return the source text comprising the object named joe.

If the user specifies

joe : fmt

Odin will return a version of the atomic object "joe" which has been processed
by the tool fragment named "fmt" (in Toolpack/IST this is a formatting tool).

If the user specifies
joe : ins

Odin will return a version of the atomic subroutine joe which has been pro-
cessed by "ins" (in Toolpack/IST this is the dynamic instrumentation tool frag-
ment). Further the user can specify

joe : ins : fmt

in which case Odin will return an object which has been derived from the
atomic version of "joe' by first instrumenting it for dynamic analysis and then
formatting that derived version. The user is free to specify arbitrarily many
successive derivations by Odin-integrated tools and tool fragments in this way.

Clearly these derivations could not have been created until and unless an inter-
preter system for the Request Language had previously effected the construction
of lexical analyses and parses of various versions of "joe". As noted earlier, the
user does not need to know any details of what was done or why or when these
views were created. On the other hand if the user wishes to examine these
views for any reason, it is easy to do so. The naming conventions to be used
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are just those described above. For example, if the user wishes to see the token
list prouced by lexical analysis of the atomic version of "joe" he or she need only
specify it as

joe : sen_tab

As a result of this command, the interactive user would see the token list scroll
by on the terminal screen.

In these examples the objects which the user is able to specify are the straight-
forward outputs of relatively simple tool capabilities. Much more complex
derivation processes can be concealed behind the Odin command language con-
ventions and formats. For example, if joe were an executable main program
then the user could specify

joe : rin

and Odin would effect the execution of "joe", displaying back to the user the
output of the run (which in this case is assumed to be interactive). Thus this
specification effects the compilation, loading and actual execution of the pro-
gram represented by the source text of the atomic version of "joe". If the user
instead desired to see the results of executing the version of "joe" which have
been instrumented, then the user would only have to type

joe :irn

In this case, Odin would effect not only the instrumentation of the atomic ver-
sion of "joe", but also its compilation, its loading and its execution. All details
of how this had been done would be concealed from the user.

Earlier it was also noted that complicated tools such as an instrumentor or a
formatter can be configured to perform differently by the use of parameterized
object specifications. >From the point of view of the Request Language, these
different versions are denoted by specifying the names of the parameter
specifications or specification objects just after the names of the objects which
are input to the configurable tool. Option specifications are separated from
object names by a special punctuator, currently the plus sign (+). Thus,
assuming that the user has previously created an object called "newtopts” con-
taining a specific set of instrumentor options, the version of "joe" obtained by
instrumenting it according to the dictates of "newtopts" is specified by

joe +newtopts : ins

Finally it should be noted that in all of the above discussion it was not
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necessary to have assumed that "joe" was the name of the derivative tree of a
source text object. It could equally well have been the name of a compound
object, such as a "ref" object. Thus, supposing that "sally" had been defined to
be a "ref" object consisting of pointers to the objects named "sam", "joe" and
"bob", then

sally : fmt

would be the specification of the object consisting of pointers to the objects
which are the formatted derivations of "sam", "joe" and "bob".

sally +newtopts : ins

would be the specification of the object consisting of pointers to the objects
which are the derivations of "sam'", "joe" and "bob" obtained by using the
instrumentor according to the dictates of the 'newtopts" parameter
specification object.

sally

is the specification of the "ref" object and would not return the concatenation of
the source text of "sam", "joe" and "bob", but, rather the ref file itself:

sam
joe

bob

In order to obtain the concatenated source texts for these files, the user would
ask for the object created by the action of "empd", a special purpose Odin
unary operator defined on "ref" objects. Thus the user would specify

sally : empd

to create the concatenated source text of atomic versions of the source text
objects, "joe", "sam", and "bob".

6.2. The Transfer Command.

The basic form of the transfer command copies the contents of one Odin object
into another Odin object. The second object must be a atomic object. An

Odin object is copied by appending to the name of the first object a right-
angle-bracket (">’) and the name of the second object. For example,
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joe > tom
would put a copy of the contents of "joe" into "tom".

joe : run : err > joe.err
Woulnd put into "joe.err’ a copy of the list of errors generated in attempting to
run "joe'.

An extended form of the transfer command places an object as input to a host
system command. This allows the use of host system "editors" or "viewers". In
this form of the transfer command, appended to the object is a right-angle-
bracket ('>'), a colon ('), and the name of the host system command. For
example,

joe > :vi
would invoke the host system editor "vi" on the file "joe", while
joe : run : err > : more

would display the list of errors by running the host system command “more”
with the list of errors as its input.

In case the colon and host system command name is omitted, a default host sys-
tem command is invoked. The name of the default host system command can
be specified by the user through mechanisms described later in this section. For
example, if the default host system command is "vi", then the following two
commands are equivalent :

joe >
joe > vi

6.3. Utility Commands.

6.8.1. Command Script Commands.

An Odin command script is an Odin object that contains a list of Odin com-
mands. This command script can be invoked by specifying a left-angle-bracket
('<’) and the name of the Odin object. For example, if "script.odin” contains a
list of Odin commands,
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< script.odin

would invoke all the commands in script.odin.

6.3.2. History Commands.

A list of all basic commands invoked during a given Odin session is maintained
by the Odin system. This list can be displayed and modified, and commands
from this list can be selected and modified for re-execution.

The exclamation point character ('!") is used to display the history list.

6.3.3. Help Commands.

In order to provide some guidance to a user of the Odin System, various forms
of help messages are provided. Currently, the help system is intended to pro-
vide a "reminder" function for use by those already familiar with the Odin sys-
tem. A help system with a greater "tutorial" flavor would be necessary for a
novice user.

6.3.3.1. Syntax Help.

A simple syntax help facility is provided to describe the syntax of Odin com-
jands and Odin objects. A list of topics is generated in response to a single
question-mark ('?’). At that point the user is able to get further information
about any of the listed topics by typing in the name of the topic, followed by a
question-mark.

6.3.3.2. Atomic Type Help

A list of all object types currently being managed by Odin’s object store can be
automatically extracted from the Odin Dependency Graph and presented to the
user, simply by typing "?:". This feature of Odin’s help system is automatically
maintained and kept consistent with the actual system specification.

6.3.3.3. Derived Type Help.

If the type of a desired derivation has been forgotten or a list of the types
which might possibly be derived from a particular specified object, a question
mark (') can be put in place of the derivation name, and the Odin System will
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respond with a list of the types that could possible be derived. Thus, for exam-
ple

joe : fmt : ?
would generate the following message :

Possible Derivations from an Object of Type "fmt" :

obj weeuenn. object code from ¢ compiler

fmt ........ formatted version

xref ....... cross reference listing

run ........ results of executing a ¢ program

This states that all of the following would be legal objects :

joe : fmt : obj
joe : fmt : fmt
joe : fmt : xref
joe : fmt : run

6.3.3.4. Parameter Type Help.

Similarly, a question mark can be used in place of a parameter, in which case
Odin will respond with a list of the possible parameters that could appear at
that position. For example,

joe : fmt +?
would generate the following message :

Possible Parameters :  id lib debug
This states that all of the following would be legal objects :

joe : fmt +id

joe : fmt +lib

joe : fmt +debug

In fact, both id and lib should be associated with parameter values, such as:

joe : fmt +id=runb
joe : fmt +lib=(/usr/lib /network.a)
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but since this required value information is not stored in the derivation
graph, an unexpected parameter value (or lack of a value) will only be
detected by the appropriate tool after the erroneous object

has been requested.

A more exact form of parameter help can be requested by specifying
which derivation you are intending to apply to the parameterized object.
For example,

joe : fmt + 7 : obj

would generate the following message :
Possible Parameters : debug

This states that the following would be a legal object:
joe : fmt +debug : obj

Since the id and lib parameters are not relevant to the derivation
from fmt to obj, these are not listed.

6.3.4.
Odin System Parameter Commands.

The functioning of the Odin system is regulated in some very
important ways by the settings of a variety of system parameters.

To facilitate user understanding and control of this functioning

Odin makes these system parameters accessible to users.

Some parameters are read-only and some are user-modifiable. In this
subsection we briefly indicate some of these parameters. The interested
reader should consult [Clemm 86] or [ClemOst 86| for further details.

6.3.4.1.
The ErrFile System Parameter.

All error messages are sent to a file which is initially set to be the
standard output device. These messages can be redirected by modifying
the ErrFile parameter.
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6.3.4.1.1.
The Editor System Parameter.

The Editor parameter specifies the name of the default host system tool
to be used for the abbreviated form of the transfer command.

6.3.4.1.2.
The HelpLevel System Parameter.

The HelpLevel parameter specifies the degree of detail
provided when the user asks for help.

6.3.4.1.8.
The History System Parameter.

The History parameter specifies how much history information
the user is to receive.

6.8.4.1.4.
The LogFile and Logl.evel System Parameters.

The "log" contains a brief description of each of the tools that

were invoked to satisfy the request for an object.

These two parameters are used to control the way in which that log is
maintained.

6.3.4.1.5.
The Size, MaxSize and MinSize System Parameters.

These parameters are used to regulate the size of the cache in which
Odin stores computed objects.
Odin deletes and recreates objects as needed to keep the cache filled.

6.3.4.1.6.
The Sentinel Systern Parameter.

This parameter specifies whether or not sentinels are to
be actively used to help in automatically propagating alterations to
objects which Odin maintains.
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7. The Odin Specification Language.

As discussed earlier in this paper, the structure of the object types and tools
which are integrated by Odin is expressed in the Dependency Graph, which is
defined by a specification expressed in a language which we refer to as the
Specification Language. The specification language is designed to allow the
integration of existing tools or under the Odin System, with no modification to
the tools themselves. This is critical when a tool only exists in the form of exe-
cutable binary, as is often the case for host system provided tools. The only
tools provided by the Odin System itself are ones whose purpose is to support
this task of integration.

For example, a compiler could be provided in an Odin environment by describ-
ing the host system compiler in the Odin specification language. On the other
hand, Odin itself provides a tool that will interpret an object containing a list
of object names as a "collection of objects", so that this collection of objects can
be treated as a single (compound) object by a user of Odin. Odin would ensure
that a request to run a tool on this collection would in fact invoke the tool on
each of the elements in the collection.

The specification of each tool must be expressed in text form and incorporated
into the text object which is the specification of the Dependency Graph. As we
shall see, however, this body of text describes more than just the Dependency
Graph. Basically, a tool specification consists of the name of the tool and a
description of the input and output behavior of the tool.

For example, a simple formatter could be described as follows :

fmt '"formatted version of C code' :
USER pol_c.cmnd
e

where fmt is the name of the type of the object produced by a C code for-
matter, the string in quotes on the first line constitutes an official description of
this object type, the name following the keyword USER on the second line is the
name of the tool which is currently being defined to be a producer of objects of
this type, and ¢ names the type of object which is suitable as input to the tool
being defined.

In general, the input/output behavior of a tool can be far more complex than
this simple example, but this basic model of naming the output of a tool, nam-
ing the procedure that invokes the tool, and then describing the input to the
tool, is always followed. In this section we very briefly summarize the salient
aspects of this specification language. More detail can be found in [Clemm 86
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and [ClemOst 86].

7.1. Comments

Comments can be placed anywhere within the text of a specification expressed
with the specification language. A comment is initiated with the sharp charac-
ter ('#') and is terminated by the end-of-line character.

7.2. Atomic Object Types

Every object type being included in the specification must be assigned a unique
"atomic object type". Each atomic object type is declared in the specification
by stating the name of the atomic object type followed by the keyword
ATOMIC and a text string stating the official description of that type of object.
For example, atomic object types for C and Fortran source code could be
declared as follows :

¢ ATOMIC "C source code”
f ATOMIC "Fortran?7 source code"

7.3. Derived Object Types.

Every object type that is produced by a tool described in the specification must
be given a unique "derived object type" and defined by a specification. A
definition of a derived object type consists of a description of the structure of
the derived object followed by a description of the tool that produces the
derived object and a description of the inputs needed by that tool.

7.3.1. Derived Object Structures.

Due to the great variety in output behavior of tools, it is necessary to provide a
flexible language for describing the various possible kinds of derived object
types. Some examples of the different kinds of outputs that a tool might gen-
erate are: a single data object, a single object that refers to another object, a
fixed number of different kinds of output objects, or an arbitrary number of
similar output objects. These are specified as follows:

7.3.1.1. Simple Derived Object Types.

A simple derived object type specification consists of the name of the derived
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simple object type followed by a text string describing the type and a colon.
For example in

exe "executable binary" :

"exe" is declared to be a simple derived object type.

7.3.1.2. Reference Derived Object Types.

A object with a "reference" derived object type is an object that refers to
another object. There are two kinds of reference derived object types - pointer
reference and name reference.

An object with a "pointer reference" derived object type contains the actual
name of the object being referred to. The specification of such an object is like
a simple derived object type specification except that a caret ('*’) is inserted
before the type of the object being referred to. For example, in :

tgi_ptr " tgi "parser grammar' :
"tgi_ptr" is declared as being a pointer to an object of type "tgi".

An object with a "name reference" derived object type contains an Odin query
specification of an object. A name reference derived object type specification is
like a pointer reference derived object type specification except that an at-sign
(@) is placed immediately following the name of the object type which is being
referred to. For example, in:

f_main " fecast@ "scanner default main program" :

"f_main'" is declared as containing the name of an object of type "fcast".

7.8.1.3. Compound Derived Object.

A "compound" derived object type consists of a set of objects, each of which has
the same object type called the "element object type" or is another compound
derived object of the given type. A compound object that contains only objects
of the element object type is called a "flat compound object” - one that also
contains other compound objects is called a "nested compound object”. A flat
compound object is analogous to an array in a programming language - a
nested compound object is analogous to a tree. There are two kinds of com-
pound derived object types--compound reference type and compound source
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type.

7.3.1.3.1. Compound Reference Derived Object.
A "compound reference" derived object type consists of a list of references to
other objects. These references can be either by pointer or by name, as with
reference derived object types.
A compound reference derived object type specification is like a simple derived
object type specification except that immediately following the name of the
object type is added the name of the element object type in parentheses. For
example, in :

objC (obj) "list of object modules" :

"objC" is declared as containing pointers to elements of type "obj".

If the reference is by name, an at-sign ('(@’) is appended to the element object
type name. For example, in :

so_ref (null@) "list of nroff included objects" :

"so_ref" is declared as containing the names of elements of type "null".

7.3.1.8.2. Compound Source Derived Object.

A "compound source" derived object type consists of a set of objects, all of
which were generated by the tool. This is distinguished from compound refer-
ence objects where only references to existing objects are generated by the tool.
A compound source derived object type specification is like a compound refer-
ence derived object type specification except that square brackets (']’ ') are
used instead of parentheses. For example, in :

output [data] "output objects from a test run” :

"output' is declared as being a set of objects of type "data’.

7.3.1.4. Composite Derived Object.

An object with a "composite" derived object type consists of a set of a fixed
number of objects, each of which has a specific, although possibly different,
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object type. This is analogous to a record or structure type in a programming
language. In Odin, most tools that are normally considered to produce multiple
outputs are instead considered to be tools that produce a single composite
object as output. The members of a composite object type can be compound,
reference, or simple object types.

A composite derived object type specification is like a simple derived object
type specification except that immediately following the name of the object type
is added a pair of angle brackets ("<’ '>’) containing a list of member object
type specifications. Each member object type specification is either a com-
pound, a reference, or a simple object type specification, except that the ter-
minating colon is omitted. For example, in :

fscan <
fst "scanner tables"
fst_Ist "fscan compiler listing'™*
f_drive “feast(@ "scanner driver routines"
f_main “fcast@ "scanner default main program"
> "scanner tables"* :

*

*
k

"fscan' is declared as being a structure containing four elements - a simple type
"fst"', a simple type "fst_Ist", a name reference type "f_drive", and a name refer-
ence type "f_main". The tool that produces "fscan" would be responsible for
generating an "fst", an "fst_Ist", an "f_drive", and an "f_main" output object--
the Odin system would then be responsible for producing the fscan composite
object from these four members.

7.8.2. Tool Input Specification.

In order to produce objects as specified, one or more input objects are needed
by the tool that creates such objects. These input objects are specified as a list
of object types, each preceded by a colon. These object types can be atomic
object types, derived object types, or parameter-object types. For example,

f-scan (f) "source objects for a scanner module"* :
COLLECT
: fst
: f_drive

specifies that the object types "fst" and "f_drive" are needed as input.

In addition, it is sometimes convenient to have a constant object as an input
object, where this constant object contains data needed by the tool. In this
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case the name of the constant object is placed in quotes, again preceded by a
colon.

7.3.3. Specification of Tools.
The purpose of a tool specification is to furnish the name of the process which
must be executed to produce the specified derived object from the specified

inputs. There are two kinds of tools - "internal tools" that are provided by
Odin and "external tools" that are provided by the user.

7.3.3.1. Internal Tools.

Odin furnishes a repertoire of internal tools to facilitate the more effective
assimilation of user tool capabilities, and to assure that the more sensitive and
complex manipulations of Odin's key data structures are shielded from users.
An internal tool can be specified for use in a derived object specification simply

by stating the keyword for that internal tool.

Following are some examples of commonly used internal tools:

7.3.3.1.1. STRUCT.

A tool that produces a composite object from a text object containing a
sequence of Odin object specifications, one per line.

7.3.3.1.2. COMPOUND.

A tool that produces a compound pointer reference object from a compound
name reference object.

7.3.3.1.3. COLLECT.
A tool that produces a single compound reference object from a set of input

objects by constructing a compound reference object whose elements are the
input objects.

7.3.3.1.4. FLATTEN.

A tool that produces a flat compound object from a nested compound object.
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7.3.3.1.5. HOMOMORPHISM.

A tool that produces a compound object from another compound object by
applying the derivation following the HOMOMORPHISM keyword to each ele-
ment of the input compound object.

7.3.3.1.6. KEY.

A tool that generates an object containing the key of the input object. This is
the key that would be used by the Odin selection operator.

7.3.3.1.7. CAT

A tool that produces a simple object from a compound object by concatenating
together the contents of all simple objects that are elements of the compound
object.

7.3.3.2. External Tools.

An external tool is defined in a derived object specification with the use of the
keyword USER followed by the name of the external tool. For example, the
external tool "cc" is defined by the following specification.

o "object code" :
USER cc
ic

7.4. Linking Object Types.

For a variety of reasons it is often important to be able to relate one or more
objects types defined in an Odin specification to be related to each other in cer-
tain specific ways. Odin provide some mechanisms for doing this. We briefly
indicate why this is useful and how it can be done. Additional details can be
found in [Clemm 86] and [ClemOst 86].

7.4.1. Joining Tool Outputs.

Sometimes the input necessary to produce a given derived object type, TypeX,
can be provided by two or more different object types, Srcl and Src2. Rather
than specify two derived object types, TypeX1 and TypeX2, where TypeX1 can
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be derived from Srcl and TypeX2 can be derived from Src2, it is more con-
venient to link the two possible input object types to a new object type, SrcX,
and specify that this new object type is the input object type to produce
TypeX. This relations is established by defining a linking object type.

For example, suppose that input to produce an executable binary object type
"exe" can be provided by both the object type "obj-c" produced by a C compiler
and the object type "obj-f" produced by a Fortran compiler. Rather than speci-
fying two different object types, eg. "exe-c" and "exe-f", that produce executable
binaries from "obj-¢'" and "obj-f'" objects respectively, a linking object type "obj"
can be specified :

obj DERIVED 'relocatable binary"

Note that the keyword DERIVED is used to specify that obj is a linking object
type. This "obj" object type is then specified as the input to the tool that pro-
duces an "exe'" object type. Equivalence links are then specified to indicate that
either "obj-¢" or "obj-f'" can be used as an "obj" object type.

7.4.2. Equivalence Links.

It is sometimes important to indicate that two types are interchangeable and
can be used in identical ways. This is done by defining an equivalence link. A
equivalence link is created by specifying the "to" object type followed by an
arrow ('<<=") followed by the "from" object type.

7.4.3. Cast Links.

Sometimes an object type that is derived from a given input object type can be
used in the same way that the input object type could be used. For example,
the output of a formatter can be used in all the ways that the original object
could be used--it can even be formatted again. This can be expressed as part of
the specification of the derivation graph by specifying a cast link from the
derived object type to the given input object type.

8. An Odin Implementation.

An implementation of the Odin system has been in use at the University of
Colorado at Boulder since 1983. In this section we briefly summarize the way in
which this implementation which was built atop the Berkeley Unix operating
system. This section is very much abbreviated from the treatment of this
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subject which can be found in [Clemm 86 and from the summary which can be
found in [ClemOst 86].

In the University of Colorado implementation of Odin, the objects manipulated
by the Odin system are files in a Unix file system. The implementation provides
concurrent multi-user access in either batch or interactive modes of operation.
Atomic objects are arbitrary files that were created either through a special
Odin internal accessing function, called Manipulate, or through some means
external to the Odin System. A special directory called the FILES directory is
specified by the user as the location for all derived objects. Only the Odin Sys-
tem has write access to this directory.

Derivation and manipulation of Odin objects are achieved by executing access-
ing functions which are implemented through the creation of a command script
that is given to the Unix operating system call, "system()", for execution. A
skeleton for the command script for each tool is created when the tool is
specified and stored in a special directory called the CMD directory. A com-
mand script skeleton is identical to a host system command file except that
macro names are specified in place of the input files it will use and output files
it will produce. When it is necessary to generate a given derived file whose tool
is an external tool, Odin creates a copy of the command file with macro names
replaced with actual file names. This command file is then given to the Unix
system for execution.

Typing of atomic objects is indicated by an extension of the host system file
name for that object. The extension of a file name is the string following the
last period in the final segment of the file name, where segments are separated
by a slashes.

The Key of an atomic object is the last segment of the host system file name for

that object. It consists of the string preceding the extension, without the trail-
ing period.

8.1. The Organization of the Object Store.
All information concerning the objects in the Odin system resides in a data

store that is implemented as a single Unix file called the INFO file. This data
store is structured as a network of nodes.

8.1.1. Object Nodes.

In the Odin data store there is one "Object Node" for each object known by the
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Odin system. An object is either an atomic object or a derived object. A Unix
directory is considered to be an atomic object, and therefore an Object Node
corresponding to each known directory will be present in the database.

8.1.1.1. Object Node Names and the Object Node Tree.

Each object node is given a name, where a name is broken into a sequence of
segments. The nodes are connected in the form of a tree, where the segments of
the name (reading left to right) specify the path from the root of the tree to the
object. Only the last segment of the name is stored in the object node, since
the preceding segments are contained in the nodes found by walking up the tree
to the root.

The name of an object node corresponding to an atomic file is the host system
pathname for that file. Each directory name in the pathname of the file
specifies a segment of the object node name for that file. For example, for the
atomic object

/usr/test.c
the object node name would be

root-usr-test.c
A hyphen (’-’) is used here to indicate the separation between two object name
segments, and "root" is the name of the object node that corresponds to the
root, directory of the host file system.
The name of a derived file consists of the name of the host system file from
which it was derived followed by a sequence of name segments corresponding to
how the file was derived. For example, the object specified as

/Jusr [test.c key

would be named

root-usr-test.c-key

8.1.1.1.1. Host Names for Derived Objects.

For atomic objects, the object host name corresponds to the object node name.
For derived objects, though, a host name must be created since the object is
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created by the Odin system rather than by the user.

Earlier implementations of the Odin system attempted to derive a host system
name for a derived object in a way analogous to that for atomic objects. For
example, the derived object named

root-usr-test.c-key
would be given the host name
/usr/test.c/key

Unfortunately, "/usr/test.c” is the name of an atomic object, and cannot also
be used as a directory for the placement of derived objects. This name collision
was initially resolved by mapping the names for derived objects. However
obscure the name might be though, there always is the chance that this derived
name will collide with the name chosen by a user for an atomic object.

The solution to the collision problem used in the current implementation is for
the user to specify a special directory in which all derived objects should be
placed. This solution has the advantage that the user’s source directories are
no longer cluttered with the various derived objects. This is particularly impor-
tant when the user is browsing through source files or archiving source files.
Another advantage of placing all derived files in a special location is that it
helps prevent the users from disrupting the contents of derived files. Since the
purpose of derived files is to provide a cache of valid derived information, it is
vital that this cache not be corrupted if its contents are to be re-used. Any
derived file can of course be copied into a user directory and then modified,
since the copy is then no longer a part of the cache.

An initial version of this solution still derived the host name of an object from
it’s associated node name. For example, the object node named

/usr [test.c :key
would be given the host name

/user_specified_directory /usr/test.c /key
But this approach resulted in long skinny directory trees with unacceptable
time and space costs associated with generating the large number of intermedi-
ate directories. The current implementation associates a unique "DataNumber"

with each derived object, and this DataNumber is then used used to locate the
object in a short fat directory tree.
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8.1.1.2. Object Class and Type.

The Odin system associates with each object a "class” and a "type". The class
of an object specifies whether the object is atomic or derived. If an object is
atomic, the type of the object is determined by its host system name. If the
object is derived, the type of the object is determined from the kind of tool that
produced the object.

In the example database, the type of the directory "/usr" is ".simple” (this is the
default type for atomic objects with a missing or unrecognized file name exten-
sion). The type of "test.c" is "c" and the type of "sys.h" and "file.h" is "h". The
type of the derived objects is specified by their final derivation (i.e. "inc",
"trans_inc", "all_inc", "key", or "0").

8.1.1.3. Base Object.

The node for a derived object contains a pointer to another object called the
"base object". The base object is defined in terms of another set of objects
called "source objects”. A source object of a derived object is an object from
which can be derived all sources needed to produce the given object (a source
object can be one of these sources). The base object for a given derived object
is then defined as the unique source object that can be derived from all other
source objects of the given object.

In the example, "test.c'" has no base object since it is an atomic object. The
objects "test.c :inc", "test.c :key", and “test.c :0'" have "test.c" as their base
object. Both "test.c" and "test.c :inc" are source objects for "test.c trans_inc"
and "test.c :all_inc", but "test.c :inc" is their base object since it can be derived
from "test.c".

8.1.1.4. Object Key.

Every object has an associated key which is a character string. For atomic
objects, the key consists of the last component of the host path name for the
object with the file extension removed. For example, the key of the object
" Jusr /sys.h" would be "sys".

For compound source derived objects, the tool that produces the derived object
will assign a distinct key to each element of the compound source object. For
all other derived objects, the key is identical to the Base Object of the derived
object. For example, the key of the object "test.c :all_inc" would be "test".
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The principal purpose of a key is to allow the user to select a specific com-
ponent from a compound source object. Assigning keys to all objects allows this
kind of selection from compound reference objects as well. Unlike keys for ele-
ments of compound source objects, keys for elements of compound reference
objects are not necessarily unique. Therefore, the result of selecting by key
from a compound object is another compound object consisting of all those ele-
ments that have the appropriate key.

8.1.1.5. Object Status.

The status of an object is stored in the object node associated with that object.
The status value is either OK, WARNING, ERROR, CANNOT_READ,
NO_FILE, or SYSTEM_ABORT. The interpretation of these status values has
been described.

In addition to the status of the object itself, if the object is a compound object,
the minimum status of all objects that are elements of the compound object is
also stored. This element status is stored to avoid searching through the ele-
ment graph each time this information is required.

Finally, a third status, the "non-abort status”, of an object is also stored.
Whenever the inputs necessary to create an object are erroneous, the Odin sys-
tem will not attempt to create the object, but rather give SYSTEM_ABORT
status to its object node. Instead of deleting the old value of the object, this
old object is kept for potential future use. The old status of this object is then
stored as the non-abort status. Under certain conditions, this object can be
simply restored rather than recomputed, in which case its pre-abort status must
be available so that it can also be restored.

8.1.1.6. Odin Clock.

The Odin system keeps an internal clock which ticks every time some atomic
object is modified. Associated with each object is a set of dates which are used
to determine whether the object is valid (up-to-date).

8.1.1.6.1. Modification Dates.

There are three "modification dates" associated with an object. The "primary
modification date' indicates the last time the object was modified. The other
two dates, the "dependency modification date" and the "element modification
date" are computed from the primary modification dates of other objects in the
system. The dependency modification date is the maximum primary



-60-

modification date of all objects whose contents can affect the contents of the
given object. The element modification date is only computed for compound
objects, and it is the maximum primary modification date of all elements of the
given object. The dependency and element modification dates are computed

and stored to improve the efficiency of determining whether a given object is
valid.

8.1.1.6.2. Verification Dates.

There are two 'verification dates" associated with an object. The "primary
verification date" indicates the last time the system verified that the object was
valid. The "element verification date" is only computed for compound objects,
and it indicates the last time the system verified that all the elements of the
object were valid. Both verification dates are used to improve the efficiency of
determining whether a given object is valid.

8.1.2. Source Graph.

The object nodes are linked together via "source nodes" to form a directed acy-
clic graph called the Source Graph. Each source node specifies an edge in the
Source Graph. An edge in the source graph from object node X to object node
Y indicates that the object corresponding to X is produced by a tool that uses
the object corresponding to Y as input.

8.1.2.1. Source List and Output List.

To allow convenient traversal of the source graph, source nodes are linked
together through two kinds of lists, the Source List and the Output List. The
Source List is a singly linked list of Source Nodes that specifies the complete set
of objects needed as input to produce a given object. Each Object Node con-
tains a pointer to the head of its Source List. The Output List is a doubly
linked circular list of Source Nodes that specifies the inverse of the "source”
relationship, namely, the complete set of objects that are produced by tools
that use a given object as input. Each Object Node contains a pointer into its
Output List.

A source node contains a pointer to its source Object Node and a pointer to its
output Object Node. In addition it contains fields for implementing the Source
List and Output List. The asymmetry in the implementation of Source Lists
and Output Lists is because source nodes can be deleted from Output Lists but
not from Source Lists. The doubly linked list implementation of Output Lists
takes up more space but allows for more efficient implementation of this delete
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operation.

An example source graph is drawn in Figures 5 and 6. Figure 5 contains the
Source Lists and Figure 6 contains the Output Lists.
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8.1.3. Element Graph.

The object nodes are linked together via "element nodes" to form a directed
(potentially cyclic) graph called the Element Graph. Each element node
specifies an edge in the Element Graph. An edge in the element graph from
object node X to object node Y indicates that the compound object correspond-
ing to X has as an element the object corresponding to Y.

8.1.8.1. Element List and Compound List.

To allow convenient traversal of the element graph, element nodes are linked
together through two kinds of lists, the Element List and the Compound List.
The Element List is a singly linked list of Element Nodes that specifies the com-
plete set of objects that are elements of a given compound object. Each Object
Node contains a pointer to the head of its Element List. The Compound List is
a doubly linked circular list of Element Nodes that specifies the inverse of the
"element" relationship, namely, the complete set of compound objects that con-
tain a given object. Each Object Node contains a pointer into its Compound
List.

An element node contains a pointer to its element Object Node and a pointer to
its compound Object Node. In addition it contains fields for implementing the
Element List and Compound List. The asymmetry in the implementation of
Element Lists and Compound Lists is because element nodes can be deleted
from Compound Lists but not from Element Lists. The doubly linked list imple-
mentation of Compound Lists takes up more space but allows for more efficient
implementation of this delete operation.

An example element graph is drawn in Figures 7 and 8. Figure 7 contains the
Element Lists and Figure 8 contains the Compound Lists.
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8.1.4. Parameter Lists.

Each Object Node contains a pointer to a (possibly empty) Parameter List that
specifies the list of parameters that were used to produce that node from its
Base Object. A Parameter List is implemented as a singly linked list of Param-
eter Nodes.

Each Parameter Node specifies a single parameter. It contains a field indicating
the type of parameter, and two fields for storing the value of the parameter. A
parameter may have as its value either a character string or an object. If the
value of a parameter is a character string, this string is stored in the first value
field; if the value is an object, a pointer to the appropriate object node is stored
in the second value field. A Parameter Node also contains a field used to imple-
ment Parameter Lists.

8.2. Concurrent Access.

To ensure correct usage of the Odin database (the INFO file) during multi-user
concurrent access, some form of database locking is required. The observed
usage pattern of the Odin system involves short bursts of database access fol-
lowed by lengthy tool invocations or waits for further user requests. Thus, it
has proven satisfactory in practice to lock the entire database for a given user
while that user is accessing the database. The database is then unlocked when
a tool is invoked or when the system prompts the user for additional input.

8.3. Automatic Space Maintenance.

The Odin system maintains a data structure called the LRU (Least Recently
Used) list. This list contains all object nodes for which objects exist. This list
is used by the Odin system to determine which objects should be deleted when
space is needed. Whenever a reference to an object is made, the object node
associated with that object it is placed at the tail of the LRU list. Whenever
the space occupied by derived objects is greater than the user specified max-
imum, object nodes at the head of the LRU list are removed and the
corresponding objects are deleted until the space occupied by derived objects is
less than the user specified maximum.

8.4. The Specification Language Compiler.

The specification language compiler translates the user specification into a
sequence of tables designed for efficient interpretation by the Odin interpreter.
In addition to the straightforward mapping from the symbolic specification to
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internal data structures, some preprocessing of the user specification is per-
formed.

8.4.1. Disambiguation of Queries.

Unlike many rule-based systems, the current implementation of Odin system
does not explore alternative legal rule sequences to satisfy a given request.
Instead, a canonical legal sequence is determined for each possible request.
This canonical sequence is then encoded into the tables produced by the
specification language compiler.

The motivation for this decision is that users making requests to the Odin sys-
tem are not expected to understand the tool fragments being invoked to satisfy
their requests. Therefore, a user would not be expected to be able to choose
between one legal tool invocation sequence and another.

8.4.2. Computation of Parameter Sets.

Since a canonical legal sequence is selected for each kind of user request, it is
also possible to precompile the list of parameter types that are significant for a
given request. This list significantly increases the potential for re-use of inter-
mediate objects. An example of this would be in the two requests :

test.c +stdin=(data.3) :output
test.c +stdin=(data.5) :output

The only tool fragment that is interested in the parameter of type "stdin" is the
final fragment that gives the executable and an optional input file to the host

operating system for execution. The compiler and linking loader are not
interested or affected by the "stdin" parameter.

9. Experiences with Odin.
In this section we describe two major tool integration activities which used

Odin. Odin has been used in a number of other tool integration projects, but
the two described here seem particularly noteworthy and exemplary.

9.1. The Toolpack Project.

As was stated earlier, much of the impetus for creating Odin came from the
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need to create a tool integration system for the Toolpack project. Toolpack
required a tool integtration system capable of effectively integrating a large col-
lection of large and powerful tools, and doing so in a way which would be amen-
able to the steady alteration and augmentation of the toolset. In these respects
it appears that the needs of Toolpack are not too dissimilar to the needs of
most modern environments.

Odin has been used successfully to integrate such a collection of tools into the
Toolpack /IST system. The tools which have been integrated range in power
from simple text manipulators to complex data flow analysis tools. The toolset
includes tools which have been produced at the University of Colorado, tools
produced elsewhere, and tools furnished by vendors only in executable form.
Some tools have very simple connectivity and interaction with the rest of the
toolset, while others (eg. the parser) must be interfaced with a large variety of
other tools. Some tools (eg. the editors) are highly interactive, while others are
batch oriented.

This broad diversity of tools has been successfully incorporated into
Toolpack /IST. In order to do so it has from time to time been necessary to
make changes in Odin’s capabilities. Most of these changes have been made to
the Specification Language, as we have found that unexpectedly complex and
powerful descriptive mechanisms are necessary in order to model the range of
capabilities and interactions among tools actually in use and needed by users.
At present we find that Odin’s current capabilities seem adequate to support
the quick and easy installation of tools. In some cases, new tools have been suc-
cessfully incorporated in as little as five minutes.

Toolpack /IST is a prototype system which is not currently supported or distri-
buted elsewhere. Its architecture and set of initial tool fragments has formed
the basis of the Toolpack/1 system which is currently being distributed by Nag
Ltd., Oxford, England. The development paths of these two systems have
already begun to diverge. In this section we describe experiences with, and
inferences drawn from, Toolpack /IST.

Although Toolpack /IST was originally designed and implemented as a collection
of tools to support the backend phases of development and maintenance of For-
tran programs, it has steadily emerged as an environment capable of supporting
other languages as well. In particular, as experience with Odin and the early
versions of Toolpack/IST grew it became clear that there was no reason to
shrink from incorporating tools for other languages such as c¢. In fact, as Odin
itself is written in ¢, the first user of Odin was G. Clemm, who was developing
Odin. Clemm rapidly discovered that simply by integrating the ¢ compiler, a
text editor and a very small number of other modest tools under Odin a surpris-
ingly and gratifyingly powerful environment was created.
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Much of the perceived power of Odin-integrated toolsets seems to arise from its
object orientation. Thus the user of even a modest collection of tools can easily
identify small but important objects which may be produced only as the result
of long and complex tool applications. For example, the object containing all
errors arising from compiling and loading a large collection of procedures into
an executable is such an object. We rapidly discovered that, once all source
code for Odin had been assembled into a structure comprising the entire Odin
program, changes and additions could readily be made and evaluated. This
process turned out to be a small iterative loop entailing the use of a text editor
to make changes and additions, and then a request to persue the error object
produced by the loader. Odin intelligently and efficiently determined which
source code procedures had to be recompiled (only those which had been
changed), invoked the loader (only if the new compilations has effected changes
in the object code), and assembled all error messages from both the compiler
and loader into a single object which was then presented to the user. The net
effect was a feeling of operating on large, high level objects easily and
efficiently.

We have been impressed by the ability of Odin to meet the initial needs of
integrating the Toolpack toolset, and have also been pleased at the way in
which the concepts upon which Odin is based have proved to be sufficiently gen-
eral and robust to support capabilities beyond what was originally envisioned.
Specifically, it seems that Odin is able to support software development in more
than one language, is able to integrate existing tools as well as new ones, any
may be more effective in supporting large software development than smaller
software development.

In the next subsection we describe experiences in applying Odin to the integra-
tion of a class of tools that is quite different from the sorts of tools which were
our initial targets.

9.2. The Integration of the GAG Toolset.

In March of 1985, after the Odin system had been successfully used to integrate
the Toolpack tool system and most common Unix tools into Toolpack/IST, the
design and implementation of Odin was frozen. This was the appropriate time
to attempt to specify a completely new tool system. Unlike the previous sys-
tems integrated, such a new tool system might have characteristics and prob-
lems that were not being considered during the development of the Odin sys-

tem. This test would thereby provide a qualitative measure of the flexibility of
Odin.

The system selected for this test was the GAG attribute grammar system
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[Kastens 82]. The GAG system takes as input an attribute grammar specifying
a language analyzer and the code for an associated lexical analyzer, and pro-
duces a pascal program that performs the specified analysis. The core of the
GAG system consists of sixteen executable tool fragments - thirteen tools that
are invoked in sequence to produce the analyzer and three support tools that
produce information about the attribute grammar. In addition, there are six
support tools : two tools for producing a parser, a simple tool for producing a
lexical analyzer, a tool for combining the generated Pascal program fragments
into a complete program, and two host system dependent tools that produce an
executable binary from the generated pascal analyzer and then run the execut-
able analyzer on user specified input.

The GAG system test consisted of two distinct phases. In the first phase the
Odin specification of the GAG system was designed to follow as closely as possi-
ble the way GAG is used outside of Odin. In the second phase, this
specification was significantly modified to take advantage of the expressive
power of the Odin specification language.

Details of the way in which GAG was integrated under Odin and specifics of
our experiences in doing so can be found in [Clemm 86]. Here we simply sum-
marize this work.

We were pleased to find that much of the work done in the GAG procedure files
was directed towards managment, control and intertool communications issues
which we had taken as major foci of our Odin work. For example, determining
the nature and severity of errors occuring during the processing of one tool, and
deciding how to proceed in view of such errors was a significant problem
addressed in the previous GAG system. Facilities for handling these sorts of
problems exist in Odin and are described earlier in this paper.

As a result of the similarlity of the capabilities needed by GAG and supplied by
Odin, we found that integration of GAG under Odin was not too difficult. The
major problem, unsurprisingly, was our need to familiarize ourselves with the
GAG system components, tools and procedures. Once these were understood we
were able to rather straightforwardly map them onto Odin object types and
tool fragments, and to express needed procedures in terms of Dependency Graph
paths.

The result of this straightforward process was a version of GAG that ran under
Odin, but seemed to offer few execution speed or space efficiencies. We did con-
clude that the user view presented by the Odin-integrated GAG system was
cleaner and simpler, but must admit that this is a subjective appraisal to some
extent.
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The second phase of this activity was more interesting and rewarding. During
this phase, we scrutinized the structure of the GAG system and attempted to
detect ways in which the philosophy and approaches of the Odin system might
be more effectively applied to integrating GAG, in the hope that some
significant efficiencies might be gained.

There are three main methods that would seem useful in improving the runtime
efficiency of an existing tool system when it is integrated under the Odin sys-
tem. In each of these methods the improvement in runtime efficiency is due to
increased re-use of previously computed objects.

The first method is to introduce tools to generate intermediate objects that are
abstractions of the source objects, where an abstraction is an object that can
remain unchanged when an object from which it is derived changes. The Odin
system understands that if an abstraction is not affected by a source level
modification, then any objects previously derived from that abstraction are still
valid.

The second method is to introduce a tool to automatically partition an existing
object, and then apply later tools to the elements of the partition, re-using
objects that are derived from elements of the partition that have not been
affected by source level modifications.

The third method is to identify objects that contain default information that
can be optionally modified by the user when making requests. These objects
can be partitioned into "parameters”. The types of parameters that are of
interest to a given tool are specified in the PARAMETER list of the
specification for that tool (this was described in a section of the earlier discus-
sion of the Specification Language), and the values for parameters are specified
by the user at run time using the parameterization operation (described during
the discussion of the Request Language). The benefit of parameterization is
that there frequently are intermediate objects that are not affected by the
specified parameters and therefore can be re-used in several different
parameterized queries.

The first method, abstraction, is the most difficult to apply to existing tool frag-
ments. Extensive knowledge of both the data structures being produced and
the expected usage of the system is usually necessary before significant abstrac-
tions could be generated. In some cases though, a data structure is passed to a
tool when that tool does not in fact make use of any information in that data
structure. In these cases, a simple form of abstraction consists of eliminating
the superfluous inputs. Some instances of this were found in the original version
of the GAG system, and eliminated in the Odin-integrated version
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The second method, partitioning, is applicable if there exists significant segmen-
tation at the source level that is reflected in the intermediate data objects. In
the case of the GAG system, we were not able to identify any significant parti-
tioning that would not involve extensive modification to the existing tools.

The third method, parameterization, is usually applicable with a minimal
amount of effort. In most tool systems, some set of flags or options are provided
to modify the behavior of the tool system. In the Odin specification, each type
of flag or option can be specified as a distinct parameter type, and the
specification of each tool would be extended to specify which parameters are of
interest to that tool.

In the original GAG system, the options to all of the the tool fragments are
stored together in a single file. This file is processed by the first tool fragment
to produce a "control file" that is passed to each of the succeeding tool frag-
ments. FEach tool fragment then extracts the values of options that are of
interest. Since a large number of options to the GAG system only affect the
results of the later tool fragments, specifying each kind of option as a separate
parameter type in the derivation graph can provide significant increases in re-
use of previously computed objects. For example, if a user makes several
requests that differ only in the options passed to the cross reference tool, the
Odin system would re-use all analysis and simply rerun the cross reference tool
with the various parameters.

We made effective use of the notion of object parameterization in the Odin-
integrated version of GAG. Significant benefits from doing so were observed.
This experience helps strengthen our opinion that it is useful and natural to
consider software objects to be labelled by the activities which have created
them. Clearly this labelling should include a specification of the tools which
created them, but in addition, this experience indicates that the labelling should
also reflect any adaptations made to the tool functions which have created
them.

The effects of the optimizations described above varied considerably, as might
be expected, depending upon the nature of the requests made by users. In some
cases, however, the savings from reuse were so considerable that speedups of a
factor of ten were measured. In other cases no improvements were noticed at
all. Savings of storage space are far harder to evaluate. The Odin philosophy
of supplying any specifiable object to a user in response to a request, regardless
of whether the object is in store or not, and regardless of whether it has ever
been created or not, implies that the space occupied by the objects in store can
be prespecified with the only visible effect being longer times needed to recreate
objects when less storage is made available. In the GAG experiment, we did
not attempt to vary the amount of storage made available. Had we done so, we
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would doubtlessly have been able to demonstrate that the Odin-integrated sys-
tem could run successfully in less space than the original system occupied.
Execution speed might have suffered, although this would certainly have
depended upon the sequences of requests made by the user.

Thus there can be no absolute claims for reduction in the amount of storage
needed. Certainly, any amount of storage sufficient to support an Odin-
integrated GAG procedure, can also be made sufficient to support execution of
the same GAG procedure not using Odin. This, on the other hand, would gen-
erally require lengthy, painstaking and error-prone alteration of the GAG pro-
cedure file. Odin’s ability to effectively support tool execution in varying
amounts of space automatically is probably its greatest contribution to storage
efficiency. In the end, this makes it possible for users to make time vs. space
tradeoff decisions and expect them to be effectively supported by Odin.

We believe that this research project has left us with a far clearer picture of
the value of various principles and architectures for integrating software tools
into effective environments. In the broadest terms, we now see the Odin
research effort as having been directed towards studying the use of an object
management system to integrate tools. Within this context we made, imple-
mented and evaluated some specific architectural choices. Specifically we chose
to integrate smaller tool fragments, but manage relatively large grained objects.
We chose to base our strategy for managing objects upon the notion of organiz-
ing them by means of two primary relations--hierarchy and derivation. We
chose to facilitate flexibility and extensibility and did so by materializing the
underlying structure of object types and tool fragments, making this structure
essentially an object itself. '

In the following subsections we summarize the conclusions to which we have
come in evaluating each of these architectural directions and decisions.

9.8. Object Orientation.

We believe that our experiences with using Odin have shown that centering an
environment around an object store is a very powerful and effective way of
integrating the capabilities of the environment. In Toolpack /IST we used this
approach to render the functional capabilities of a wide variety of tools far
more easily and economically accessible to users. This experience was rein-
forced in the integration of the GAG toolset, where we found that the
identification of the underlying objects in need of creation and management also
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served to sharpen understanding of the relations among the GAG tools, leading
to more efficiency in applying them.

At the very least, this project has demonstrated to us that some prior system in
which tools themselves were made the center of attention erred in not giving at
least equal attention to the data objects which are the products of (and inputs
to) those tools. This is because we identified a number of situations in which it
is quite natural and easy to name a desired object which can, nevertheless, only
be constructed by a long and complex chain of applications of tools.

9.4. Tool Granularity.

Our decision to supply the functional effect of larger tools by concatenating
smaller tool fragments followed logically from our more fundamental decision to
center our environments around objects rather than tools. As a consequence of
studying the object structure of our environments we quickly realized that most
tool functions use and create a surprising variety of data objects. Examination
of these objects quickly led to the discovery of an identifiable functional struc-

ture of many common tools. In the case of a tool such as a compiler, this struc-
ture (eg. lexical analyzer, syntactic analyzer, semantic analyzer, optimizer, code
generator) was already quite well known.

In a broader sense, this predisposition towards viewing tools as aggregates of
tool fragments is really nothing more, nor less than a desire to determine the
modular decomposition of tools, and then identify commonly used modules. As
such, it seems that there should be no need to further justify this architectural
decision.

9.56. Object Granularity.

Our decision to construct Toolpack/IST and to reintegrate GAG around rela-
tively large grained objects was dictated by two or three key factors. Before
addressing them, however, it should be observed that Odin itself is not
inherently a manager of large object or small objects--it is simply a manager of
objects. In fact, we even experimented briefly with using Odin to manage
objects which were integers by tool fragments which were simply arithmetic
operators. The result was an amusing, though inefficient computational system.

That experiment, however, exemplified the overhead costs which Odin incurs in
order to manage objects effectively. Thus it becomes increasingly expensive to
have Odin manage objects as those objects need to be accessed frequently.
Further, as the size of the software project being supported grows, and the
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amount of data to be managed increases, the ability to directly access all data
objects becomes increasingly expensive. This increasingly suggests that larger
data objects which are aggregates of smaller objects be managed. Thus, in
Toolpack /IST we chose, for example, to manage entire lexical strings rather
than tokens, and entire symbol tables rather than individual symbols. This
enabled users to access the large-grained objects easily, but was not help to
them in accessing the smaller objects. For this, special purpose tools had to be
produced. These tools inevitably presented a non-uniform appearance to users.
Worse still, this approach interfered with our ability to show relations among
the smaller-grained objects which were constituents of different large-grained
objects.

We believe that our work has focussed attention on the need to manage large-
grained objects, and the fact that this is not at all straightforward. Our work
has not, however, obviated the need for effective management of small objects
as well. We believe that an object management system capable of efficiently
and effectively managing a broad spectrum of types and sizes of objects is
needed. Odin is capable of doing this management, but, in its current proto-
type form is likely to be unacceptably inefficient in doing so.

9.6. Organization of the Object Store.

We have just indicated that one of the motivations for managing large grained
objects is to keep down the number of objects which must be directly accessible
and therefore directly managed. The sheer volume of objects can be a serious
impediment to effective access. More of an impediment, however, is the need to
represent complex interrelations among these objects.

We sought to develop an organizational structure for our object store which
would be adequate to represent the relations among our objects, but not so
complex as to pose serious efficiency problems. We rejected the idea of using a
full relational database to manage our software objects, fearing that this would
encourage the specification of more relations than needed, and render too
inefficient the task of reflecting changes in objects by having to propagate them
widely around the database.

Instead we chose to use hierarchy and derivation as the only two relations for
organizing the objects in our store. These two relations proved to be effective
in supporting the integration of the toolsets described in this paper. We
believe that both of these relations are essential organizing agents in any object
store that is to support an environment effectively. Hierarchy enables the
efficient and effective manipulation of large and complex software objects, and
enables the user to think and work at varying levels of abstraction as needed.
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Derivation is essential in keeping track of which objects can and cannot be
spooled and purged, and which must be altered or updated in response to
changes in others.

Thus, we believe that these two relations are a minimal set of relations needed
in an environment object store. The suspicion persists, however, that it will be
useful to maintain other relations, especially when the range of sizes of objects
maintained in the object store is expanded.

9.7. Flexibility and Extensibility.

We are quite satisfied that the architecture we have proposed and implemented
in Odin is supportive of the need to alter and extend the functional capabilities
of an environment. The key to being able to do this is the isolation in a single
structure of all information about how objects of the various types are created
from each other by the action of tools. In Odin this information is contained in
the Dependency Graph. Tool fragments have no knowledge of how they relate
to each other, thereby avoiding the necessity of modifying existing tools in order
add new tools and making it possible to alter a tool without having to also alter
any other tools as well.

In an important sense, the body of information describing tool and object type
relations--in Odin the Dependency Graph--should be viewed as an object. It is
the object used to schedule the coordination of tool interaction, and is the
object which must be modified in order to make any changes in the tool or type
structure of the environment being supported. These processes are all facili-
tated in Odin by the creation of a language with which to describe the Depen-
dency Graph and tools to support such functions as the compilation of a
dependency graph description into a graph, the viewing of such descriptions,
and the alteration of such descriptions.

Our experiences in integration diverse tool and object types and in rapidly sup-
porting alterations and extensions of the toolsets integrated by Odin strongly
support our view that it is important to materialize the type and tool interac-
tion structure of an environment as an object.

10. Future Research Directions.

Our experience with Odin has convinced us that the basic ideas underlying it
are sound and form an effective basis for the integration of software environ-
ments. Having completed this research, however, it is now far easier to see
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ways in which these basic ideas can and should be extended. Future research is
needed to pursue these ideas to these logical conclusions.

10.1. Varying grain sizes.

We now believe that an environment must be effective in managing objects
whose sizes range from very large to very small. Although Odin has been pro-
ven effective in managing large objects, we are convinced of the importance of
also managing the smaller objects of which they are composed. The problem of
efficient management of the very large collection of objects created by a large
software project is a serious one that would have to be addressed. Further, the
problem of designing and implementing an interface which was both uniform
and effective in furnishing users access to these very different sorts of objects
also seems to be a serious one in need of further research.

10.2. User Interface.

This project has also sharpened our appreciation of the problems of providing
users suitable access to the resources managed by an environment. As has been
noted above, our primary focus in the Odin project was on providing capabili-
ties for managing objects which were primarily large grained. The access we
provided to these objects was through Odin’s clean and uniform command
language. We found, however, that most users spent most of their time dealing
with the smaller objects contained in these larger objects. Access to these
smaller objects was provided through viewer tools which were created for each
object type. These viewers were generally custom built and not standardized.
As a result users were confronted with a very non-uniform interface to the
smaller objects with which they spent most of their time.

It is now clear that viewer tools must be treated in the same way as other tools
in a well designed environment--namely composed out of smaller, modular tool
fragments. Active research is needed to address the problem of identifying a
suitable set of modular viewing tool fragments and demonstrating that they can
be implemented in such a way as to support effective composition into special
purpose viewers for the range of object which a general purpose environment
must integrate.

In addition, it is clear that viewers are needed to assist users in understanding
and exploiting the environment command execution process itself. The help
facilities provided by Odin are a very primitive beginning in the process of help-
ing users understand what Odin does and how it works. Structures such as the
Derivative Forest and the Dependecy Graph are as central to the user’s
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understanding of the software objects being created and managed as they are
to Odin’s ability to manage them effectively. A key part of an environment’s
user interface must be a facility for depicting the object store and showing the
user how it is being changed by command executions. It is unclear how best to
provide this user view, and how it might relate to the viewing capabilities
needed for the finer-grained

10.3. Environment Command Languages as Programming Languages.

We believe that Odin should be thought of as a language for describing, creat-
ing and manipulating software objects. On the other hand, we now understand
that the collection of linguistic capabilities incorporated into Odin has not been
studied as carefully as it might have. An important future direction of this
research is to round out the Odin command language into a cleaner and more
orthogonal language.

The Odin object typing mechanism seems clearly in need of such study. Odin
currently furnishes a mechanism for creating instances of existing types and for
extending the current type structure. Although we have stressed our belief that
Odin objects should be thought of as instances of abstract data types, it is clear
that we have not implemented mechanisms for enforcing the sort of strict dis-
cipline in object access that is a goal of using data abstractions. It is possible
to supply a cluster of accessing primitives that are to be used by Odin tools in
accessing instances of a defined type, but Odin does not prevent the accessing
of such instances by other means.

Further, Odin combines the structure of object types and tool fragments into
one structure--the Dependency Graph. While we are convinced that the Depen-
dency Graph is a useful structure for expressing the way in which the various
tool fragments interrelate, we are less certain that it is an adequate vehicle for
expressing the type structure. We need to explore the use of subtyping
mechanisms, for example, as a device for adding further structure to the object
store. This raises the possibility of exploiting inheritance as a means for
simplifiying the problem of providing powerful and uniform sets of accessing
primitives for Odin object types.

In addition, we note that the Odin command language provides virtually no
explicit mechanisms for altering control flow. Clearly a great deal of control
flow is done implicitly. Compound objects are processed by implicit loops, and
object creation is done conditionally based upon error status flags, and detec-
tion of significant alterations made to related objects. While it seems to us to
be clearly useful to have these control flow operations concealed from the user,
we believe that it is still necessary to give the user some amount of control over
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processing sequence. Certainly, the absence of explicit control flow mechanisms
gives the Odin command language a lopsided appearance.

Pursuing this line further, we are led to consider the sorts of programs which
users would write in such a command language. Such programs would be tan-
tamount to procedures for expressing either parts of or entire software
processes. This raises the interesting possibility that an extension of the Odin
command language could be used to express software processes as algorithms
for creating and manipulating software objects through software tools. The
Odin system would then correspond to a system for compiling and interpreting
such procedural descriptions.
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