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ABSTRACT

A coordinated pair system (cp system for short) consists of a pair of gram-
mars the first of which is right-linear (1) and the second right-boundary (rd). A
right-boundary grammar is like a right-linear grammar except that one does not
distinguish between terminal and nonterminal symbols - still the rewriting is
applied to the last symbol of a string only {(and erasing productions are allowed).
A rewriting in a cp system consists of a pair of rewritings: one in the first and
one in the second grammar - such a rewriting is possible if the pair of produc-
tions involved is in the finite set of rewriles given with the system. It is easily
seen thal cp systems correspond very closely to {(are another formulation of)
push-down automata: the right-linear component models the input and the finite

state control while the rb component models the push-down store.

A rb grammar & transforms (rewrites) strings which are stored in a one-
way (potentially infinite) tape. If one observes during a derivation 6 the use of a
fixed n-th cell of the tape and one notes the symbol stored there each time that
(the contents of) the cell is rewritten, then one gets the n-acfive record of §, the
set of all n-active records for all successful derivations § forms the n-active

language of G, denoted ACT,{G). It is proved that for each rb grammar G and

each n € N*, ACT,{G) is regular and moreover, for each # C N¥, U ACT,(G) is
n el

regular.
Then we provide a representation theorem allowing one to represent a cp
system through a finite number of rb grammars and using this theorem we

transfer the above results on the "active use of memory" to cp systems.



INTRODUCTION.

The literature is full of various notions of machines (automata) and gram-
mars each cne developed with a specific, practical or theoretical, motivation
behind it (see, e.g., [H] and [S]). The notion of an ects system provides a com-
mon framework for quite a variety of these models {see [R]). Within the ects
model various notions of machines and grammars are considered as systems of
basic units (which are rather simple rewriting systems working together in a
"coordinated fashion"). It is demonstrated in [R] that right-boundary grammars
(rb grammars for short) constitute such a basic (perhaps the most basic) unit.
A right-boundary grammar is like a right-linear grammar except that one does
not distinguish between terminal and nonterminal symbols - still the rewriting is
applied to the last symbol of a string only (and erasing productions are allowed);
the notion of a rb grammar is a special case of the regular canonical system of
Buchi (see [B]). A well-known subclass of ects systems are coordinafed pair sys-
tems (cp systems for short). A cp system consists of two grammars the first of
which is right-linear and the second is right-boundary; it turns out that cp sys-
tems correspond very closely to (are another formulation of) push-down auto-
mata. The theory of cp systems (or: the cp system approach to the theory of

push-down automata) is presented in [EHR1], [EHR2], [EHR3] and [EHR4].

This paper continues the research on the theory of cp systems and in par-
ticular it presents results describing the use of memory in right-boundary gram-

mars (and cp systems). The basic idea investigated in the paper is as follows.

A right-boundary grammar G represents (transformations of) a data struc-
ture which is a linear one-way (potentially) infinite array of (memory) cells the
processing of which takes place at the (right) end of the array. Hence during
each derivation in & one can record the history of the use (the "scheduling”) of

each single cell. In other words each time (the contents of) a given cell is



rewritten a note is made of the letter being stored there at that time (the active
letter at this moment) and the sequence of all such 'notes of activity” during a
given derivation ¢ forms the active record of this cell during the derivation 4.
The set of all active records of the n-th memory cell in all successful derivations
forms the nactive language of G denoted ACT,(G) (a derivation is successful if

it leads from the axiom of G to the empty word).

We prove that for each rb grammar and each n, ACT,(G) is regular (Corol-

lary 1.3). Actually this regularity is quite "deep”; it turns out that for an arbi-

trary subset M of positive integers ACT (G) is regular (Theorem 3.4) - this
g

meMd
is strong regularity indeed!!

In order to transfer these results to cp systems we prove a rb representa-
tion theorem for cp systems (Theorems 5.1 and 5.2): rather than to consider a
cp system one can consider a flnite number of rb grammars. This representa-
tion theorem allows us to prove the above mentioned result about strong regu-

larity of active languages also for cp systems (Theorem 5.3).



0. PRELIMINARIES

We assume the reader to be familiar with basic formal language theory (see,
e.g., [H] or [S]).

For a set Z, #7 denotes its cardinality. If Vis a finite set of integers we use
max ¥V and min Vto denote the maximal and the minimal element of V respec-
tively.

For a word z, |z | denotes its length and, if 1<k < |z |, then z(k) denotes
the k-th letter of z. If z is nonempty, then we use last(z) to denote z{(|z|). A
denotes the empty word.

A letter to letter homomorphism is called a coding and a homomorphism
that maps each letter either into a letter or into the empty word is called a

weak coding.

A context-free grammar, abbreviated cf grummar, is specified in the form

G=(Z, P, S, A), where ¥ is its alphabet, P its set of productions, S € % its
w
axiom and A its terminal alphabet. For z, ¥y € =" we write z ? y if z directly

derives ¥y using production .

A right-linear grammar, abbreviated rl grammar, is a context-free grammar

G = (%, P, S.A) which has its productions in the set (Z-A) x A* ((E—A)U{AD).



1. RIGHT-BOUNDARY GRAMMARS AND THEIR ACTIVE RECORDS

In this section we introduce basic notions concerning right-boundary gram-
mars and then we formalize the (active) use of memory by derivations in these

graminars.

Definition 1.1. A right-boundary grammar, abbreviated rb grammar, is a
triple G = (I, P, @), where
Z is an alphabet,
P cExE” is a finite set of productions, and

w € Xtis the axriom of . =

For arb grammar G = (£, P,») we use mazr(G) to denote
max{|w| |A - w € Pi.
Definition 1.2. Let ¢ = (X, P, ») be a rb grammar.
(1) Let z,y € S and let r=A->weP. =z directly derives y in G (using ),

™
written z =y (x zc;y), ifz =zAandy = zw for some z € .

" *

Let = be the reflexive and transitive closure of =G> fz 209 y, then we say

that = derives yin G
(2) A deriwation (in G)is a sequence § = (zg, Z,, ..., ), n =0, of words from
£* such that, for every 1 €4 =n, z; | :—5; z;. We say that d derives z, from z,

*®
and denote it by §: z, ;{? Zp .

For 0=1i <mn, z; is called the ith line of ¢ and is denoted by §(i). n is called

the length of § and is denoted by Ig {§).

E

(3) A derivation 6 : w = Ais called successful,

(4) Let &, =1(6,(0),6,(1), ..., 8,(m)) and &z = (82(0), 62(1), ..., 6a(n)) be two




derivations in G such that 8,(m) = 65(0). The compasition of &, and &;, denoted

8, ® &, is the derivation {(6,(0), §,(1), ..., 6;(m), 62(1), ..., z(n)). =

Lemma 1.1. let G=(I, P,w) be a rb grammar and let z,y €X*. If

w
z ==G=> Yy, then there exists a unique production m € P such that = ==G? Yy, ®

Definition 1.3. Let G be a rb grammar and let § = (6{0), ..., 6(n)), n = Q be

a derivation in G. The sequence (my, ..., p,) of productions such that

5

§(i—1) = §{(1) for every 1 <1 <n is called the control sequence of & and is

denoted by cont(4); if n = 0, then cont {8) is the empty sequence. ®

Remark 1.1. (1) Lemma 1.1 guarantees the uniqueness of the control

sequence (for each derivation §).

x *
() Note that if 6, : u =G> v and 0z : v -‘-’-;9 w are two derivations in a rb gram-

mar &, then
lg(8,® 6g) =1g(6,) + lg(d,) and

cont (6,®8,;) = cont (§,)cont(5,). =

In order to simplify our notation we will skip the inscription "G" whenever &

Ed

is understood from the context. Hence, e.g., we will write = and == rather

%
than ‘:—;:> and :G—; respectively.

If all the lines of a derivation § in a rb grammar & are written under each
other (adjusted letter-by-letter), then the most natural way of storing § in a
mernory suggests by itself that all the first letters of the lines of ¢ are stored in
the first memory cell, all the second letters are stored in the second memory

cell, ete.



This can be depicted as follows:

Figure 1.

Now if one wants to get an idea of the use of memory within this particular
derivation &, then one can choose n = 1 and then observe the actions performed
on the n-th memory cell. The significant moments are those when this particu-

lar memory cell becomes active (i.e. the symbol stored there is rewritten).

This natural intuition of the memory use associated with a derivation in a

right-boundary grammar leads us to the following definition.

Definition 1.4. Let § = (§(Q), ..., 6(k)) be a derivation in a rb grammar G
and let n € N*.
{1) Aline 6{i) of 6 with |6(i)| = n is called an n —active line of 6.
{2) The n-octive record of 6, denoted act, (6), is the word
0, (6(0)en(6(1)) - - o (6(k—1)), where ¢, : & - LI JA] is the mapping defined
by
_ wu{n),if |u| =n,

“n ('u,) = .
A, otherwise.

Remark 1.2. (1) Note that in determining the n-active record of § the last

word of § is not taken into account. Therefore:

* &
(2) If 6,:u => v, §;: v => w are two derivations in a rb grammar &, then

acty, (8, ® 8z) = act,(61)act, (dz). =

Example 1.1. Let G = ({4, B, C], P, A) be the rb grammar with
P=$4>BC B~ 4B, B »A C - BB,
Then & = (BBB,BB,BAB,BAAR ,BAA,BABC,BABBE ,BABE,BAB) is a derivation in

G of length 8 with



cont(6)=(B A B »AB, B > AB, B » A A > BC, C~ BB, B »A B »A),
act,(8) = A, acty{6) = B, acts(8) = BBA, acty(d)= BCB, acts(d)=F and
act,(6) = Afor each n > 6.

This is easily seen if we write the consecutive lines of § under each other.

Figure 2.

If we record now, for an n = 1, the n-active records for all successful
derivations in a rb grammar G, then we get a complete picture of the use of the

n-th memory cell {from our "intuitive model") in G.

Definition 1.5. Let G = (I, P, ) be a rb grammar and let n € N*. The n-

*

active language of G denoted ACT,(G), is the language {act,(6) | § : @ “—‘?A%. o

We demonstrate now that for each n, ACT,(G) is regular, which intuitively
means that this "schedule of active use"” of each memory cell may be realized
(implemented) by a finite automaton. Actually we can prove a somewhat
stronger result.

Theorem 1.2. Let G=(Z, P, w) be a rb grammar and let w;, wg S

*
Then {act,{6) | 6 : w, = wg! is regular for each n € N¥.

Proof.

Let n € N*. We construct a finite automaton A, = (&, , X, I, , I, , Fn) as
follows.
A, has as its set of states the set of words of length n over ¥ together with wy if
[we| #mn;le., @ = I fws].

For w € ", v € @, and A € & there exists an edge (u,4,v) €1, if and only if



®
there exists a derivation §:u =>v such that act,(6) = A. (Note that then

A =u(n).) If |[wy| #mn, then wy has no outgoing edges.

*
In consists of those u € &, for which there exists a derivation § : w; = u such

that act, (6) = A. (Note that if |w,| = n, then [, = {fw,].)
Fn = E’U)zg

*

L{A,) is regular and obviously L{A,) = {act,{(8) | 6 : w, = wal. ®

Remark 1.3. The effectiveness of the construction of the automaton A,

from the above proof relies on deciding whether or not, for u, v € &*, there

®
exists a derivation 6 : U= with act, (6} = A, 4 = u(n). It is obvious that such

a derivation cannot have lines of length n other than its first (we mean 6(0)) and
last lines. Moreover it is easily seen that, for all p, j such that p <j < lg{d),

[6(p)| >n implies |8(j)| >n. Hence it follows that we may write ¢ = 6,86,

* *
where §;: u= w, dy: w=> v are such that |§,(1)| <n for 0 <1 <Ig(d,) and

[6a(1)] >n for 0 <1 <Ig{S,). Note that if § contains no lines shorter (longer)
than 7, then g {(§,) = 1{lg(6z) = O respectively). All lines in & have the first n

symibols in common since they are not rewritten during §,. Thus w = vz for

»
some z €%, 0< |z| <mazr(G) and there exists a derivation W z=> A with

cont () = cont{8y).

In this way the problem of deciding whether or not (u, 4,v) €1, is

%

reduced to the problem of deciding whether or not z———é‘; A for a given word z.

The latter problem is easily seen to be decidable. The reasoning as above can be

extended in a straightforward way to the problem of deciding whether or not

£
"h:'? ug for arbitrary u, , us € o (If uy # A, then take n = |uy|; every deriva-
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*
tion & : ul:c; Uy can be decomposed into an initial part leading to the first line

of length n and a number of derivations of the form discussed above.) Thus the

construction of the automaton A, is effective. =

Corollary 1.3. Let G be a rb grammar and let n € N*. Then ACT,{(G) is reg-

ular. =

Example 1.1. {continued) A finite automaton accepting ACT3{G) can easily

be constructed using the following diagram. This diagram has "virtual'nodes to

E 3
represent derivations with lines of length less than 3. Note that X‘—‘—Z‘—}" A for every

XL,

Figure 3.

The finite automaton for ACTs{ &) looks as follows.

Figure 4.
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2. SPACE USED BY DERIVATIONS IN RB GRAMMARS

We have learned in the last section that for an arbitrary rb grammar
ACT,(G) is regular for each n. As a matter of fact we are going to prove (in Sec-
tion 3) that the regularity of the use of memory cells in rb grammars is much

deeper than that: it turns out that for an arbitrary subset # of N* the union

U ACT,.{G) is also regular - this is strong regularity indeed !

med

In this section we prove an auxiliary technical result {Lemma 2.1) that is
interesting on its own: in deriving a word v from a word w in a rb grammar it
suffices to use (in addition to the space occupied by © and v) no more than

some constant (for the grammear) extra amount of space.
The amount of space used by a derivation is formalized as follows.

Definition 2.1. Let G = (X, P, ») be a rb grammar.
(1) The breadth of a derivation ¢ in G, denoted brd(d), is

max{|6(1)] |01 <lg{8)]."

*
() Let u = for some w,v €% . The (u,u)-breadth, denoted brd(u,v),

*
equals min{brd(d) | 6 : u = vi =

Lemma 2.1. Let G = (X, P, @) be arb grammar. There exists an integer mg

*®
such that for each pairu, v € v u :5; v implies that

brd(ww) = mg + maxt|u|, [v|i.

Proof.

*
Let mg = maxibrd{w,, ws) | w, => we and |w,

, lwsl = mazr(G)}. Note

that mazr (G) < mg.

*
Let § : w => v be an arbitrary derivation in ¢. We will prove that there exists a
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x
derivation &' : & => v in G, with brd{(§') < m¢ + M, where ¥ = max{|u|, [v]].

A line 6(i) of & is called special if M < |6(i)| <M + maxr(G). Let
7= (6(i,), 6(iz), ..., 6(i)) be the subsequence of ¢ consisting of all special lines.
Since |8(7 -1)| =1 =< |6(7)] < |6(j—-1)| + mazr(G) for each 1 <j <lg(6), § can-
not have lines longer than ¥ + mazr(G) without having special lines. So if T is

empty then the lemma holds.

Assume now that T is nonempty. Both &= (6(0), ..., 6(i;—1)) and

Gppy = (603 +1), ..., 6(1g (8))) consist of lines not longer than #.

Consider now the subsequence &, = (8{i+1), ..., 6(7;“1—«1)5 for some
k € {1,2,...,t}. Either all these lines are not longer than # or they are all longer
than M +mazr{G).
Assume that 8, is nonempty and that all its lines are longer than M+mazr(G) -

we say then that &8 is an ezternal segment of 8. We can write (%) = zw; and

*
8(ip+1) = zwy where |z| = M, |w,|, |wg| < maxr(G). Note that wlz‘—z;'wg,

*

because 6{7) = 8{(i,.;) and the derivation steps in-between do not influence

(rewrite) z. From the definition of mg it follows that there exists a derivation

*
Ly == wg, with brd{u) < mg.

L 4
Consequently there exists a derivation g’ : 6(ig) = zw;=> zw = §(i,() with

cont () = cont{w') such that brd(u') < mg+M.

Hence, by replacing the external segments of § by "mew" derivations as

E 3
above, we obtain a derivation &' : ©w = v, such that brd{(§') < mg+M. Thus the

lemma holds. ®

x

Example 1.1. {continued) Consider the following derivation d : CAB = A:
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Figure 5.
Special lines in this figure are indicated by short arrows. § has one external
segment; it is a derivation of CAABBE from CAABEBE. The '"roof part” (iLe., the
part above M, see Figure 8) represents the derivation

(BBB,BBAB,BBA,BBRBC,BBBBR ,BBEB ,BER).

Figure 8.

Replacing it by (BBF) yields the derivation §.

Figure 7.
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3. UNIONS OF ACTIVE LANGUAGES

As we have indicated already, arbitrary unions of n-active languages in a rb

grammar are regular. We prove this result in this section.

The reason that this result holds is that each n-active language is of a very
special form {(Lemma 3.3). We start by defining some classes of languages useful

in our considerations.

Definition 3.1. A language K is down-—closed if for each word w € K all

sparse subwords of w are alsoin K.

The following well-known result (see [C], pp. 83-84) is very crucial in our

proof of Lemma 3.3.

Proposition 3.1. Each down-closed language is regular. ®

We use DCyg to denote the family of down-closed languages over the alphabet

®. For a regular substitution m, DCq, denotes the family {m(L) | L € DCe}.

Lemma 3.2. Let 7 be a regular substitution over an alphabet 8. Then
(1) each language in DCgq is regular, and

{2) DCgqy is closed under arbitrary {possibly infinite) unions.

Proof. (1) Obvious. By Proposition 3.1 DCg consists of regular languages
and regularity is preserved under regular substitutions.
(2) DCgq is clearly closed under arbitrary unions. Consequently DCqy is closed
under arbitrary unions because

UTT(L) = ﬂ(UL)

Le® Le®

for any language family ¥ over @. =
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Lemma 3.3. Let G = (£,h,0) be a rb grammar. There exist an integer ng ,

an alphabet ® and a regular substitution 7 of ® into %  such that
ACT,(G) € DCq, for each n > ng.

Proof.

Let m; be a constant (dependent of &) satisfying the statement of Lemma
2.1, let mg = mg+1 and let ng = me+|w|. Let n > ng.

»
Consider a derivation § : w =>A and let 6{2) and §{(j), i1 < 7, be two n-active

lines of 6. We say that 6(i) and 6(j) are n—related if |6(¢t)| > n—m, for each
i<t =<j.

Assume now that 8(i) and 6(j) are two n-related lines of §. Since all lines of
§ between-8(i) and 6(j) are longer than n —mg they all have a common prefix =
of length n—mg Hence for each i<t <j we can write §(¢) = zw,, where
|z| =n-mgand w; => wy,, = -+ = w;. Moreover |w;| = |w;| = mq.

Obviously the notion of n-related lines defines an equivalence relation on
the (occurences of) n-active lines of 6. If we take the first (6(4)) and last (6(5))

line of each n-related equivalence class, then we cbtain a "subsequence"

6(21), 8(71). 8(ig), 6(da) ... 6(%). 6(jk)
of 4, such that 0=, <7, <ig=ja <+ <1 <7, =lg(d); this subsequence is
referred to as the n —characferistic sequence of 6. (Note that it may happen
that i; = j; because an equivalence class can consist of just one single n-active

line of §; in that case this line occurs twice in our sequence.)

Let ® = {<u,u> | uw,v e, lu] = |v| = mgl.
The word <w,v ><ugug> - <u, > over @ such that 4, and v, are the

suffixes of length mg of &(;) and 0(,) respectively, is called the

n—signature of § and denoted by sig, (§).

*
Now let K, = {sig,(8) | 6:w => Al.
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The notions that we have introduced above can be illustrated as follows. Let

d be a derivation of the following form:

Figure 8.

Then the lines 6(i;) and 6(j,) are n-related, while the lines §(j,) and 6(ip) are
not n-related. Note that there are no other n-active lines related to 6{(ig).

The n-characteristic sequence of § is the sequence

6(i1), 6(41), 6(iz), 6(iz), 6(ia), 6(Ja)-

The n-signature of § is <1,V ><Ug,Ua><Ug,Ug>.

First we will show that £, is down-closed.
Claira 1. K, € DC.

Proof of Claim 1.

*®

In order to prove that K, is down-closed, consider a derivation 6 : @ = A

with sig, () = <U, v, ><uUgVs> - <Uy, Y >, k = 1.

Let 8(iy), 6(34), ..., 6(7), 6(ji) be the n-characteristic sequence of §. Since 8(j;)
and 6{(%+1), 1=t <k, are not n-related they are separated by a line
8(L,), 7p <l <4, with |6(f;)| £ n—my. Furthermore if we set lg =0 and
L =1g{8), then obviously we have lg <iy jr <l |8(g)| =|w| <n-mgy and

[6{tes)| = |A] <n-mq.

For each 1< <k we have 6{l;_,) = §(I;). Thus, by Lemma 2.1, there exists a

*®

derivation g : 8(L_;) = 8(L;) with brd{w) < me+max{|8(l_)], |6(L)|] =
meg+n—mg =n—1. Hence acty(u¢) = A or, in other words, iy does not contain

n-active lines.
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So if we repace the lines §(I;_,), ...,6{l;) from & by the lines of y;, then we

»
obtain a new derivation §; : w = A such that

Sign(8:) = <UpLU > UV DU U > 0 S U >
Consequently by erasing an arbitrary symbol in a word of K, we obtain a

word in X,. Thus K, is down-closed. ®

In order to illustrate the construction used above consider again the deriva-
tion depicted in Figure 8. According to our construction it is possible to replace
the subderivation {6(L;), §(I;+1), ..., 8(lz)) of § by a derivation u; of 6{l;) from

&(1,) which looks as follows:
Figure 9.

The resulting derivation 85 has the n-signature <u;,v1><ug,va>.

Let 7: ® - %" be the substitution defined by

X
m(<u,w>) = fwh | A =v{mg) and w = acty, (u) for some u:u => v}

Theorem 1.2 implies that 7 is a regular substitution.

In order to prove that ACT,(G) € DCe¢n we will demonstrate that
ACTR(G) = m(K,). This in turn is accomplished by proving the following two
claims (corresponding to the two inclusions involved).

Claim 2. ACT,(G) < n(K,,).

Proof of Claim 2.

L3
Let w € ACT,{G), so w = act,(6) for some derivation d:w:‘-—(—;;A Let

8(1,), 6(71), ..., 6(i), () be the mn-characteristic sequence of & and let

§iga(6) = <wyu> 0 <y, Up>.



18

If we choose Ig, 4, ..., {; as in the proof of Claim 1, then
act, (6) = act,(6,) - - - act, (8, ), where each derivation 6; 1<f =<k, is of the
form 8; = (6(L—1), 6{Li—1+1), ..., 6(&)).
Moreover, foreach 1<t <k, d, = 6} 62 ® 62
where 8¢ = (8(L-1). ... 8(8)) . 68 = (6(k), ..., 6(4e)) and 62 = (6(J;). ... (L))
Thus act, (6;) = act, (64 )act, (6F)act, (68) = act, (62) 6(j:)(n).

The claim now follows by observing that

*®

act, (88)-8(4:)(n) = actm (pe)vs (mo) for the derivation uy : ue = u; with
cont{8%) = cont(u;) and consegquently act, (8,) € m(<u,,v,>); thus

acty (6) € m(sign(d)) < m(Ky). ™

Claim 3. n{K,) C ACT,{(G).
Proof of Claim 3.

If wden(<u,v>), where 4 =w(mg), then there exists a derivation

]
p:u =>v with actp, () =w. Thus for an arbitrary z € =" with |z| =n—-mgq

M
there exists a derivation §' : zu = zv with acf, (") = w.

&
This enables us to replace in a derivation § : @ =>A each of the subderiva-

tions 6; = (6(% ,), ..., 6{%;)) (in the notation as above) by a corresponding deriva-

*
tion 8; : 6(L;—;) => 8(I;) such that act,(d;) = 2;, where 2; is an arbitrarily

chosen element of m{<wu;,u; >).

From these observations the claim easily follows. #

So we have shown that ACT,(G) = m(K,) for each n > ng = mg+|w|, where

K, is a down-closed language over the alphabet ®. Hence the lemma holds. #
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We are ready now to prove the main result of this section,

Theorem 3.4. Let G be a rb grammar. Then U ACT;(G) is regular for

tef

arbitrary I ¢ N*.
Proof.

Let J/ ¢ N*. According to Lemma 3.3 there exists a constant ng for G such
that ACT,(G) € DCgq,, for every m > ng, where 7 is a suitably chosen regular sub-
stitution over an alphabet 0.

Let 1 =li€l|i>ng} and [p=4 €/ | i <ng). From Lemma 3.2 it follows

that U ACT;(G) is regular.

ief,

Since U ACT(G) = U ACT;(GYyv U ACT{G), I, is finite and the class of reg-

ie] i€l iely
ular languages is closed under finite unions, Corollary 1.3 implies that

UACT,;(G} is regular. ®

iel
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4. CP SYSTEMS AND INTERNAL CP SYSTEMS

Right boundary grammars form a very basic building block in the general
theory of automata and grammars (as presented in [R]). In particular they form
a basic component of push-down automata; a push-down automaton can be seen
as two grammars, one right-linear , the other right-boundary, cooperating
together: this way of formalizing push-down automata leads one to the theory of
coordinated pair systems (see, e.g., [R], [EHR1] and [EHR2]). Using this point of

view we will translate now our results on the use of memory in right-boundary

grammars to results concerning the use of memery in push-down automata.
We begin by recalling the notion of a coordinated pair system.

Definition 4.1. A coordinaled pair system, cp system for short, is a triple
G =(Gy, Gg, R), where
(1) Gi=(,, P,, S,.4)isarl grammar,
() Gy =(Ez, Py, Sz)is arb grammar with S, € £, and

(3) R CPixP, =
Elements of & are referred to as rewrifes of G

Definition 4.2. Let G =(G,, Gy, F) be a cp system, where

G1=(Z1, Py, S1, 8)and Gg = (L2, Pa, Sy).

™ Tz
(1) Let z;,y, € Sy and 7o, ys € s, If z, =y and s = Y for a rewrite
1 3

w={m , ) € K, then we say that (z,,vy,) directly computes (z,,yy) in G

m
using 1 and we denote this by (z,, x2) :—“*G—,¢ (Y1, y2) .

& &'
"—’? denotes the reflexive and transitive closure of :G“—t& If{z,, zz) 25;» (Y1, Ya),

then we say that (z,, z5) computes (y,, ya) (in G).

() A computation (in G)is a sequence p ={Zg, Z1, ..., Tp), 7 =0, of elements
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from Z;XE; such that z;_; ='G—‘> z; foreach 1<i <n.

*
We say that p computles z, from zg and denote this by p: g => z,. n is called

the length of p and is denoted by Ig (p). For 0<1i < n we use p(i) to denote z;.

*
Ifp:(S,, Sz)=> (w,A) for some w € A*, then p is called successfud.

=
(3) The language of G, denoted L(G), is the set fw € A® | (S,, Sp) = (w, A)I.

We extend the formal notions describing the active use of memory in rb

grammars to cp systems as follows.

Definition 4.3. Let & be a cp system and let n € N*.
(1) Let p = (p(0), p(1), ..., p(k)) be a computation in G. The n-active record of p,
denoted act, (p), is the word ¢,{(0(0)), ¢o(p(1)) - - - po{p{k —1)), where
@n - E;XZ; - Lyl J{A} is the mapping defined by

) = (3" herien.

(2) The n-active-language of G, denoted ACT,{G), is the language

fact,(p) | p: (S, Sg) = (w, A) for some w EA*g. =

In studying the active use of memory in a cp system G we are mainly
interested in the behavior of the second component of successful computations.
This behavior does not change if we erase all terminal symbols in all productions
of the first component (and in the corresponding rewrites) of G. The cp system
obtained in this way is called the internal version of G, a cp system is called
internal if it equals its internal version (i.e., it has no terminal symbols on its

first component).

Definition 4.4. Let ¢ = (G, Ge, /) be a cp system with
GIZ(El,Pl,SI,zﬁ).



{1) Gis called internalif A = 2.

(R) The internal version of G denoted int(G), is the cp system G = (G, Ge, B)
where G, = (£,-4, P,, S;, @) with

P= H{X.Z) | (X;wZ) € Pfor some X €T,-A, w €A™ and 7 = (I;-A)J{A}} and

R= $(X » Z, m) | (X »wZ, mp) € R for some X € £,—A, w = A” and

Z € (T -0)Uing. -

Hence int{G) works precisely as G does except that it ignores the "input
aspect” of G. Consequently as far as the use of memory is concerned one can

consider int (&) rather than G.

Lemma 4.1. Let G be a cp system and let n € N*. Then

ACT,(G) = ACT,(int (G)). =
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5. INTERNAL CP SYSTEMS AND RB GRAMMARS.

In the previous section we have seen that rather than investigating the use
of memory in general cp systems one may restrict oneself to internal cp sys-
tems. Actually this is the first step needed in "reducing” cp systems to rb gram-
mars. The second step is taken in this section. We demonstrate how to
represent {computations in) an internal cp system by (derivations in) a finite set

of rb grammars.

Definition 5.1. Let ©, %, and I be alphabets and let ¥: @ - ¥, and
@ : ®% > T be weak codings. Let (Z,w) € (£, UIAD)XEs and v € 0",
We say that v (¢,¢)—represents (Z,w), denoted u [¢,¢ > (Z,w) if the following
holds.
(i) Ifw # A then |u]| = |w]|, Ylest(uw)) = Z and ¢{u) = w.
(i) fw =Aand Z # A, then |u| =1, y9(u) = Z and p{u) = A.

(iii) fw=Aand Z = A thenu = A =

Definition 5.2. Let G =(G,, Gz, F) be an internal cp system with

Gi=(Z1,P1.5,.8), Ge=(Zz, Py, Sg)andlet H; = (0;, & .0;), 0<i <k, bea
&
- . * *®
collection of rb grammars with & = U @;. Finallylet¢:0® -%, and
i=1
* *
¢: 0 - Iy be weak codings.
(1) Let p, be a computation in G and let § be a derivation in H;, (0<1i <k). We
say that & (y,¢)—reprasents p, denoted 6 [¢.¢>p, if lg(6) =Ilg(p) and

6(7) [%.¢ > p(j) for each 0 = § < Ig ().
(2) Gis (¢,p)—represented by Hy, Hy, ..., H if the following holds.

&®

(i) Tor each computation p:(S;,Sz) = (z,w) in G, there exists an

*®

i € {0,1,...k} and a derivation § : w; == u in H; such that § [¥,¢ > p.



*
(ii) For eachi €{0,1, ...,k} and each derivation & : w; =>u in H; there exists a
/

*
computation p: (S, S3) =>(z,w) in Gsuchthat é [¢¥,¢ > p. =

Theorem 5.1. TFor every internal cp system & there exist weak codings ¥
and ¢ and a collection of rb grammars Hy, H,, ..., H, such that G is (¢¥.%)-

represented by Hq, Hy{, ..., .
Proof.

Let G=(G,, Gz, R) be an internal cp system where G, =(Z,, P,, S, , ?)
and Gz = (Zg, Py, Sp). Let &, = {X;, Xz, ..., X&}. The rb grammars

H, =(0,,@,7)1=01,..,k, are defined as follows.

(1) =4, Y, Z] | A<Zand ¥, Z € T, UA},

To=[Sg, A, S;]and

&q contains the following productions

[A4, Y, X] > Aifandonlyif (X » ¥, A>A) ERforAc Dz, X €, Y €T, U,

[A, Y, X]-[B, Y, Z]ifandonlyif (X »Z,A»B)c Rfor A<y, X €L, and
Y, Z € ;YA and

A, Y, X]| -5, 7Y Z\0Bs, 2y, 23] [Br, Ze_y, Z]if and only if
(X~Z, A-B\By - B.)sRforr=2 A4, 5B,,...,B €%z, X€L,and
Y. Z, 72y, .. Zrqg € DAL

(2) Foreachi €{1,2, ..., &k},
Q ={{A, 7, Z]| A€, Y €,UIX} and Z € UK,
T, =[Sz, X . S\l
&; contains the productions
[A, X, X] > X, ifandonly if (X » X; , A > A) € Rfor A € Lzand X €3,
[A, Y, X] > Aifandonly if (X > Y, A > A) € RforA€zand X, Y€ 5, ,

AY.X]»[B,Y,Z]ifandonly if (X » Z, A»BYe Rfor A, B €%, , X, 7<%, and
[ _ 2 )



Y € 2%} and

[AYX]-[B.Y Z,][Ba, Z,, 23] [By, Z._y, Z] if and only if
(X>Z,A> BBy B)€R for
T=22,A, By, ...8. €%, X,Z,...2,7Z €%,and Y € T, UIX}

(3) Finallyfor A €%, Y, Z € L;UiAl and X, W € I, we define
YA Y, Z) = Z, W[A X, W]) = W, 9(X) = X,
p([4, Y. ZD = A ¢([A X. W]) = A, 9o(X) = A,

For each 1<1i <%k the rb grammar H; is used to represent computations

* ®

p: (S, S2) = (X; , A). Computations of the form o : (S;, Sg) = (z, w) with

*
w # A as well as computations of the form p : (S, S3) =G>(A, A) are represented

by suitable derivations in Hg. Computations of these forms are respectively
called dlocked, unfinished and successful.

X
Claim 1. For every computation p : (S;, Sg) ==C';'> (z,w) in G there exists an

*

i €0, 1, ..., k} and a derivation § : w; = u in H; suchthat 6[v¢, ¢ > p.
i

Proof of Claim 1.

Let p be a computation of length n in G with p{(0) =(S,, Sg). For0<j=n
we write p(7) = (Z; , wj).

() If p is either unfinished or successful (so either w, #A or

(Z, , w,) = (AA)), then it is possible to construct a derivation § of length n in Hy

such that 6 [%,¢> 4.

This is done as follows. Let §(0) =[Sz, A, §4].

We proceed inductively. Assume that §(j), j < n, is already constructed.
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From the form of the productions in Hj it easily follows that 6(j) is of the
form  [4;, A Y ][4z, Y, Yol - [4 . Y%, Y], for some [I=1; thus
Zi =yY([4 . Y-, Y]) = ¥ and w; = @(6(j)) = 414z - - 4. (We will say that this

"
occurrence of 4 is active in w;.) Let 7 be the rewrite such that p(j) -T‘Eé p{j +1).

We consider separately three cases.

(al) n=(X~>Z,A>BBy-  B.)forsomer=>=1 2 #A
Obviously X = ¥} and 4 = 4;,. We use now a production
(4. Y. K] [By, B, Wi[Be, Wi, We] - - [Br, Wrey, Z] to derive 6(j+1)
from 6&(j). The variables W,,..., W._; are determined as follows. For
1 €§1,2, .., =1} let p(s;) be the element of the computation p in which the
occurrence 5; "becomes active” on the second component; more precisely: s; is

the least integer larger than 7 such that ws, = AlAg - A By By (thus
s, = j+1). We then choose W; = Zs,. Note that it may happen that W; = A (if

s; = n). If B; never "becomes active" (thus it is never rewritten) in p, then #;

may be chosen arbitrarily.

(a2) m=(X>Z,A > A), where 7 # A.
Obviously X = ¥} and A = 4. Since p is not a blocking computation I # 1. The
occurrence A _; will be active in the next step of the computation p and, since
[4_,, ¥, ¥;_;] was introduced by a production as under {al) above, ¥,_, = Z.
So we can apply the production[4; , ¥,-,, ¥, ] » Ato obtain (5 +1) from 6(5).
(3) m={(X->A A - A\).
Note that this rewrite can be applied in the last step of a computation only.
Again X = ¥, and A = 4.
IfL = 1, then p is successful. Otherwise, if I > 1, then p is unfinished. Using the
same arguments as before we conclude that ¥, = A
So in both cases we can apply the production [4 , A, ¥;] > A to obtain 6(j+1)

from 6(7). (Note thatif [ = 1, then 6(j+1) = A.)
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{(b) If p is a blocking computation with p(n) = (X; , A) for £ € {1, ..., k}, then
we construct a derivation § of length n in H; such that §[%,¢>p.

This time we set 8{(0) =[Sz, X; . S1].
The recursive construction of the sequence 6(1), 6(2), ...,6(n) is defined as for
successful computations, except for the last step which we discuss now
separately.
p{n) = (X; , A) can be obtained only be applying a rewrite m = (X » X; , 4 > A) to
p{n—1) =(X, A); thus §{(n—-1) = [4, X; , X].
Let 8§(r) = X;. Then &(n—1) directly derives é{(n) in H, using the production
[4, X%, X] - A

From {a) and {b) above Claim 1 follows. =

*

Claim 2. Leti € {0, 1,...,k} and let § : T; => u be a derivation in H;. Then

%

there exists a computation p : (S, Sz) => z in G such that § [¢, ¢ > p.

Proof of Claim 2.

The proof of this claim is rather obvious. Let § be a derivation in H; with
5(0)=T;.
First we set p(0) = (S;, Sz). Then [Se. X; . S.] = 6(0)[¢.¢>p(0). The other ele-
ments of p can be found using the weak codings ¥ and ¢.
For 1=j <lig(d)let p(§) = (Z; , w;), where Z; = Aif 6(j) = Aand

Z; = Y(last (6(4))) otherwise, and let w; = (6(7)).

It can be easily checked that the so defined sequence p is a computation in

The theorem follows from the above two claims.
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Note that the notion of representation discussed above is very strong in the
sense that #Z,+1 rb grammars represent all, hence successful and not success-
ful, computations that start with (S,, Sz). If one is interested (as we will be in
analyzing the use of memory) in successful computations only, then one gets a
simpler representation theocrem.

Definition 5.3. Let G =(G;, Gg, ) be an internal cp system with
G ={(2,,P,51.0), Gg=(Z, Pa, Sp) and let H# =(0, g, ») be a rb grammar.
Finally let 9 : 0" - E; and ¢ : 0" - Eg* be codings.

G is successfully (¢,¢)-represented by H if the following holds.

(i) For each successful computation p in G there eixsts a successful derivation ¢
in A such that 8[¥,¢>p.

(ii) For each successful derivation § in H there exists a successful computation

p in G such that 6[4,@>p. =

Remark 5.1. Note that if (Z,w) is an element of a successful computation,
then w = A implies Z = A. Hence we don’t have to consider requirement (ii)

from Definition 5.1. For this reason we can use codings ¥ and ¢ rather than

weak ctodings to represent an internal cp system. #

"Theorem 5.2. For every internal cp system & there exist codings ¥ and ¢

and a rb grammar H such that & is successfully {(¢,¢)-represented by H.
Proof.

The rb grammar Hy as constructed in the proof of Theorem 5.1 successfully
{(,¢)-represents the internal cp system G. This is easily seen using the argu-

ments of that proof. Note that the homomorphisms ¥ and ¢ are codings when

restrained to the alphabet of H;. =
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We are ready now to translate our results on the active use of memory i o0
grammars into results describing the active use of memory of push-down aut

mata as modelled by cp systems.

Theorem 5.3. Let G be a cp system.

(1) For eachn = 1, ACT,{G) is regular.

(?) For each ] C N*, U ACT,(G) is regular. ®

nel

Proof. Let H be a rb grammar that successfully (¥,¢)-represents the inter-
nal cp system int{() for some codings ¥ and ¢. Using the fact that ¢ is a coding
it is easily seen that for every n € NV act, (p) = ¢{act, {(6)) where p is a success-
ful computation in int{G) and 6 is a successful derivation in H such that

S[¥.0>p. Hence ACT,(int(G)) = ¢(ACT,(H)) and consequently, by Lemma 4. .
ACT, (G} = p(ACT,(H)) for every n € N*.

Thus, for [ CN¥, | _JACT,(G) = |_J@(ACT,(H)) = o(|_J ACT,(H)) is regu-

nel nel nel

lar, because by Theorem 3.4 UACTn(H) is regular and the class of regular

nel

languages is closed under homomorphisms. *
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ZSCUSSION

Within the framework of ects systems (see [R]) rb grammars form a basic
building block in constructing various types of grammars and machines known
from the literature. Hence there is a need for a fundamental research concern-

inzy rb grammars.

In this paper we have investigated the use of memory in rb grammars. We
have chosen a specific way of "tracing” the use of memory in rb grammars: we
record the sequence of active use of a particular memory cell during a deriva-
tion. Then it turns cut that ail active records for a given cell for a;fl successful
derivations form a regular language (Corollary 1.3). As a matter of fact these
regular languages have a very specific structure which makes the "overall active
use of memory"” in a rb grammar regular: the union over any set of memory
cells of all active records for all successful derivations is regular (Theorem

3.4)11

Cp systems form a subclass of ects systems that correspond very closely to
{zre another formulation of) push-down automata. A cp system is a "coordi-
nated pair” of a right-linear grammar and a rb grammar: in this combination
the rb grammar component represents the (infinite) memory structure of the
system. From this point of view investigating the use of memory in rb systems

is very natural (and very much needed).

In order to transfer our results on the active use of memory in rb gram-
mars to the level of cp systems (where the work of the rb component is coordi-
neted by the right-linear component) we prove a representation theorem
{Theorem 5.1) for cp systems which allows one (in the investigation of computa-
tions in cp systems) to consider a finite number of rb grammars rather than a
cp system. Actually the representation theorem we prove is somewhat “"too

strong” for the considerations of this paper: if we consider successful
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computations only, one rb grammar suffices to represent a cp system (Theorem
5.2). However we believe that our general theorem constitutes an important link
between cp systems and rb grammars when all computations are being con-

sidered - we hope to explore this theorem more in the future research.

Using the representation theorem we transfer our result on "strong regu-

larity” of the active use of memory to cp systems (Theorem 5.3).

We believe that this paper illustrates the usefulness of the fundamental
research concerning rb grammars and of the cp systems point of view at push-
down automata. It seems to be easier {and more elegant) to prove basic results
on the level of rb grammars and then transfer them to the level of cp systems
(by "once and forever" established representation theorem) rather than to

prove the corresponding results directly for cp systems.

We consider this paper as a first step into the systematic investigation of
the use of memory in rb grammars and cp systems. Clearly there are other
than active ways of recording the use of a memory in rb grammars {e.g., for a
given n-th memory cell one could record for each line of a given computation
the contents of the cell - the set of all such records for all successful computa-
tions forms the n-full record language af G). How complicated are other types
of "recording the memory" languages? Are they regular? Are their arbitrary

unions regular?

We are presently working on a number of problems of this nature and hope

to present the results of our research in a forthcoming paper.
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