" The Odin System: An Object Manager for
Extensible Software Environments *

Geoffrey M. Clemm

CU-CS-314-86

—
L m
FJ University of Colorado at Boulder

-

DEPARTMENT OF COMPUTER SCIENCE

e This work was supported by grants from the U.S. Department of Energy numbered DE-FG02-84ER13283 and DE-ACO02-
80FR10718 and from the National Science Foundation numbered MCS-8000017 and DCR-8403341.

THE ODIN SYSTEM:
AN OBJECT MANAGER
FOR EXTENSIBLE
SOFTWARE ENVIRONMENTS

by
Geoffrey M, Clemm

CU-CS-314-86 February 1986

The University of Colorado
Department of Computer Science
Boulder, CO 80309

(303) 492-7514

This work was supported by grants from the U.S. Department of Energy
numbered DE-FG02-84ER13283 and DE-AC02-80ER10718 and from the National
Science Foundation numbered MCS-8000017 and DCR-8403341

THE ODIN SYSTEM
AN OBJECT MANAGER FOR EXTENSIBLE SOFTWARE ENVIRONMENTS
by
Geoffrey M. Clemm

B.A., Harvard College, 1976

A thesis submitted to the
Faculty of the Graduate School of the
University of Colorado in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
Department of Computer Science

1986

Clemm, Geoffrey Michael (Ph.D., Computer Science)
The Odin System - An Object Manager for Extensible Software Environments

Thesis directed by Professor Leon J. Osterweil

The purpose of a software environment is to support the creation and
maintenance of computer software. This support takes the form of a set of
computer programs called "software tools”, which are used by a programmer to

generate and manipulate software and information about software.

The use of a software environment can be significantly simplified if the
user’s attention is focused on the information provided by the environment rather
than the tools that create this information. The purpose of an “object manager”
is to provide this focus by automating the process of tool invocation. An object
manager will respond to a request for a piece of information, or “object”, by
invoking the minimal number of tools hecessary to produce that object. If
previously computed objects are automatically stored by the object manager for

later re-use, significant improvements in response time can be achieved.

[n an extensible environment, the kinds of information potentially
provided bv the environment are easily extended through the addition of new
tools that generate and manipulate new kinds of information. The added
complexity of an object manager designed to support this extensibility is
significant, but the current rapid rate of technological change makes this

Hexibility essential.

iv
In order to demonstrate the feasibility of efficient extensible object

management in large software environments, an object manager called the Qdin

System was designed and implemented based on the results of this research.

ACKNOWLEDGMENTS

[gratefully acknowledge the support of my thesis advisor and friend, Lee
Osterweil.

In addition, a special note of thanks to Stu Feldman, whose Make
program provided the direct ancestor of the Odin System. Thanks also to Brent

Welch and Mark Maybee who contributed to many stimulating discussions during

the design of Odin.

And of course, Maribeth.

CHAPTER

[. INTRODUCTION

II. HISTORY AND BACKGROUND

[I.

[S5

SOFTWARE OBJECTS

CONTENTS

1.1. Software Environments oeroooooeooeeeeeeeeee

1.2, Software Tools oo

1.4. Use of an Object Manager .coeveeeeevemvvevennnn.,
[.5. The Odin S¥Stem .o

1.6. Thesis Organization .eoeovoeeeeoeioeeeeeeeeennn,

(S

Do

2.3, Toolpack e

5.1. The Store and the Cache oo,
3.2. Basic Accessing Functions .oooeeovveeoeeeeeen,

3.2.1. Manipulate Accessing Function .oeveeeeen..

.......................................

1. Automated Object Managers ...ccovoeveeeeeennn.,
.1.1. Large Software Systems ...ooccoovivieeveeenens

2. ‘General Object Managers oooeeooeeeeeeeennn,

..

............

............

............

............

............

[3]

11

13

16

18

3.2.2. Derive Accessing Function ...ococoeeievieieieiee,
3.2.3. Equal Accessing Funetion ...ooooieeieeiieeeceeeee.
3.2.4. ExtendCache Accessing Function .covveevceeeeveen.n.
3.2.5. Move Accessing Function ocooiveeveceeeeeeeeeeenn,
3.3. Basic Accessing Functions Specification
3.4. Auxiliary Accessing Functions ..veeveievveeeecnen,
IV. THE QUERY LANGUAGE .ot beeeers
4.1. The Odin Query Language .cooioieioeeiieeceeeeeeen.
4.2. Odin Objects re e e rae e e e et eraateensrea e ad e be bt eneean
4.2.1. Atomic Odin Objects ovrreiiieeeeiiieeeee,

4.2.2. Derived Odin Objects ...

5.2. Atomic Object TyDpes oo,

5.3. Derived Object Types oo '

5.3.1. Derived Object Structure .voeeeceieeeeeceeeren,
3.3.2. INDPULS e,
5.3.3. TO0IS oo
5.4. Linking Object TyDPes i
5.4.1. Equivalence Links .o,

A2 Cast LInKS o

Ut

vii

33

37

39

39

39

40

44

48

49

49

5.5. Pre-Defined Object Types oo
5.6. Compilation of the Specification Language
5.6.1. Disambiguation of Queriesccoooveoeveeveeieeenn.
5.6.2. Computation of Parameter Sets ...coocoeoivivieeeeenene
5.7. Experience with the Specification Language
VI. THE ODIN COMMAND INTERPRETER wecooeieiieeeeeeerea
6.1. Display Command .o et ereaeneas
6.2. Manipulate Command ... ettt enenes
6.3. Command Scripts ooevieiciiiee e et e an
6.3.1. Guarded Copy ooiviieiceeeeeene e
6.4. Utility Commands .o RS
6.4.1. History Substitution ...
6.4.2. Help i
6.4.3. Odin Variables oo
VII. AN IMPLEMENTATION oot
7.1. An Implementation of the Odin Model oo,
7.1.1. Manipulate and Derive .o,
7.1.2. Equal . v SRR
7.1.3. ExtendCache e
T.1d, MOVe e
T.1.5. Delete i
TLB. SIZE e,

66

66

67

67

68

7.1.8

. Obj_Key e

7.2. The Physical Database Model ...cccooiveieiiiiiene.

7.2.1.

-1

7.2.4.

-3
[]
=

7.2.7

8.1.1.

8.1.2.

2.2,

Example i,
Object Nodes .ccoeeveeneee
Source Graph .

Element Graph

5. Parameter Lists oo,

LRU List - Automatic Sp

. Concurrent Access

..

...

..

..

...

ace Maintenance

Converting a Command Script oo,

Algorithm for Conversion

..

8.1.3. ThHe GAG Command Script coeiceeeeeeeeeeceeeean

8.1.4. The GAG Derivation Graph oo,

8.2.

8.2.1.

Phase 2 - Improving Efficiency oo

Methods of Optimization

8.2.2. Optimizing the GAG Specification T

8.3. User Experience with GAG in Odin oooveeeeieeee

[X. CONCLUSIONS .,

9.1.

9.1.1.

g9.1.2.

Contributions .oeeeeveeveen..

...

Process View vs. Object View oo,

Specification Language

100

106

110

116

117

119

120

131

131

134

137

139

9.1.3. Query Language ...

9.2. Future Research

9.2.1. Graphic Interface for Interactive Queries

9.2.2. Alternative and Constrained Derivation Paths

..

9.2.3. Object Granularity ..

9.2.4. Co-operating Object Managers .rveivcncnnn

BIBLIOGRAPHY .o

APPENDIX

A. GAG Command Script .oveevveeceeennns

B. GAG Derivation Graph veveeeeenen

C. GAG Optimized Derivation Graph

..

..

...

141

141

141

143

144

144

146

CHAPTER I

INTRODUCTION

1.1. Software Environments

Among the many problems software systems have addressed, one that
has received increasing amounts of attention is the problem of producing and
maintaining software itself. A software system which addresses this problem is

commonly called a "softwafe environment”.

The first problem encountered in studying software environments is
deciding what a software environment really is. The diversity of the perceived
needs of people that produce and maintain software has generated a

corresponding diversity of software systems intended to satisfy these needs.

In many ways, a software environment can be conveniently viewed as a
structured repository of information about software. New software can be added
to the repository, old software can be modified, and queries concerning the -
existing software can be made. A few examples of the kind of information that
could be present in a software environment would be program source text, test
data, modification histories, attributed syntax trees, compiled object code, data

flow analysis. or results of svmbolic execution.

[t is important to note that a software environment is concerned with

issues which are more difficult than those faced by most database applications.

Subsystems of the software environment concerned primarily with addition and
modification of software information (such as structure editors) are often far more
extensive than the update facilities provided by common databases. [n addition,
the kind of information requested by software environment queries often requires
that the software environment have a deep understanding of the software being
stored; the computation necessary to satisfy these queries is correspondingly
complex.and expensive. An example of this kind of query would be a request f;)'r

the "results of symbolic execution of a program fragment X".

1.2. SoftWare Tools

Historically, software environment research began with attempts to
effectively assemble collections of discrete functional units that we now call
software "tools”. A software tool is a program used to manipulate or transform
software or information about software. Initially, the major tools were language
translators (gssembiers and compilers). Later, editors were developed for creating
and modifying software. This pair of tools, an editor and a translator, formed the
earliest programming environment. The editor would be used create new
software or modify old software, and the translth’or would be used to satisfy
queries of the form "give me a (machine language) translation of this piece of

software”.

As software became more complex, simply looking at it in the form of
source text or reading the output data produced bv the executing programs was
no longer sufficient. The plethora of detailed information in source text or

runtime output needed to be tailored into a more comprehensible form. In

response to this problem, additional tools that analyzed a program and produced
a variety of different "views” of the software were designed and built. Some of
these views were graphical descriptions of software, such as control flow charts
[Nassi73] [Chapin74], data flow diagrams [Myers78] [Yourdon78], or decision tables
MontalbanoT4] [Metzner77]. Tools were also built for displaying and
manipulating this new information. As software systems continued to grow in
complexity, tools for managing and viewing multiple concurrent versioné’ of the
same software system were developed [Rochkind'{S}.‘ As software systems were
embedded in increasingly critical applications, tools were designed to provide
extensive regression testing [Miller79], formal verification 'Anderson79], and test
|

coverage analysis [Ramamoorthy76].

This gives only a small sample of the number and variety of tools that
were developed, but in practice only a few ever received extensive use. A critical
problem with these collections of tools was the lack of uniformity among them.
Each tool had its own idiosyncratic view of the software world, including how
input should be specified and how output should be presented. Another related
problem was overlapping and incomplete coverage. One tool would often produc‘e
the same information as another tool (usually in a different format aﬁd in
response to different queries), while there was some related information that no
tool would produce. Only a few tools that were understood and trusted would
then be selected for use. Even today, the software environment for many
programmers is limited to the editor and compiler that formed the earliest

software environments.

1.3. Use of a Commeon Data Structure

An alternative to the view that software environments consist of a
collection of independent tools arose from the Lisp programming perspective. The
Lisp language specifies the data structure for a Lisp program (nested lists), and
provides a simple Lisp function ("eval") for interpreting this data structure. The
simplicity and convenience of this data structure encourages tool writers for Lisp
to just extend the data structure to include whatever new information (if any)
that is required for a new tool, rather than designing a néw data structure for

each application.

An advantage of this approach is the existence of a common data
structure where all information is stored. Unlike a collection of individual tools,
each with its own internal data structures inaccessible to ¢ ther tools, any new
kinds of information stored in a common data structure are available at runtime
for use by other extensions. Another advantage is that the process of adding
extensions encourages the re-use of existing input and output paradigms, rather
than inventing a new paradigm in the context of each new tool. Since the same
underlying data structure is being used in the extensions, the same input and
output routines can often be re~used to display much of the extended data

structure.

In several instances, systems organized around a central common data
structure have provided software environments that in various wavs far exceed
the power and sophistication of most tool based software environments. A good

example of a such an environment is the Interlisp system [Teitelman81l. Among

the capabilities provided by Interlisp are a structure editor, an interactive cross
reference analyzer called Masterscope, symbolic debugging with breakpoint
capabilities, and extensive error recovery mechanisms through the DWIM (Do-
What-I-Mean) facility. Integrating all of these capabilities through a common
data structure allows each capability to make use of the functionality provided
by the others. For example, while at a breakpoint in the debugger, the
Masterscope capability can be invoked to examine system dependencies, and in
turn, the DWIM capability can be invoked to correct errors encountered during

this nested application of Masterscope.

1.‘3.1.. Problems with a Commeon Data Structure

Although the use of a single common data structure can alleviate many
of the problems encountered in environments formed from a collection of
independent tools, it introduces a new set of equally difficult problems. The
requirement that all data be stored in a single common data structure generates
constraints that can significantly impact the design aﬁd functionality of the

software EDV-lI'OHmth‘

1.3.1.1. Efficient Extensibility

There are a variety of tools that do not comfortably fit into
environments organized around a single common data structure. The common
characteristic of these tools is that they require large amounts of space and
execution time ("large” is of course a relative term, but in any environment there
will be tools whose space and execution time requirements are large with respect

to that environment).

The problem with extending a single common data structure to support,
"expensive” tools is that even users of the environment that have no interest in
that extension must pay the cost of both the increased size of the data structure
and the increased computation time required to keep all the information in the
extended data structure valid. The resulting decrease in response time and
increase in storage usage of the extended environment can be high enough to
discourage all use of the environment except for those applications that depend on
the extension and therefore require the increased computation. Improved
technoiogy in the form of faster hardware and more sophisticated software
gradually allows some of the expensive tools to become affordable, and thereby
makes it feasible to add them to the integrated envirenment without disrupting
the environment for other applications. Invariably though, some tools remain
expensive and inevitably, even more expensive new tools are imagined and

created.

Even when a tool potentially could be integrabed‘ efficiently into the
environment, there ffequently are pragmatic reasons for not doing so. For
example, the necessary modifications to the existing data structure might require
prohibitively expensive re-coding and re-design of the existing software
environment. If the desired extension already exists or could easily be written in
the form of a standalone tool, it might be desirable to test out the standalone
tool in conjunction with the existing svstem before investing significant resources

in modifying the existing svstem.

1.3.1.2. Evolvability

Evolvability is the ease with which the software environment can be
modified in small increments. Especially when the software environment is being
used to support its own evolution as a software system, it is very desirable for the
current capabilities of the environment to still function while the environment is
being modified or extended. In many cases, this requires that the system
maintain two incompatible versions of the same data structure concurrently - a
new version being developed and an old version that is used to support the
development éf the new version. The development of the software environment
can be significantly hampered if the requirement for a single common data

structure prevents the concurrent existence of both data structures.

1.3.1.3. Understandability

The mass of information provided by a powerful software environment
can be overwhelming wh‘en dealt with as a whole. An approgch_ to this problem is
to partition the information stored in the environment into séverai objects, where
each object contains a certain kind of information. Studying‘each kind of object
in isolation can then provide a convenient mechanism for incrementally

understanding the whole environment.

1.3.1.4. Robustness

When all information is gathered in a single central data structure, the
results of system failure, either of software or hardware, can be disastrous.

Damage to relatively small pieces of information can result in data inconsistencies

that significantly corrupt larger bodies of information. If the central data
structure is partitioned into multiple disjoint data structures, the damage can

sometimes be quarantined to a single element of the partition.

1.3.1.5. Distribution

Networks of computers, especially networks of personal workstations, are
becoming increasingly popular as the hardware support for software development.
Distributing a common data structure across this network can be very difficult,
unless the data structure is first partitioned into smaller objéccs. In particular,
locaiycontrol and modification of parts of the information can be hampered if a
single data structure must be maintained across the entire network. Since one of
the valued attributes of a distributed system is the ability to localize the effects
of hardware failure, the robustness provided by partitioning the information is

particularly significant for distributed systems.

1.4. Use of an Object Manager

Optimally, both a tool builder and a user of a software environment
would probably like to be presented with a single data structure from which any
information of interest can be retrieved. Unfortunately,'as just seen, problems in
areas such as extensibility, evolvability, and robustness often require that the
information actually take the form of several disjoint data structures or "objects”,
where independent tools are responsible for maintaining each kind of object. The
difficulty with this approach is that before a user or tool builder can access a
piece of desired data, they must invoke the appropriate set of tools to generate

the objects that contain that data.

Even when a given object is immediately available because it has been
previously computed and stored, subsequent modifications to information from
which this object has been computed can cause the information contained in the
object to become out-of-date and therefore invalid. [n order to deal with possibly
out-of-date information, there must be some mechanism for producing an up-to-
date version before a tool is invoked that, requires it as input. In the worst case,

the user must explicitly invoke each tool in the appropriate order.

Since obtaining up-to-date input information is a common problem faced
by the user and each tool, a logical solution is to provide an automated system
wide "object manager” that solves this problem in general. Each physically
disjoint piece of information created by the user and produced by some tool would
be considered an object, and providing the appropriate up-to-date object would be
the job of the object manager. In order to provide the desired functionality, the
object manager must have some global knowledge of the input and output
behavior of all the tools, and must provide a mechanism whereby a user or tool
can request the objects it needs. Given this information, the object manager can
satisfy a request by retrieving the specified object (if it already exists and is up-
td;date) or by generating the object through the invocation of ‘the proper

sequence of intermediate tools (if it can be produced from existing objects).

1.5. The Odin System

The issues involved in the design of an object manager is the subject of
this dissertation. The main elements of this design are a specification language

for describing the objects to be managed and the tools that produce them, a

10

request language with which a user or a tool can name a desired object, and an
interpreter that will accept a request for an object and produce that object. The
specification language must be designed to allow the easy addition of new tools
and new types of objects to the environment. The request language must be
designed to allow convenient access to any object of interest. Finally, the
interpreter must be designed to efficiently produce a requested object through use
of existing objects and invocation of the various tools described in the

specification language.

There are a large number of difﬁculﬁ problems in the design of a software
environment that need not (and probably should not) be addressed in the design
of an object manager. For example, the question of how to ensure that the set of
tools provide a consistent interface to a user need not be a concern of the object
manager. This separation of concerns allows experimentation with a variety of
user interfaces to be performed concurrently under the control of a single object
manager. Similarly, any other design decision that is‘ embedded in the object
manager, but is not essential to the function of object management, would limit

the use of the object manager for testing out alternative designs in that area.

The central vehicle for this research has been a functional object
manager called the Odin System. The Odin specification language is an extended
production system, where each executable too{’ is described by a single production.
The Odin query language is a functional language whose syntax most closely
resembles that of message passing languages like SmallTalk. An Odin interpreter

has been implemented, where the objects are host system fles in a Unix operating

system. The Odin System has been used as the object manager for a varietv of

11
software environments, including the Toolpack system for Fortran source code, a

Unix tools system for C source code, and the GAG system for ordered attribute

grammars.

1.8. Thesis Organization

The dissertation is divided into nine chapters. Following this
introduction, chapter two provides a brief history of previous work in the area of
automatic object management. The remaining chapters describe the issues that
arise in the design and implementation of an actual object manager, the Odin

System.

A specification of the kinds of objects that can be managed by the Odin
System is presented in Chapter Three. This specification takes the form of a set
of axioms that define a class of objects - any objects that satisfy these axioms can
then be managed by the Odin System. Since an object manager is specifically
designed to be able to r;laaage objects produced by arbitrary tools, it can make
few assumptions about the behavior of the tools or the structure of the objects
produced by the tools. Of course, some minimal functional assumptions must be

made. For example, the object manager must be able to invoke the tool and

must be told the names of the generated objec:s.

Chapter Four describes the query language used to request an object
from the Odin System, and Chapter Five describes the specification language in
which the user specifies the tools and objects in the environment. Chapter Six
describes a command interpreter that provides a user interface to the Odin

System. Chapter Seven describes an implementation of the Odin system where

the objects are host system files. Chapter Eight indicates how an Odin
specification can be created by describing the transformation of a command script
for a tool system into an Odin specification. Finally, Chapter Nine contains

conclusions and suggestions for future research in this area.

CHAPTER I

HISTORY AND BACKGROUND

The first object managers for software environments were the
programmers themselves. The major software objects were source code, compiled
object code, and test data. The source code was stored in one box of cards and
the compiled object code was stored in another box, preferably nearby. When the
source code was modified, it was up to the programmer to produce a box of cards
with the new object code and to throw out the box of cards with the old object

code.

The development of reliable random access mass storage devices
decreased the physical storage space associated with software objects. Rather
than carrying decks of cards (or reels of tape) to the appropriate input device, the
programmer could simply name the object desired, and a program called an
“operating system"” would retrieve the appropriate information from the disk fle
with the specified name. This made it i’s\ossible for a single programmer to have

access to hundreds or even thousands of software objects simultaneously.

One problem with the early software objects was that they did not
capture the evolutionary character of a software object. Each software object,
whether it was stored in a box of cards, a reel of tape, or a file on a disk, would

only contain a view of the object from a single instant in its evolutionary history.

14

One of the early approaches to this problem appeared in Control Data
Corporation’s Update and Modify systems [CDC76]. In these systems, a
modification to a software object would be specified as a set of additions and
deletions. These modifications would be stored in the software object, rather than
actually performed on the object, which allows for retrieval of an arbitrary

version of that object.

An extension of this approac’h appears in SCCS (Source Code Control
System) [Rochkind75] [Glasser78]. In SCCS, the user prepares a new version using
a text editor, and then enters this new version through a "check-in" operation.
SCCS automatically computes a minimal set of additions, deletions, and

replacements that will convert the previous version into the new version.

The importance of this capability is ilustrated by the continual
appearance of new systems that provide extended or modified facilities for storing
and accessing multiple versions in a single software object. Tichy’s Revision
Control System [Tichy82] for example, stores a complete copy of the most recent
version rather the original version. "Reverse deltas’ are then stored to allow
retrieval of earlier versions. In addition, versions can be given a symbolic
attribute such as "Stable” or "Expérimentai", and then requests such as "the most
recent Stable version created by John Smith" can be used to retrieve a specific
version. Further extensions to the features provided by SCCS and RCS are
provided in Digital Corporation's Code Management System [DEC84] designed for
use on their VAX line of minicomputers, and AT&Ts Change Control Svstem

Bazelmans85) which is a proprietary system used internally at Bell Laboratories.

15

Concurrent with development of methods for capturing the temporal
development of an individual software object was the development of systems for
capturing the relationships between these software objects. Initially, softwarc
objects that were stored on a tape or disk appeared simply as a sequence of files.
An improvement over this representation was the development of hierarchical file
systems, where sets of files were collected together into special files called
“directories”. Since one of the; files in a directory in turn could be another
directory, this allowed sets of files to be both grouped and nested. A popular
example of such a hierarchical file system is found in the Unix operating system

[RitchieT4].

One advantage of a hierarchical fle system is that it is very
straightforward to develop naming conventions for the software objects that
allow a variety of operations to be performed on sets of files, where the sets of
files for a given operation are determined by their grouping in the file system
rather than explicit specification by the user. An example of this approach is
found in [Cargill79], where compilation is pe;fermed by specifying a root directory
from which a tool called the "Inclusion Builder” determines the appropriate source

files to compile.

The limitations of a simple tree structure to store and disple 7 software
objects encouraged the development of software object databases. An early
example of this approach appears in White's PLISS system [White77!. When a
module is added to this system, the list of all modules referenced by the module
and the list of all modules which reference the module are automatically

computed. [nformation about a module, including a graphical description of the

18
reference lists, can then be obtained through the use of "Picture” and "Tnquiry”
requests. Later systems incorporated increasing levels of detail about the
software objects, and dealt with increasingly finer grained objects. A recent
example of such a system appears in Linton’s work with relational databases

[Linton84], where the software objects appear as tuples in relations.

2.1. Automated Object Managers

A result of the increasing complexity of software objects was that it was
no longer feasible for an unaided programmer to fulfill the role of object manager.
Instead of a few boxes of cards and the associated boxes of object code, the
programmer was faced with software systems composed of complicated
hierarchies and networks of objects, where each object in turn consisted of a
complex set of named and numbered versions. The logical solution was to try to

automate the process of object management.

v

Initially, automatic object management consisted of the use of command
‘sc‘:rvipts. The sequence of commands necessary to build and manipulate the
software objects would be stored in a command script, which would then be
invoked by the prograjmmer when necessary. The problem with this approach is
that unless the software objects being manipulated are few and simple, command

scripts are inflexible, non-descriptive, and inefficient.

Command scripts are inflexible because the language understood by the
operating system is usually quite primitive. This results in the need to create
variants of commonly used command files, in order to satisfy the needs of different

users. For example, one user might want to use an optimizing compiler on a few

17

critical segments of a software system, while using another compiler for the rest.
Although some methods of parameterizing command scripts are usually available,
there are inevitably variant actions that cannot be performed without modifying

the command scripts themselves.

Command scripts are non-descriptive because they describe how to build
something, not what that thing is. It is usually difficult (if not impossible) to
analyze a command script to determine whether a system is “consistent”
according to some criterion. This implies that another object containing a system
description must be maintained. This requires that the programmer be familiar
with two different languages (the command language and the system description
language). In addition, the programmer must always ensure that a modification
to the system description be reflected by the appropriate modification to the

command scripts.

The most severe prablem of command scripts though, is that they are
inefficient. In practice, programmers are willing to maintain several sets »of'
command scripts and separate system description files, but waiting for three
hours for a system to be ready for testing after a single line of source code has
been modified w:iil be unacceptable. The inefficiency of command scripts stems
from the difficulty of specifying re-use of information. A variety of intermediate
objects, such as compiled object versions of source code, are usually created
during the execution of command scripts, and many of these objects would still be
valid for later invocations of these command scripts. The difficulty of detecting
which objects are still valid causes most command scripts to be designed to use

the safe approach of recomputing all intermediate objects. The high cost of

18

unnecessar’ly recomputing intermediate objects often encourages the programmer
to explicitly take back control of object management. Unfortunately, in complex
systems it is very easy to introduce subtle errors in object management. This
often leads to the approach in which the command script for building the system

is invoked whenever a bug is found, just in case the bug has been caused by

incorrect object management.

A sigrAliﬁcantly better approach to object management involves the use of
a system explicitly designed to re-use exactly those intermediate objects that are
still valid. Initially these systems were developed to handle a specific class of
intermediate objects. For example, the System Building System [DeJong73] was
designed to manage the object code produced from PLI source code. In response
to a request to recompile a given software system, SBS would only recompile files
that had been modified, and would re-use any object code that was still valid
from previous computations. Later systems of this kind such as the Software
Development Control System [Haberman79] were designed with explicit knowledge
of version control, to allow efficient management of‘ the objects computed from

the various versions of the software objects.

2.1.1. Large Software Systems

The problem of efficient object management is especially severe for large
software systems. Techniques that are successful for medium-size systems (lO—&i}k‘
lines of code) are often insufficient for large systems (1 million lines of code). In
particular, more detailed analvsis of which derived objects are still valid after a

change to the system is often necessary, in order to minimize the recomputation

19

following the change. The computation in this case has inevitably been
compilation, therefore the objects being managed are compiled versions of source
code. Among the systems specifically designed to cope with this problem were the
Intermetrics Pascal system [Avakian82], the CHILL Compiling System
[Rudmik82], and ADA Language System [Thallg3]. In the Intermetrics system,
the process of deciding which pieces of object code are valid after a source level
modiﬁcéfion is complicated by the lack of modular interface specifications in the
Pascal language. This resulted in the presence of a system wide "compool”
structure containing the definitions of all symbols that are referenced by modules
other than the modules in which they are declared. The need to recompile this
compool structure (90 megabytes for a 1 million line software system) after a
change to any symbol was a serious impediment to effective use of the

[ntermetrics system.

2.2. General Object Managers

The problem with special purpose object managers is tfxat‘, they are not
~ extensible. Ouly the objects for which the system was initially designed could be
managed. This problem motivated the development of general purpose object
managers that were intended to manage arbitrary objects produced by arbitrary

tool fragments.

The first successful general purpose object manager appeared the Make
system [FeldmanT79]. The objects in this svstem are host system files, and the
rules specifying the relationships between objects are specified in a text fle ealled

a "Makefile". The importance of such a general purpose object manager is

20
indicated by the continued widespread use of the original Make system, as well as

by its large number of successors which either provide extensions to the basic

Make system or are just re-implementations for different operating systems.

One common extension to Make was to integrate it with a version
control system. An example of merging Make with the SCCS version control
system appears in the Software Manufacturing Facility (Cristofor30]. The Build
so;"tware construction tool [Erikson84] provides an alternative mechanism for
manipulating several versions of software objects by allowing multiple default
paths on which software objects can be placed. An example of a simple re-
implementation of the Make system appears in Digital Corporations Module
Management System [DEC84b]. A central characteristic of the Make system and
its variants is the use of the host file system as the database of information about
current software objects. This provides many of both the strengths and
weaknesses of the system. The advantages of this approach is that the Make
system is extreme‘iy compact and efficient - it can depend on the operating system
to maintain the required database of information (i.e. the host file system). In
addition, the user provided tools can simply retrieve and store their information
“in the host file system, allowing most standalone tools to be conveniently
integrated into the Make system without modification. The drawback to this
approach is that only the information provided by the operating system about the
file system can be used to store and retrieve information about the software
objects. If some capability depends on having more information about the
software objects than is provided by the operating system, then this capability

cannot be provided.

A description of how additional information could be used to support a
general object manager appears in [Huff81]. A more comprehensive treatment of
this subject is provided by Cooprider in his PhD thesis [Cooprider79]. Both of
these treatments suffer from the absence of an actual implementation of the ideas
presented. In some cases the ideas are too vague to be evaluated, and in others
cases the feasibility of a successful implementation is doubtful. A more concrete
approach to this problem is provided by the System Modeler {Schrn'ldtc??}
'Lampson83a [Lampson83b] developed at Xerox for the Cedar programming
environment. This system provides basically the same object management
features as Make, except that these features are specifically tailored for the
Cedar programming environment. In particular, the Cedar editor and the
compiler/linker for the Cedar language, Mesa, are explicitly supported. An
important, extension present in the System Modeler is that it supports object
management in a distributed network of homogeneous computers. Another object
management system that significantly extends the features provided by Make
appears in Apollo’'s DSEE (Domain Software Engineering Enﬁronmens)

Leblang84] [Leblang85a] [Leblang85b|.

The main problem with all of the existing object managers is that they
faill to successfully separate declarative information about the objects from
algorithmic information about the tools that manipulate the objects. Instead,
this information is combined into a single text object - a "Makefile" for the Make
system, and a "System Model"” for both the System Modeler and the DSEFE. Both
Make and DSEE contain mechanisms for providing "default” rules. but the

semantics of these rules are too simple to allow for the specification of complex

tools. This means that the use of a complex tool must be specified repeatedly in
each Makefile or System Model. Unfortunately these are precisely the tools that
the user would most prefer NOT to specify - both because of the needless
complication to the object descriptions, as well as the expense involved in
updating all of these specifications when the interface to such a tool is modified.
Instead of allowing a single tool expert to precisely specify the interface to a given
tool, each programmer that wishes to use the tool in his Makeﬁlg or System
Model must be capable of providing that specification. In compilation
environments, where most tools have the comparatively simple interface of a
compiler or linker, this problem is a relatively minor one. In environments
intended to support a complex and fluctuating set of tools (such as the Toolpack

system described below), the problem becomes critical.

2.3. Toelpack

The motivati(;n for the study and design of automated object
management was provided by the Toolpack project {Osterweil8‘3}. In this project,
a group of universities and private corporations collaborated to develop a
software environment consisting of a loosely coupled network of co-operating
tools. One of the premises of this collaboration was that a functional
environment should be produced, therefore efficiency was a major goal. A
sophisticated object manager would provide the coupling between the various
tools developed for the environment, as well as provide a simple interface through
which the results of these tools would be made available to a user of the

environment. Critical elements in the design of such an object manager would be

23

the flexibility necessary to experiment with alternative arrangements of tools
within the environment, and the efficiency necessary to ensure that the resulting
environment was usable. The research in this dissertation is focused on satisfying

these requirements.

CHAPTER IIJ

SOFTWARE OBJECTS

The Odin system provides a framework within which user defined objects
and tools can be effectively integrated. In order to maximize flexibility, the
interaction between the the Odin system and the user-defined objects is limited to

five basic accessing functions. These accessing functions consist of :

"Manipulate” - a procedure for running tools to view and modify objects
"Derive” - a function to derive new objects by running tools

"Equal” - a test for equality between two objects

"ExtendCache” - a procedure to allocate a new object for the Cache

"Copy"” - a procedure for copying one object to another

Specifications of the accessing functions will be presented later in this chapter.
Any objects for which accessing functions that satisfy these specifications can be
implemented are suitable as objects in the Odin system. A few examples of
possible kinds of objects would be files on a disk, data in primary memory, or

entities in a relational database.

A way of understanding these accessing functions is to view the Odin
system as manipulating an arbitrary set of user defined objects in a black box,
where all manipulations take place through the predefined set of accessing

functions. The algebraic specification for these accessing functions must be

25

satisfled in order to guarantee that the manipulations performed by the Odin
system are valid. If the user wishes to manipulate a new set of objects, he must
implement the required set of accessing functions and must ensure that the
accessing functions he has provided will satisfy the algebraic specification. For an
example of a full implementation of the Odin Model where the objects are files in

a Unix operating system, see Chapter Seven.

3.1. The Store and the Cache

All Odin objects are accessed through a "Store" which maps object
names into objects. The objects in the Store are partitioned into two sets, called
"atomic objects” and "derived objects”. The set of names of all derived objects is

called the "Cache” - any object not in the Cache is an atomic object.

The atomic objects are those that can be directly modified by the user,
while derived objects are mechanically produced from atomic objects. Examples
of atomic objects could be program source text, test data, or tuples in a relational
database. Examples of derived objects could be compiled object code, output

from test runs, or results of database operations such as projection and join.

In general, any objects that cannot be mechanically derived from other
existing objects will be atomic objects - these objects could have been created by
a text editor, or imported from some external source. Whether an object is
atomic or derived is therefore not a characteristic of the kind of object, but
rather is based on the tools being used to manipulate the object. For example, if
the tools are a standard text editor and a tree building parser, then source text

would be an atomic object and a syntax tree would be a derived object. On the

26

other hand, if the tools are a structure editor that operates on a syntax tree and
a pretty-printer that prints out a text version of a syntax tree, then the opposite
would be true, namely, a syntax tree would be an atomic object and source text

\

would be a derived object.

Operationally, the critical distinction between atomic and derived
information is that only atomic information can be directly modified by a user.
The derived information is by definition mechanically generated from atomic
information, and therefore can only change in response to a change in the atomic
information from which it is derived. In order to reflect this difference, there are
two distinct accessing functions to invoke user defined tools - one for producing
derived objects (the Derive accessing function) and one for manipulating atomic
objects (the Manipulate accessing function).

3.2. Basic Accessing Functions

¢

The five basic accessing functions are a function for invoking browsing
and editing tools, a function to derive new objects by running tools, a function to
test for equality between two objects, a function to add a new name to the
Cache, and a function for moving one object to another. These accessing

functions are respectively :

27

1. Manipulate : <ToolName, Argument, State> -> <Argument, State>

[SV]

. Derive : <ToolName, Argument, State> -> <Argument, State>

(98]

. Equal : <Object, Object> ->> Boolean
4. ExtendCache : <State> -> <ObjectName, State>

5. Move : <ObjectName, ObjectName, State™> -> State
The types of entities that appear in the accessing functions are as follows :

Boolean : a truth value (True, False).

ToolName : a character string. ;

Object : a user defined entity, with a distinguished element "Err_Obj".
ObjectName : a character string.

Argument : an ordered multi-set of ObjectNames (a list of ObjectNames).
Cache : a set of ObjectNames.

Store : a functional mapping fror~ ObjectNames to Objects.

State : a Cache and a Store.

[nteger : an integer (0, 1, 2, ...).

TypeName : a character string.

KeyName : a character string.

The object "Err_Obj" is returned by the Store for all names that the user has not
associated with an objéct. The types Integer, TypeName, and KeyName will
appear in the auxiliary accessing functions that are described later in this

chapter.

3.2.1. Manipulate Accessing Function ;

The Manipulate procedure is used to invoke user defined tools. Toals
invoked through the Manipulate procedure may be used to browse through
existing objects, create new objects, or modify existing objects. The output
argument of the Manipulate procedure is the list of objects actually modified
during that invocation. The only restriction placed on these tools is that they

may not modify objects in the Cache.

28
3.2.2. Derive Accessing Function

The Derive function is used by the Odin system to create objects through
the invocation of user defined tools. A tool invoked through the Derive function
must be referentially transparent (no read access to its context) and side effect
free (no write access to its context). This requirement ensures that the result of
the tool is the same whenever it is applied to an "equivalent” sequence of
arguments, where the equivalence of two arguments is specified by the Equal
function described below. In particular, this means that interactive input cannot

be used to guide the operation of a tool.

The Odin system takes advantage of the purely functional nature of
Derive tools by saving the resulting objects to avoid later recomputation of the
same Derive request. The objects resulting from a Derive invocation are then
added to the Cache {with the Move accessing function). These new objects are

listed in the output arguments of the Derive function.

Since the results of a Derive invocation can be cached for later re-use, it
“is preferable to invoke a tool through the Derive function whenever possible {i.e.
whenever a tool is referentially transparent and side-effect free). This is not to
indicate that the Derive function is in any way "superior” to the Manipulate
procedure; rather, that they each have their appropriate applications. With an
editor, it would be pointless to cache the results of the frst edit session, and then
each time the editor is invoked, simply return the results of this first session. The
purpose of the editor invocation is to allow the user to perform non-deterministic

modifications to the atomic objects. On the other hand. recomputing the output

29

of a compiler each time it is invoked on a given object is pointless if each time it

is guaranteed to produce the same result.

3.2.3. Equal Accessing Function

The Equal function is used by the Odin system to determine when two
objects are functionally equivalent. The results of this function are used in
conjunction with the Cache of previously computed information to avoid

unnecessary recomputation.

3.2.4. ExtendCache Accessing Function

The Extendéache function is used by the Odin system to allocate a

name for a new object in the Cache.

3.2.5. Move Accessing Function

The Move function allows Odin to move objects produced by the Derive
accessing function into the Cache. If it is the first time the object has been

computed, a new Cache object name is allocated with the ExtendCache function.

3.3. Basic Accessing Functions Specification

The semantic specification of the accessing functions consists of a set of
algebraic and logical axioms. This specification is complete in the sense that an
implementation of the accessing functions is correct if and only if it satisfies these
axioms. [n these axioms, the symbol "=>" will be used for logical implication.

For functions that return booleans, the operation "= True” will be omitted. For

example, "Equal(A B)" will be used as a shorthand for "Equal(A, B) = True".

30
The first axioms state that Equal must be an equivalence relation.

Let ObjA, ObjB, and ObjC be any Object
Equal{ObjA, Obja)

Equal{ObjA, ObjB)
=> Equal(ObjB, ObjA)

Equal{ObjA, ObjB) & Equal(ObjB, ObjC)
=> Equal(Obja, ObjC)

When these axioms are satisfied, a variety of intuitive properties of objects will
hold and therefore need not be verified at runtime. For example, later axioms
will state that certain properties of objects will hold if those two objects are
equal. If "Equal{ObjA, ObjA)" were not necessarily true, then these properties
could not be assumed for ObjA without first testing the result of "Equal(ObjA,

ObjA)".

The next axioms state that the Manipulate function can only modify
atomic objects (objects not in the Cache) and that these objects must be listed in

the output Argument of the Manipulate function.

LET Tool be any ToolName

LET Arg be any Argument

LET [nState be any State

LET Name be any ObjectName

LET OutArg = Manipulate(Tool, Arg, InState).Argument
LET OutState = Manipulate(Tool, Arg, [nState).State

InState.Cache = OutState.Cache
OutArg INTERSECT InState.Cache = EMPTY

Name NOT IN OutArg

=> Equal(InState.Store(Name), QutState Store(Name))

These axioms guarantee that the Cache will not be corrupted by a tool invoked

31

through the Manipulate function. In addition, they guarantee that the only
derived objects that could become invalid as a result of the Manipulate call will
be objects derived from the atomic objects listed in the output Argument. This
allows the Odin System to efficiently maintain derived object validity

information.

The next axioms state that the only result of the Derive function is the

creation of the objects listed in the output argument.

LET Tool be any ToolName

LET Arg be any Argument

LET InState be any State

LET Name be any ObjectName

LET OutArg = Derive{Tool, Arg, InState).Argument

LET OutState = Derive(Tool, Arg, InState).State
InState.Cache = OutState.Cache
OutArg INTERSECT InState.Cache = EMPTY

Name NOT IN OutArg :
=~ Equal(InState.Store{Name), OutState.Store(Name))

Name [N QutArg

=> (InState.Store{Name) = Err_Obj)

These axioms guarantee that the Cache will not be corrupted by a tool invoked
through the Derive function. In addition, they guarantee that since no atomic
objects can be modified by a Derive call, no existing derived objects will become

invalid as a result of a Derive call.

The next axiom states that the Derive function is referentially
transparent, Le. that applying the function to equal input objects will produce

equal output objects.

LET Tool be any ToolName
LET ArgA, ArgB be any Argument
LET InState be any State
LET OutArgA = Derive(Tool, ArgA, [nState).Argument
LET OutArgB = Derive(Tool, ArgB, [nState).Argument
Equal(InState.Store(ArgAli]), [nState.Store(ArgBJi]))
1l <=1 <=length(ArgA)]
=> Equal(OutState.Store(OutArgA[J}), OutState.Store(OutArgBlJ)))
11 <= <=length(OutArgA)!

This axiom guarantees that using previously cached results of Derive requests will
& gPp 3 q
produce correct results. This axiom implies that editors and other tools that take

interactive input cannot be invoked through the Derive function.

The next axioms state that the result of the ExtendCache accessing
function is to add a new object name to the Cache. This new name and the

modified State is returned as a result.

LET InState be any State

LET Name be any ObjectName

LET OutState = ExtendCache(InState).State

LET OutName = ExtendCache(InState).Name
OutName INTERSECT InState.Cache = EMPTY
OutState.Cache = InState.Cache U ! OutName b

Equal(InState.Store{Name), OutState.Store(Name))

This axiom (in conjunction with the axioms that require that the other accessing
functions not modify the Cache) gives the implementor of the accessing functions
explicit knowledge of what objects are in the Cache, namely, only objects with
names resulting from an ExtendCache call. This knowledge is necessary for the
implementor to guarantee that the accessing functions such as Manipulate and

Derive do not modify objects in the Cache.

33

The last axioms state that the effect of the Move accessing function is to

make the second object equal to the first object and to delete the first object.

LET InState be any State

LET Namel, Name?2, OtherName be any ObjectName

LET OutState = Move(Namel, Name?2, InState).OutState
InState.Cache = OQutState.Cache
Equal{InState.Store(Namel), OutState.Store(Name?2))

OutState.Store(Namel) = Err_Obj

OtherName != Name?2 ‘ ;
=~ Equal(InState Store(OtherName), OutState.Store{OtherName))

These axioms ensure that after an object resulting from the Derive function is
moved into the Cache, it will be Equal to the object originally produced by the

Derive function, and therefore can be re-used in place of that object.

3.4. Auxiliary Accessing Functions

In addition to the five basic accessing functions, there are four auxiliary
accessing functions that optionally can be provided by the user to allow the Odin
system to perform automatic storage management and automatic classification of

atomic objects. These accessing functions consist of :

"Delete"- a procedure to delete an object
"Size” - a function that returns the size of an object
"Obj_Type" - a function that returns the "type” of an object

"Obj_Key" - a function that returns a "key" for an object

For certain classes of objects, it might be difficult or impossible to

implement some or all of these oprional accessing functions. [n this case, the user

34

would implement only the feasible subset and will only lose the functionality

provided by the omitted accessing functions.

The first two auxiliary accessing functions allow the Odin system to
automatically manage the storage of objects in the Cache. These accessing
functions consist of a procedure to delete an object and a function that returns

the size of an object :

6. Delete : <ObjectName, State™> -> State

7. Size : <ObjectName, State> -> Integer

Usually a user will want to place size restrictions on the amount of space used by
the objects in the Cache. If the Odin system is able to delete an object and find
out the size of an object, it can delete objects from the Cache until the total
space used by the Cache is less than the amount specified by the user. Currently,
the deletion strategy is LRU (Least Recently Used), but alternative deletion

strategies could easily be implemented.

The last two auxiliary accessing function allows the Odin system to
automatically classify and name user defined objects. These accessing functions
consist of a function that returns the type of an object and a function that

returns a key for an objecb. A
8. Obj_Type : <ObjectName, State> -> TypeName
9. Obj_Key : <ObjectName, State™ ->> KeyName
[n some situations, atomic objects will be created without the mediation of the

Odin system. In these cases, it is convenient to provide an accessing function that

allows the Odin system to determine what kind of object was created so that the

35
appropriate Derive and Manipulate tools can be applied to that object. The

"type” returned by the Obj_Type function is a string that refers to one of the

object types that the user declared in his Odin Specification.

A simple example of an Obj_Type function would be one that derives the
type of an object from the name of the object. Following a convention common in
many operating systems, the type of the object could be specified in the file name
extension (the characters following the last period in the fle name). The
Obj_Type function would then just return a string corresponding to the extension

of the file name.

The Obj_Key function returns a string that the Odin system will store
as a "key” for specifying that object. This key can then be used to select a

specific object from a set of objects.

3.4.1. Auxiliary Accessing Functions Specification

The first axioms state that the only effect of the Delete accessing

function will be to remove the object being deleted from the State.

LET Name, OtherName be any ObjectName

LET I[nState be any State

LET OutState = Delete(Name, InState)
[nState.Cache = OutState.Cache

OutState.3tore(Name) = Err_Obj

OtherName != Name
=> Equal{InState.Store{OtherName), Outstate.Store(OtherName))

These axioms ensure that following a Delete call, the Odin System can re-use all

objects in the Cache except for the object deleted.

38

The next axiom states that the size of an object that does not exist is

ZEro.

LET InState be any State
LET Name be any ObjectName

[nState.Store(Name) = Err_Obj
=>> (Size(Name, [nState) = 0)

This axiom, in conjunction with the axioms specifying the behavior of the Delete
function, ensures that the space used by the Cache as measured by the Size
function can be made zero. A trivial implementation of the Size function would
be a constant function that always returns zero. This is in fact the function that

1s used by default if an implementation omits the Size function.

The last axioms state that the Type and the Key of an object remains

the same unless the object is modified with the Manipulate accessing function.

LET Tool be any ToolName

LET Arg be any Argument

LET InState be any State

LET Name be any ObjectName

LET OutState = Manipulate(Tool, Arg, [nState).State

Equal(InState.Store(Name), OutState.Store(Name))
== (Obj_Type(Name, [nState) = Obj_Type(Name, OutState))

Equal(InState.Store(Name), OutState.Store{Name))
=> (Obj_Key(Name, InState) = Obj_Key(Name, QutState))

These axioms allow the Odin System to initially compute the type and key for an
object, and then assume that these values are still valid until the object is

modified by a Manipulate call.

CHAPTER IV

THE QUERY LANGUAGE

The behavior of the user of a software environment will be modeled as a
sequence of requests, where each request is either a query or an update. A query
is a read-only access to the information in the environment while an update is a

modification to this information. One possible request sequence would be :

1{update): create new program X
2(update): create test data Y
3{query): results of running X on Y
4{query): data flow analysis of X
5(update): modification to X
6(query): symbolic execution of X
T(query): results of running X on Y

In this chapter, a query language designed to provide complete access to all
objects in a software environment is described. Commands for performing

updates will be described in Chapter Six.

The complexity of software environmgnb databases c,anr generate some
confurion concerning the normally straightforward classification of requests as
queries or updates. One method of distinction takes the viewpoint of the physical
database, and classifies an access to the database as an update or a query
according to whether the access modifies the physical database. Another method
of distinction takes the viewpoint of the user, and classifies an access to the

database according to whether it modifies the information potentially returned by

38
later accesses.

In a simple database that either stores or retrieves information, these
two classification methods are identical. For more complex databases,
information is stored both explicitly in the physical database, as well as in the
form of procedures for computing the desired information. In such a database,
the user viewpoint classifies a larger class of requests as "queries”, since a query
can invoke procedures that modify the physi'cal database without modifying the

information potentially returned by later accesses.

For example, a query for the “results of running X on Y" might involve
compiling, linking, and loading the program X, and then giving the resulting
executable code to the host operation system to obtain the test run results.
Although computing the response to this query might involve extensive internal
modifications to the database (such as storing the computed object code and
executable for later re-use), it is still a query rather than an update from the

user’s viewpoint because it does not affect thé information produced by later
queries.

The ability to store information in the form of procedures to compute
that inférmation is critical for softw:;re environments, aﬁd therefore this
ambiguity arises. Since our focus is the user of the software environment rather
than the physical database, the definition of a request from the user’s viewpoint

will be the one we will use.

39

4.1. The Odin Query Language

The Odin Query Language is an object-oriented query language, whose
syntax most resembles that of message-passing languages like Smalltalk
(Goldberg83a] [Goldberg83bl. Each query specifies a single (but possibly
compound} Odin object, and tools are invoked only as needed to create the
specified object. For example, if an executable object were requested, various
compilers and loaders might be invokeé. The tools "might be" invoked because
the Odin System automatically saves the objects from previous requests, so that a
given object might already exist and therefore be immediately available. The
tools necessary to satisfy a query are invoked through the Derive accessing
function (see Chapter Three) in order to ensure that the results of the query will

be a read-only access to the information in the environment.

4.2. Odin Objects

Each Odin object is either a user defined object (simple object) or a set
of objects (compound object). Examples of simple objects would be source code,
executable binary, or output from a test run. Examples of compound objects
would be the set of objects containix}g the source code of a single program, the set
of objects containing different versions of the same source code, or an executable

program with objects containing input data for the program.

4.2.1. Atomic Odin Objects

The atomic Odin objects are created either as a result of calls to the

Manipulate accessing function (see Chapter Three) or in some fashion external to

40

the Odin system. These objects are called "atomic” because they cannot be
automatically recreated by the Odin system, and therefore they are the basic

building blocks from which the Odin system creates all other objects.

Every atomic object is given a type by the Odin system based on the
result of the Obj_Type accessing function applied to that object. The type of an
atomic object determines which derived objects can be produced from that object.
In case the type is not recognizeci by the Odin system, no derived objects can be

produced from that object.

4.2.2. Derived Odin Objects

A derived Odin object is an object (or set of objects) that can be
produced from an atomic object (or another derived object) through the
invocation of one or more tools. Examples of objects that can be derived from
source code would be cross reference listings, executable binary code, or a

formatted version.

There are two basic Odin operations for specifying derived objects :
“derivation” and "parameterization”. Derivation is used to transform an object
while parameterization is uséd to add information to an object. Togvether,
derivation and parameterization are sufficient to specify any object in a software

environment.

A common kind of derivation called "selection” is also provided as a
primitive operation, where selection is used to obtain a piece of an object. In
some ways, selectlon can be thought of as the "inverse” of the parameterization

operator - selection takes away pieces of the object while parameterization adds

41

on new pieces.

4.2.2.1. Derivation

A derivation is specified by appending to the name of an Odin object a

colon (") and the name of the desired derivation. For example,
test.c :fmt

would request a formatted version of test.c, and
test.c :fmt :run

would request the result of compiling and executing the formatted version of

test.c.

4.2.2.2. Parameterization

It frequently occurs that there is a variety of additional information that
can be associated with an object and that will affect the derivatives produced
from that object. In the Odin System, this additional information is associated
with an object as the "parameters” of that object. For example : a debug
parameter could cause the compile derivative to contain run-time checks; a
library parameter could cause the load derivative to have undefined externals
satisfied from a non-default library; and a format parameter could cause all

printable derivatives to be generated in line-printer format.

A parameterized object is specified by appending to the specification of

an object a plus sign {"+’) and a parameter. For example, a debug parameter

can be added to the object "test.c :fmt" as follows :
test.c :fmt +debug
If this new object is then run, e.g.
test.c :fmt +debug :run
the "run” object produced would contain debugging information.

[t is often the case that a value should bé associated with a given
parameter. Such a value can be specified by appending to the parameter an
equal-sign {’="} and the value. >For example, if array bound violations are to be
checked or if dereferencing of nil pointers are to be checked for the object "test.c”,

then respectively

test.c +debug=arrays
or

test.c +debug=nilref
would be specified.

If the value associated with a parameter is contained in another Odin
object, the value LS specified as the Odin object surrounded by parentheses. For
example, supposel that there is a derivation named "lib" that will produce a
library from source code. Then the result of running “test.c” using the library

produced from an object called "util.c” would be specified as :

test.c —lib=(util.c :lib) run

43
4.2.2.3. Selection

As mentioned earlier, an Odin object can be either a simple object or a
compound object (i.e. a set of objects). Frequently, it would be desirable to
specifly some subset of the objects in a compound object. To allow this, Odin

associates a "key"” with every Odin object.

An atomic object is given a key based on the result of the Obj_Key
accessing function applied to that object. A derived object is given a default key
equal to the key of the atomic object from which it was derived. For example, if
the key of the atomic object "src/test.c” is "test”, then the key’ of "src/test.c :run”

would also be "test”.

In case a derived object is a compound object, the key for each element
of the compound object is generated by the tool that produces the compound
object. For example, suppose "src/test.c :output” specifies the output objects
generated when running "stc/test.c”. This derived object is a compound object
becalise a program can generate more than one output object. Since the tool that
executes a user’s program is responsible for giving keys to the output objects, they
could be arbitrarily given the keys "outl”, "out2", etc. A more useful and more
likely conveﬁcion would be for the tool to use the object names given by the user’s

program fto the output objects as the keys for the output objects.

The subset, from a given compound object, of objects with a certain key
can be specified by appending to the name of the compound object an at-sign
(') and a key. For example, suppose that running “src/test.c” produces three

output objects named "DATA", "source.list”, and “source.errors’. These three

44

objects could be specified as the three Odin objects,

src/test.c soutput (WDATA
sre/test.c :output ((source.list
src/test.c :output ((source.errors

4.2.3. Status Level of Odin Objects

Associated with each Odin object is a status level, where a status level is
one of O'K, WARNING, ERROR, NOREAD, NOFILE, and ABORT. OK is
considered the maximum status level and ABORT the minimum. The status of
an atomic object is always OK. The status of a given derived object depends on
the results of the tools needed to produce that obyject. If any tool generated
warning messages, the status level of the given object is at most WARNING. If
any tool generated error messages, the status level of the given object is at most
ERROR. If any object that was needed to generate the given object was not
readable, the status level of the given object is at most NOREAD. If any object
that was needed to generate the given object did not exist, the status level of the
given object is at most NOFILE. If any object that was needed to generate the
given object had status level ERROR, then the status level of the given object is

set to.be ABORT.

If the status level of an object is less than OK, the status level is
indicated whenever that object is requested. The actual warning or error
messages that were produced can be displaved by requesting the results of
running the internal WARNING rtool or the internal ERROR tool (see Chapter
Five). Assume that the ":warn" and "err” derivations invoke the WARNING tool

and the ERROR tool respectively. If the request for the object,

45
test.c :run

indicated that abort status was set for that object, the errors that caused the

generation of the abort status would be listed in the object,

test.c :run :err

Error messages are included in the list of warning messages, so the list of
errors is always a subset of the list of warnings. The difference between an error
and a warning is that an error prevents the tool from generating its output, while
a warning indicates that although output was generated, it might be faulty. An

example of an error message from a loader would be
Unsatisfied external reference : "procl”.
An example of a warning message from a loader would be

Multiply defined external : "proc2"”, first copy loaded.

4.2.4. Sentinels

[n any software system, it is very useful to be able to specify semantic
constraints on the software objects in the system. For large systems, this
:f'unctionality is often provided by a system manager. Any change to a part éf the
system is submitted to the system manager, who is then responsible for
performing all the necessary regression testing and other analysis necessary to
ensure that the modification is acceptable. If the modified system satisfies all the

tests, the system manager would then install the modification.

In Odin, this capability is automated through the use of distinguished

Odin objects called "sentinels”. Examples of sentinels would be

thesis.txt :spell
prog.c +input=(thesis.txt) :run

[f sentinels are activated, a modification to an atomic object is rejected if it
would cause the status level of any sentinel to become ERROR or less. If a
modification is rejected, Odin would generate an error message indicating which
sentinels have been violated. The user desiring the modification would then have
to either develop an alternative modification that does violate the sentinel, or

would have to delete the sentinel that is being viclated.

In the above list of two sentinels, assume that the "':spell" object receives
ERROR status if any spelling errors :ire detected, and that the ":run" object
receives ERROR status if anv error messages are generated in the attempt to
compile and run "prog.c” with input object "thesis.txt". Then if a modification to
“thesis.txt" is attempted, Odin will check that the "thesis.txt” object is spelled
correctly, and that the "prog.c” program with "thesis.txt” as input will run with
no errors. If either of these checks fail, the modification to ’thesi&txt will be
rejected. Alternatively, assuming "prog.c” uses the system library "/usr/lib/jobs",
if a modification to "prog.c” or "/usr/lib/jobs” is attempted, Odin will again check
that prog.c runs successfully with “thesis.txt” as input, before permitting the
modification.

The list of sentinel objects is stored in the special Odin object specified
as a vertical bar ("), Any user is permitted to add arbitrary Odin objects to this
special object, and thereby sbecify arbitrary semantic consaraints.‘ For example,

suppose that the derivation "output” computed the output from running a

rogram and the derivation ":diff" compared two objects. Then a regression test
I

47
could be specified by adding the following sentinel to the sentinel list :
prog.c +input=(test.l) :output +compare=(test.l.out) :diff
This sentinel would be violated if any errors occur in compiling and running

"prog.c” with "test.1" as input, or if the output from this run was not identical to

the file "test.l.out".

The advantage of the sentinel approach over many other formal
semantic constraint specification techniques is that the constraints can be
specified in terms familiar to an ordinary programmer. Even a beginning
programmer will be able to state that "my program must produée file X as
output”. As the sophistication of a programmer increases, more precise
constraints will be specified, and assuming that a §rogram to verify these
constraints exists, these constraints would be entered into the system as new
sentinels. The overhead of performing the computation necessary to detect
sentinel violations is minimized through the use of the same mechanisms used by

the Odin system to optimize the recomputation of derived objects.

CHAPTER V

THE SPECIFICATION LANGUAGE

The specification language is designed to allow the integration of any
existing tool or set of tools into the Odin System, with no modification to the
tools themselves. This is critical when a tool only exists in the form of executable
binary, as is often the case for host system provided tools. The only tools
provided by the Odin System itself are ones wh’ose purpose is to support this task

of integration.

For example, a compiler would be provided in an Odin environment by
describing the host system compiler in the Odin specification language. On the
other hand, Odin itself provides a tool that will interpret an object containing a
list of object names as a "collection of‘ objects”, so that this collection of objects
can be treated as a single object by a user of Odin. Odin would ensure that a
request to run a tool on this collection would in fact invoke the tool on each of

the elements in the collection.

The specification of each fool is entered into a text object called a
"derivation graph”. Basically, a specification consists of the name of the tool and

a deseription of the input and output behavior of the tool.

For example, a simple formatter could be described as follows

49

fmt "formatted version of C code” :
USER pol_c.cmd

. C

where fmt is the name of the results of applying a C code formatter, the string in
quotes on the first line describes this object, the name following the keyword
USER on the second line is the name of the formatting tool, and ¢ names the kind

of object which is suitable as input to the formatter.

In general, the i/o behavior of a tool can be far more complex than this
simple example, but this basic model of the naming the output of a tool, naming
the procedure that invokes the tool, and then describing the input to the tool, will

always be followed.

5.1. Comments

Comments can be placed anywhere within the derivation graph. A
comment is initiated with the sharp character ("#') and is terminated by the

end-of-line character.

5.2. Atomic Object Types

Every type of object that is to be edited‘directly by the user is given a
unique “atomic object type”. FEach atomic object type is declared in the
derivation graph by specifying the name of the atomic object type followed by the
keyword ATOMIC and a string that provides a short English description of that
type of object. For example, atomic object types for C and Fortran source code

could be declared as follows :

50

¢ ATOMIC "C source code”
f ATOMIC "Fortran77 source code”

The English description can be used in a help or menu system that
informs the user about what atomic object types are currently known by the

system.

5.3. Derived Object Types

Every type of object that is produced by some computer program or tool
is given a unique "derived object type"'. Each derived object type must be
described in the derivation graph. A description of a derived obj:ct type coasists
of a description of the structure of the derived object followed by a description of
the tool that produces the derived object and a description of the inputs needed
by the tool. For example, in the following rather complex derived object type

description :

dbx <
exe-dbx “null "executables for a dbx run"*
sres-dbx (null) "sources for a dbhx run'™*
keys-dbx (null) "names of source objects for a dbx run"™*
core-dbx "core dump for a dbx run™*
> "Berkeley symbolic debugger run" :
USER dbx.cmd

: exe

: {objsrcU)

: (objkeyU)

: PARAMETERS(id)

the description of the structure of the derived object is :

51

dbx <
exe-dbx “null "executable for a dbx run"*
sres-dbx (null) "sources for a dbx run”
keys-dbx (null) "names of source objects for a dbx run"*
core-dbx "core dump for a dbx run™
> "Berkeley symbolic debugger run" :

the description of the tool is :
USER dbx.cmd
and the description of the input is :

:exe

: (objsrcl)

: (objkevU)

: PARAMETERS(id)

As with atomic object types, derived object types are associated with a
string that provides a short English description of that type of object. This
English description can be used to provide at runtime a menu listing what object

types can be derived from a given object, based on the object type of that object.

This description can be marked with an asterisk indicating that it
describes an "intermediate derived object type". An intermediate object type
indicates an object that is not usually requested directly by a user, and therefore
would usually not be displayed on a help menu. In the example above, exe-dbx,

keys-dbx, and core-dbx were declared as intermediate derived object types.

5.3.1. Derived Object Structure

Due to the great variety in output behavior of tools, it is necessary to
rovide a flexible language for describing the various possible kinds of derived
p guag g

object types. Examples of different kinds of outputs that a tool might generate

would be a single data object, a single object that refers to another object, a fixed
number of different kinds of output objects, or an arbitrary number of similar
output objects. The description of the structure of a derived object is always

terminated by a colon.

5.3.1.1. Simple Derived Object

An object with a "simple” derived object type is just an yordinar;f text or
data object. Some common simple oB}ect types would be assembler code
generated from a higher level language, executable binary, cross reference listings,
and error reports. A simple object type is analogous to a basi;: variable type in a
programming language, such as boolean, character, or integer. Odin allows a user

to introduce an arbitrary number of such basic types.

A simple derived object type specification consists of the name of the
derived object type followed by a text string describing the type and a colon. For

example, in :
exe "executable binary” :

"exe” is declared to be a simple derived object type.

5.3.1.2. Reference Derived Object

An object with a "reference” derived object type is an object that refers
to another object. This is analogous to a pointer type in a programming
language. Whenever such an object is used, such as when it is displaved or when
it is given as input to a tool, it is automaticalily dereferenced by Odin so that

what is displayed or received as input is actually the object referred to. An

53

example of a tool that would produce a reference derived object type ~vould be a
tool that selects from a group of modules the module containing the definition of
a specified procedure. If each module were stored in a single object, this tool
would produce as output a reference to the object containing the appropriate

procedure.

Any tool that produces a reference derived object could just as well have
produced a simple derived object, by generating a copy of the appropriate object
rather than generating a reference to it. The advantage of producing a reference
rather than a new copy is that the Odin system can re-use any infermation
derived from the original object when the corresponding information is requested

from the reference object. For example, if
system.ref +proc=DoAll select,

generated a reference to the object "support.c” (ie. the object support.c contains
- the definition of the procedure "DoAll"), then the Odin system would know that

the object

system.ref +proc=DoAll select :0bj
is identical to the object

support.c :obj

If on the other hand, the tool "select” produced a simple object, the Odin system
would have no way of knowing that the result of the "select” was identical to

"supporf.c”.

There are two kinds of reference derived object tvpes - pointer reference

and name reference. Pointer reference objects contain the host svstem names of

54
objects in the State (atomic objects) or in the Cache (derived objects). Name
reference objects contain Odin queries that are translated by the Odin system
into pointer references. For atomic objects, pointer references and name
references will be identical, since in both cases atomic objects are referred to by
their host system names. For derived objects, a pointer reference will be some
string "/usr /odin/ODIN /FILES/c/157823" that refers to an object in the Cache,
while a2 name reference will be an Odin query such as

“test.c +lib=(/usr/lib/network.a) :run”.

A pointer reference derived object type specification is like a simple
deived object type specification except that immediately following the name of
the object type is added a carat (""’) and the object type of the object being

referred to. For example, in :
tgi_ptr * tgl "parser grammar"
"tgi_ptr” is declared as being a pointer to an object of type "tgi".

A name reference derived object type specification is like a pointer
reference derived object type specification except immediately following the name

of the referred to object type is added an at-sign ("@’). For example, in :
f_main " fcast(@ "scanner default main program' :

"f_main"” is declared as containing the name of an object of type "feast”.

5.3.1.3. Compound Derived Object

An object with a given "compound' derived object type consists of a set

of objects, each of which has the same object type called the "element objecs

55
type” or is another compound derived object of the given type. A compound
object that contains only objects of the element object type is called a "fat
compound object” - one that also contains other compound objects is called a
"nested compound object”. A flat compound object is analogous to an array in a
programming language - a nested compound object is analogous to a tree.

A tool should be specified as producing a compound object type when it
produces an arbitrary number of files of the same type, or produces references to
an arbitrary number of files. There are two kinds of compound derived object

types - compound reference types and compound source types.

Compound Reference Derived Object

An object with a "compound reference” derived object type consists of a
list of references to other objects. These references can be either by pointer or by
name, as with reference derived object types.

A compound reference derived object type specification is like a simple
derived object type specification except that immediately following the name of
the object type is added the name of the element object type in parentheses. For
example, in :

objC (obj) "list of object modules" :
"0objC" is declared as containing pointers to elements of type "obj".
[f the reference is by name, an at-sign ('} is appended to the element

object type name. For example, in :

so_ref (null(ct) "list of nroff included objects” :

58

"so_ref" is declared as containing the names of elements of type "null”.

Compound Source Derived Object

An object with a "compound source” derived object type consists of a set
of objects, all of which were generated by the tool. This is distinguished from
compound reference objects where only references to existing objects are
generated by the tool.

A compound source derived object type specification is like a compound

1

reference derived object type specification except that square brackets ("] ']’) are

used instead of parentheses. For example, in :
output [data) "output objects from a test run' :

“output” is declared as being a set of objects of type "data”.

5.3.1.4. Composite Derived Object

An object wit'r; a "composite” derived object type consists of a set of a
fixed number of objects, each of which has a specific, although possibly different,
object type. This is analogous to a record or éaructure type in a programming
language. In Odin, most tools that are normally considered to produce multiple
outputs are instead considered to be tools thatvpmduce a single composite object
as output. The members of a composite object type can be compound, reference,
or simple object types.

A composite derived object type specification is like a stmple derived
object type specification except that immediately following the name of the object

type is added a pair of angle brackets ("< ">} containing a list of member object

type specifications. Each member object type specification is either a compound,
a reference, or a simple object type specification, except that the terminating
colon is omitted. For example, in :

fscan <

fst "scanner tables'
fst_lst "fscan compiler listing"*

f_drive “feast("scanner driver routines™
f_main “fcast(@ "scanner default main program"*
> "scanner tables™ :

TR

"fscan” is declared as being a structure containing four elements - a simple type
"fst”, a simple type "fst_Ist", a name reference type "f_drive”, and a name
reference type "f_main”. The tool that produces "fscan” would be responsible for
generating an "fst", an "fst_Ist", an "f_drive”, and an "f_main" output object - the
Odin system would then be responsible for producing the fscan composite object

from these four members.

5.3.2. Inputs

[n order to produce an object of a given type, one or more input objects
are needed by the tool that creates this object. These input objects are specified
as a list of object types, each preceded by a colon. These object types can be
atomic object types, derived object types, or parameter object types. For

example,

f-scan (f) "source objects for a scanner module* :
COLLECT
: fst
f_drive

specifies that the object types "fst” and "f_drive” are needed as lnput.

58

In addition, it is sometimes convenient to have a constant object as an
input object, where this constant object contains data needed by the tool. In this
case the name of the constant object is placed in quotes, again preceded by a
colon. In the above example, if "f_drive" is the same for all tool invocations, the

specification could be modified to read :

f-scan (f) "source objects for a scanner module™ :
COLLECT
: fst
: "/usr/lib /std.f_drive”

5.3.2.1. Parameter Types

Normally, when a derived object is being produced, the actual inputs to
a tool are determined automatically by Odin based on the object from which the
object is derived. It sometimes is the case that a user would like to pass
additional information to certain of the tools. This can be done when a derived
object is requested at run time by appending to the description of the object from
which the object is derived, a list of parameters. A parameter consists of a
parameter type followed by the information t»havt is to be placed in the input
object corresponding to that parameter object type. Normally a tool will allow a

parameter to be omitted, in which case a default value will be assumed.

The parameter types used as input to the tool producing a given object
type are described in the derivation graph by specifying the keyword
PARAMETERS followed by a list of parameter names separated by commas. For

example,

t PARAMETERS (debug, lib)

59

would indicate that the "debug” and "lib” parameters will be used.

5.3.2.2. Transitive Needed Object Types

[n case one of the needed object types is a compound object, the question
arises whether just the list of names of elements of the compound object is
needed, or whether the data in those objects is needed as well. The default is
that only the list of names is needed. If the data in these objects is needed, this is

'speciﬁed by placing parentheses around the appropriate needed object type. For

example,
: {cmpd)

would indicate that the elements of the "cmpd” input are required, while
: cmpd

would indicate that only the names of the elements of the "cmpd” input are

required.

5.3.3. Tools

The tool specifies what process must be executed to produce the specified
derived object from the specified inputs. There are two kinds of tools - "internal
tools” that are provided by Odin and "external tools” that are provided bv the

user.

5.3.3.1. Internal Tools

An internal tool is selected in a derived object specification with the

keyword for that internal tool. For example, in the specification

80

ckey "name of ¢ object™™ :

KEY

the internal tool KEY is selected.

Currently there are fourteen internal tools :

STRUCT

The STRUCT internal tool produces a composite objéct from a text
object containing a sequence of Odin object Speciﬁcaﬁions, one per line. Each
specified object in order is placed as the corresponding member of the composite
object. If the number of lines in thg text object is not equal to the number of

members of the composite object, the STRUCT tool generates an error message.

COMPQUND

The COMPOUND internal tool produces a compound pointer reference

object from a compound name reference object.

COLLECT

The COLLECT internal tool produces a single compound reference
object from a set of input objects by constructing a ccmpo;md reference object

whose elements are the input objects.

FLATTEN

The FLATTEN internal tool produces a fat compound object from a
nested compound object. This is done by performing a depth first search of the

input cormpound object, and adding a reference to each simple object found, in the

61

order in which it is visited, to the output object.

UNICN

The UNION internal tool produces a flat compound object from a nested
compound object. This is similar to the FLATTEN internal tool, except that only
one copy of each element object is placed in the result - if an object has already
been placed into the result object, any later occurrences- of that object in the

input compound object will be ignored.

HOMOMORPHISM derivation-spec

The HOMOMORPHISM internal tool produces a compound object from
another compound object by applying the derivation following the
HOMOMORPHISM keyword to each element of the input compound object. A
derivation is specified for homomorphisms in the same way that a derived object
is specified in the .Odin query language, except that the kevword
HOMOMORPHISM is treated as the atomic object, and vertical bars (') are used
in place of colons ("), For example, if it is desired that the "obj_sre” derivation
 be applied to each element of the input compound obje‘ct, then the tool would be

specified as

HOMOMORPHISM | obj_src

P-HOMOMORPHISM derivation-spec

The P-HOMOMORPHISM (parameterized homomorphism) internal tool
is identical to the HOMOMORPHISM internal tool, except that the parameters

used to produce the input to the tool are added to the parameters specified for

the P-HOMOMORPHISM tool. This is used primarily when a tool is to be
applied recursively to its results, in which case it is desirable that the parameters

be passed along to the recursive invocations.

APPLY

The APPLY internal tool is similar to the HOMOMORPHISM tool,
except that the derivation to be performed is stored in an object rather than
specified in the derivation graph. Unlike the HOMOMORPHISM tool which
applies one derivation to each of the elements of its input object, the APPLY tool
applies each of the derivations in its first input object to its second input object.
The APPLY tool grovides the ability to apply derivations that were determined

at runtime.

KEY

The KEY internal tool generates an object containing the kev of the
input object. For atomic objects, the KEY internal tool would invoke the
Obj_Key accessing function (see Chapter Three). This is the key that would be

used by the Odin selection operator.

CAT

The CAT internal tool produces a simple object from a compound object
by concatenating together the contents of all simple objects that are elements of
the compound object. The order of concatenation is the same depth first order of

the FLATTEN and UNION internal tools.

ERROR

The ERROR internal tool produces a simple object from an arbitrary
input object. This simple object contains all error messages generated by any

tool in the process of creating the input object.

WARNING

The WARNING internal tool produces a simple object from an arbitrary
input object. This simple object contains all warning and error messages

generated by any tool in the process of creating the input object.

SENTINEL

The SENTINEL internal tool produces a compound object from an
arbitrary input object. This compound object will consist of all sentinels that

depend on the input object.

NAME

The NAME internal tool produces a compound name reference object

from a compound pointer reference or composite object. This is the inverse of the

COMPOUND internal tool.

5.3.3.2. External Tools

An external tool is selected in a derived object specification with the
kevword USER followed by the name of the external tool. For example, in the

specification

64

o "object code"” :
USER cc

i c

the external tool "cc" is selected.

5.4. Linking Object Types

A linking object type is declared in the derivation graph by specifying
the name of the linking object type followed by the keyword DERIVED and a
string that provides a short English description of that type of object. Linking
object types are used to specify relationships between other object types in the

derivation graph.

[t frequently occurs that the input necessary to produce a given derived
object type, TypeX, can be provided by two or more different object types, Srcl
and Src2. Rather than specify two derived object types, TypeX1 and TypeX2,
where TypeX1 can be derived from Srcl and TypeX2 can be derived from Src2, it
is more convenient to link the two possible input object types to a new object
type, SrcX, and specify that this new object type is the input object type to

produce TypeX.

For example, suppose that iﬁput to produce an executable binary object
type "exe” can be provided by both the object type "obj-c" produced by a C
compiler and the object type "obj-f" produced by a Fortran compiler. Rather
than specifying two different object types, e.g. "exe-c¢" and "exe-f", that produce
executable binaries from "obj-c” and "obj-f" objects respectively, a linking object

type "obj" can be specified :

obj DERIVED "relocatable binary”

This "obj” object type is then specified as the input to the tool that produces an

‘exe” object type. Equivalence links are then specified to indicate that either

"obj-c” or "obj-f" can be used as an "ob]" object type.

5.4.1. Equivalence Links

An equivalence link is created by specifying the "to" object type followed
by an arrow (’<=’) followed by the "from" object type. In the preceding example

these links would be added to the derivation graph :

obj <= obj-c

obj <= obj-f

5.4.2. Cast Links

[t sometimes occurs that an object type that is derived from a given
object type can be used in the same way that the given object type could be used.
The most common example of this would be a program formatter. The output
from the formatter can be used in all the ways that the original object could be
used - it can even be formatted again. This situation is indicated in the
derivation graph by specif}/‘ing""a cast link from the derived object type go the
given object type. A cast link is specified like an equivalence link except that the
head of the arrow is a vertical bar (!='). For example, to indicate that formatted

¢ code can be used whenever ¢ code can be used, the following would be specified :

¢ ::: fmt-c

68
5.5. Pre-Defined Object Types

Four pre-defined object types are provided by the specification language
to facilitate the construction of generic tools that accept virtually any text or
data as input. An example of such a tool would be a "diff" tool that detects

differences between two objects.

These pre-defined object types could be thought of as being specified in a

standard derivation graph prelude of the form :

.composite ATOMIC "Any Composite Object"
.compound ATOMIC "Any Compound Object”
.derived ATOMIC "Any Derived Object"

simple ATOMIC "Any Atomic or Simple Derived Object”
The diff tool could then be specified as :

diff "list of differences between a set of objects” :
USER diff.emd
:.compound

5.8. Compilation of the Specification Language

The purpose of a specification language compiler is to translate the user
specification into a sequeﬂce of tables designed for efficient interpretation by the
Odin System. In addition to the straightforward mapping from the symbolic
specification to internal data structures, some preprocessing of the user

specification can be performed.

67
5.6.1. Disambiguation of Queries

Unlike many rule-based systems, the Odin System is not intended to
explore alternative legal rule sequences to satisfy a given request. Instead, a
canonical legal sequence is determined for each possible request. This canonical
sequence would then be encoded into the tables produced by the specification

language compiler.

The motivation for this is that users making requests to the Odin system
are not expected to understand which tool fragments should be invoked to satisfy
their requests. Therefore, a user would not be expected to be able to choose

between one legal tool invocation sequence and another.

5.8.2. Computation of Parameter Sets

Since a canonical legal sequence is selected for each kind of user request,
it is also possible to precompile the list of parameter types that are significant for
each intermediate product of a given request. This list significantly increases the
potential for re-use of intermediate objects. An example of this would be in the

two requests :

test.c +stdin=(data.3) :output
test.c +stdin={data.5) :output

These two requests ask for the output from compiling, linking and then running
the program "test.c” - in the first request, with input file "data.3", and in the
second request, with the input file "data.53". The only tool fragment that is

interested in the parameter of type “stdin” is the final fragment that gives the

executable and an optional input file to the host operating svstem for execution.

68

Since the compiler and linking loader are not interested in or affected by the
“stdin” parameter, the same executable object can be used to satisfy both of these
requests. The Odin system can perform this kind of optimization by utilizing the

parameter list information generated by the specification language compiler.

5.7. Experience with the Specification Language

The specification language has proven to be the heart of the object
manager. A detailed example of the use of the specification language appears in

Chapter Eight, but a couple of general observations are appropriate here.

First, the declarative nature of the specification language is critical.
Usually a tool can be added or deleted without knowledge of any other tools in
the system except for those tools that produce objects used by that tool or use
objects produced by that tool. The existence of syntactic items such as
"equivalence arcs” encourages this view by allowing the writer of a derivation
graph to first specify a tool in isolation, and then to link the input and output

object types of the tool to the appropriate existing object tvpes.

Second, the detailed nature of the specification language is also critical.
User queries ;’can be significantly simpler when the object manager cank take
advantage of the information present in a comprehensive specification. Since the
most frequent contact with an object manager is through user queries rather than
modifications to the specification, this provides significant leverage to the user of

the object manager.
2

[n many ways, these two characteristics of the specification language

rovide the tension that drives the desicn of such a language. On one hand,
& b il b

69

simplicity is desired to allow the easy addition of new tools and modification of
old tools. On the other hand, complexity is desired to maximize the amount of
information in the specification that can be used to simplify the queries. The
specification language presented in this chapter was designed to strike a balance
between these two forces. Additional experimentation and usage is required,

though, before it can be determined if the balance struck is the correct one.

CHAPTER VI

THE ODIN COMMAND INTERPRETER

In order to allow convenient access to the capabilities provided by the
Odin’System, a command interpreter was designed and implemented. Since much
of the work normally requiring explicit commands from a user are per‘formed
automatically by the Odin System, only a very simple command interpreter is

required.

There are three basic commands to the Odin interpreter : the display
command which is used to view an object, the manipulate command which is used
to create or modify an atomic object (through invocation of the Manipulate
accessing function), and ‘the command script which is used to invoke a sequence of
predefined Odin commands. In addition to the basic commands, there are a set of
utility commands that allow the user to re-invoke previous Odin commands and

to modify various characteristics of the Odin system.

8.1. Display Command

The display command displays an Odin object on the current standard
output device, normally a terminal screen. An Odin object is displayed by

specifying its name. For example,
test.c

would display the file named "test.c” in the current directory.

71
test.c +lib=(/usr/lib/simple.a) :run

would display the objects resulting from running the file "test.c” when loaded with

the library "/usr/lib/simple.a".

6.2. Manipulate Command

The basic form of the manipulate command copies the contents of one

“Odin object into another Odin object. The second object (the one being changed)

must be an atomic object, since only atomic objects can be modified. An Oairl

object is copied by appending to the name of the frst object a right-angle-
bracket (">’) and the name of the second object. For example,

test.c > test2.c

would put a copy of the contents of "test.c” into "test2.c".
test.c :run :err > test.err

would put into "test.err” a copy of the list of errors generated in attempting to

run "test.c”.

The basic form of the manipulate command will oaly be performed if the
status level of the first object is no worse than WARNING. This convention is
used because in practice we have found that if the new object is erroneous, a user
wishes to preserve the old object. In case it is desired that additional constraints
be satisfied before the copy is effected, the "guarded copy” form of an Odin

command script should be used (see "Command Seripts”).

An extended form of the manipulate command allows the user to invoke

the Manipulate accessing function with an arbitrary host system tool on a

specified Odin object. This allows the use of host system "editors” or "viewers'.
In this form of the manipulate command, appended to the object is a right-angle-
bracket (">’), a colon ('), and the name of the host system tool to be invoked.

For example,
test.c > wvi

would invoke the host system editor "vi" on the file “test.c”, while
test.c run :err > :more

would display the list of errors by running the host system tool "more” with the

list of errors as its input.

[n case the colon and host system command name is omitted, a default
host system tool is invoked. The name of the default host system tool is specified
in the Odin "Editor” variable (see "Odin Variables"). For example, if the default

host system tool is "vi", then the following two commands are equivalent :

prog.ref >
prog.ref > vi

To allow the perusal of erroneous objects, the restriction that the firse
object have a status level no worse than WARNING is relaxed for extended

manipulate commands.

8.3. Command Scripts

An Odin command script consists of an Odin object that contains a list
of Odin commands. This command script can be invoked by specifving a left-

angle-bracket ('<”’) and the name of the Odin object. For example, if "script.odin”

contained a list of Odin commands,
< script.odin

would invoke all the commands in script.odin.

8.3.1. Guarded Copy

In case it is desired that a sequence of copy commands be performed only
if no sentinels would be violated by the results of performing these commands, the
“guarded copy” form of command script invocation should be used (see Chapter
Four for a description of sentinels). In this form, the left-angle-bracket is
immediately followed by a vertical bar (). All commands in a script invoked
from a "guarded copy" must be simple manipulate commands (see "Manipulate

Commands”). For example, if the file "test.copy” contained the following text :

Just /tmp/test.c > /sys/rn.c
Jusr /tmp /fix_lib.a > /usr/lib/jobs.a

then the command :
<! test.copy

would cause Odin to check the effect of these two manipulate commands on all
the sentinels affected by them, with the changes only being made if no senﬁinels
are violated. [f simply

< test.copy

were used, then the changes would be made whether or not any sentinels were

violated in the process.

74
6.4. Utility Commands

The utility commands concern history substitution, help, and Odin
variables. History substitution allows the re-invocation of previous Odin
commands. The help commands provide some guidance to the user with respect,
to valid command syntax and semantics. The Odin variable commands allow the

user to query and modify various characteristics of the Odin interpreter.

6.4.1. History Substitution

A list of all basic commands invoked during a given Odin session is
maintained by the Odin system. This list can be displayed and modified, and

commands from this list can be selected and modified for re-execution.

The exclamation point character (') is used to refer to the Odin object
containing the history list. Since the history list can grow quite large, when it is
displayed only a given number of the most recent commands are actually
presented. The number of commands displayed is specified by the History
variable (see "Odin Variables”). The history list can be modifed by specifying the
history list as the object in a manipulate command. For example,

P2 v

would invoke the host system editor "vi" on the history list.

A given command from the history list can be selected for execution by
following the exclamation point with an integer or a word. An integer, i, selects

the I’th most recent command in the history list. For example,

1

75

would select the last basic command for re-execution. A word selects the most
recent command that contains that word, where a word is an alphanumeric

string. For example,

run
could be used to select the command

test.c :run :err

The selected command can be modified be‘fore being re-executed by

specifying the selection in the form of a manipulate command. For example,

Irun > wvi
specifies that the "run” command should be given to the host system editor, "vi",

before being re-executed. In case no change has been made by the host system

editor, the command will not be re-executed.

68.4.2. Help

In order to provide some guidance to a user of the Odin System, various
forms of help messages are provided. Currently, the help system is intended to
provide a "reminder” function for use by those already familié.r with the Odin
system. A help system with a greater "tutorial” fAavor would be necessary for a

novice user.

6.4.2.1. Syntax

A simple syntax help facility is provided to describe the syntax of Odin
commands and Odin objects. A list of topics is generated in response to a single

question-mark ('?’). Following is a complete list of the current topics, and the

results of requesting each topic.

78

?

Topics :
Syntax
Help
Quit
Display
Copy
Edit
Script
Variables
OdinFileName
HostFileName
QOperation
Parameter

ParameterKey

ParameterValue

FileType
BaseType

? syntax

[a] is optionally a
la]... is zero or more a’s

? help

? Topic

OdinFileName : 7

QdinFileName
OdinFileName

? quit
Control-D

? display

OdinFileName

? copy

OdinFileName

? edit
OdinFileName

? editor

a9
- ?

T

+ 7 : FileType

> OdinFileName

Editor

> HOST_TOOL

? history

77

!

' Editor
PHISTORY_ENTRY
PHISTORY_ENTRY Editor

? script
< OdinFileName
<} OdinFileName

? hostcommand
% INAME]...
% 'STRING’

? variables
? =
VARIABLE =?
VARIABLE =
VARIABLE = VALUE

? odinfilename
HostFileName [Operation]...
| [Operation]...

? hostfilename

FILENAME.BaseType

? operation .
+ Parameter
: FileType
@KEY

? parameter
ParameterKey [= ParameterValue]

? parameterkey
Use a help command of the form
OdinFileName +?
or
QdinFileName + ? : FileTvype
to determine appropriate ParameterKeys

? parametervalue
NAME
STRING'

(OdinFileName)

? filetvpe

79

Use a help command of the form
OdinFileName : ?
to determine appropriate FileTypes
? basetyvpe

Use a help command of the form
7

to determine appropriate BaseTypes

6.4.2.2. Atomic Type Help

[f a list of the possible types for atomic objects is desired, typing a
question mark followed by a colon ("?:") to the Odin System would generate a

message of the form :

Possible Base Types :

C orrrrrenennns C source code

VC eeeeeeeens C code stored in res format

| Fortran?7 source code

VE s Fortran77 code stored in rcs format

Nt e, an-integer

55 SR tree-building parser grammar

fSt coerennne scanner gramrmar

tgiref ... tree-building parser/scanner grammars
mf e, Fortran77 source code with m4 constructs
| SOOI include data

T, m4 Include Data

ref ... reference file containing a list of file names

where the contents of this message is derived from the user’s Odin specification.

6.4.2.3. Derived Type Help

If the name of the desired derivation has been forgotten or a list of the
possible derivations is desired, a question mark () can be put in place of the
derivation name, and the Odin System will respond with a list of the possible

derivation names that could appear at that position. For example,

80
test.c :fmt : ?
would generate the following message :

Possible Derivations from an Object of Type "fmt" :

obj ... object code from ¢ compiler

fmt formatted version

xref cross reference listing

TUD e, results of executing a ¢ program

This states that all of the following would be legal objects :
test.c :fmt :obj
test.c :fmt :fmt

test.c :fmt xref
test.c umt :run

6.4.2.4. Parameter Type Help

If the name of the desired parameter has been forgotten or a list of the
possible parameters is desired, a question mark (") can be put in place of the
parameter, and the Odin System will respond with a list of the possible
parameters that could appear at that position. For example,
test.c :fmt + ?

would generate the following message :
Possible Parameters : id lib debug

This states that all of the following would be legal objects :
test.c [fmt +id

test.c :fmt +lib
test.c :fmt +debug

81
In fact, both id and lib should be associated with parameter values, such as :

test.c :fmt +id=run5
test.c :fmt +lib=(/usr/lib/network.a)

but since this required value information is not stored in the derivation graph, an
unexpected parameter value (or lack of a value) will only be detected by the

appropriate tool after the erroneous object has been requested.

A more exact form of parameter help can be requested by specifying
which derivation you are intending to apply to the parameterized object. For

example,
test.c :fmt + ? :obj

would generate the following message :
Possible Parameters : debug

This states that the following would be a legal object :
test.c :fmt +debug :obj

Since the id and lib parameters are not relevant to the derivation from fmt to

ob], these are not listed.

6.4.3. Odin Variables

The Odin interpreter provides to the user a set of variables. These
consist of read-only variables and user-modifiable variables. A read-only variable
provides to the user status information about the Odin system; a user modifiable
variable allows the user to affect the operation of the Odin interpreter in various

ways. Currently the functions affected by changing the values of user modifiable

variables are the working directory, the default editor, the help facility, the
history facility, the log facility, and the maximum total file space used by derived

objects.

Dir

[n commands, file names that do not begin with a slash {’/) refer to fles
with respect to the current working directory. Initially this directory is the one
from which Odin was invoked by the user. This directory can be changed by

modifying the value of the Dir variable.

ErrFile

All error messages are sent to a file which is initially set to be the
standard output device. These messages can be redirected by modifying the

ErrFile variable.

Editor

The Editor variable specifies the name of the default host system tool to
be used for the abbreviated form of the manipulate command. An alternative

default editor can be chosen by modifying the Editor variable.

HelpLevel

The HelpLevel variable specifies what degree of detail should be provided
when the user asks for a list of possible derived file types (with the "file :?" help
command). Normally, only commonly used file tvpes are described, but the

HelpLevel can specify that all possible file types should be described.

History

The History variable specifies how many of the recent commands should

be listed when the history list is displayed (see "History Substitution”).

LogFile, LoglLevel

The "log” contains a brief description of each of the tools that were
invoked to satisfy the request for an object. In addition, whenever a derived fle
is delei';ed by Odin to conserve disk space, a message describing the file deleted is
sent to the log file. Since objects are saved by the Odin System between requests,
the tool executions needed to satisfy‘,a given request will vary. In particular, if an
object is requested immediately after a request for that same object, no tools will
be invoked. The LogFile variable specifies where the log information should be
placed and the LogLevel variable specifies how detailed the generated log

information should be.

MaxSize, MinSize, Size

Since the Odin system has the capability of deieting and recreating
derived objects at will, parameters of interest are how much total space the
derived files should be allowed to occupy and how much space is currenti{r being
occupied. After an Odin command is compie;ed, derived objects will be deleted if
necessary until Size is less than the Max3ize. The MinSize variable is provided to
allow Odin scripts to specify that MaxSize should be at least a specified amount,

without affecting Max3Size if it is already larger than that amount.

84
Sentinel

The Sentinel variable can be set by the user to have the value "on" or
"off". Normally this variable has the value "on" and any modification to a file
during an Odin session will cause a broadcast of the change to all affected derived
files. Any objects specified as sentinels will automatically be updated to reflect
the modification. If the Sentinel variable is given the value "off", no broadcasts
will take place, and no sentinels will be updated until such an update is explicitly
requested. The purpose of allowing the sentinels to be turned off is to allow a
modification to a file to occur without requiring the computation of the possibly
large number of sentinels affected by that modification. Tufning off the sentinels
is an inherently dangerous operation since it allows violations of the semantic

constraints specified by the sentinels.

Verify

The Verify variable can be sét by the user to have the value "on" or
“off”. Normally this variable has the value "off’ and Odin assumes that any
modification to a host system file will take placa through an Odin manipulate
command, and that the modification will be broadecast to all derived files that this
would affect. In case host system files were modiﬁe‘d other than through an Odin
manipulate command, or were modified while the Sentinel variable was turned off,
the user should set the value of the Verify variable to be "on". This indicates
that actual host system date stamps should be inspected to determine if host

system files have been modified.

85
8.4.3.1. Variable Manipulation Commands

Four commands are provided to manipulate these variables :

6.4.3.2. Show Variables

A list of the available variable names is generated in response to the

command,

Currently, this command would generate the list,

Dir Editor ErrFile HelpLevel History LogFile LogLevel
MaxSize MinSize Sentinel Size Verify

Of these variables, only Size is read-only.

8.4.3.3. Describe Variable

A description of the possible values that can be assigned to a given

variable is generated in response to the command,
Variable = ?
The descriptions of the current set of variables are as follows :

Dir =?

The current working directory.

Editor =7
The default editor.

ErrFile =7
L : Error information sent to standard output.
2 ¢ Error information sent to standard error.
filename : Error information sent to fle named "filename".

86

HelpLevel =?
1 : Help returns information for common fle types.
2 : Help returns information for all file types.

History =7
The number of lines displayed from the history file.

LogFile =7
1: Log information sent to standard output.
o

2 : Log information sent to standard error.
filename : Log information sent to file named “flename”.

Loglevel =?
1 : No log information is generated.
2 : Insert commands executed by scripts into the log.
3 : And names of objects generated by external tools.
4 : And names of objects generated by internal tools.
5 : And names of objects deleted.
6 : And names of objects touched by broadcast.

MaxSize =?
The maximum disk space (kilobytes) to be used by derived objects.

MinSize =? :
A minimum value for MaxSize (will not decrease MaxSize).

Size = ?
The current amount of disk space (kilobytes) used by derived objects.

Sentinel = ?

off : Sentinel validation off.

on : File modification validated by Sentinels.
Verify =?

off : Assume all host system files modified through Odin.
on : Check all host system files for external modification.

8.4.3.4. Show Variable Value

The value of a variable is generated in response to the command,
Variable =

where "Variable” is a legal variable name. The default values of the current

87
variables are :

Dir the directory from which Odin was invoked
Editor vi

ErrFile ...
HelpLevel ..
History

- LogFile ...
LogLevel ...
MaxSize 5000
MinSize 5000

[R R A B e

Size 0
Sentinel ... on
Verify ... off

8.4.3.5. Set Variable
A variable is given a new value with a éommand of the form,
Variable = Value
For example,

Dir = ../stc
Editor = emacs
ErrFile = err.out
MinSize = 7000
Sentinel = off
Verify = on

An attempt to set the value of a read-only variable will generate an error

message.

CHAPTER VII
AN IMPLEMENTATION

An implementation of the Odin system in the language C [Kernighan78]

has been in use at the University of Colorado’ at Boulder since 1983. In this
implementation, the objects manipulated by the Odin system are files in a Unix
file system. This implementation includes the command interpreter described in
Chapter Six. Concurrent multi-user access in either batch or interactive modes of

' operation is provided.

‘This chapter is divided into two sections which discuss aspects of the
implementation. The first section describes the implementation of the Odin
Model that was presented in Chapter Three. The second section describes the
physical database model that is used to store the information needed by the Odin

System to efficiently manage the software environment objects.

7.1. An Implementation of the Odin Model

All of the accessing functions (both basic and auxiliary) are provided in
this implementation of the Odin System. The "State” is implemented by the
Berkeley Unix 4.2 file system. The atomic objects are arbitrary files that were
created either through the Manipulate accessing function or through some means
external to the Odin System. A special directory called the FILES directory is

specified by the user as the location for all derived objects. All names in the

89

Cache refer to files in this special directory. In order to ensure that user tools
invoked through the Manipulate and Derive accessing functions do not modify

objects in the Cache, only the Odin System has write access to this directory.

7.1.1. Manipulate and Derive

1. Manipulate : <ToolName, Argument, State> -> <Argument, State>

2. Derive : <ToolName, Argument, State> -> <Argument, State>

The Manipulate and Derive accessing functions are implemented through
the creation of a command script that is given to the Unix operating system call,
"system()", for execution. When a user adds a new tool to the Odin System (by
specifying it in the Derivation Graph), he also creates a skeleton for the command
script for that tool which is stored in a special directory called the CMD
directory. A command secript skeleton is identical to a host system command fle
except that macro names are specified in place of the input files it will use and
output files it will produce. When it is necessary to genera‘te a given derived file
whose tool is an external tool, Odin creates a copy of the command script
skeleton with macro names replaced with actual file names. The resulting

command script is then given to the Unix system for execution.

For example, if the obj_f type was specified in the derivation graph as

follows :

90

obj_f <
obj-f "Fortran77 object module™
obj_key-f "Fortran77 source code file name"*
obj_sre-f "null "Fortran77 source code™*
> "Fortran77 object module information"* :
USER obj_f.cmd
o f
: fkey
: PARAMETERS(debug)

then the "obj_f.cmd" file for a Berkeley 4.2 Unix machine could be :

cd $(RUNDIR)

set source = ‘cat ¥(fkey)".f
~In -s () $source

set flags ="

if (-e $(PRM)/debug) set flags = -g’

(£77 $Hags -c $source) >&! ERRORS

sed -n '/error /p’ < ERRORS >! $(ERROR)

sed -n /warning/p’ << ERRORS >! § WARNING)
if (-e Ssource:r.o) mv $source:r.o $(obj-f)

echo "fsource” >>! $(obj_key-f)

echo "§(f)" >! $(obj_sre-f)

echo 0 >! $(OK)

In general, command script macros consist of a dollar sign (%), a left
parenthesis (’(’), a macro name, and a right parenthesis (")), with no embedded
spaces. In the preceding command script skeleton for "obj_f", the following

macros appear :

91

Since Odin interprets each occurrence of "} in a command script skeleton as the
beginning of a macro, if the string "$(" is to appear in the command script after
macro substitution, it must be escaped with an extra leading dollar sign. For

example, if the line :
set special = "§((@#
is to be a line in the macro expanded command script, it must be written as :

set special = "$§((@#’

7.1.1.1. Input File Name Macros

An input file is specified in a command script with a macro name that is
the derived file type name for that input. For parameter inputs, there is a
standard directory whose ghacro name is PRM into which all fles for parameter
inputs are placed by name. Therefore a parameter input is referenced by
#(PRM)/parameter-name. For example, with the preceding specification for obj_f,
the macro %(f) would stand for the input file of type f, the macro Hfkey) would

stand for the input file of type fkey, and the macro HPRM)/debug would stand

for the input file associated with the debug parameter.

92

In case the parameter value is a compound file, the elements of the
compound file will be linked into a directory that can be referred to as
$(PRM.DIR)/parameter-name. The name of an element in this directory will be

the same as its Odin key.

An alternative specification of an input file is with a macro name that
consists of a left angle bracket (’<’) followed by an in‘teger. Assuming k is an
integer, $(<k) would reﬂ;.r to the k’th input in the derived file type specification.
[n the example above, ¥(<{1) would be equivalent to ¥(f), and $(<2) would be
equivalent to F(fkey). The purpose of this alternate method is to allow one
command script to be used for several different but related external tools even
when they have different input file types. For example, in the following

specifications :

inc_ref-i (null@) "list of md-style included fles"* :
USER inc_m4.cmd
inc_ref-mf (null@) "list of m4-style included files™ :
USER inc_m4.cmd
s mf

the process that is run on a file of type i is the same as the one that is run on a
file of type mf. In this case, ¥(<1) would have to be used in the inc_m4.cmd
command script to refer to the input file. For example, on a Berkeley 4.2 Unix

machine, the following inc_m4.cmd file could be used :

cd S(RUNDIR)
(HTOOL)/inc_md.exe <7 §(<1) >1 (1)) >&! MERROR})
echo 0 ! %(OK)

93

In addition to the macros for input files, there are three standard fnacro
names, CURDIR, RUNDIR, and TOOL. #(CURDIR) stands for the directory
containing the host system file from which the output file is derived. HRUNDIR)
stands for a temporary working directory in which the command script will be
executed. HTOOL) stands for the standard directory in which is placed the

executables for external tools that are not provided by the host operating system.

7.1.1.2. Output File Name Macros

An output file is specified in a command script with a macro name that
is the derived file type name for that output. For simple, reference, and
compound reference derived file types, there would be just one output file. For
compound source derived file types there would be one output directory in which
each element of the compound source file will be created. For composite derived
file types, there would be one output file for each member of the composite type.

For example, with the specification :

run <
stdout "standard output from a test run (when ~out is set)”
output [data] "output files from a test run”
core-run "core dump of a test run"*
> "test run" :
'USER run.cmd

L exe

the output from the test run would be placed in the fle Hstdout), the files
generated by the test run will be placed in the directory S{output), and the core
dump if any will be placed in the file H(core-run). An example of a run.cmd file for

Berkeley 4.2 Unix would be :

94

cd $(output)

($(exe) >! $stdout) >&! (WARNING)
if ($status != 0) echo run failed >>>! $ERROR)

if (-e core) mv core H(core-run)

echo 0 >! $(OK)

Analogously with input files, an output file can be specified with a macro
name that consists of a right angle bracket (°>’) followed by an integer.
Assuming k is an integer, $(>k) would refer to the k’th output in the derived file
type specification. In the example above, $(>1) would be equivalent to $(stdout),
5(>2) would be equivalent to %(output), and 3(>3) would be equivalent to §{core-

run).

In addition to the macros for output files, there are three standard
macro names for error reporting : ERROR, WARNING, and OK. If any fatal
errors are encountered, these should be written to the file specified as HERROR).
[f any recoverable errors are encountered, these should be written to the fle
specified as §WARNING). Finally, when the script terminates, a line consisting
of the character '0’ should be written to the file specified as ${OK). The file
$(OK) will be used by Odin to determine if the script was able to terminate - if
the script itself dies $(OK) will be left empty and Odin will assign abort status to
the output of the tool. If the script did not abort, the files $(ERROR) and
HWARNING) will be used by Odin to determine if error or warning status should

be set for the output of the tool.

95
7.1.2. Equal

3. Equal : <Object, Object> -> Boolean

The Equal accessing function is implemented as a sequence of two tests.
First the size of each object is determined through a call to the host operating
system. If the sizes differ, Equal will immediately return with the value False. If
the sizes are identical, a byte by byte compare of the two input files is performed.

Equal will then return True only if both files are equal at every byte position.

7.1.3. ExtendCache

4. ExtendCache : <State> -> <ObjectName, State>

In early implementations of the ExtendCache accessing function, an
attempt was made to allocate names for derived objects corresponding to the
atomic objects from which they were derived. For example, the derived object

named
/usr /test.c key
would be given the host name
Jusr /test.c /key

Unfortunately, "/usr/test.c” is the name of an atomic object, and cannot also be
used as a directory for the placement of derived objects. This name collision was
initially resolved by modifyving the names for derived objects. However obscure
the modified name might be though, there always is the chance that this derived
name will collide with the name chosen by a user for an atomic object. Another

problem that arises in multi-programmer projects is that a user would frequently

J

96

like to generate derived information from atomic objects of other users. If the
derived objects were placed in the same directories as the atomic object from
which they were derived, all users in a project would require write permission to

the source directories of all other users in the project.

The solution to these problems used in the current implementation is for
the user to specify a special directory in which all derived objects should be
placed. This has the advantage that the user’s source directories are no longer
cluttered with the various derived objects. This is particularly important when
the user is browsing through source files or archiving source files. Another
advantage of placing all derived files in a special location is that it helps prevent
the users from disrupting the contents of derived fles. Since the purpose of
derived files is to provide a cache of valid derived information, it is vital that this
cache not be corrupted if its contents are to be re-used. Any derived file can of
course be copied into a user directory and then modified, since the copy is then no
longer a part of the cache. An initial version of this solution still derived the host

name of an object from it’s associated node name. For example; the object node

named
/usr /test.c key

would be given the host name
Juser_specified_directory /usr/test.c /key

But this approach resulted in long skinny directory trees with unacceptable time
and space costs associated with generating the large number of intermediate

directories. The current implementation associates a unique "DataNumber” with

97

each derived object, and this DataNumber is then used to locate the object in a
short fat directory tree. This alternative method produced up to a 50% decrease

in the storage space required for derived objects.
7.1.4. Move
5. Move : <ObjectName, ObjectName, State> -> State
The Move accessing function is implemented with the Unix system call
“rename()".

7.1.5. Delete

6. Delete : <ObjectName, State> -> State

The Delete accessing function is implemented with the Unix system-call

"unlink()".

7.1.86. Size

7. Size : <ObjectName, State> -> Integer

The Size accessing functiﬁn is implemented through access to the data
returned by the Unix system call "fstaf,()".‘
7.1.7. Obj_Type

8. Obj_Type : <ObjectName7 State> -> TypeName

The Type of an atomic object is based on the extension of the host svstem file
name for that object. The extension of a file name is the string following the last

period in the final segment of the file name, where segments are separated by a

98
slashes. For example, the extension of each of the following file names is "¢ :

Jusr /geoff /src /test.c
sre/test.c

test.c

test.l.c

7.1.8. Obj_Key
9. Obj_Key : <ObjectName, State> -> KeyName

The Key of an atomic object is based on the last segment of the host system file
name for that object. It consists of the string preceding the extension, without
the trailing period. For example, the key of the object with the host name

"/usr/geoff/src/test.c" is "test”.

7.2. The Physical Database Model

All information concerning the objects in the Odin system are stored in a
database that is implemented as a single Unix file called the INFO fle. This
database is structured as a network with four distinct types of nodes. A giveq
node is identified by its byte offset within the INFO fle. The following sections
provide a high level description of the structures and information stored in the
INFO file. In order to illustrate these structures, the following example will be

used.

7.2.1. Example
The INFO file in this example is the result from the request :
Jusr/test.c :o

which is the object code resulting from compiling /usr/test.c.

39

For this example, a simple environment has been specified that has as
atomic objects source code and include files in the C language. The purpose of
the environment is to provide compiled object modules. Source code can contain

statements of the form :
%include "filename.h"

which are interpreted by the compiler to mean that the text of "filename.h”
should be inserted at this point. Included files can themselves contain include

statements.

‘In this example, the user has created three files in the directory /usr :
test.c, sys.h, and file.h. The first file, test.c, contains the source text for a
program written in the language C. This file contains two include statements
that refer to the files sys.h and file.h. The file sys.h also contains an include

statement, which refers to the file file.h.

The environment has been specified so that a source code file is only
recompiled if it changes or if one of the (possibly nested) included files has
changed. In addition to the command script to invoke the host system compiler,
the user has provided a command script for a tool fragment that scans a file for
include statements and generates a list of the filenames specified in these

statements. The full specification for this environment is as follows

10606

o "object module” :
USER obj_c.cmd
: (all_inc)
: ckey
e
all_inc (h) "list of C-style transitively included files™™ :
COLLECT
: trans_inc
:ine
trans_inc (h) "list of C-style indirectly included files™ :
HOMOMORPHISM lall_inc
tinc
inc (h(@) "list of C-style included files"* :
USER inc_c.cmd
: .simple
ckey "name of C file™ :
KEY
e

h ATOMIC "C-style included fle"

¢ ATOMIC "C source code”

7.2.2. Object Nodes

In the Odin database there is one "Object Node" for each object known
by the Odin system. An object is either an atomic object or a derived object (see
Chapter Four). A Unix directory is considered to be an atomic object, and
therefore an Object Node corresponding to each known directory will be present

in the database.

[n the specified example, following the request "/usr/test.c :0" there will
be fifteen object nodes in the database : one for the directory "Jusr”, three for the

files "test.c”, "sys.h", and "file.h”, and eleven for derived objects (see Figure 7.1).

101
The names of these objects are :

/usr

test.c

sys.h

file.h

test.c :inc
test.c :trans_inc
test.c :all_inc
test.c :key
test.c o

svs.h :inc

svs.h :trans_inc
sys.h :all_ine
file.h :inc

file.h :trans_inc
file.h :all_inc

‘The following sections describe the information stored in each of the object nodes.

7.2.2.1. Object Node Names and the Object Node Tree

Each object node is given a name, where a name is broken into a
sequence of segm.ents. The nodes are connected in the form of a tree, where the
segments of the name (reading left to right) specify the path from the root of the
tree to the object. Ounly the last segment of the name is stored in the object
node, since the preceding segments are contained in the nodes found by walking

up the tree to the root.

The name of an object node corresponding to an atomic file is the host
system pathname for that file. Each directory name in the pathname of the file
specifies a segment of the object node name for that file. For example, for the

atomic object

Jusr/test.c

102
the object node name would be
root-usr-test.c

A hyphen (') is used here to indicate the separation between two object name
segments, and "root” is the name of the object node that corresponds to the root

directory of the host file system.

The name of a derived file consists of the name of the host system file
from which it was derived followed by a sequence of name segments corresponding

o

to how the file was derived. For example, the object specified as
Just [test.c key
would be named

root-usr-test.c-key

7.2.2.2. Object Class and Type

The Odin system associates with each object a "class” and a "type". The
class of an object specifies whether the object is atomic or derived. If an object is
atomic, the type of the object is determined by its host system name. If the
object is derived, the type of the object is determined from the kind of tool that

produced the object.

In the example database, the type of the directory "/usr” is ".simple”
(this is the default tvpe for atomic objects with a missing or unrecognized file
name extension). The type of "test.c” is "c¢” and the type of "sys.h” and "fle.h” is
'h". The type of the derived objects is specified by their final derivation (ie.

tre

inc”, "trans_inc", "all_inc”, "kev", or "o,

103

7.2.2.3. Base Object

The node for a derived object contains a pointer to another object called
the "base object”. The base object is defined in terms of another set of objects
called "source objects”. A source object of a derived object is an object from
which can be derived all sources needed to produce the given object (a source
object can be one of these sources). The base object for a given derived object is
then defined as the unique source object that can be derived from all other source

objects of the given object.

In the example, "test.c” has no base object since it is an atomic object
(see figure 7.2). The objects "test.c :inc”, "test.c :key", and "test.c :0" have "test.c"
as their base object, since each of them can be derived from "test.c”, but cannot
be derived from anything that is derived from “test.c”. Both "test.c" and
“test.c :inc" are source objects for "test.c :trans_ine” and test.c :allline”, but

“test.c :inc” is their base object since it can be derived from “test.c".

7.2.2.4. Object Key

Every object has an associated key which is a character string. For
atomic objects, the key consists of the last component of the host path name for
the object with the file extension removed. For example, the key of the object

“/usr/sys.h" would be "sys".

For compound source derived objects (see Chapter Five), the tool that
produces the derived object will assign a distinct key to each element of the
compound source object. For all other derived objects, the key is identical to that

of the Base Object of the derived object. For example, the kev of the object

104
"test.c :all_inc” would be "test".

The principal purpose of a key is to allow the user to select a specific
component from a compound source object. Assigning keys to all objects allows
this kind of selection from compound reference objects as well. Unlike keys for
elements of compound source objects, keys for elements of compound reference
objects are not necessarily unique. Therefore, the result of selecting by key from
a compound object is another compound object consisting of all those elements

that have the appropriate key (see "Selection” in Chapter Four).

7.2.2.5. Object Status

The status of an object is stored in the object node associated with that
object. The status value is either OK, WARNING, ERROR, CANNOT_READ,
NO_FILE, or SYSTEM_ABORT. The interpretation of these status values is

described in Chapter Four.

In addition to the status of the object itself, if the object is a compound
object, the minimum status of all objects that are elements of the compound
object is also stored. This element status is stored to avoid searching through the

element graph each time this information is required.

Finally, a third status, the "non—ab-ort’status", of an object is also stored
in the object node. Whenever the inputs necessary to create an object are
erroneous, the Odin system will not attempt to create the object, but rather give
SYSTEM_ABORT status to its object node. Instead of deleting the old value of
the object, this old object is kept for potential future use. The old status of this

object is then stored as the non-abort status. Under certain conditions, this

105
object can be simply restored rather than recomputed, in which case its pre-abort

status must be available so that it can also be restored.

7.2.2.8. Odin Clock

The Odin system keeps an internal clock which ticks every time some
atomic object is modified. Associated with each object is a set of dates which are

used to determine whether the object is valid (up-to-date).

7.2.2.8.1. Modification Dates

There are three "modification dates” associated with an object. The
“primary modification date” indicates the last time the object was modified. The
cher two dates, the "dependency modification date” and the “element
modification date” are computed from the primary modification dates of other
objects in the system. The dependency modification date is the maximum
primary modification date of all objects whose contents can affect the contents of
the given object. The element modification date is only computed for compound
objects, and it is the maximum primary modiﬁcation date of all elements of the

given object.

The dependency and element modification dates are computed and
stored to improve the efficiency of determining whether a given object is valid. In
particular, the validity of a derived object is determined by scanning the dates of
all other objects upon which the derived object depends. If a dependency
modification date has already been computed for an object, this scanning can be

omitted.

108

7.2.2.8.2. Verification Dates

There are two "verification dates” associated with an object. The
"primary verification date” contains the value of the system clock at the last time
‘the system verified that the object was valid. The "element verification date” is
only computed for compound objects, and it indicates the last time the system

verified that all the elements of the object were valid.

Both verification dates are used to improve the efficiency of determining
whether a given derived object is valid. If the verification date is equal to the
current system date, then the object is guaranteed to be valid. Without a
verification date, the system would have to check the modification date of every
atomic object upon which the derived object depended to determine if the derived

object were valid.

7.2.3. Source Graph

The object nodes are linked together via "source nodes” to form a
directed acyclic graph called the Source Graph. Each source node specifies an
edge in the Source Graph. An edge in the source graph from object node X to
object node Y indicates that the object corresponding to X is produced by a tool

that uses the object corresponding to Y as input.

7.2.3.1. Source List and Qutput List

To allow convenient traversal of the source graph, source nodes are
linked together through two kinds of lists, the Source List and the Output List.

The Source List is a singly linked list of Source Nodes that specifies the complete

107
set of objects needed as input to produce a given object. Each Object Node
contains a pointer to the head of its Source List. The Output List is a doubly
linked circular list of Source Nodes that specifies the inverse of the "source”
relationship, namely, the complete set of objects that are produced by tools that
use a given object as input. Each Object Node contains a pointer into its Output
List.

A source node contains a pointer to its source Object Node and a pointer
to its output Object Node. In addition it contains fields for implementing the
Source List and Output List. The asymmetry in the implementation of Source
Lists and Qutput Lists is because source nodes can be deleted from Output Lists
but not from Source Lists. The doubly linked list implementation of Qutput Lists
takes up more sp‘ace but allows for more efficient implementation of this delete

operation.

An example source graph is drawn in Figures 7.1 and 7.2. Figure 7.1

contains the Source Lists and Figure 7.2 contains the Output Lists.

108

T
T %
test.c :inci sys.h zinc

fle.h :all_inc i

sys.a all_ine

] object node O source node —— qil pointer
—— source list pointer O object node pointer O"‘ next source node pointer
e \

Source Graph with Source Edges
gure 7.1

109

N
test.c 10 |

.E
X

[object aode Q source node ——=+ il pointer

= o O N |

~ output list polnter -~ opject node gointer (= next sourcs node pointer
‘ -

!

Source Graph with Qutput Edges
TFigure 7.2

110

7.2.4. Element Graph

The object nodes are linked together via "element nodes” to form a
directed (potentially cyclic) graph called the Element Graph. Each element node
specifies an edge in the Element Graph. An edge in the element graph from
object node X to object node Y indicates that the compound object corresponding

to X has as an element the object corresponding to Y.

7.2.4.1. Element List and Compound List

To allow convenient traversal of the element graph, element nodes are
linked together through two kinds of lists, the Element List and the Compound
List. The Element List is a singly linked list of Element Nodes that specifies the
complete set of objects that are elements of a given compound object. Each
Object Node contains a pointer to the head of its Element List. The Compound
List is a doubly linked circular list of Element Nodes that specifies the inverse of
the "element” relationship, namely, the complete set of compound objects that
contain a given object. Each Object Node contains a pointer into its Compound
List.

An element node contains a pointer to its element Object Node and a
pointer to its compound Object Node. In addition it contains fields for
implementing the Element List and Compound List. The asymmetry in the
implementation of Element Lists and Compound Lists is because element nodes
can be deleted from Compound Lists but not from Element Lists. The doubly
linked list implementation of Compound Lists takes ﬁp more space but allows for

more efficient implementation of this delete operation.

111

An example element graph is drawn in Figures 7.3 and 7.4. Figure 7.3

contains the Element Lists and Figure 7.4 contains the Compound Lists.

!) . i v i . i
|test.c :inc | 1 svs.h :inc 1 file.h :inc |

L R o saamuand

/ /A /l
_ | | T
T | } 7
| | | |
— ; -\ I ey
[test.c :keyi 1\ jtest.c ::ramJnc% ‘\ 2 svs.h trans_inc 1 K | fie.h wraas_inc |
' \ 3 f \\ A | Xi
\ | . | / |
) / \ !
} ! A
‘ /
l | | /
]) ; 3 i .
!tes:.c :all_inc |]sys.hoalline ; f dle.h :all_inc |
b | i
. \\ Iy | ;
\ | | /
("\ \ () NNy g —
. g \ /S/ PSS i
i
|
{ test.c 0 |
L —

ail pointer

N N \ i
object node () element node et
b R L , \ .
~, object node pointer (== next element node pointer

. elerment list pointer

-

Element Graph with Element Edges
Figure 7.3

test.c sys.h file.h §

}tesac ‘:key
L._.._._l_.__.._..

; . i " . / : N |
jrest.c :ail inc! i | s¥s.h sall_ine f { f file.h :all_inc }
| / '
[\ | |
' \ % g‘
na \ g \)
- S— | S
y ' \ (N o ‘
e A\ /

[T object node (7} element node —— ail pointer
—— compound list pointer ~" object node pointer —= next element node pointer
f ¥

Element Graph with Compound Edges
Figure 7.4

113

114
7.2.5. Parameter Lists

Each Object Node contains a pointer to a (possibly empty) Parameter
List that specifies the list of parameters that were used to produce that node
from its Base Object. A Parameter List is implemented as a singly linked list of

Parameter Nodes.

Each Parameter Node specifies a single parameter. It contains a field
indicating the type of parameter, and two felds for storing the value of the
parameter. A parameter may have as its value either a character string or an
- object. If the value of a parameter is a character string, this string is stored in
the first value field; if the value is an object, a pointer to the appropriate object
node is stored in the second value field. A Parameter Node also contains a field

used to implement Parameter Lists.

7.2.86. LRU List - Automatic Space Maintenance

The Odin system maintains a data structure called the LRU (Least
Recensly Used) list. This list contains all object nodes for which objects exist.
This list is used by the Odin system to determine which objects should be deleted
when space is needed. Whenever a referénce to an object is made, the object node
associated w~ith that object it is placed at the tail of the LRU list. Whenever the
space occupied by derived objects is greater than the user specified maximum,
object nodes at the head of the LRU list are removed and the corresponding
objects are dileted until the space occupied by derived objects is less than the

user specified maximum,.

115
7.2.7. Concurrent Access

To ensure correct usage of the Odin database during multi-user
concurrent access, some form of database locking is required. The observed usage
pattern of the Odin system involves short bursts of database access followed by
lengthy tool invocations or waits for further user requests. Thus, it has proven
satisfactory in practice to lock the entire database for a given user while that
user is accessing the database. The’ database is then unlocked when a tool is
invoked or when the system prompts the user for additional input. Different
usage patterns might require that the database locking take place at a finer level,
Additional experimentation is required to determine if these different usage

patterns arise in actual practice.

CHAPTER VIII

WRITING AN ODIN SPECIFICATION

In March of 1985, after the Odin system had been successfully used to
integrate the Toolpack tool syS;;em and most common Unix tools, the design and
implementation of Odin was frozen. This was the appropriate time to attempt to
specify a compietely new tool system. Unlike the previous systems integrated,
such a new tool system might have characteristics and problerﬁs that were not
being considered during the development of the Odin system. This test would

thereby provide a qualitative measure of the fexibility of the Odin system.

The system selected for this test was the GAG attribute grammar
system [Kastens82]. The GAG system takes as input an attribute grammar
specifying a language analyzer and the code for an associated lexical analyzer,
and produces a pascal program that performs the specified analysis. The core of
the GAG system consists of sixteen executable tool fragments - thirteen tools that
are invoked in sequence to;pmduce the analyzer and three support tools that
produce information about the attribute grammar. In addition, there are six
support tools : two tools for producing a parser, a simple tool for producing a
lexical analyzer, a tool for combining the generated Pascal program fragments
into a complete program, and two host system dependent tools that produce an
executable binary from the generated pascal analyzer and then run the

executable analyzer on user specified input.

117

The GAG system test consisted of two distinct phases. In the first phase
the Odin specification of the GAG system was designed to follow as closely as
possible the way GAG is used outside of Odin. In the second phase, this

specification was significantly modified to take advantage of the expressive power
of the Odin specification language.

In both phases, the self-imposed constraint was that the executables for
the GAG tool fragments 4must remain unchanged from the original system. The
source code for the GAG tool fragments was in fact available, but restricting the
specification to making use of the original tools provides a more severe test of the

expressive power of the Odin specification language.

8.1. Phase 1 - Producing the Derivation Graph

When used outside of Odin, the CAG system is controlled by a large host
system command script, with separate command seripts for some of the suppors

tools. There are four basic operations in the GAQ script :
(1) An executable tool is invoked.

(2) A file is linked to a new name.

(3) A file is copied fo a new file.

{4) A file is deleted.

[n addition to these operations, there are flow of control constructs that
abort certain parts of the script after errors take place, and attempt to save
information for later re-use. Since error-abort and re-use of information are

automatically performed by the Odin svstem, these constructs can be ignored

118
while producing the Odin specification.

The major work of producing an Odin specification consisted of
determining what were the significant pieces of information produced by the GAG
system, and specifying which tool fragment produces a given piece of information.
In the simplest case, where a tool fragment creates a new file, it is trivial to
determine the object and what tool produced it. In other cases, some analysis is

required to identify what are the significant objects.

An Odin specification consists of two parts. First, there is the derivation
graph describing the types of objects in the system, what tool fragment is needed
to produce each type of object, and what types of objects are needed as input by
a tool {ragment. Second, there is a set of host system command scripts, one for
each tool fregment. For GAG, producing the host system command scripts is
trivial, since most tool fragments consist of a few lines from the original GAG
script. Producing the correct derivation graph requires some care, though, since
the extensive moving, copying, and tool side effects can obscure the linkage
bet*&een the tool fragments. In particular, the following situations require some

care :
A file is modiﬁed‘(by a tool :
[n this case there are really two objects - the file before the tool invocation
and the file alfterwards.
A file is linked :

[n this case there are two names for the same object.

119

A file is copied :
In this case there are two names for the same object, until one of the objects

is modified in some way.

A file is deleted :
Any reference to the name of this file is illegal until some file is later linked

or copied to this name.

8.1.1. Converting a Command Script

An Odin derivation graph is a "hyper-graph”, where a hyper-graph is like
a directed graph except that an edge connects a set of nodes to another seﬁ of
nodes rather than just one node to another node. Each node in the derivation
graph corresponds to an object type, a constant object, or a parameter object (see
Chapter Five). An object type is used to represent an input file that is provided
by the user or a file that is produced by a tool. A parameter object is an input
file that is optionally prtovided by the user. A constant object is used to represent
a file that is provided by the tool system (the tool writer or installer can modify
this file, but a user cannot). Each hyper-edge then corresponds to a tool

fragment.

A derivation graph can be produced from a command script by starting
with a simple initial specification describing the input files, and then successively
refining this specification based upon the sequence of operations in the command
script. In order to produce the appropriate derivation graph, it is convenient to

annotate nodes with the flenames used in the command script. These

annorations will take the form of sets of sets of filenames. The inger sets (sets of

120
filenames) will be "link-sets” and will indicate the set of filenames that are linked
to a given object. A link-set can be thought of as a single object, where the
filenames in the link-set indicate the set of distinct aliases for that object. The
outer sets (sets of link-sets) will be "copy-sets” and will indicate the set of objects

that are equal due being coples of each other.

Each operation in the command script will then have two potential
effects (;n the graph : either introduce a new node or modify the annotations.
Since the operations specified in the command script are in terms of filenames
rather than ‘objects, the annotations are necessary to provide a mapping from a

command script filename to the appropriate node of the derivation graph.

8.1.2. Algorithm for Conversion

To initialize the derivation graph, create a distinct node for each fle
that is assumed to exist before the invocation of the script. Each node is
annotated by a single name vector that contains the name of the corresponding
input file. Then, for each line of the command script, modify the specification as
follows -

File X is linked to file Y :
Add Y to the name vector that contains X, If there was no name vector
containing X or if there was already a name vector containing Y, signal an
error and abort.

File X is copied to file Y :

Delete the name vector containing Y from its current annotation set and

add it to the annoration set that contains the name vector containing X. [f

121
there was no name vector containing Y, add a new name vector containing

just Y to the annotation set of the name vector containing X. If there was

no name vector containing X, signal an error and abort.

File X is deleted :
Delete X from the vector that contains it. If the vector is now empty, delete

the vector from its annotation set.

Tool 7 is invoked :
For each file that is created or modified by tool Z, create a new node in the
derivation graph (a new object type). If a new file is being created, add a
vector containing the name of this file to the new node. If an old file is
modified, move the vector containing the name of this old file to the new
node. Create a hyper-edge to the newly created nodes from the nodes that
are annotated by vectors containing the names of the input files. Annotate

this edge with the hame of Z.

8.1.3. The GAG Command Script

The GAG command script that invokes the thirteen basic tools and the
three auxiliary tools consists of 230 lines of Unix CSH commands (see Appendix

A). The kinds of CSH commands that appear in this command script are :

D a comment

ep : copy one file to another

In : line a file to a new name

rm : remove (delete) a file

if ... endif : conditionally execute a set of statements

toolname sexecute a tool (all toolnames begin with "fexec”)

As indicated earlier, conditional execution constructs can be ignored. In
particular, the construct

toolname | set continue = false

assigns the value "false” to the variable "continue” when "toolname" aborts, and

then the outer conditionals of the form :
if ($continue) then

are used to skip later tools. The nested conditionals of this form are used to
allow the re-use of information that is still valid from earlier runs. The Odin
System automatically provides both of these capabilities, therefore the derivation

graph can be designed with the assumption that "conbinue” is always "true”.

In order to demonstrate the process of producing a derivation graph, the
initial derivation graph for the GAGC svstem will be described and the
modifications resulting from the frst page of the GAG command script will be

detailed. The complete derivation graph for the GAG command script can be

found in Appendix B.

8.1.4. The GAG Derivation Graph

There are two user specified input files to the basic GAC system. The
first is a file named "s.out” containing an attribute grammar written in the
ALADIN language [Kastens84]. The second is a text file named "c.out” containing
the list of options for this run of the GAG system. [n addition to the user
provided input, there are seven svstem provided inputs that are named

"/dev/null”, "/sys/st”, " /sys/ctrltab” "/svs/do.all”, "/sys/patable”, "/sys/dt", and

123

"/sys/error.text”. Therefore the initial derivation graph for the GAG system
consists of two object type nodes and seven constant object nodes. The two
object type nodes are annotated with a name vector consisting of the filename
"s.out” and "c.out” respectively, while the six constant object nodes are each
annotated with a name vector consisting of "/dev/null”, " /sys /st" "/sys/ctrltab”,
"/sys/do.all", " /sys/patable”, "/sys/dt", and "/sys/error.text"” respectively. The

resulting derivation graph appears in Figure 8.1.

This initial derivation graph is then incrementally refined based on each
line of the command script. A description of this process applied to the first page
of the command script follows (each line of the command script will be preceded

with a line number).

T

<fsys/de> || < /sys/error.bext™>
|]

L</dev/null> t/sys/patable‘)"
i

</sys/do.a[li§ <c.ous> 1 L <s.out> ’

Derivation Graph - Stage One
FIGURE 8.1

</sys/ctrlitab>

9
J </sy5/st>—;

124

1: LRk Kok ook kokok K execute COﬂt[‘Ol KRR K R Rk Rk

Since this line is a comment, it has no effect on the derivation graph.

cp /sys/st c.st
cp /dev/null p.infofile
cp /sys/ctrltab t.ctritab

cp /dev/null t.ctrl
cp /sys/do.all t.ctrlemds
cp /dev/null t.do

=1 B Ul Wy

These copy commands have the following effects. Add a name vector containing
"c.st” to the node that contains the name vector containing "/sys/st". Add a
name vector containing "p.infofile” to the node that contains the name vector
containing "/dev/null”. Add a name vector containing "t.ctrltab” to the node
that contains the name vector containing "/sys/ctritab”. Add a name vector
containing “t.ctrl” to the node that contains the name vector containing
"/dev/null". Add a name vector containing "t.ctrlemds” to the node that contains
the name vector containing "/sys/do.all”. Add a name vector containing "t.do” to

the node that contains the name vector containing "/dev/null”. The resulting

derivation graph appears in Figure 8.2,

8: In p.infofile infofile
9: In t.ctritab ctabfile
10: In c.st stabfile

11: In t.ctr! ctrifile
12: ln t.ctrlemds ctricmds
13: In t.do etrlflow

14: In c.out infile

These link commands have the following effects. Add "infofile” to the name vector
containing "p.infofile”. Add "ctabfile” to the name vector containing "t.ctrltab’.

Add “stabfile” to the name vector conbuining "c.st”. Add "cerlfile” to the name

</dev/null>
<p.infofile>

<b.ctrl>
<t.do>

1
</sys/patable> </sys/dt> L</sys/error.text>
|

i

[</sys/st> ; </sys/cnrltab>*} </sys/do.all> ’ {
| | <c.out> <s.out>
L <Le.st> } <t.ctritab> 1 <t.ctrlemds> ‘ L

Derivation Graph - Stage Two
FIGURE 8.2

vector containing "t.ctrl”. Add “ctrlemds” to the name vector containing
“tetrlemds”. Add "ctrlfiow” to the name vector containing "t.do”. Add "infile” to

the name vector containing "c.out”. The resulting derivation graph appears in

Figure 8.3.

N [! i“

<p.infofile, infofile>
<fsys/dt> ’ </sys/error.text>

</sys/patable> ’

|
<t.ctrl, ctrifile> I | ,L
|

<bt.do, ctriffow>

</dev/null> }
| |

-

<c.out, infile> <s.out>>

|

Y T

! <t.coritab, <t.ctrlemds, l
J i

! <c.st, stabfile> |
e T ctabfile> |
i I

ctricmds >

[
F(V‘/;ﬁ '</sys/ctritab> | </sys/do.all> |
J/8ys/st> :

Derivation Graph - Stage Three

FIGURE 8.3

15: /exec/ctrl | set continue = false

In order to determine the effect of "/exec/ctrl", either documentation must exist
that describes the tool (possibly the source code itself) or the tool must be tested
to determine which objects it uses as input, which new objects it creates, and
which old objects it modifies. Using a combination of these two techniques, it was
determined that "/exec/ctrl” uses as input the files "infile”, "stabfile”, "ctabfile”
and "ctrlemds”. It produces no new files, but modifies "ctrlflow", "stabfile”,
"infofile”, and "ctrlfile”. This results in the addition of four new object type nodes,
where the name vectors containing the filenames of the modified files are moved
from the nodes that previously contained them to the appropriate new nodes.
These name vectors are <t.do, ctriflow™>, <c.st, stabfile>, <p.infofile, infofile >,
and <t.ctrl, ctrifile>, respectively. Finally, a hypeped’ge is created from the four
input nodes to the four output nodes. The resulting derivation graph appears in

Figure 8.4.

16: rm infofile ctabfile stabfile ctrifile ctrlemds ctriflow infile

The seven specified filenames are removed from their respective name vectors. In
each case, at least one filename remains in each name vector, therefore no name

vectors are deleted. The resulting derivation graph appears in Figure 8.5.

</dev/null> </sys/patable>
\ ! J

</sys/error.text>

</sys/dt> 1

</sys/ctrltab> | </sys/do.all>

1 </sys/st> <t.ctrltab,

<t.ctrlemds, <c.out, infile>

ctabfile> i_ ctrlcmds>J

<s.out> w]
|

A

[
<(c.st, stabfle> i f <p.nfofile, infofile> |
| !

!
<t.do, ctriffow>

d

-

§ <t.ctrl, ctrifile>
1
i

- Derivation Graph - Stage Four
FIGURE 8.4

[</dev/null> {i/sys/patab[e>} </sys/dt> </’sys/error.text:I
</sys/car1tab>] </sys/do.all> I)
<[sys/st> <Lcout> <s.out>
<t.ctritab> <t.ctrlemds> f .

[

I3
|

<b.do> {‘ <est> E ’ <p.infofile>
|

A
a
v

Derivation Graph - Stage Five
. FIGURE 8.5

l?: # KK KRR KK Kk Rk execute scanner ook ko sk kok ok
18: if (fcontinue) then

19: cp /dev/null t.gsfile

20: In p.nfofile infofile

21 In c.st stabfile

22 In s.out infile

23: In t.ctrl ctrifile

24: In t.gsfile gsfile

25: Jexec/scanner || set continue = false
26: rm infofile stabfile infile ctrlfile gstile
27: endif

As before, the comment has no effect on the derivation graph. The conditional

statement is assumed to succeed, since the Odin system will automatically handle

129

the situation where a tool fails. The copy command adds a vector containing
“t.gsfile” to the node containing "/dev/null”. The link commands add “infofile",
“stabfile”, "infile”, "ctrifile”, and "gsfile” the name vectors containing "p.infofile”,
“est”, "scout”, "t.ctrl”, and "gsfile” respectively. The tool "/exec/scanner” uses as
input the files "infofile”, "stabfile", “infile”, and "ctrlfile”. It produces no new files,
but modifies "infofile”, "stabfile”, “ctrlfile”, and "gsfile”. This causes the creation
of four new object type nodes, a_nd a new hyper-edge connecting the four input
nodes to the four output nodes of the scanner. Finally, the remove command

deletes "infofile”, "stabfile", infile”, "ctrifile”, and "gsfile" from their respective

name vectors. The resulting derivation graph appears in Figure 8.6.

This derivation graph can then be described in the ‘Odin specification
language (see Chapter Five). Nodes éhat correspond to user created input objects
are declared to be ATOMIC. Nodes that correspond to constant objects are
referred to directly by the Odin scripts, and therefore do not, need to be declared.
Each edge (a tool) is then declared as a production, where this production
contains a declaration for each of the objects produced by that tool. The textual
representation for the derivation graph of Figure 8.6 appears in Figure 8.7. The
choice of names for the object types is arbitrary, but in general the annotations of
the node that corresponds to the object type were used as a guide. If the
filenames in the script seemed to be poorly chosen, simple mnemonic names were
used. For example, "ala” and "opt" were thought to be more intuitive names for
the two atomic tvpes than "s.out” and "c.out”. The remainder of the GAG
command script is processed in an analogous fashion. The resulting derivation

graph can be found in Appendix B.

130

</sys/si>

7 f
</dev/nuil> </sys/patable> I </sys/dt> ij/sys/error.text>
1
<[Jsys/ctritab> <[sys/do.all>

<t.ctrltab>

[
<c.out> <s.oubt>
<bt.ctrlemds>

N

] o]

L <b.gsfile> f

Derivation Graph - Stage Six
FIGURE 8.5

131

scan <

scan_stab "symbol table”

scan_gs "global symbols”

scan_i "info file™*

scan_c "ctrl file"*

> "lexical analysis” :

USER scan.cmd

:ctri_stab
:ala
setrld:ctrl_e

ctrl <
ctrl_cmds "host system commands”
ctrl_stab "initial symbol table”
ctrl_i "info Hle™*
ctrl_c "ctrl file™
> "control analysis” :
USER ctrl.emd
copt

opt ATOMIC "GAG options”
ala ATOMIC "ALADIN grammar”

Textual Derivation Graph
FIGURE 8.7

8.2. Phase 2 - Improving Efficiency

8.2.1. Methods of Optimization

There are three main methods that can be used to improve the runtime
efficiency of an existing tool system when it is integrated under the Odin system.
[n each of these methods the improvement in runtime efficiency is due to

increased re-use of previously computed objects.

132
8.2.1.1. Abstraction

The first method is to introduce tools to generate intermediate objects
that are abstractions of the source objects, where an abstraction is an object that
can remain unchanged when an object from which it is derived changes. The
Odin system understands that if an abstraction is not affected by a source level
modification, then any objects previously derived from that abstraction are still

valid.

For example, a tool could be written that strips out the comments from
a source object containing program source. The derived object containing
executable binary could then be derived from the "de-commented” abstraction. If
a comment In the source object were changed, the Odin system would generate
the de-commented abstraction, notice that this abstraction has not changed from
the previous version, and therefore mark the executable binary from the old

version as still valid.

8.2.1.2. Partitioning
The second method is to introduce a tool to automatically partition an
existing object, and then apply later tools to the elements of the partition, re-

using objects that are derived from elements of the partition that have not been

affected by source level modifications.

For example, a source object for a programming language that provides
facilities for separate compilation often can be partitioned into several smaller
objects (such as procedures), each of which could be compiled separately. A tool

fragment can usually be provided that will automatically perform this

133

partitioning. When the source object is to be compiled, first it is automatically
partitioned into objects that each contain a single procedure, andv then each
procedure is compiled separately. When the source object is modified and then is
to be compiled, again it is first automatically partitioned, and only those.
procedures that have been modified will be recompiled. For the unmodified

procedures, the previously computed compilations will still be valid.

8.2.1.3. Parameterization

The third method is to identify objects that contain default information
that can be optionally modified by the user when making requests. These objects
can be partitioned into "parameters’. The types of parameters that are of
interest to a given tool are specified in the PARAMETER list of the specification
for that tool (see Chapter Five), and the values for parameters are specified by
the user at run time using the parameterization operation (see Chapter Four).
The benefit of paramete.riz‘ation is that there frequently are intermediate abjects

that are not affected by the specified parameters and therefore can be re-used in

several different parameterized queries.

For example, in a system that has tools for parsing programs an@ for
pretty-printing parse trees, formatting instructions can be embedded in comments
in the source code. These instructions do not affect the parse, but are passed on
to the pretty-printer through the parse tree. If these formatting instructions were
removed from the source code and placed in parameters, the same parse tree

could be used for several different parameterized pretty-printing requests.

134
8.2.2. Optimizing the GAG Specification

The first method, abstraction, is the most difficult to apply to existing
tool fragments. Extensive knowledge of both the data structures being produced
and the expected usage of the system is usually necessary before significant
abstractions could be generated. In some cases though, a data structure is passed
to a tool when that tool does not in fact make use of any information in that
data structure. In these cases, a simple form éf abstraction consists of
eliminating the superfluous inputs. In the GAG system, such a situation arises
with a sequence of "info" files. The purpose of an "info" file is to collect from each
pass the messages containing information for the user. Each tool takes as input
the "info" file from the preceding tool, appends any messages that it generates,
and pa’sses the list on to the next tool. This list is finally given to the "protocol”
tool that generates a readable version of the messages. The result of this
approach is that whenever a tool generates new messages, it appears that all
later tools must be rerun since one of their inputs, namely the list of messages,
has changed. Since a tool never uses the information in this list, but only appends
new information to it, there is no need for this list to be an input to any tool
except for the "protocol” tool. In addition, since the Odin system has zi:rn internal
tool, ERROR, that collects together the error messages from a series of tools, a
simple "protocol” phase can be done to produce readable messages immediately
following each GAG tool invocation. and then the ERROR tool would collect the

appropriate messages together to produce a full error report.

The second method, partitioning, is applicable if there exists significant

segmentation at the source level that is reflected in the intermediate data objects.

135
In the case of the GAG system, we were not able to identify any significant

partitioning that would not involve extensive modification to the existing tools.

The third method, parameterization, is usually applicable with a
minimal amount of effort. In most tool systems, some set of flags or options are
provided to modify the behavior of the tool system. In the Odin specification,
each type of flag or option can be specified as a distinct parameter type, and the
specification of eacﬁ tool would be extended to specify which paran‘leters are of

interest to that tool.

In the original GAG system, the options to all of the tool fragments are
stored together in a single file. This fle is processed by the first tool fragment to
produce a "control file" that is passed to each of the succeeding tool fragments.
Each tool fragment then extracts the values of options that are of interest. Since
a large number of options to the GAG system only affect the results of the later
tool fragments, specifying each kind of option as a separate parameter type in the
derivation graph can provide significant increases in re-use of previously computed
objects. For example, if a user makes several requests that differ only in the
options passed to the cross reference tool, the Odin system would re-use all

analysis and simply rerun the cross reference tool with the various parameters.

In order to allow the Odin System to control the distribution of options,
each option type is assigned a specific parameter name. Since each GAQ option

has the syntax :
option_name option_value :

the simplest way to assign a parameter names is to use the GAG option_name as

138

the parameter name. Each tool specification in the derivation graph for GAG
would then be extended with a "PARAMETERS" input line (see Chapter Five)
that would contain the list of parameter names whose values are of interest to

that tool.

8.2.2.1. Optimization Example

The optimizations described in the previous section .can be applied to
each of the tools specified in the derivation graph for GAG. Since each of these
tool specifications will be modified in a similar fashion, we will consider just one of

the tools, the "expand" tool.
In the original derivation graph, the "expand"” tool was specified as :

expand <
expand_sem "expanded semantics”
expand_sx "expanded symbols”
expand_def "expanded definitions"
expand_i "info file"*
expand_c "ctrl fle"*
- "ALADIN shorthand expansion” :
USER expand.cmd
seman_sem
 seman_sx
: seman_defl
pseman_i :seman_c

In the optimized derivation graph, the "seman_c" and "exéand,c" objects, which
contain the option information, would be replaced with a PARAMETERS
specification. In addition, the "seman_i" and "expand_i" objects, which pass along
the "info" messages, would be eliminated. A new “scan_stab” input is necessary to
make the messages produced by the expand tool readable. These messages would

then be collected for display to the user bv the Odin System’s internal ERROR

137

and WARNING tools. The modified specification for the "expand” tool would

then be :

expand <
expand_sem "expanded semantics”
expand_sx "expanded symbols”
expand_def "expanded definitions"”
= "ALADIN shorthand expansion” :
USER expand.cmd
:seman_sem
: seman_sx
:seman_def
: scan_stab
: PARAMETERS < expand interface >

After the derivation graph was optimized, specifications for the auxiliary tool
fragments that generated a scanner, generated a parser, compiled the resulting
analyzer, and tested the analyzer, were added. The complete modified derivation

graph for the GAG system appears in Appendix C.

8.3. User Experience with GAG in Odin

The main §urpcse of the GAG experiment was to test the Hexibility of
the Odin specification language. Since both the unoptimized and optimized Odin
specifications captured the full GAG system without modification to the Odin
System, thé experiment was successful. In addition, éince,no modifications to the
GAG tools were required, the only effort expended was the translation of the
GAG command script into an Odin Derivation Graph. This translation took
place over the course of a week, with the majority of the time devoted to

experimenting with possible optimizations to the specification.

With GAG fully specified in a Derivation Graph, it would then be

interesting to determine whether the Odin-embLedded GAG svstem is an

138

improvement over the stand-alone GAG system. The only significant difference to
a GAG user between the Odin-embedded GAG and the stand-alone GAG is
efficiency. In the unoptimized form of the Odin specification, very few objects
could be re-used, and therefore very little execution time efficiency improvement
over the stand-alone system could be noticed. In the optimized form of the Odin
specification though, the efficiency improvements were considerable. For example,
a request for an alternative analyzer with modiﬁedv"'codegen" parameters required

only 10% of the time required for this reqﬁest from the stand-alone system.

A measurement of the average expected improvement in efficiency for a
~normal user of the GAG system could not be made, because the only local user of
the GAG system at the time of the experiment was involved in modifying the
GAG system, not in using it to produce analyzers. The presense of this kind of
user, though, did allow a qualitative measurement of the benefits of using the
Odin System from the viewpoint of a tool builder. A report concerning the use of
GAG embedded in Odin (Gray85] indicated that the use of an object ménager like
Odin is essential to properly control the development of a complex system like the
GAG. "The non-Odin version was such an uncontrollable mess. ... I think anyone
needing GAG would use Odin/GAG over the old way” [Gray85]. As a result of
this experience, the research group studying GAG at the University of Colorado

will be using Odin to support further development of the GAG system.

CHAPTER IX

CONCLUSIONS

8.1. Contributions

9.1.1. Process View vs. Object View

The focus of many software environments is on the processes or tools
that are provided by the environment. This focus encourages a user to
concentrate on the processes being performed in the environment - which
processes are available, how they are invoked, and how they are controlled once
they have been invoked. An alternative focus is on the objects or data in the
environments - both the‘objects manipulated directly by the user via editors, and

derived objects generated by tools from other objects.

For some tools, the process viewpoint is the appropriate one. These tools
are the interactive tools that maintain a continuous dialogue with the user. For
example, in a browsing tool it is the pr(ﬁ;:ess of gathering information that is of
paramount interest to the user, and therefore it is this process which should be
the focus of the user. In an editing tool the process of modifying information is
combined with the information gathering of a browser, and again, this process

should be the focus of the user,

140

For many tools though, the process viewpoint is inappropriate. These
tools are non-interactive tools that function without user intervention once the
input objects have been provided. For these tools, the data produced by the tool
is what is of interest, not how the tools produce this data. For example, when
test data regression analysis is being performed, what is of interest is the output
data resulting from running the modified programs on existing test data - not how
this output data is computed. In parti:cular, the user has no need of following the
details of program compilation, linking to produce executables, setting up a
runtime environment, and capturing the appropriate output data. These details
add complexity to the use of the environment without adding a corresponding
amount of utility. This dissertation demonstrates that with the appropriate
underlying mechanisms, a software environment can support and encourage the
object viewpoint, thereby eliminating much of the complexity that results from

inappropriate use of the process viewpoint.

9.1.2. Specification Language

A specification language for tools is one of the central underlying
features that must be provided in opder for a software environment to support an
object view of the software environment. If the user is no longer required to
specify which processes are to be invoked in order to produce a desired object,
there must be an alternative means whereby the environment can determine this
information. A specification language that describes the available tools and the
kinds of objects produced by these tools provides this alternative. In this

dissertation, an extended production system language called the Odin

141
Specification Language has been developed to serve this function for a software
environment. This specification language has been used to describe existing
collection of tools, such as those provided with the Berkeley Unix operating
system, and tool systems under development, such as those of the Toolpack
project. The dissertation provides an example of the construction of an Odin
Specification for a non-trivial tool collection (the GAG Attribute Grammar
System), and describes how the"Odin Specification and the tool system can be

modified for improved runtime efficiency.

9.1.3. Query Language

In order to allow a user to specify objects rather than processes that
create objects, a query language must be provided with which a user can request
any software object of interest. The Odin System provides such a query language
that is based on the orthogonal combination of three basic principles : derivation,
parameterization, and sélec‘ticm. Derivation is used to request a modified form of
the input object; parameterization is used to extend an object with additional
information; and selection is used to access a specific part of a larger object. The
actual kinds of modification, z%dditicn, and selection that can be applied in a given

tool system are determined from the Odin Specification for that tool system.
9.2. Future Research

8.2.1. Graphic Interface for Interactive Queries

Once an object manager such as the Qdin System is in place, the user

can focus on the creative processes of browsing and editing (as opposed to

142

compiling and loading). One way to support these processes is to provide a
sophisticated graphical interface to the object manager that displays the
relationships between objects in order to help guide a user during the browsing
process. Since the Odin System maintains a spanning tree for the complex graph
of object relationships, it would be feasible to use this underlying tree structure to
guide the graphical display of objects in the Odin System. With this information
presented on a bit-mappeé graphics display, a pointing device such as a mouse
could be used to negotiate through the graph of objects, with menus providing the
appropriate guidance. The message passing syntax of the Odin Query language
was s?eciﬁcally designed to allow such a menu-driven traversal. For example, the
query

test.c :fmt :output

~could be generated through a graphic interface by first pointing at the objecs
test.c. A menu of messages that could be sent to "best.c” would then pop up, from
which the user could select ":fmt". This selection results in the cursor being
positioned at the object "test.c :fmt”, which would then cause a new menu of
messages to pop up, one of which would be “output”. When the user selects
“output”, the cursor ‘;ﬁ’muld be positioned at the object “test.c :fmt ;output’”.
Requests for selections and parameterizations of objects would then be performed
in an analogous fashion, with menus popping up at the appropriate times to
indicate the set of possible messages. In the current implementation, these menus
can be explicitly requested through the Odin Help facility, therefore providing this
graphical interface would not require extensive modification to the existing Odin

tmplementation.

143
9.2.2. Alternative and Constrained Derivation Paths

The Odin System determines from the Derivation Graph a single
derivation path from a given kind of object to another kind of object. For
example, the path from a "program” object to an "output” object might consist of
compiling the "program” object, loading the "compiled" object, and then running
the "loaded” object. This is in contrast to the more common use of production
systems where the in‘ﬁez‘preter explores all possible paths from a given object to

another object, until at least one "successful” path is found.

One reason that the Odin System does not explore alternative paths is
that exploring a given path is usually an expensive process. For example, suppose
there were three distinct compilers that could be used, where each compiler could
handle a slightly different variant of the same basic language. If a program has
an error in it, a user would probably not be willing to wait until the system has

tried each of the three compilers before being informed of an error.

Another reason for not exploring alternative paths is that in practice,
few of the alternative paths in a software environment are reliably equivalent.
Again using the example of the three compilers, in spite of all beliefs or hopes to
the contrary, it Ls likely that some program compiled by one compiler will execute
differently than that same program compiled by another compiler. A user might
modify the program and find that it produces unexpected results, not because of

the user modifications, but because a different compiler was used.

[n spite of these problems, it still would be interesting to explore the use

of alternative paths, especially in the context of a distributed environment. In

144

such an environment, a given task can often be performed on some remote
machine rather than the local machine. It might be appronriate for these
alternatives to be represented as alternative paths through a Derivation Graph,

and have the object manager choose an appropriate path.

~An extension to the Odin Derivation Graph that might alleviate the
problems with exploring alternative paths would be to introduce the notion of a
set of "constre;ints" that apply to a derivation in the Derivation Graph. A
constraint would describe the situations under which a given derivation is
applicable. Assuming that these constraints are cheaper to compute than the
derivation itself, they could be used to drive the choice of which path to use, and
thereby lessen the expense of exploring alternative paths. In addition, these

constraints could be specifically designed to eliminate paths that do not produce

equivalent results.

8.2.3. Object Gra;lularity The Odin System was designed for the
manipulation of comparatively large objects such as procedures, modules,
chapters, or larger objects that are composed from these components, such as
programs or books. An interesting question is whether an object manager such as
the Odin System is appropriate for smaller objects such as individual tokens or

words.

9.2.4. Co-operating Object Managers

When the Odin System is used on a network of machines that do not
share a common file system, it is necessary [or each machine to maintain a local

object store. With the current implementation of the Odin Svstem. the

145
robustness and local control benefits that accrue from maintaining separate
object stores motivate the existence of separate object stores for separate projects
even when a common file system exists. The robustness benefits occur because
damage to the object store of one project does not carry over to another project
with a separate object store. The local control benefits occur because one project
can customize the Derivation Graph and the various Odin System parameters
such as z;Uowed file space usage without affecting those of another project. These
separate projects would still like to share information in various ways, and
therefore the question arises of how to provide co-operation among these
autonomous object managers. Curreatly, sharing is provided through the use of
tool fragments that request objects from other object stores. It would be
interesting to determine if improved sharing could be achieved by directly

supporting the sharing in the object manager itself.

BIBLIOGRAPHY

[Anderson79]
Anderson, R. B., Proving Programs Correct, John Wiley and Sons, 1979.

[Avakian82]
‘ Avakian, A., S. Haradhvala, Julian Horn, and B. Knobe, "The Design of an
Integrated Support Software System,” Proceedings of the SIGPLAN '82 .
Symposium on Compiler Construction, pp. 308-317, June 1982.

[Bazelmans85]
Bazelmans, R., "Evolution of Configuration Management,” SIGSOFT
Software Engineering Notes, vol. 10, no. 5, pp. 37-46, October 1985.

[Cargill79]
Cargill, T. A., "A View of Source Text for Diversely Configurable Software,”
Technical Report CS-79-28, Department of Computer Science, University of
Waterloo, 1979.

[Chapin74]
Chapin, N., "A New Format for Flowcharts," Software - Practice and
Experience, vol. 4, no. 4, pp. 341-357, 1974.

(Cristofor30]
Cristofor, E., T. A. Wendt, and B. C. Wonsiewicz, "Source Control + Tools —
Stable Systems,” Proceedings of the Fourth Computer Software and
Applications Conference, pp. 527-532, October 1980.

[Bratman75]
Bratman, H. and T. Court, "The Software Factory,” Computer, vol. 8-3,
May 1975.

(Cooprider79]
Cooprider, L., "The Representation of Families of Software Systems,"
Doctoral Dissertation, Computer Science Department, Carnegie-Mellon
University, April 1979.

[CDC76]
"Modify Reference Manual,” Publication Number 60281700, Control Dara

148
Corporation, 1976.

[DEC84a]
CMS Code Management System, Digital Equipment Corporation, 1984.

\DEC84b
MMS Module Management System, Digital Equipment Corporation, 1984.

[DeJong73]
DeJong, S. P., "The System Building System,” Technical Report RC 4488,
Thomas J. Watson Research Center, 1973.

[Erikson84]
Erikson, V. B. and J. F. Pelligrin, "Build - A Software Construction Tool,"
AT&T Bell Laboratories Technical Journal, vol. 63, no. 6, pp. 1049-1059,
August 1934, ‘

[Feldman79)
Feldman, S. ., "MAKE - A Program for Maintaining Computer Programs,’
Software - Practice and Experience, vol. 9, pp. 255-265, 1979.

'

[GlasserT8]
Glasser, A. L., "The Evolution of a Source Code Control System,” Software
Engineering Notes, vol. 3, no. 5, pp- 122-125, ACM, November 1973.

[Goldberg83a]
Goldberg, A., Smalltalk-80: The Interactive Programming Environment,
Addison-Weslev, 1983,

[Goldberg83b]
Goldberg, A., Smalltalk-80: The Language and its Implementation, Addison-
Wesley, 1983.

{Gl’ay85j
Gray, B., "Experiences with GACG and Odin," Private Communication,
December, 1985.

[Habermann79)
Habermann, A. N, "A Software Development Control System,” Computer
Science Dept. Technical Report, Carnegie-Mellon University, Pittsburgh,
1979,

[Huffg 1]

Huff. K., "A Database Model for Effective Configuration Management in the

147

Programming Environment," Proceedings Fifth International Conference on
Software Engineering, pp. 54-61, March 1981.

[Ince83]
Ince, D. C., "A Compatibility Software Tool for Use With Separately
Compiled Languages,” SIGPLAN Notices, vol. 18, no. 9, pp. 31-34,
Setptember 1983.

[Kastens82]
Kastens, U., B. Hutt, and E. Zimmermann, GAG: A Practical Compiler
Generator, Springer, 1982.

[Kastens84]
Kastens, Uwe, "The GAG-System - A Tool for Compiler Construction,” in
Methods and Tools for Compiler Construction, ed. B. Lorho, pp. 165-181,
Cambridge University Press, 1984,

[KernighanTs]
Kernighan, B. W. amd D. M. Ritchie, The C Programming Language,
Prentice-Hall, Englewoods Cliffs, New Jersey, 1978.

[Lampsong3]
Lampson, B. and E. Schmidt, "Practical Use of a Polymorphic Applicative
Language,” Proceedings of the Tenth POPL Conference; January 1983,

[Lampson83]
Lampson, B. and E. Schmidt, "Organizing Software in a Distributed
Environment,” SIGPLAN Notices, vol. 18, no. 6, June 1983.

[Leblang34]
Leblang, D. B. and R. P, Chase, "Computer-Aided Sortware Engineering in a
Distributed Workstation Environment,” SIGPLAN/SIGSOFT Symposium on
Practical Software Development Environments, ACM, April 1984.

[Leblang85a]
Leblang, D. B. and G. D. MecLean, "Configuration Management for Large-
Scale Software Development Efforts,” Workshop on Software Engineering for
Programming-in-the—Large, Harwichport, June 1985.

[Leblang85b)|
Leblang, D. B., R. P. Chase, and C. D. McLean, "The DOMAIN Software
Engineering Environment for Large Scale Software Development Efforts.”
Proceedings of the IEEE Conference on Workstations, San Jose, November
1985.

148

[Lintong4]
Linton, M. A, "Implementing Relational Views of Programs,”
SIGPLAN/SIGSOFT Symposium on Practical Software Development
Environments, ACM, April 1984.

[Metzner77
Metzner, J. R. and B. H. Barnes, Decision Table Languages and Systems,
Academic Press, New York, 1977.

Miller79]
Miller, E., Tutorial: Automated Tools for Software Engineering, [EEE
Computer Society Press, 1979.

[Montalbano74]
Montalbano, M., Decision Tables, Science Research Associates, Palo Alto,
1974,

Myers78]
Myers, G., Composite Structured Design, Van Nostrand, 1978.

[Nassi73|
Nassi, I. and B. Shneiderman, "Flowechart Techniques for Structured
Programming,” SIGPLAN Notices, vol. 8, no. 8, pp. 12-26, August 1973.

[Osterweil82]
Osterweil, L. J., "Toolpack - An Experimental Software Development
Environment Research Project,” Proceedings 6th International Conference on
Software Engineering, pp. 166- 175, Tokyo, 1982.

[Ramamoorthy76]
Ramamoorthy, C. V., 3. F. Ho, and W. T. Chen, "On the Automated
Generation of Program Test Data,” IEEE Transactions on Software
Engineering, vol. 2, no. 4, pp. 293-300, December 1976.

Ritchie74]
Ritchie, D. M. and K. Thompson, "The UNIX Time-Sharing System,"
Communications of the ACM, vol. 17, no. 7, pp. 364-375, July 1974.

[Rochkind73]
Rochkind, M. J., "The Source Code Control System,” I[EEE Transactions on
Software Engineering, vol. SE-1, no. 4, pp. 364-370, December 1975.

Rudmiks2]
Rudmik, A. and B. Moore, "An Efficient Separate Compilation Strategy for

149

Very Large Programs,” Proceedings of the SIGPLAN '82 Sympesium on
Compiler Construction, pp. 301-307, June 1982,

[Schmidt82]
Schmidt, E. E,, "Controlling Large Software Development in a Distributed
Environment,” Doctoral Dissertation, University of California, Berkeley,
December 1982.

[Teitelmangi]
Teitelman, W. and L. Masinter, "The Interlisp Programming Environment,"
Computer, vol. 14, no. 4, pp. 25-34, April 1981.

[Thall83]
Thall, R., "Large-Scale Software Development with the Ada Language
System,” Proceedings of ACM Computer Science Conference, February 1983.

[Tichy82]
Tichy, W. F., "Design, Implementation, Evaluation of a Revision Control
System,” Proceedings Sixth International IEEE Conference on Software
Engineering, pp. 58-67, September 1982.

[White77]
White, J. R. and R. K. Anderson, "Supporting the Structured Development of
Complex PL/I Software Systems,” Software - Practice and Experience, no. 7,
pp. 279-293, 1977.

[Yourdon78]
Yourden, E. and L. L. Constantine, Structured Design: Fundamentals of a
Discipline of Computer Program and System Design, Yourdon Press, New
York, 1978.

APPENDIX A

GAG Command Script

KoK ko ok ok kR kR g execute COﬂt?OI okok Kok ko Kok R

cp /sys/st c.st

cp /dev/null p.infofile

cp /sys/ctrltab t.ctritab

cp /dev/null t.ctrl

cp /sys/do.all t.ctrlemds

cp /dev/null t.do

In p.infofile infofile

In t.ctrltab ctabfile

In c.st stabfile

In t.ctrl ctrifile

In t.etrlemds ctrlemds

In t.do ctrifiow

In c.out infile

Jexec/ctrl |l set continue = false
rm infofile ctabfile stabfile ctrifile ctrlemds ctrifiow infile

ek sk ok R ok ok kR execute scanner oK ok sk OKOR ko koK

if (Scontinue) then
cp /dev/null t.gsfile
In p.infofile infofile

In c.st stabfile
In s.out infile
In t.ctrl cerifile

In t.gsfile gsfile

/exec/scanner !! set continue = false
rm infofile stabfile infile cerifile gsfile
endif

151

K KK K KKK K KOk execute parser Kk Kk kR oKk K

if (fcontinue) then
cp /dev/null t.pafile
cp /sys/patable zerdat
In p.infofile infofile
In t.ctrl ctrifile
In t.gsfile gsfile
In t.pafile paout
/exec/parser || set continue = false
rm infofile ctrifile gsfile pacut zerdat
endif

oK R K KRR kK ko execute makedef KK kK ok R e ok ok ok sk

=

if (fcontinue) then
cp /sys/dt p.ds
In p.infofile infofile
In p.dt deffile
In t.ctri corifile
In t.pafile pafie
/exec/makedef || set continue = false
rm infofile deffile ctrifile pafile
endif

ek okok kR ok Rk kK execute Semaﬂtic Kk K kR Kk

if (fcontinue) then
cp /dev/null p.semfile
cp /dev/null p.sxfile
cp /dev/null p.treefile
cp /dev/null s.xreffile
In p.pafile pafile
In p.infofile infofile
In p.dt deffile
In p.semfile semfile
In p.sxfile sxfile
In p.treefile treefile
In s.xreffile xreffile
In t.ctrl crrifile
/exec/semantic |set continue = false
rm pafile infofile deffile semfile sxfile treefile xreffile ctrlfile
if (fcontinue) then
cp p.dt p.dt-an
endif

endif

152

ok kOKROKCROK K R K K execute expand EEEEE E T

if ($continue) then
cp p.semfile t.semfile
In p.infofile infofile
In p.dt deffile
In t.corl ctrifile
In t.semfile semping
In p.sxfile sxfile
In p.semfile sempong
/exec/expand || set continue = false
rm infofile deffile ctrlfile semping sxfile sempong
if (Scontinue) then
cp p.dt p.dt-dp
cp p.semfile p.sm-dp
endif
endif

K Kk ok KK K execute Chaiﬂelm Kok kR kR kR g
if (fcontinue) then
cp /dev/null s.elimout
¢p p.sxfile t.sxfile
cp p.semfile t.semfile
In p.dt deffile
ln p.infofile infofile
In t.ctrl ctrifile
In p.treefile treefile
In s.elimout elimout,
In t.sxfile sxin
In p.sxfile sxout
In t.semfile semin
In p.semfile semout
/exec/chainelim |l set continue = false
rm deffile infofile ctrifile treefile elimout sxin sxout semin semout
if (fcontinue) then
cp p.dt p.dt-dp
cp p.semfile p.sm-dp
endif
endif

L R R R T T execute OI’dE‘I’ F oKk ok K kK koK

if ($continue) then
cp p.dt-dp p.dt
cp p.sm-dp p.semfile
cp /dev/null p.vsfile
cp /dev/null s.grout
cp /dev/null s.deptrace
In p.infofile infofile
ln p.dt defhile
In t.ctrl ctrlfile
In t.semfile semping
In psxfile sxfile
ln p.semfile sempong
In p.vsile vsfile
Ins.grout grout
In s.deptrace deptrace
Jexec/order || set continue = false
rm infofile deffile ctrifile semping sxfile sempong vsfile grout deptrace
if (Scontinue) then
cp p.vsfile p.vs-dp
cp t.semfile p.sm-dp
endif
endif

LR R R ok R sk

execute optim ***FEEEREER
if ($continue) then

cp /dev/null s.optout

cp p.dt-dp p.dt

¢p p.sm-dp p.semfile

cp p.vs-dp p.vsfile

[n p.infofile infofile

In p.dt deflile

In t.ctrl ctrifile

In t.semfile semping

In p.sxfile sxfile

In p.vsile vsfile

In s.optout optout

/exec/optim || set continue = false

rm infofile deffile ctrlfile semping sxfile vsfile optout

endif

153

154

KKK KRR KK KK execute vstrans Kk ok ok ok ok ok ok ok Kok

if (fcontinue) then
cp /dev/null p.vsctrl
cp /dev/null p.vsfile
cp /dev/null c.gentab
In p.infofile infofile
In t.corl ctrifile
In p.vsctrl vsctrl
Iln p.vsfile vsfile
In psemfile sempong
In c.gentab gentab
[/exec/vstrans || set continue = false
rm infofile ctrlifile vsctr! vsfile sempong gentab
endif '

hekokok ok ok ok sk ok ok K execute transsyn AR EEEE R

if (Scontinue) then
cp /dev/null g.pgs.syntax
cp /dev/null c.scantab
In p.infofile infofile
In c.st stabfile
In p.dt deffile
In p.treefile treefile
In t.ctrl ctrlfile
In g.pgs.svnvax pasout
In c.scantab scantab
[/exec/transsyn || set continue = false
rm infofile stabfile deffile treefie ctrlfile pasout scantab
endif

KR Kok Ok K R execute tfansdef KK Rk kKR R ok
if (Scontinue) then
cp /dev/null g.defout pasout
In p.infofile infofile
In c.st stabfile
In p.dt deffile
In t.ctrl ctrifile
In g.defout pasout
/exec/transdef || sev continue = false
rm infofile stabfile deffile ctrifile pasout
endif

155

KK ok Kk KoKk ok ok execute transa(:t KK KK KoK ok Kok ok
if ($continue) then

In p.infofile infofile

In c.st stabfile

In p.dt deffile

In t.ctrl ctrlfile

In pvsctrl vsetrl

In p.treefile treefile

In p.semiile semfile

In g.actout pasout

/exec/transact || set continue = false

rm infofile stabﬁle deffile ctrifile vsctrl treefile semfile pasout

endif

b KRRk SUpPOrES routines ******

K e ok KKk KR OK ko ke execute Xref K ok K ok kR KOk
if ($continue) then

cp /dev/null s.xref

In c.st stabfile

In p.dt-an deffile

In s.xreflile xreffile

In t.ctrl ctrifile

ln s.xref outfile

/exec/xref || set continue = false

rm stabfile deffile xreffile ctrifile outfile

endif

KK ok ke ke okok ok ok K execute ﬁndpabh LR E R E TS 1

if (fcontinue) then
¢p /dev/null s.findout
In p.dt deflile
In t.ctrl cerifile
n p.sm-dp semping
In p.sxfile sxfile
In s.deptrace deptrace
In s.findout grout
fexec/find || set continue = false
rm deffile ctrifile semping sxfile deptrace grout

endif

KRR K Rk

cp /dev/null s.prot

cp /sys/error.text error.text
In t.ctrl ctrifile

In s.out infile

In error.text msgtexts

n cst stabfile

In s.prot prot

In p.infofile msgfile

/exec /prot

rm ctrlfile infile msgtexts stabfile prot msgfile

execute protocol *¥¥*Fkxskkx

APPENDIX B

GAG Derivation Graph

prot "gag listing” :
USER prot.cmd
:scan_stab
tala
: "sys/error.text”
pxact_i:xact_c

xref "cross-reference listing" :
USER xref.cmd
: seman_xref
: seman_def
:scan_stab
P seman_c

pfind "attribute dependency analysis” :
USER pfind.cmd
T optim_sx
t optim_def
: order_dep
: order_sem
D optim_i: optim_c

xact <<
xact.pp "source code for visit sequences in propp format"
xact_i "info file™™*
xact_c "ctrl Ale™*
> "visit sequence translation” :
USER xact.cmd
D vsx_ctrl
D optim_sem
: xdef_def
: chelim_tree
:scan_stab
: xdef i @ xdef_c

158

xdef <
xdef.pp "source code for ALADIN definitions in propp format”
xdef_def "definitions after definition translation”
xdef_i "info file"*
xdef_c "ctrl fle”*
> "translation of ALADIN definitions" :
USER xdef.cmd
: xsyn_def
: scan_stab
D XSyn_i i Xsyn_c

xsyn <
xsyn.grm "pgs grammar"
xsyn_def "definitions after syntax extraction”
xsyn_scan "scanner tables"
xsyn_i "info file"™*
xsyn_c “ctrl file™*
> "context free grammar extraction" :-
USER xsyn.cmd
: optim_def
: chelim_tree
:scan_stab

CVSX_1:Ivsx_c

vsx <
vsx_tab "visit sequence tables"”
vsx_ctrl "visit sequence table interpreter”
vsx_1 "info file"*
vsx_c "ctrl file™*
> "visit sequence translation” :
USER vsx.cmd
D optim_vs
:optim_sem
topiim_i : optim_c

159

optim <
optim_out "optimizer messages"
optim_vs "optimized visit sequences”
optim_sem "optimized semantic,”
optim_sx "optimized symbols”
optim_def "optimized ALADIN definitions"”
optim_i "info file™*
optim_c "ctrl file"*
> "attribute optimization" :
USER optim.cmd

:order_vs

:order_sem

:order_sx

: order_def

rorder_i : order_c

order <C
grout "graph output”
order_dep "dependency trace"
order_vs "visit sequence"”
order_sem "ordered semantics”
order_sx "ordered symbols"”
order_def "ordered definitions"”
order_1 "info file"*
order_c "ctri file™*
> "attribute dependency analysis” :
USER order.cmd

: chelim_sem

: chelim_sx

: chelim_def

: chelim_i : chelim_e¢

180

chelim <
chelim_out "chain elimination messages’
chelim_tree "tree after chain elimination"
chelim_sem "semantics after chain elimination”
chelim_sx "symbols after chain elimination”
chelim_def "definitons after chain elimination"
chelim_i "info file'™*
chelim_c "ctrl file™*
> "simple chain elimination” :
USER chelim.cmd

: expand_sem

: expand_sx

: expand_def

> Sseman_tree

: expand_i : expand_c

expand <
expand_sem "expanded semantics”
expand_sx "expanded symbols"
expand_def "expanded definitions”
expand_i "info file™*
expand_c "ctrl file"*
> "ALADIN shorthand expansion” :
USER expand.cmd
: seman_sem
. seman_sx
: seman_def
iseman_i: seman_c

seman <
seman_xref "cross reference information"”
seman_tree 'tree”
seman_sem 'semantics”
seman_sx 'symbols”
seman_def "semantic definitions"
seman_i "info file™*
seman_c "etrl file"®
> "semantic analysis" :
USER seman.cmd
s makdef_def
: makdef_pa
: makdef_i : makdefl ¢

181

makdef <
makdef_def "definitions”
makdef_pa "parser actions”
makdef_i "info fle"*
makdef_c "ctrl file™*
> "make definitions” :
USER makdef.cmd
: parse_pa
: parse_i : parse_c

parse <

parse_pa "parser actions”

parse_i "info file"*

parse_c "ctrl file"*

> "syntactic analysis" :

USER parse.cmd

:scan_gs
:scan_i:scan_¢

scan <

scan_stab "symbol table”

scan_gs "global symbols”

scan_i "info file™*

scan_c "ctrl file™

> "lexical analysis” :

USER scan.cmd

s ctrl_stab
tala
tetrliicctrle

ctrl <
ctrl_cmds "host system commands”
ctrl_stab "initial symbol table"
etrl_i "info file™*
ctrl_c "ctrl fle™
> "control analysis” :
USER ctrl.cmd
1 opt

opt ATOMIC "GAG options”

ala ATOMIC "ALADIN grammar”

APPENDIX C
GAG Optimized Derivation Graph

The GAG System

gag.run <
gr_msgs "messages from gag generated analyzer run”
gr_out "standard output from gag generated analyzer run"”
> "gag generated analyzer run” :
USER gagrun.cmd
: ala.exe
1 vsx_tab
gs_tab
: Xsyn_scan

: PARAMETERS < (input) tty id >

ala.exe "gag generated analyzer executable” :
USER pas.cmd

: analyzer.p

analyzer.p "gag generated analyzer” :
USER anal.cmd
: xdef.pp
* xact.pp
: pgs.pp
: PARAMETERS < (lexer) >

pgs <
pgs.pp "parser”
pgs_tab "parser tables"”
pgs_lst "pgs listing”
gs_bnf "bnf version of pgs grammar"

= "pgs parser generator’ :

USER pgs.cmd

: mod.grm

183

mod.grm "modified parser grammar" :
USER mod_grm.cmd
: Xsyn.grm
: PARAMETERS < (grm) (sed) >

lexer "lexical analyzer" :
USER lex.cmd

: lex

xref "cross-reference listing” :
USER xref.cmd '
:seman_xref
: seman_def
:scan_stab

: PARAMETERS < xref >

pfind "attribute dependency analysis" :
USER pfind.cmd
:optim_sg
toptim_def
: order_dep
torder_sem
:scan_stab

: PARAMETERS < deptrace >

xact.pp "source code for visit sequences in propp format"” :
USER xact.cmd
: vsx_cetrl
:optim_sem
: xdef_def
: chelim_tree
:scan_stab

: PARAMETERS <';’expand optimize codegen >

xdef <
xdef.pp "source code for ALADIN definitions in propp format”
xdef_def "definitions after definition translation”
> "translation of ALADIN definitions" :
USER xdef.cmd
s xsvn_def
:scan_stab

: PARAMETERS < expand optimize codegen >

164

xsyn <
xsyn.grm "pgs grammar”
xsyn_def "definitions after syntax extraction"
Xsyn_scan "scanner tables”
> "context free grammar extraction" :
USER xsyn.cmd
: optim_def
: chelim_tree
:scan_stab ‘
: PARAMETERS < expand optimize >

vsx <

vsx_tab "visit sequence tables"

vsx_ctrl "visit sequence table interpreter”

> "visit sequence translation” :

USER vsx.cmd

T optim_vs
D optim_sem
:scan_stab

: PARAMETERS < expand optimize >

optim <
optim_out "optimizer messages
optim_vs "optimized visit sequences”
optim_sem "optimized semantics”
optim_sx "optimized symbols”
optim_def "optimized ALADIN definitions”
> "attribute optimization” :
USER optim.cmd
torder_vs
: order_sem
: order_sx
: order_def
:scan_stab
: PARAMETERS < expand optimize >

"

1685

order <
grout "graph output”
order_dep "dependency trace"
order_vs "visit sequence”
order_sem "ordered semantics”
order_sx "ordered symbols"”
order_def "ordered definitions”
> "attribute dependency analysis" :
USER order.cmd
: chelim_sem
: chelim_sx
: chelim_def
: scan_stab
: PARAMETERS < eliminate class tree visit graph deptrace
arrange >

chelim < ,
chelim_out "chain elimination messages”
chelim_tree "tree after chain elimination”
chelim_sem "semantics after chain elimination”
chelim_sx "symbols after chain elimination”
chelim_def "definitons after chain elimination”
> "simple chain elimination” :

USER chelim.cmd
: expand_sem
: expand_sx
: expand_def
! Sseman_ _tree
:scan_stab

expand <
expand_sem "expanded semantics”
expand_sx "expanded symbols”
expand_def "expanded definitions”
> "ALADIN shorthand expansion’ :
USER expand.cmd
D seman_sem
: seman_sx
:seman_def
:scan_stab
: PARAMETERS < expand interface >

168

seman <
seman_xref "cross reference information”
seman_tree "tree”
seman_sem semantics”
seman_sx "symbols”
seman_def "semantic definitions”
> "semantic analvsis” :
USER seman.cmd
: makdef_def
: makdef_pa
:scan_stab

makdef <
makdef_def "definitions”
makdef_pa "parser actions”
> "make definitions” :
USER makdef.cmd
: parse_pa
:scan_stab

parse_pa parser actions’ :
USER parse.cmd
:scan_gs

scan_stab

scan <
scan_stab "svmbol table”
scan_gs
-

g l
o
> Tlexical anal
USER scan.cmd
Ta

ala ATOMIC "ALADIN grammar”

