AN OPTIMIZING PRECOMPILER FOR
FINITE-DIFFERENCE COMPUTATIONS ON A VECTOR COMPUTER

John Gary
Scientific Computing Division

National Bureau of Standards, Boulder CO

Lloyd Fosdick
Department of Computer Science

University of Colorado, Boulder CO

Optimizing Precompiler -1- Gary & Fosdick

ABSTRACT

This paper is concerned with compiler optimization for vector comput-

ers which have a relatively long startup time for vector arithmetic. And

it describes a precompiler for the Cyber 205! a machine which has a
long startup time for vector arithmetic. This precompiler does not vec-
torize Fortran 77 DO loops, instead it vectorizes and optimizes pro-
grams written in the explicit array syntax of the proposed Fortran stan-
dard (Fortran 8X). This optimization is intended to be most effective
for algorithms commonly used in finite difference approximations of
partial differential equations. Finite difference schemes frequently
evaluate the same expression over the interior of a multidimensional
rectangular array. In Fortran 77 the computation is done with a nested
set of DO loops, one for each array subscript. Existing compilers for
the Cyber 205 only vectorize the innermost DO loop. Our precompiler
is able to vectorize the computation over the entire array by generating
bit vectors and using conditional evaluation. We describe other optim-

ization techniques as well, but this one yields the greatest benefit.

1 Certain commercial equipment is identified in this paper in order to adequately describe our results.
This identification does not imply recommendation or endorsement by the National Bureau of Standards.

November 15, 1985

Optimizing Precompiler -2 Gary & Fosdick

1. Introduction.

In practice the effective speed of vector machines often falls far short of the peak
speed. Effective speeds that are 10% of peak speeds, or less, are not uncommon. While
this speed loss may be due to properties of an algorithm which prevent vectorization,
it is often due to failure of the compiler to vectorize the code optimally, or at all. It is
the latter problem, for finite-difference programs written for the Cyber 205, that we

address here.

The usual approach to solving this problem is to build a preprocessor that is
smarter than the compiler 1n vectorizing Fortran DO loops. This, for example, is the
approach taken by Kuck’s group in the Parafrase system [KLW84], and by Brode in
the Vast system [Bro&1]. Arnold [Arn82] has compared the performance of KAP, a
commercial product based on Parafrase, and Vast. Paul and Wilson [Wil78] adopted a
different approach that is related to ours. They developed a language called Vectran,
close to Fortran but with array constructs, and built a prototype compiler. However,
their attention was focussed primarily on the development of a language, and not on
the problem of translation to achieve optimal code on vector machines which is our

main theme.

In our approach we use a source language that has array operands and operations,
thus we entirely avoid the problem of trying to vectorize DO loops. The advantage of
this approach in simplifying the vectorization problem has been stressed by Hockney
and Jesshope [Jes&1, pp 212-215]. The main point is that better optimization can be
achieved if the program does not explicitly prescribe an ordering of the computation
beyond that which is inherent in the algorithm. Advocates of functional programming
languages [WoM84] cite them as the best language for this purpose, but it is unlikely
that these languages will be accepted soon by scientists who use vector machines.

Since we are interested in providing an efficient tool for improving the effective speed

November 15, 1985

Optimizing Precompiler -3- Gary & Fosdick

of the Cyber 205, one that is likely to be accepted now as a practical tool, we have
adopted a middle ground on the language turf, namely Fortran 8X [84], and we have

restricted our attention to finite-difference calculations.

On the Cyber 205 near optimal code can be obtained if the programmer is willing
to devote the effort required to write programs that use the explicit vector operations
in Fortran 200, the Fortran dialect used on this machine. Unfortunately, this task is
far from easy because low level details of the data structures and the cost of operations
on them must be taken into account. Indeed, the programmer is working at a level
that is not far removed from assembly language programming. In this paper we
describe a precompiler that allows the programmer to avoid these low level details
without sacrificing efficiency. The source language for the precompiler is Fortran 77,
extended to include a subset of the array expressions proposed for Fortran 8X. Finite-
difference computations can be expressed easily and compactly in this source language;
and, because array operations are explicit, the precompiler generates efficient Fortran

200 code without great difficulty.

The key to achieving efficiency on the Cyber 205 is the use of long vectors. If the
~points on a row or column of the mesh in a finite-difference computation are treated as
vectors, the vectors are usually not long enough. Moreover, elements of vectors must
be in contiguous locations, so the points on a row would have to be moved into con-
tiguous locations, assuming standard Fortran storage order. If, on the other hand, all
of the points of the mesh, or all of the points on a plane of a three-dimensional mesh,
are used to form a vector then generally the vectors are long enough to assure efficient
use of the machine. However, the fact that boundary points are treated differently
from interior points, and the requirement that elements of a vector must be stored
contiguously make this collective treatment of the mesh points difficult. The precom-

piler puts the entire mesh, or plane of the mesh, into a vector, automatically taking

November 15, 1985

Optimizing Precompiler -4- Gary & Fosdick

care of the problems j.ust. mentioned. Thus efficiency is achieved, and the programmer
need not be concerned with the details of the data manipulations required to achieve
it.

In the following sections we describe some essential features of Fortran 200, 200
for short. Then, with a small example, we discuss the cost of two ways to organize an
SOR computation. Besides comparing costs, this example illustrates some of the com-
plexities of the programming effort required when one programs directly in F200.
Next, some features of Fortran 8X used in the precompiler source language are
described. Then we discuss methods for optimizing finite difference computations.
Finally we come to the main subject, the design and operation of the precompiler. We
close with a discussion of some results we have obtained and problems that require

further attention.

2. Vector operations in F200.

Features of 200 that will be used later are briefly described here. These include
vector notation, bit vectors, the WHERE statement, and the built-in procedures for

gather, scatter, and compress. Details can be found in the reference manual [CDC85]

An F200 vector 1s a sequence of contiguously stored elements within an array.
The array is declared in the usual way. The vector is specified by giving the name of
the array, the position in the array of the first element of the vector, and the length of
the vector. For example, given the declaration

DIMENSION A1{1:50), A2(1:50, 1:100)
then

A1(3; 40), A2(41, 2; 60)
are vectors. The position of the first element of the vector is on the left of the semi-
colon, the length is on the right of the semicolon. In particular

A2(41, 2; 60) = (A2(41, 2), A2(42, 2), ..., A2(50, 3))

November 15, 1985

Optimizing Precompiler -5~ Gary & Fosdick

Notice that the usual column order is understood. A binary operation on a vector
yields a result vector whose elements are obtained by doing the operation pairwise on

corresponding elements of the operand vectors.

Elements of a bit array have type BIT in F200. Bit vectors are used to mask the
storage of the elements of a vector in assignment statements. Bit vectors also can be
used as operands in logical expressions with the logical operators .OR., .AND., and
.NOT.; and the value of a vector relational expression may be treated as a bit vector.
For example,

NOT.(AL(1;25) .L'T. A1(26; 50)),
which normally would be type LOGICAL (values . TRUE. AND .FALSE.), may be used

in expressions as a bit vector.

The WHERE statement is used to control vector assignment statements. [ts form
18:

WHERE (bit_vector)

sequence_of_vector_assignment_statements

OTHERWISE

sequence_of_vector_assignment_statements

ENDWHERE
In the assignment statements before OTHERWISE the assignment is made for the k-th
element only if the k-th bit in bit_vector is 1; after OTHERWISE, only if the k-th bit
in bit_vector is 0. The OTHERWISE part may be omitted.

F200 has many procedures, named Q8..., for common vector operations. The ones
of particular interest here are "gather", "scatter”, and "compress", with names
Q8VGATHR, Q8VGATHP, Q8VSCATR, Q8VSCTAP, and QR&VCMPRS. The gather
operation collects noncontiguous elements from a vector and puts them into a contigu-

ous sequence; the location of the values gathered is specified by an index list

s esmber 15, 1985

Optimizing Precompiler -8- Gary & Fosdick

(QRVGATHR), or by giving a constant spacing, k, if every k-th element is to be gath-
ered (Q8VGATHP). The scatter operation acts like the inverse of gather. The
compress operation deletes elements from a vector; a bit vector specifies elements to be

deleted.

3. The cost of vector computations.

Here, with a simple SOR example, we compute the cost of alternate vectorizations
of the computation. This example illustrates factors, found in many finite-difference
computations, that have affected the design of the precompiler. It also demonstrates

the rather tricky nature of writing explicit vector operations in F200.

We consider an SOR computation on an (N+1)-by-(N+1), red-black mesh, with
Dirichlet boundary conditions. The mesh, with N = 6, is illustrated in Fig. 3.1. We
assume that N is even because the algorithm for the computation is simpler in this
case. When N is even the sequence of mesh points, in column storage order, is an alter-
nating sequence of red and black points and so it may be easily treated in a uniform
way; when N is odd the sequence does not have this property. We also assume that
the point with coordinates (0,0) is red. Since the problem of vectorizing the computa-
tion on the black points is the same as for the red points, we confine attention to the

red points. The basic computation in Fortran 77 is illustrated in Fig. 3.2.

There are two problems for the vectorization. The red points are not in contigu-
ous locations, and the boundary points must be treated differently than the interior
points. These problems can be solved in two ways: by doing the basic SOR update on
all of the mesh points at once, treating the entire mesh as a single vector, but storing
updated values only at the interior red points; or, by making two vectors, one out of
the red mesh points, the other out of the black mesh points, doing the computation
with these vectors, and scattering the final results back into the mesh. With the first

approach, approximately 509 of the computations are wasted; with the second

November 15, 1985

Optimizing Precompiler -7- Gary & Fosdick

approach there are almost no wasted computations (some waste is caused by including
boundary points in the vectors), but there is the additional cost of gathering and
scattering. The size of the mesh, the number of iterations, and the costs of the vector

operations will determine which solution has the minimum cost.

The I'200 segment in Fig. 3.3 shows the updating of the red points with a
WHERE statement. Here BV is a bit vector defined by the logical expression

BV = (101010...) AND (111...[N-1]...100111...[N-1]...100...)
where the notation in the term on the right indicates a sequence of N-1 1’s followed by
two 0's ‘foll‘owed by N-1 1’s and so forth. The effect of the first term in BV is to control
the stores so only values on red points are stored, and the effect of the second term is
to assure that only values on interior points are stored. Finally, the value of LEN is
(N*N-3), the length of the vector extending from the first red point updated to the last
red point updated. The cost, in cycles (20 nsec), of this computation is

COST_1 = 6%(50 + (N*N - 3)/2) + 50
where we assume two pipes, the usual configuration on the Cyber 205. The first term is
the cost of the six arithmetic operations; the second term is the cost of starting the

WHERE. The cost of making BV is negligible.

Now we consider another solution to this problem. The values on the red points
are gathered into a vector, R, and the values on the black points are gathered into a
vector, B. In particular
R = (A(0,0), A(2,0), ..., A(N,0), A(1,1),..., A(N-2,N)
B = (A(1,0), A(3,0), ..., A(N-1,0), A(0,1), ..., A(N-1,N))
These vectors have length N*(N/2+1). The cost of the gather for R is about [Arn83]
| COST_GATH = 42 + 1.4*N*(N/2 + 1)
and for B it is the same. The update of the values on the red points is done with the

F200 segment shown in Fig. 3.4. Here the length of the vector operands is LEN1 =

November 15, 1985

Optimizing Precompiler -8- Gary & Fosdick

N*(N/2+1) but the length of the vectors actually used in doing the arithmetic is LEN2
= N*N/2-1. The bit vector is given by

BV = 111..[N/2]...10111...[N/2 - 1]...10111...[N/2]...10111...
This bit vector assures that only values on red interior points are updated. The cost of
doing the arithmetic in this way is given by

COST_ARITH = 6*(50 + (N*N/2 - 1)/2)
In the final step of this computation the red and black values are scattered into A.
Ounly a segment of R, of length N*N/2 - 1, needs to be scattered and the cost is
approximately

COST_SCAT = 75 + 1.2%(N*N/2 - 1).

The cost of scattering B is the same.

In a typical computation a number of iterations of the vector arithmetic would be
done for each gather-scatter pair. The total cost of a computation involving a gather,
followed by ITER iterations of the vector arithmetic, followed by a scatter is
COST_2 = COST_GATH + COST_SCAT + ITER*COST_ARITH.

We include heré only the cost of gathering R, not gathering B even though B is used in
the update of the red points. The justification is that the cost of gathering B can be
charged to the cost of updating values on the black points. Figure 3.5 shows the ratio
(COST_2)/(TTER*COST_1) as a function of N for different values of ITER. The
asymptotic approach to 1/2 as N and ITER become large is expected because the
length of the vectors involved in the arithmetic for the second algorithm is one-half

the length of the vectors involved in the arithmetic for the first algorithm.

A third method is to use a compress operation instead of a gather to form the R
and B vectors. There 1s an advantage in using it if a relatively small number of ele-
ments need to be deleted from a long vector. A scatter is still the best way to restore

the values into A. An expand followed by a controlled store could be used but would

November 15, 1985

Optimizing Precompiler -9- Gary & Fosdick

cost more.

Let us now look at an abstraction of the problem above, and we again consider

two forms of the computation, represented by Algorithm A and Algorithm B below:

(Algorithm A)
Repeat the following statement ITER times.
WHERE (bit vector)
Perform N vector arithmetic operations
on operands of length SIZE.

END WHERE
and

(Algorithm B)
Gather NOP vector operands of length F*SIZE from containing array.
Repeat the following statement I'TER times.
WHERE (bit vector)
Perforﬁ] NARITH vector arithmetic operations
on operands of length F*SIZE.
END WHERE

Scatter NOP vector operands of length F*SIZE into containing array.

Here SIZE represents the number of elements in the containing array, and F denotes
the fraction of them used in Algorithm B. In the SOR computation F = 1/2. We
define

ALPHA = (2*NOP)/(ITER*NARITH)
thus ALPHA 1s just the ratio of scatter-gather operations to vector arithmetic opera-

tions. In the SOR example ALPHA = 1/(3*ITER).

November 15, 1985

Optimizing Precompiler -10- Gary & Fosdick

We are interested in the ratio of the cost of Algorithm B to the cost of Algorithm

A and how it depends on the parameters SIZE, F, and ALPHA. We assume that the
cost of a gather or a scatter is about

COST_GORS = 75 + 2.7*F*SIZE
The value of 2.7 used as the cost per element is the median of the highest cost, 4.05,
and the lowest cost, 1.35, as given by Arnold [Arn83]. The reason for the range in
costs 1s memory bank conflicts. In the previous calculation we assumed the minimum
cost because there were no bank conflicts in that case. We assume the cost of an arith-
metic operation is

COST_ARITH = 50 + (P*F + (1-P))*SIZE/2
where P=0 for Algorithm A, and P=1 for Algorithm B. A small constant term
representing the cost of a WHERE is neglected here. Thus the ratio of interest is

RATIO = (ALPHA*COST_GORS + COST_ARITH(P=1)) / COST_ARITH(P=0).

Figure 3.6 shows RATIO as a function of F for different values of ALPHA, and SIZE.

Ideally, an optimizing precompiler would use results of this kind to guide it in
generating optimal code. While our precompiler does optimization in generating F200
code and, in particular, does make the choice of when to use scatter-gather operations,
it 1s not nmow so sophisticated as to take into account the kind of analysis suggested
here. But, the important point is that programmers should not have to spend their
time trying to take them into account. It is something that can and should be done

automatically

4. Fortran 8X.

Features of Fortran 8X used later are described briefly here. These include array

sections, and the statements WHERE and FORALL.

An array section is a subarray of an array, say A, composed of the elements in one

or more contiguous rows, columns, ete. of F. Thus, given the declaration

November 15, 1985

Optimizing Precompiler -11- Gary & Fosdick

DIMENSION A1(1:50), A2(1:50, 1:100)

I3

then
A1(3:42), A2(48:50, 97:100)

are sections; the first i1s a one-dimensional, 40-element, subarray of A1, and the second
is a 3-by-4 subarray of A2. A binary operation on array sections yields a result array,
whose elements are obtained by performing the operation pairwise on corresponding
elements of the operands. The operands must be "conformable”; i.e. they must have
the same number of elements in corresponding dimensions. It is important to recog-
nize that an array section does not, in general, consist of contiguously stored elements.
Therefore, the translation of expressions using array sections as operands into the vec-

tor expressions of F200 is more than a trivial change in notation.

The WHERE statement is the same as in F200 with a minor syntactic difference:
ELSEWHERE is used instead of OTHERWISE. The FORALL statement is a con-
trolled assignment statement. The form of this statement is

FORALL(subscript_range, bit_vector) assignment_statement
The subscript_range specifies the subscript values wused in executing the
assignment_statement. The bit_vector controls the assignment_statement. For exam-
ple,

FORALL(I = 1:50, J = 1:50, 1 .L'T. J) A2(1, J) = A2(J,T)
makes the 50-by-50 subarray of A2, in the upper left corner, symmetric. The
bit_vector is optional. If it were omitted in this example, then the subarray would be

transposed.,

5. Optimization of difference schemes for the Cyber 205

The primary objective is to arrange the computation so that the vectors are as
long as possible. The second major objective is the avoidance of unnecessary gathers

and scatters. In addition we will describe some techniques which are equivalent to

November 15, 1985

Optimizing Precompiler -12- Gary & Fosdick
moving loop invariants from loops in a scalar environment.

5.1. Optimization for an explicit scheme

The technique that seems to yield the best retu';n is the extension of a computa-
tion from the interior of a multidimensional array to the entire array by the use of bit
vector controlled evaluation. Generally, finite difference computations will involve
several variables defined over the same mesh. Therefore these arrays will all be
declared with the same size (that is, the same dimensions). The use of bit vectors will
not be efficient unless this condition is satisfied. Finite difference computations are
typically different in the interior than at the boundary. To obtain a long multidimen-
stonal vector, it is necessary to include the boundary points in the vector. Then the
interior computation has to skip over these boundary points. Of course, the computa-
tion of the boundary operator will be taken over lower dimensional vectors. However,

the improvement in the interior computation can be considerable.

The structure of the following Fortran 8X code segment is typical of explicit finite
difference schemes. The array U2 contains the mesh values at the new time level.
These are obtained from finite difference operators on the array Ul at the old time

level.

(1) REAL UL(0:NX,0:NY), U2(0:NX,0:NY), A, B
FORALL(I=1:NX,J=1:NY) U2(1J)=Ul(I]) + &

AMUL(LI)-UL(I-1,0)) + B*UL(1,J)-UL(1,J-1))

(The ampersand denotes line continuation.) Note that the left boundary points where
I=0 are not updated in this computation. Therefore the computation is not done over
a contiguous set of memory elements. If the boundary points are not included, then

the computation uses NY vectors of length NX. This means that the vector startup

November 15, 1985

Optimizing Precompiler -13- Gary & Fosdick

cost will be incurred NY times. For a vector of length 20, the startup cost is five times
the computational cost. Instead, we can compute over the entire two dimensional
array and suppress the computation at the boundary by using a bit vector to control
the computation. The bit vector that is needed for this example must have sequences
of NX ones separated by a single zero. If BV is the bit vector and LEN contains the

length of the vector, then the F200 code for equation (1) is the following.
WHERE (BV(1,1;LEN))
U2(1,LLEN) = UL(1,;LEN) + A*(U1(1,1;LEN) - U1(0,1;LEN)) &
B*(U1(1,1;LEN) - UL(1,0;LEN))

END WHERE

This usage of the bit vector may not be efficient if the bit vector must be recomputed
each time 1t is used. Unless an adaptive mesh is used, the mesh will remain constant

throughout the calculation. Therefore the bit vector need be computed only once.

5.2. The conjugate gradient iteration

This algorithm requires the multiplication of a matrix by a vector. In the case of
a three dimensional problem, each element in the vector corresponds to a mesh point
in a rectangular array. For a second order scheme, the matrix will have seven "diago-

"t

nals". It is convenient to index the matrix and vector by the same subscripts (I,J,K)
used to index the mesh. Then the following code segment will multiply one diagonal of

the matrix, stored in D(I,J,K,1) by the vector.

REAL D(1:NX,1:NY,1:NZ,1:7),U(1:NX,1:NY,1:NZ), W(1:NX,1:NY,1:NZ)

FORALL(I=1:NX-1,1:NY,1:NZ) W(I,J,K) = D(I,J,K,1)*U(I+1,J,K)

The efficient implementation of this segment on the vector machine will also require a

bit vector, since the boundary point (I=NX) must be included in order to obtain a

November 15, 1985

Optimizing Precompiler -14- Gary & Fosdick

contiguous vector.

5.3. Gathers to obtain contiguous vector elements

The elements in the vector U(I,2:31) are not contiguous. Therefore a gather is
required in order to use the vector hardware. As discussed in section 2 this gather is
rather expensive. If both the vectors U(I,1:30,2:31) and U(I,3:32,2:31) are required,
then it is more efficient to gather U(I,1:32,1:32) and use a bit vector to suppress the
computation at the boundary points in the gathered vector. This technique is used in

the precompiler, and is described in the next section.

5.4. Gathers to reorder arrays in an implicit scheme.

A splitting scheme for the solution of a partial differential equation in three
dimensions will involve the parallel solution of tridiagonal systems in each of the three
coordinate directions. Gathers can be avoided by a proper ordering of the sweep direc-
tions. If the mesh indices are (I,J,KK), then the first sweep should be in the K direction.
Then the calculation will use vectors with contiguous elements in the (I,J) indices. On
the first sweep, the recursion will be in the K direction. At the end of the first sweep,
the arrays are reordered (K,I,J) by using scatters. Then the second sweep can be in
the J direction with the results scattered back in the (J, K1) order. Then the last
sweep is in the I direction. Then the vectors are always formed from the first two sub-
scripts, so that the vectors can be accessed without gathers. The scatters are likely to
be required in any case, so using the sweeps in the proper order and reordering the

operands between sweeps can require less computer time.

%. The precompiler.

We call the source language for the precompiler Veclan 205. The precompiler
translates programs written in Veclan 205 into Fortran 200. In the next section we

illustrate some of the features of the precompiler with a series of small examples. A

November 15, 1985

Optimizing Precompiler -15- Gary & Fosdick

detailed explanation of its use can be found in the report "User’s Manual for Veclan
I

205" [GaF85].

6.1. Examples of precompiler input and cutput.

The first example is shown in Fig. 6.1a. There are six lines prefixed with a mark,
the pound sign (#). These marked lines are the only lines that really affect the actions
of the precompiler; the unmarked lines pass through it without change and are
ignored. There are two classes of marked lines, directives and Fortran 8X lines. This
example has three directives (#D, #B, and #F) and three Fortran 8X lines. The direc-
tive #D indicates the position where the precompiler is to put declarations for work
space; #B indicates where a data statement that initializes run-time stack pointers is
to be put; #F indicates the position of the first executable statement. There are some
additional directives not illustrated here. Two of the marked lines that are Fortran 8X
statements, are also Fortran 77 statements: the declaration "real ...", and "end". All
declarations for variables appearing in marked executable statements must be marked,

and the end statement must be marked.

The output from the precompiler for this example is shown in Fig. 6.1b. Notice
that marked lines in the source become comment lines in the output, excepting the
marked "end" which simply has its mark stripped; related statements generated by the
precompiler follow the marked line. The precompiler uses three run-time stacks named
"ISK000" (for integers), "ESK000" (for reals), "HSKO000" (for half precision), and
"BSKO000" (for bit vectors). All of them are declared, but only one, ESK000, is actually
used in this example. The initialization of the stack pointers can be seen in the data
statements following the comment line "C#B". (F200 permits initialization of values in
labeled common blocks with data statements.) Let us now look at the three lines gen-
erated by the precompiler following the marked assignment statement. Since vector

division on the Cyber 205 is relatively slow, the vector division by 2.0 has been

November 15, 1985

Optimizing Precompiler -16- Gary & Fosdick

changed to vector multiplication by (1.0/2.0). The scalar (1.0/2.0) is put in the stack
after verification that there is space for it: this is done in the first two lines. The third
line is an F200 array assignment statement, equivalent to the marked Fortran 8X

array assignment statement.

Now we turn attention to another example, shown in Fig. 6.2a. It appears to differ
very little from the first example but quite different output is given by the precom-
piler, as shown in Fig. 6.2b. The reason why the output is so different can be seen by
comparing the two array assignment statements. In the first example the elements
involved in the computation are contiguous in memory, in the second example they are
not. The declaration part is the same as in Fig. 6.1b. The statements in the first group
of executable statements generated by the precompiler, make an index vector for a
gather. Since the index vector only needs to be made once the statements that make it
are embedded 1n a block IF that distinguishes the first entry to this program unit from
subsequent. entries. This distinction would be relevant if this unit were a function or
subroutine, but in this example it is irrelevant since the unit is a main program. In the
next group of statements generated by the precompiler we see the two gathers (the
F200 function "Q8VGATHR" does a gather operation). The third group is concerned
with the optimization discussed in the first example. Finally, in the last group we see
the F200 array assignment, followed by a scatter operation (the F200 function

"q8vscatr" does a scatter operation).

The precompiler will generate scalar 200, using DO loops instead of array
assignment statements, for aid in debugging. The example shown in Figs. 6.3a (the
input) and 6.3b (the output) illustrate this. The directive on the first line of Fig. 6.3a

signals the precompiler that scalar F200 output is desired.

Our last example 1s a small segment, typical in form of the kind of code that is

used in finite-difference computations. The Veclan 205 segment is shown in Fig. 6.4a,

November 15, 1885

Optimizing Precompiler -17- Gary & Fosdick

the F200 output is shown in Fig. 6.4b. We direct our attention to the F200 output.
The first group of executable statements generated by the precompiler contains the
code for making index vectors for the gather and scatter operations and a compress
operation. As in Fig. 6.2b this code is embedded in a block IF. The next group con-
tains the code for gathering the elements of Ul and Vl. The third group i1s where the
arithmetic is actually done. It 1s embedded in a WHERE. A point of particular interest
here is an optimization that reduces the number of vector operations. Notice that a
scalar (DT/(2.*DX)) is used in this block. Looking back at the Veclan 205 source in
Fig. 6.4a 1t is easily seen that this comes from moving the scalar factor DT to the
right. In the fourth group of statements generated by the precompiler the result vector
from the arithmetic done in group 3 is compressed and the results scattered into the

U2 array. The compression reduces the number of scatters that must be done.

6.2. The design of the precompiler.

Each block of code, terminated by a "# END" statement is processed
separately. The input is read and the unmarked lines are passed directly to the output
and also to a "listing" file. The latter contains the input with line numbers and diag-
nostic messages added. The marked lines are processed by a finite state lexical
analyzer to produce a string of tokens along with a symbol table. Then an operator
precedence parser builds a parse tree for the declarations and vector replacement
statements within the program unit delimited by the END statement. Then a single
pass over the parse tree is made to generate code for the marked statements. This
generated code is written to a file. This output is then merged with the unmarked
lines which were copied to the first output file. The result is the final code for the

Cyber 205. A listing file and a file containing diagnostic messages is also produced.

November 15, 1985

Optimizing Precompiler -18- Gary & Fosdick

8.3. Attributes in the parse tree.

Code for each replacement statement is generated independently of the remaining
replacement statements. First the subtree for the replacement statement is traversed
to set attributes needed at each node for the code generation. Among these attributes
are the rank of the vector at the node, a flag to indicate that the node can be
evaluated with bit vector conditioned operations, a flag to indicate that all the vector
subscripts have constant upper and lower limits, and several other parameters. Infor-
mation is passed up the tree in a postfix traverse, so that when the traverse ends, the
information is available for the code generation. The information is used to decide

how the code is to be generated.

6.4. Code generation for a replacement statement.

The Fortran 8x input statement is translated to a single extended Fortran state-
ment. In addition several other output statements may be generated. If bit vector con-
ditional evaluation is used, then a WHERE block containing the output replacement is
generated. The bit vector used in the WHERE block must also be generated. In addi-
tion, if any operands in the replacement statement must be gathered, the statements
for these gathers must be generated immediately ahead of the replacement statement.
If the vector on the left side of the replacement is not contiguous, then the result of
the expression on the right must be compressed and then scattered into the vector on
the left side. Ome last complication occurs when the vector is too long { more than
64535 elements). Then a DO loop is generated for at least one of the subscripts. The
output replacement statement is contained within this loop. The gathers and the
scatter require the generation of gather index lists. The bit vectors and gather index
lists are generated in a separate block of code which is placed at the beginning of the

subroutine containing the replacement statement.

i her 15, 1985

Optimizing Precompiler -19- Gary & Fosdick

8.5. The case where gathers are required.

Consider the translation of the following statement.

REAL A(5,10,10), B(5,0:11,0:11)
INTEGER 1

A(1,1:10,1:10) = B(1,2:11,2:11) - B(1,0:9,0:9)

In this case the outer size of the array A on the left is not the same as the outer size of
the array references on the right, that is the array dimensions are not the same. How-
ever, the vector size of all the terms is the same, as they must be for a correct state-
ment. Since the outer size is not uniform, a bit vector conditional evaluation will not
be used. In these cases the precompiler should use the bit vector to compute the right
side expression and then scatter the result into the array on the left. However, it not
vet able to do that. In this case the two references to the array B will be gathered into
two temporary vectors. We name these T1 and T2. An additional temporary, T3, is
needed to store the result of the expression on the right so that it can be scattered
back into the A array. All three vectors have length 100. The creation of the gather
index vector GB1 and the scatter index SA will be given later. The code generated for

this replacement is similar to the following.

REAL T1(100), T2(100), T3(100)

INTEGER SA(100)

T1(1;100) = Q8VCGATHR(B(I1,2,2;100),GB1(1;100);T1(1;100))
T2(1;100) = Q8VGATHR(B(I,0,0;100),GB1(1;100);T2(1;100))
T3(1;100) = T1(1:100) - T2(1;100)

A(1,1,1;100) = Q8VSCATR(T3(1;100),SA(1;100);A(1,1,1;100))

MNovember 15, 1885

Optimizing Precompiler -20- Gary & Fosdick

If all of the arrays have the same size (in the vector subscripts), then a bit vector

conditional evaluation is used. This case is illustrated by the following input.

REAL A(5,0:11,0:11), B(5,0:11,0:11)
INTEGER I

A(1,1:10,1:10) = B(I,2:11,1:10) - B(1,0:9,1:10)

The full extent of the last two subscripts of B can be gathered into a temporary. Then
the two operands on the right side of the replacement can be extracted from this tem-
porary by using bit vector evaluation in the usual way. This means that only a single
gather is required instead of the two gathers used in the example above. However, a
compress into another temporary T3 is required in order to scatter into the A array. If
the compress into T3 is not done, then the boundary elements in T2 would have to be
scattered into a "null array" since they can not be placed in A. This could be done to
avold the compress, but the precompiler currently does the compress. We assume that
the gather index list 15 contained in GB. This vector has length 144. The bit vector
BV has length 118, and the scatter index vector is SA of length 100. The generated

code 1s

REAL T1(0:11,0:11), T2(0:11,0:11), T3(100)

INTEGER GB(144),SA(100)

BIT BV(118)

T1(0,0;144) = Q8VGATHR(B(1,0,0;144),GB(1;144);T1(0,0;144))
WHERE(BV)

T2(1,1;118) = T1(2,2;118) - T1(0,0;118)

END IF

T3(1;100) = Q8VCMPRS(T2(1,1;118), BV(1;118);T3(1;100))

A(L,1,1;100) = Q8VSCATR(T3(1;100),SA(1;100); A(I,1,1;100))

November 15, 1985

Optimizing Precompiler -21- Gary & Fosdick

sh 2 "Generation of the bit vectors.”

The array dimensions and subscript ranges are all constants, known at compile
time. We take advantage of this by placing all the code used to generate these vectors
for a subroutine in an Initialization block at the beginning of the subroutine. This
block is executed on the first call of the subroutine and the results saved so that the
block is not executed on subsequent calls of the subroutine. The code which is input
to the precompiler must contain a line with the "#F" mark which locates the position

of this initialization block.

The following example will illustrate the algorithm used to generate the bit vec-
tors. Assume that an array U is declared

REAL U(NX,NY,NZ)
where NX,NY, and NZ are constants and the reference to the array is

U(2:LX+1,2:LY +1,1:L7)
where LX,LY, and LZ are constants. Then {NX,NY,NZ) is the array (or outer) size
and (LX,LY,LZ) is the vector (or inner) size.

BIT BT(NX,NY,NZ)

BT=B'0'

DO 20 K=1,L7Z

DO 20 J=1,L.Y

BT(1,J,K;LX) = Q8VMKO(LX,LX;BT(1,J,K;LX))

20 CONTINUE
The call to Q8VMEKO inserts LX ones into the vector starting at location BT(1,J,K).
Note that the lower subscript limits for U do not effect the bit vector. The same bit
vector can be used for

U(2:LX+1,2:LY+1,1:LZ) and U(1:LX,1:LY,1:LZ)

November 15, 1985

Optimizing Precompiler -22- Gary & Fosdick

8.8. Generation of gather index vectors.

These vectors are also generated within the initialization block. Given the res-
trictions which apply to the the precompiler input, these vectors are also constant.

Consider the following example.

REAL U(5,5,10,20,20,2)

INTEGER I1,J,K,L
The following vector reference will require a gather index vector.

. U(1,0,2:9,K,1:18,L)

This is a two dimensional vector section with 8 elements per column and 18 columns.
Successive elements in the column are located 25 memory units apart in the U array.
The distance between corresponding elements 1In successive columns is
5%6%10%20=15000. Thus 25 and 5000 are the two numbers required to generate the
gather index vector. The first element to be gathered is U{1,J,2,K{,1,1.). Successive ele-
ments in the first column are obtained by incrementing the location by 25. The first
element in each successive column is obtzined with an increment of 5000. Note that
the gather index does not depend on the values of the 1,J,K, or L subscripts. It
depends only on the array dimensions and the position of the vector subscripts in the

subscript list. The following DO loop can be used to generate the gather index.

INTEGER GU(8,18)
DO 20 J=1,18
GU(1,J;8) = Q8VINTL(1+5000%(J-1), 25; GU(1,J:8))

20 CONTINUE

The call of the Q8VINTL routine generates a vector of length 8. The first element in
this vector is the first argument of Q8VINTL and the increment between elements is

the second argument. Therefore the elements in this vector are

November 15, 1885

Optimizing Precompiler -23- Gary & Fosdick

1,26,51,76,101,126,151,176,5001,5026, ...
To gather the vector section of U we can use the following Q8 call.

TP(1;144) = Q8VGATHR(U(I,J,2,K,1,L;144), GU(1,1;144); TP(1;144))

6.7. Vectors which are too long for the vector operations.

If the length of a vector exceeds 65535, then it can not be used as an operand to
the vector arithmetic unit. For example, the following reference can not be translated
into a single vector operation.

REAL U(10,100,80)

U(1;10, 1:100, 1:80) = 0.

Instead, the precompiler will start at the leftmost subscript and vectorize as many sub-

scripts as possible without exceeding the 65535 limit.

6.8. Folding out scalar operations.

This 1s the vector equivalent of the removal of invariant subexpressions from

scalar DO loops. For example, a programmer may prefer to write

U(2:N-1,2) = U(2:N-1,1) + &

DELT*U(2,N-1,1)*(U(3:N,1)-U(1:N-2,1))/(2.¥DELX)

rather than the more efficient

‘T = DELT/(2.*DELX)

U(2:N-1,2) = U(2:N-1,1) + U{2:N-1,1)*(U(3:N,1)-U(1:N-2,1))}*CT

The precompiler will perform elementary transformations on the parse tree which are
intended to fold out the scalar operations and move the scalars up the tree and to the
right. This will transform the first replacement statement above into the more

efficient form.

November 15, 1985

Optimizing Precompiler -24- Gary & Fosdick

The precompiler will also convert the division of a vector by a scalar to a scalar
inversion followed by a multiplication of a vector by a scalar. This is done because vec-

tor division is considerably slower than vector multiplication on the Cyber 205.

7. Desirable extensions to the present precompiler.

Perhaps the most desirable addition would be the implementation of all of For-
tran 8x to remove the extra precompilation step. However, short of this we list a few

extensions which should not require major changes in the structure of the precompiler.

7.1. The FORALL statement.

We have given several examples of the use of this statement. Perhaps the most
interesting is (1), below, which models a calculation involving a decomposition of the
mesh into "red-black” points. We suspect that most programmers will prefer the
FORALL form to tyhe; explicit vector notation in those situations where either can be
used. The FORALL allows the order of the elements in the vector to be changed fairly
easily. Furthermore, the code to do this is easy to understand. The FORALL
represents a more gradual departure from Fortran 77. For example, consider the fol-

lowing code to compute the symmetric part of a matrix.
(1) FORALL(I=1:N, J+1:N) B(I,J) = .5*(A(1,J) + A(J,1))
Note that this has a different (and more useful) meaning than

PARAMETER(I=1:N, J=1:N)

B(1,J) = .5*(A(1J)+A(1,1))

The subscripts in the body of a FORALL can be general linear combinations of the

FORALL indices. For example

November 15, 1985

Optimizing Precompiler =25~ Gary & Fosdick

FORALL(I=2:N-1, J=2:M-1) U(1,J) = A(K1*I-K2*J K3*J-K4*])

This can result in a nonunique definition of elements on the left side which would be
an error. In many, perhaps most finite difference cases, the FORALL statements can
be optimized in the same way that the explicit vector notation is optimized. The fol-
lowing statement is an exception, as is (1).

FORALL(1=2:N) D(I) = U(I,I-1)

A considerable expansion of the precompiler will be required to compile efficient
code for the FORALL statement. It will be necessary to recognize those FORALL
statements which are equivalent to explicit vector replacement statements and can
therefore be compiled using the methods in the present precompiler. The remaining
cases will require a more complex algorithm to generate the scatter/gather index vec-

tors.

The FORALL computation can be conditioned by a vector Boolean expression.
For example, consider the following SOR iteration over the "black” points in a three

dimensional mesh (see section 2).

(2) FORALL(I=1:NX, J=1:NY, K=1:NZ, MOD(I+J+K,2) EQ. 1) &
U(LJ,K) = R(LJ.K) &
-D(LJ,K,1)*U(1+1,J K) - D(I,J,K,2)*U(I-1,J K) &
-D(LJ,K,3)*U(LJ+1,K) - D(I,IK,4)*U(LI-1,K) &
-D(1,J,K,5)*U(1,0,K+1) - D(L,J,K,6)*U(IIK-1))/ &

D(1,J,K,7)

The MOD function in the Boolean expression picks out the black points. This
FORALL statement would be implemented by use of a bit vector for the Boolean

expression. As pointed out in section 2, it is more efficient to compress out the red and

November 15, 1985

Optimizing Precompiler -26- Gary & Fosdick

black points and recast the entire SOR algorithm in terms of these vectors. However,

the entire SOR method would have to be rewritten. This is probably more than any

compiler optimizer is capable of doing.

7.2. Optimization of a block of replacement statements.

The current precompiler generates code for single statements. That is, the optim-
izer looks only at single statements. If gathers are required, then, in many cases, a
major improvement could be obtained by eliminating redundant gathers over the block

of statements. For example, consider the following block of three statements.

DO(J=2:N)
FORALL(1= 2:NX-1, K=2:NZ-1) &
ULJK.2) = UK L) + VI+1L,K 1) - V(I-1,1K,1) &
+ T(1,,K,1)
V(ILJK,2) = V(LIK 1) + UL K+1,1) - U(LLK-1,1) &
CETILIK L
T(1,0,K,2) = TLIK 1) + U(I-1,0 K-1,1)*V(I+1,d, K+1,1)
END FORALL

REPEAT

The above code segment assumes a block FORALL statement which does not exist in
Fortran 8x. But the meaning of the statement should be clear. If the statements are
treated independently by the precompiler, then each statement would require the
gather of the three vectors U, V, and T over the vector indices I and K. If the three
statements are optimized together, then the three vectors can be gathered once and
used in all three statements. In many finite difference schemes this could be a very

effective optimization.

November 15, 1985

Optimizing Precompiler -27- Gary & Fosdick

7.3. Elimination of gathers within a recurrence relation.

This optimization would require the inclusion of the DO statement within the

group of marked statements. Consider the example below.

DO(J=2,NY-1)
FORALL(I=2:NX-1, K=2:NZ-1)
W(LJK) = W(IJ-1,K) + &
A*(U(LJ-1,K) - 2.¥U(L,J,K) + U(L,J+1,K))

REPEAT

The current precompiler will gather all three vectors

U(1,J-1,K), U(1,J,K), and U(I,J+1,K)

on each pass through the loop in J. It is necessary to gather only the last vector, the
vectors on the J-1 and J levels have already been gathered and used on the previous

pass through the J loop.

7.4. Optimization of expressions involving variable dimensioned arrays.

The present version of the precompiler will only optimize expressions if the arrays
involved have constant dimensions and the subscript limits of the vectors are also con-
stant. This i1s a serious restriction. However, we feel that it will be difficult to elim-
inate this restriction without degrading the efficiency of the generated code. In most
cases the mesh size in a finite difference model does not change during a calculation.
Therefore the bit vectors and gather indices needed for efficient code on the Cyber 205
need be generated only once { provided sufficient memory is available to store them
during the calculation). In order to avoid recomputing these vectors, run time tests
would be required and a heap storage scheme instead of a stack scheme might be
needed for these wvectors. A more difficult problem is the limitation on the vector

length. The same code must generated for vectors of size (40,50,50), (10,1000,10}, or

November 15, 1985

Optimizing Precompiler -28- Gary & Fosdick

(5,100,200). And this code should not be too complex, or contain too many run time

tests.

7.5. Inclusion of intrinsic vector functions.

The system library on the Cyber 205 contains vector versions of many of the
intrinsic functions such as SQRT, EXP, MOD, etc. Code such as the following should
use the vector versions of these functions

FORALL(I=1:N) U(I) = SQRT(X(I)) .

There are also functions or operators in Fortran 8 which change the rank of size of
vectors. For example the multiplication of a matrix and a vector, or the summation of

the elements of a vector.

S = SUM(X(1:N))
Y(1:N) = MATMUL(A(1:N,1:N), X(1:N)) .

Y = MATMUL(A, X)

Perhaps the APL notation could be included as an alternate to the Fortran 8x, that is
S=\+X

Y =AW+ X .

7.8. Inclusion of a subscript increment in the explicit vector notation.

Fortran 8x permits an increment in the vector subscripts. Thus the Fortran 77
code

DO 20 I=1,N,2
20 X(I) = C*Y(I)
can be written

X(1:N:2) = C*Y(1:N:2) .

It will not be difficult to add such increments to the vector syntax used in the precom-

November 15, 1985

Optimizing Precompiler -29- Ga.ry & Fosdick
piler.

8. Conclusion.

We have described a precompiler for certain vector algorithms which are found in
codes using finite difference approximations to partial differential equations. If these
codes involve spatial domains of more than one dimension, then it is difficult to design

the codes for efficient operation on a vector computer which needs long vectors.

We have analyzed the cost of some typical finite difference algorithms on the
Cyber 205 by parameterizing the algorithm according to storage allocation, the
number of floating point operations, and the vector length. This shows the importance
of performing the computation so that long vectors are obtained and gathers of data
into vectors are avoided. In order to obtain the long vectors in a multidimensional
finite difference code, it is necessary to include the boundary points in the vector.
However, the finite difference algorithm is different at the boundary than in the inte-
rior of the mesh. The Cyber 205 allows the interior calculation to include the boun-
dary points so that a long vector can be used. Then, by using bit vector conditioned
evaluation, the incorrect values computed at the boundary are simply ignored. How-
ever, this extension to longer vectors through the use of bit vectors will not occur if
the algorithm is expressed in standard Fortran 77 and compiled with the current com-

pilers available on the Cyber 205.

We describe a precompiler which will take arithmetic expressions for these mul-
tidimensional difference schemes, and generate code for the Cyber 205 which performs
this vector extension using bit vectors. These expressions are written in the proposed
new Fortran, Fortran 8x, whose syntax allows vectors to be expressed directly, that is
DO loops are not required. The precompiler does not vectorize DO loops, instead the
algorithms to be translated for the Cyber 205 must be written in vector notation. The

current version of the precompiler requires that the array dimensions and vector

November 15, 1985

Optimizing Precompiler -30- Gary & Fosdick

lengths be constant. In finite difference terms, this means that the mesh size is con-
stant throughout the computation. This can greatly improve the efficiency of the
precompiled code, since the bit vectors and gather indices used to obtain long vectors
need be computed only once. We have briefly described the design of the precompiler
and given some examples to show the code which it produces. There is much more to
be done before finite difference schemes written in Fortran 8x can be efficiently
transformed into operations using long vectors on machines like the Cyber 205. For
example, the FORALL, WHERE, and IDENTIFY statements in 'ortran 8x must be
compiled efliciently. Vector valued functions must be efficiently compiled. The tech-
niques used to optimize register assignment for scalar variables can probably be used
to avoid multiple gathers of the same vector from an array. We have briefly discussed

some of these extensions.

November 15, 1985

Optimizing Precompiler -31- Gary & Fosdick

[Arn82]

[Arn83|

[Brog&1]

[CDC8S)

[GaFg5)

[Jes81]

[KLWg4]

[Wil78]

[WoM&4]

C. N. Arnold, “Performance Evaluation of Three Automatic Vectorizer
Packages’, Proc. 1982 International Conference on Parallel Processing, 1982,

235-242.

C. N. Arnold, ‘“Vector Optimization on the Cyber 205", Proc. 1983
International Conference on Parallel Processing, 1983, 530-536. Reprinted in

Hwang [1984].

B. Brode, ‘“Precompilation of Fortran Programs to Facilitate Array
Processing’’, IEEE Computer, Sept. 1981, 46-51.

CDC, CDC Cyber 200 Fortran Version 2, Control Data Corporation, 1985.

J. Gary and L. Fosdick, “VECLAN User’s Guide’’, 308, Dept. of Computer

Science, University of Colorado, Sept. 1985,
C. R. Jesshope, Parallel Computers, Adam Hilger Ltd., Bristol, 1981.

R. H. Kuhn, B. Leasure and M. Wolfe, ‘‘The Structure of an Advanced
Retargetable Vectorizer', in Supercomputers: Design and Applications, K.

Hwang (editor), IEEE Computer Society, 1984, 163-178.
M. W. Wilson, “An Introduction to VECTRAN and its use in Scientific

Applications Programming’, RC 7287 (#31383), IBM T.J. Watson Research

Center, Sept 1978.

M. Wolfe and J. R. McGraw, ‘A Debate: Retire FORTRAN?", Physics
Today, May 1984, 66-75. Two articles in one; Kuck and Wolfe on one side of

debate, McGraw on the other side..

“Status of Work Toward Revision of Programming lLanguage Fortran.”,

ACM SIGNUM Newsletter 19, 3 (July 1984), 1-42.

November 15, 1985

