A technique for proving
intrinsic limitations of
algorithm designs*

Karl Winklmann

CU-C5-315-85 October 1985

Work supported in part by National Science Foundation Graats MCS-8209964 and DCR-3500741

ABSTRACT

]

A technique is introduced for proving intrinsic limitations of some very powerful
algorithm design techniques. Specifically, it is shown how this technique can be
used to prove that a natural class of algorithms, which contains, for example,
standard algorithms for 2—SAT, SHORTEST PATH, and CARDINALITY MATCH-
ING, does not contain algorithms for a number of NP-complete problems.

This report is intended to provide a brief and informal description of
the proof technique and to raise some related questions. It does not give formal

definitions or detailed proofs.

1. Introduction

This report outlines a technique for proving that a certain class of
algorithms is too weak to solve a number of NP-complete problems. The class
of algorithms contains, for example, standard algorithms for 2—SAT. SHORTEST
PATH, CARDINALITY MATCHING, and a number of other combinatorial prob-
lems.

What these algorithms have in common. and what defines the class,
is that they “run well” on two-processor machines, where “running well” means
that the algorithms do not require much inter-processor communication. More
precisely, the required amount of communication is bounded from above by a
polynomial in the size of the cut of the problem instance that is made to pro-
vide each processor with part of the input. For graph problems vertex cutsets
provide a natural way to cut a problem instance in two, with the size of the cut
being the number of vertices in the cutset. (See Figure 1.) For Boolean expres-
sions in conjunctive normal form, a natural way to cut a problem instance is to
partition the set of clauses between the two processors, with a “cutset” of vari-
ables consisting of those variables that occur in both sets of clauses.

If we can show that some problem Il requires an amount of communi-
cation between two processors that is exponential in the size of the cut, then it
follows that this class of algorithms, i.e. the class of algorithms that run well on
two processors in the above sense, Is too weak to solve this problem [l. Such
exponential lower bounds can be proven by considering problem instances whose
overall size is exponential in the size of the cut, and then borrowing adversary
arguments from the theory of distributed computing [Yao 1979, Papadimitriou

and Sipser 1984/

= Szoerznen

. / |}
~ 7 =
4

Processor Y

Figure 1. Two processors, solving a graph problem. The cut size is 6.

The problem solved here is the HAMILTONIAN CIRCUIT problem.

2. Adapting algorithms to run on two-processor machines

2-SAT Even. et. al. 1976. Let £ be a Boolean expression in conjunc-
tive normal form with at most two literals per clause. Assigning a specific value
to some variable in £ may force other variables to take on specific values. This
comes from the simple observation that if literal [is false and there is a clause
({+0"), then literal I" in any satisfying assignment must be true. This leads to

the following greedy algorithm for 2-SAT:

REPEAT

choose any variable z that has not been assigned a value vet;

F assigning z the value true does not force any clause
to become false
THEN assign r the value true

- . Lavse,
ELSE assign z the value truz;

replace z with its assigned value and simplify the expression
UNTIL

the expression is true or false

A greedy algorithm for 2-SAT (after Even, et. al. 1976]).

Now consider an instance of 2-3AT that is split between two proces-
sors. Each processor knows some of the clauses and also knows which variables
are the “cutset variables’, l.e. which variables occur in both sets of clauses.
The above greedv algorithm can then be executed by each processor on its own
set of clauses except that the assignment of values to cutset variables requires
some coordination, which is accomplished as follows. Whenever a processor is
ready to assign a value to a cutset variable it informs the other processor about
this, awaiting a response that could be *‘no objection™, or "would cause one of
my clauses to become false”, or “would force the following assignments of
values to other cutset variables™.

It is fairly easv to see that such a protocol does properly solve 2-SAT,
and that it does so with an amount of communication that is O(sglogs), where

s is the number of cutset variables.

SHORTEST PATH [Dijkstra 1959'. Dijkstra’s single-source shortest
path algorithm maintains a set S of vertices to which a shortest path from the
source vertex has been found. In each iteration a new vertex gets added to that
set — a vertex not vet in S whose distance to § is minimal. With two proces-
sors, rather than maintaining a single set S each processor maintains its own
set S, 1=1,2. Each processor grows its own set S; by applying Dijkstra’s algo-
rithm to that part of the network that is visible to it. Communication becomes
necessary when each processor has determined which cutset vertex v, it would
add to its set S, and what the distance d; of that vertex v, from the source
vertex is. The processor that offers the smaller distance value “wins the com-
petition”, meaning that it is allowed to add the cutset vertex v, to its set 5.
The losing processor has to reset its set S, to what it was the last time this
competition took place and then add the cutset vertex that the winning proces-
sor proposed to add. Clearly this “competition” takes place a number of times

equal to the number of cutset vertices. The amount of information exchanged

—fH —

each time is Of{logs) bits to identify the cutset vertices in contention. plus two

distance values.

CARDINALITY MATCHING [Edmonds 1956 . We assume that the
reader is somewhat familiar with Edmonds’ algorithm and we will only discuss
its adaptation to two processors.

The two processors first look for augmenting paths that do not
involve cutset vertices. constructing a matching as large as possible in this
fashion. After this has been accomplished. augmenting paths that do involve
cutset vertices are considered — using communication as needed to find such
paths. In this fashion at most s augmenting paths involving cutset vertices
have to be dealt with and each such path can be established with O{slogs) bits

f communication. Neither part of this claim is obvious, although both are
straightforward to verify. For more details we refer the reader to Lakshmi-

pathy and Winklmann, to appear,.

3. Proving exponential lower bounds for NP-complete problems

3—SAT. Let £ be a Boolean expression in conjunctive normal form
with at most three literals per clause. Assume that £ is partitioned into two
sets of clauses, El and Ez and that Sz{iz!, Lz L is the set of “cutset vari-
ables”. i.e. the set of those variables that occur in both E and £, E and S
are known to processor P, £, and S are known to processor P,. Thus each
processor can determine, without communicating with the other processor, the
set A, of those truth value assignments to S which can be extended to satisfy
E.. The whole expression £ is then satisflable f A NA,#. Each set 4, is a
subset of the set of all truth value assignments to S, hence a subset of a set of

size 2°, s being the size of S. In [Papadimitriou and Sipser 1984] it was shown

that such a set intersection problem requires 2° bits of communication in the
worst case. This lower bound carries over to 3-SAT if we can show that for anyv
set A, of truth value assignments to S, there exists 2 Boolean expression £ in
3-conjunctive normal form with the property that an assignment v of truth
values to S can be extended to an assignment that satisfies £, iff ncd . This is
easily shown, e.g. by first constructing £, with the desired properties except
that it may not be in 3-conjunctive normal form (and most easily would be con-
structed in disjunctive normal form), and then converting £, into 3-conjunctive
normal form without changing its satisfiability properties using the method from
‘Cook 1971, or see Hopcroft and Ullman 1979, Theorem 13.3.. (The size of E,
may well be exponential in the size of S. This is of no concern here.)

Similar arguments can be made for other NP-complete problems. For
example, in [Lakshmipathy and Winklmann, to appear! it is shown that for
GRAPH 3—COLORABILITY the number of bits of communication is exactly
3°+3

T

", in the worst case. More easily, the exponential lower bound of 3—SAT
3!

can be propagated to other NP-complete problems by the same transformations
that are used to propagate NP-hardness. The resulting bounds are not per-
- fectly tight, due to losses incurred in the transformations, but they are still

exponential in the cutset size s.

4. Summary and open questions

Standard polynomial-time algorithms for a number of combinatorial
problems can be mapped to two-processor machines, with the resulting two-
processor protocols requiring little inter-processor communication. As a func-
tion of the size of the cut made to provide each processor with a piece of the
problem instance, the amount of communication is bounded from above bv a
polynomial.

In contrast, a number of NP-complete problems require two-processor
protocols with an amount of communication that is exponential in the size of
this cut.

Consequently, these standard algorithms belong to a large and
natural class of algorithms — algorithms that “map well to” two-processor pro-
tocols —, which does not contain any solution algerithms for a number of NP-

complete problems.

This raises a number of questions.

First, “mapping well to” two-processor protocols, or “‘running well on
two-processor machines”, is a well-defined notion only after we decide on the
details of such a mapping. How can we formally define these mappings and
hence the class of algorithms for which our result holds? {(One promising sub-
class of algorithms for which such a precise definition may be fairly easy to
come by is the class of “traversal-based graph algorithms”. These algorithms
are characterized by the fact that computational activities are associated with
the vertices and edges of a graph (vertices “‘get visited', edges “‘get traversed’’)
and that activities at one location (vertex or edge) are triggered by activities at

neighboring locations. But it remains to be seen if a formally defined class

remains large enough to be of interest.)

Second, the results obtained so far are all about the boundary
between NP-complete problems and problems in P, in the sense that the
exponential lower bounds are all about NP-complete problems and the polyno-
mial upper bounds are all about problems in P. Can similar results be obtained
about subclasses of P, showing that certain algorithm designs are too weak to
solve certain classes of problems in P?

Third, in the case of Dijkstra’s SHORTEST PATH algorithm the two
processors communicated integer (or real) distance values. To be able to show
NP-complete problems that involving numeric values require exponential
amounts of communication {as always, exponential in the size of the cut, not in
the overall problem size), it is necessary to prevent the (abjuse of numeric
values as carriers of vast amounts of nonnumeric information. While this seems
a reasonable restriction on the types of protocols we want to consider, deciding

on a precise formal definition of protocols that do not abuse numeric values in
this way may not be trivial.

| Finally, a more general issue. Two-processor machines playv no role in
the statement of the result; they are merely a tool in the proof. In principle
this leaves open the possibility that other machine models can be similarly use-
ful for defining natural classes of algorithms and proving limitations of such
classes. Similarly, problem instances with a small cut, where small means loga-
rithmic in the overall size of the problem instance, serve to establish the
exponential (in the cut size} lower bounds that let us drive a wedge between a
class of standard algorithms and some NP-complete problems. But again, these
special instances are only a tool in the proof and do not enter the statement of

the result, leaving open the possibility that other tvpes of instances, combined

with other machine models, may lead to more results.

5. References

Cook, S. A. (1971), The complexity of theorem-proving procedures, in "Proc. 3rd
Ann. ACM Symposium on Theory of Computing,” Assoc. for Computing
Machinery, New York, 151-158.

Dijkstra. E. W. (1959), A note on two problems in connexion with graphs.
Numerische Mathematik 1, 269-271.

Edmonds. J. (1963). Paths, trees and flowers. Canad. J. Math. 17, 149-467.

Even, S., Itai, A., and Shamir, A. (1976), On the complexity of timetable and
multicommodity flow problems, SIAM J. Comput. 5, 691-703.

Hopcroft, J. E., and Ullman, J. D. (1979}, “Introduction to Automata Theory,
Languages, and Computation,”’” Addison Wesley, Reading.

Lakshmipathy, N, and Winklmann, K. (1984), "Global’ graph problems tend to
be intractable, Tech. Rep. 84-7, Department of Computing Science,
University of Alberta.

Papadimitriou, C. H., and Sipser, M. (1984), Communication complexity, J.
Comput. System Sci. 28, 260-269.

Yao, A. C. (1979}, Some complexity questions related to distributive computing,

in “Proc. 11th Aan. ACM Symposium on Theory of Computing,”” Assoc.
for Computing Machinery, New York, 209-213.

