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Abstract

We present.a trust region-based method for the general nonlinearly
equality constrained optimization problem. The method works by iteratively
minimizing a quadratic model of the Lagrangian subject to a possibly relaxed
linearization of the problem constraints and a trust region constraint. The
model minimization may be done approximately with a dogleg type approach.
We show that this method is globally convergent even if singular or indefinite
Hessian approximations are made.

A second order correction step that brings the iterates closer to the feasi-
ble set is described. If sufficiently precise Hessian information is used, this
correction step allows us to prove that the method is also locally quadratically
convergent, and that the limit satisfies the second order necessary conditions
for constrained optimization. An example is given to show that, without this
correction, a situation similar to the Maratos effect may occur where the itera-
tion is unable to move away from a saddle point.






1. Introduction.

Algorithms involving trust regions have, over the past few years, proven to be
effective and robust for solving unconstrained minimization problems. In this
paper we describe a method using trust regions to solve the general nonlinearly

equality constrained optimization problem

minimize f(z)
zele® (1.1)

subject to c(z) = 0.

Our method involves successive solution of a quadratic programming subproblem
with an additional trust region constraint.

Methods based on successive quadratic programming generally involve itera-
tively minimizing a quadratic model of the Lagrangian subject to linear approxima-

tions of the constraints. That 1s, at x; they solve

minimize gfd + %d B d
deRR®

subject to AkT(H- clz) =0,

where H; 1s an approximation to the Hessian of the Lagrangian of problem (1.1),
and set x4, = 7, + d, if this point is in some sense a better approximate solution
to problem (1.1). Much analysis and experimentation has recently been done on
successive quadratic programming methods involving a line search. However, for
most versions of this approach only rather restrictive guarantees of global conver-
gence can be given, and difliculties do occur in practice.

In unconstrained optimization use of a trust region has made it possible to
make stronger guarantees of local convergence than can be made for a line search
method. In particular, to guarantee that the gradient of the objective converges to
zero, it 1s not necessary to require that the Hessian approximation be well-

conditioned or even positive definite, but only that it be uniformly bounded Addi-



tionally, it can be shown that any cluster point of the algorithm has a positive
semidefinite Hessian ( see Moré and Sorensen [1983] or Shultz, Schnabel, and Byrd

[1985] ).

In this paper we describe and analyze a trust region method for problem (1.1).
We show that it has the following properties which we regard as essential for a

trust region method.

(1) If ||B; || remains bounded above then the gradient of the Lagrangian and the

constraint values converge to zero.

2) If B, is a good approximation to the Hessian of the Lagrangian then the
k g pPp grang
method is locally and quadratically convergent to a strong local minimizer,

i.e. the Maratos eflect does not occur.

(3) Under the same assumptions, il the algorithin converges to any point then

that point satisfies the second order necessary conditions for a local optimum.
{4) The trust region step can be computed efficiently.

The only assumptions we make are that the derivatives are bounded, that the
merit function is bounded below on the sequence of iterates, and that the con-
straint derivatives at the iterates are uniformly linearly independent. Although
this last assumption is a common one, we are not satisfied with it, and we are
currently working on making the algorithm reliable in the presence of lincarly

dependent constraint derivatives,

There has been some previous work on trust region algorithms for nonlinear
constraints, and this paper has some features in common with this work. Our stra-
tegy for relaxing constraints is similar to that of Vardi [1985], but is designed to
weaken the conditions put on B; corresponding to property (1) above. Our goals

are quite similar to those of the algorithm proposcd by Fletcher [1982], [19&4], even



though that algorithm involves minimization of the merit function over a box
shaped trust region. Such a local minimization involves solution of a quadratic
program even if there are only equality constraints. If the Hessian approximation
i1s indefinite then the quadratic program may cven have several isolated local
minima. Our approach also has some similarities to the method described by Celis,

Dennis, and Tapia [1984] which is currently under development.

We believe that this method and its analysis are of interest because we are
able to prove the first order global convergence property (1) while computing a
trust region step in a manner analogous to and as inexpensive as step computation
in unconstrained optimization. We also believe that this is the first time that
second order global convergence (property (2) ) has been proved for a nonlinearly
constrained optimization algorithm. Proving this is complicated by the fact that a
phenomenon similar to the Maratos effect can occur involving directions of nega-
tive curvature of the Lagrangian . In Section 4 we describe how this problem can
be avoided by using a second order correction.

Section 2 of this paper gives a motivation and description of the algorithm,
and Section 3 contains the first order global convergence analysis. Section 4 has an
example illustrating the need for a second order correction, and proves second

order global convergence and local convergence.

2. Description of the Algorithm.

We first introduce some standard notation for the paper.

Notation
Let || || be the Euclidean norm on R™.
Let f: R™=R be twice continuously differentiable, with gradient g : R*-R and

Hessian matrix V2f.



Let ¢ : R®>R™ be the vector of twice continuously differentiable constraint func-
tions c'(z), for ¢ = 1,...,m, with the gradient of c¥(z) denoted by a(z), and the
Hessian matrix of ¢'(z) denoted by VZ¢'(z).

Let A(z) be the n by m matrix consisting of the column vectors a(r), for
¢ = 1,...,m. For any z, let Z(z) be an n by n—m matrix whose columuns form an
orthonormal basis for the null space of A ofx sup T, i.e. such that A(2)7Z(z) =0
and Z(2)T2Z(z) = I.

Denote the first order Lagrange multiplier estimates by

Mz)= = [A)TA()] A () Tglx) .

Denote the least-squares step on the constraints by

v(z) = —A(2)[A(2)TA(2)]  e(2) .
Let v (H) be the smallest eigenvalue of an n by n symmetric mn‘t,rix‘ I
Let {x;} be a sequence of iterates generated by the algorithm, and for each I let B,
be an n by n svmmetric matrix.
Subscripted values of functions denote evaluation at a point in the sequence of
iterates, while superscripts denote the particular component of a vector. For
example, g; = g(z;), and a} is the ¢-th column of A(z;).
We will frequently delete subscripts, superscripts, and function arguments when

they are clear from the context.

The algorithm we present here makes use of a trust region of radius A within
which a quadratic model of the Lagrangian function and a linear model of the con-

straints are believed to be accurate.

At each iterate a quadratic model of the Lagrangian function in a neighborhood of

Tk



i1s approximately minimized subject to a relaxed linearized version of the con-
straints

Afd = —ac(z,) . (2.2)

and a trust region constraint

ldll < A. (2.3)
Using a relaxed version of the linearized constraints (i.e. allowing o < 1 in (2.2}))
allows us to define a step when the linearized feasible region does not intersect the
trust region, and it gives us the freedom to work on reducing the objective function

as well as the constraints.

The relaxation factor @ can be at most one and must be chosen so that the
intersection of the sets given by {2.2) and (2.3) is not empty and optionally so that
1t contains more than one point. To motivate the choice of a, note that any solu-
tion to (2.1-2.3) must have the form

d= avy + Z,u. (2.4)
where Z; 1s as defined above,
v = vlag) = = AJLATA) el 1),

and u is a vector in R"™™. Thus av, is the component of d in the range space of
Ay, and Zpu is the component in the null space of AkT. In these terms our trust
region constraint requires that

allogll = A
In addition, to ensure that significant progress is made on satisfying the constraints
we require that, when o« < 1, the constraint range space step not be too small rela-
tive to the the trust region, i.e. that

allu | = 04
where 6 i1s a constant. Putting these conditions together results in an « interval

given in stage (5) of the algorithm description below.



The null space component Z,u 1s determined by minimizing the quadratic

model (2.1). In terms of the decomposition (2.4) our problem becomes

minimize (g, + Byav, )T Z,u+%u 2B, 7 u (2.5)

subject to [Ju || = A*—(a ||y ||)°
Note that this has the same form as a trust region step in an uncounstrained algo-
rithm. Thus if we minimize the model exactly the solution is usually given by
Uy = _(Z/;Tlszk'!' B])“]Z,;T( ‘(jk+ Bko‘"k)
where B can be chosen to satisfy the trust region constraint and complementary
slackness. Alternatively, the minimization can be done approximately, for example
by a dogleg technique, or by any of the approaches described in the paper by
Shultz, Schnabel, and Byrd [1985]. We will discuss later the conditions that the

approximate minimization of (2.5) must. satisfy. Note that such a step 1s well

defined and reasonable even if the matrix By 1s singular or indefinite.

Now, given a step d, = av,+ Zu, that satisfies (2.1-2.3), we test it to deter-
mine whether the suggested point z,+ d;, has improved on the objective function
and constraints., We will measure improvement by the merit function

m
blx) = far+ X w'lel)]
=
where the W' are positive weights. As is pointed out by Coleman and Conn [1980],
this function has the advantage that any local minimum of (1.1) is a stationary
point of &. The actual reduction in the merit function in going from #; to 7, is

thus given by

m . . . . .
aredy(d) = f(xp)= [+ dk)‘*zlﬂ’{lf'(fk)l“ e (2 + di)l},
where d; is the step computed by the algorithm at z;. This step d; is based on
approximations to the objective function and constraints. Using these same

approximations we can compute a prediction of what this reduction will be accord-



ing to our model:

pf@dk( dk) = "'ngdk""%dkT[;kdk'*"_Elu“{;("(lk)'“ tC{(I}:)'{" (Z’(]L)T([AI} .

If the improvement in ¢ is a sufficient proportion of that predicted by our model,

cp

le. 1f

ared
pred

Z ¥
where m <1 1s a fixed constant, then the step is accepted and 2., = 2,+ d,. Oth-

erwise, we reduce the radius of the trust region and compute a new provisional step

d; which is again compared to .

It is of course essential that if the approximations used in generating the step
are good, then our merit function will recognize the step as an improvement. This
means that the prediction of the merit function reduction, pred;, must always indi-
cate a reduction unless z; i1s optimal. It turns out that that property is guaranteed
if the weights are sufficiently large. In particular, the predicted decrease is at least
as great as the approximate change to the Lagrangian due to the step Z,u defined
by (2.5), plus a term proportional to the norm of the constraints. The former
quantity is denoted by

hpredy(v,) = = g7 2w = a7 B, 7wy

where

gk = gt By
Our assumption on the size of the weights involves the quantities
by = = (A4 T A (g + o By
These multiplier-like quantities @ express the balance between change in the objec-

tive function and change in the constraints in that

9(0)=glav) = —av’y= —acli.

Note that similar assumptions on the weights are required in algorithms doing a



line search on the merit function (see for example Han [1977]).

Lemmal

Let d; be a step generated by solving (2.1-2.3) at an iterate z,. Assume that A4, has

full rank and p* = [@}+p, where p > 0 is a fixed constant. Then,

pred,(dy)= hpredy(ug)+poy |leg |l -
Proof:

To simplify the notation, we omit the subscripts k. Note that
pred = —gT(av+ Zu)=%(av+ Zu) " Blav+ Zu)

mo S
+ S p{lct|= e+ e T{av+ Zu)|}
1=1

m

= —uT7ZTg+aBr)=%uTZTBZu—avT(g+%aBo)+a = pwilct|,
=1

by rearranging the first two terms and vusing the fact that o' T{av+ Zu) = —ac'.
By assumption, w'= {@'+p, where g= —(A TAY TAT(g+%aBr), and
v==A(ATA4) e, hence

m PR
vT(g+%aBv)= iTc = E wict,

50

m

o mo mo
_OLQJT(g+1/2aB,l,)+a'glw;ctl = —q E }5‘01'}'&,-‘}1“"(%

= ap el

The features described above are sufficient, with a {ew minor details, to
guarantee first order global convergence in the sense that, under reasonable condi-
tions, any limit point satisfies the KNuhn-Tucker conditions. However, just as with
line scarch methods, use of a nondifferentiable merit function can cause difficulties
by requiring the iterates to stay closer to the feasible set than the generated step

naturally tends to fall. Two of these difficulties involve convergence theory; one is



well known, the other less so. The first of these, sometimes referred to as the
Maratos effect, has been noted by Maratos [1978], and, in a trust region context, by
Yuan [1984]. If the weights p! are too large, a step which moves closer to the solu-
tion, makes progress on the objective, and keeps the constraints reasonably small
can actually increase the merit function even near a solution, and superlinear con-

vergence will not occur.

We show in section 4 that a related phenomenon can occur when we try to fol-
low a direction of negative curvature of the Lagrangian. Indeed, it can happen
that no step along a direction of negative curvature will decrease the merit func-

«

tion.

Omne way to get around these problems is to add a correction step to d; that
moves closer to the feasible region. In the context of the I\»‘Iar;ﬁps effect, such steps
[

have been suggested by Mayne and Polak [1982], by Coleman and Conn [1982], and

ge
by Fletcher [1982], [1984]. Our algorithm takes in stage (12) a step of the form

— A ATA)  Te(x+ d))
in cases where the merit function increases and v, is small relative to the trust
region ( |[v ]| = [A). Note that the condition {€(0,8), implies that the correction is
made only if the linearized constraints are not relaxed. In Section 4 we show how

this takes care of both difficulties.

We now give the formal description of our algorithm. Note that in stage (7)
the null-space component u of the step is assumed to satisfy Condition #1 and
perhaps Condition #2 and #3. These Conditions on the null-space component of

the step are given following the description of the algorithm.
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Algorithm
Given me(0,1), 8¢€(0,1], {€(0,0), 7;, 7, €(0,1), and peR™, with p > 0.

(0) k=0; input z,.

(1) Compute z = 2, f = f(z), g = glz), ¢ = c(z),
A = A(z), Z = Z(z), and pick BeR"*n,

(2) If ZTg = 0 and ¢ = 0 then stop.

(3) Pick initial A = A,_,, with any Ay, > 0if = 0.

(4) Compute v = —A(ATA) ¢,

_A

5) Pick aelmi 1in —a_
(5) Pick ae[min{1,6 v n}’“ i, flo]] )

(6) Compute A = (A2=a? |[v [|2)*.

(7) Compute the null-space step u satisfying Condition #1 and optionally
satisfying Conditions #2 and #3 (these conditions are described below),

and satisfying |lu || = A;let d = av+ Zu.
(&) Compute pred = — gTd—l/szBd+§lp’A{(c"|—- let+a'Td]}.
(9) Compute f, = flz+d)and cy, = c(z+d).
(10) Compute ared = f—f, +,,§1}f~’{f(‘"f“ lei [}

(11) f ared M then 2, = s+ d; b = k+1; and go to (1)
pred k1

else il v || = A then ared = f— f(z+ d+w)+ glw‘{}cil, lei{e+ d+ w)]}.
where w = —A(ATA) 1¢, |

.. ared
f arc >
: pred

then 2,4, = z+d+w; k=k+1; and go to (1)
let A = 7A for some 7e[7, 7,] and go to (5).
Comments
The condition, 7e[r,, 7,], in the last step allows a variety of trust region

modification strategies, for example safeguarded interpolation.
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We now give our theoretical results.

3. First Order Global Convergence.

For the global and local convergence results to follow, we will require certain

continuity and boundedness assumptions about the problem being solved.

Standard Assumptions

Let {z;} be generated by the algorithm with any initial iterate zpe R™ and suppose
that {z;} is contained in some open subset S of R®. Assume that f(z) and c(xz) are
twice continuously differentiable on S, and assume that A(z), g(z), V=f(z),
(A(x)TA(2))™Y, V2f(z), and each VZe'(z), for + = 1,...,m, are all bounded on 5.
Assume further that for some p >0, p' = Liz+p for all %, and that for some

B >0, [|[B, Il = B forall k.

An immediate consequence of these assumptions is that there 1s some v, >0 such
that

otz || = vy llela) ]y

for all zeS.

Note that if the sequence of iterates were contained in some compact set the

assumptions on boundedness of various derivatives would follow from continuity.

The next lemma shows that our predicted reduction of the merit function pro-
vides an approximation to the merit function that is accurate to within the square
of the steplength. Note that this result does not depend on any property of the
matrices approximating the Hessian of the Lagrangian except that they remain

bounded, and does not depend on any property of the step.



13

Lemma 2.

Suppose that the Standard Assumptions hold. Then there is an vy, > 0 such
that for any zeS, BeR™ ™ with |[B | = B, and any deR™, with the line segment

from z to x+ d contained in S,

lared(d)=pred(d)] < v, |1d |1,
where
pred(d) = —g(z)7d=%dTBd+ g]u"{lr"(z)l- ez + at(a)Td]}
and
ared(d) = f(z)=flz+ d)ﬁ“élu"{lf’l(ﬂl" lef(z+d)]} .
Proof:

Consider any zeS, deR™, with the line segment from z to z+ d contained in

S, and BeR™ ™ with ||[B ]| = B. Then by the definition of ared and pred,
lared=pred| = [{f=Jlz+d)+ Z pi(]e'[=ci(a+ )]}
—{=gTd=%d"Bd+ ‘:Enlp‘( letl=let+ e’ Td])} |
= [f=(f+9&)Td)+gTd+%dTBd|
+ | lglp,“{ et a' Td]|—|et+ a'lg)Td|} |
= ldllgto)=gteyi+% 1B HId P+ 2 willd [Ha'(2)= a'E) ]
for some &, &, on the line segment between r and r+d, from the mean value

theorem. Then since V-f and VZ¢' for 7=1....,m, are bounded on S, and

|B || = B, the result follows. O

The next result shows that the algorithm is well-defined in the sense that each
inner iteration will terminate with an acceptable step after finitely many itera-

tions. It is clear from the proof of this theorem that the same result holds
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irrespective of the strategy used for deciding when to attempt the sccond order

correction step.

Theorem 1

Suppose that the Standard Assumptions hold and that the null-space components
u in stage (7) of the algorithm satisfy Condition #1. Then unless some iterate 1z,
satisfies the first order necessary conditions for a solution to (1.1), each inner itera-
tion of the algorithm will terminate after finitely many repetitions.

Proof:
Counsider any iterate z;. As usual, we omit the subscripts. Cousider first the

ared(d) . . . . . . .
test (d = m which is made at each inner iteration with decreasing values of
pre

A
Suppose first that |lc [[; > 0, and consider any A > 0. From the algorithm,
stage  {5), a = min{l,eﬁ}. By Lemma 1 and since Ilpred(u)=0,
v

pred(d) = ap || ||, so

lle 1l

pred(d) = p min{||c ||,,64 ol

— -

But, since [lo(z) || < vy [le(2) |} for all zeS,

pred(d) = p min{ ||c I[l,%A} )
1

Thus, since by Lemma 2

lared(d)=pred(d)| = v, [|[d ||* = v,A2

for some vy, > 0, it follows that for all small enough A > 0, {—@% -1l = 1—-m,
pred(d

so after finitely many repetitions, the step will be accepted.
On the other hand, if ¢ = 0, then v = 0,s0 ¢ = ¢ and A= A, and by Condi-

tion #1 and Lemma 1,
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T
pred(d) =k, ||Z7¢ Hmin{A,-ﬂ—Z-é—q—u-} .
Hence, if |[ZTg || > 0, since by Lemma 2, |ared(d)=pred(d)] = v.,A%, it {ollows

that for all small enough A > 0, the step will be accepted.

Of course, 1t can happen that before A is that small, the step d+w is tested

and accepted; in this case the iteration is still finite. O

We now give the first order global convergence result, that the constraint vio-
lations and the projected gradients converge to 0. Hence, any accumulation point
of the sequence of iterates satisfies the first order necessary conditions for u solu-

tion to (1.1).

Theorem 2

Let the Standard Assumptions hold. Assume that {$(z;)} is bounded below on S,
and that the null-space components » in stage (7) of the algorithm satisfy Condi-
tion #1. Then

a) ¢;~0 and b) Z[Ig,~0.

Proof:

Suppose to the contrary that there is some € > 0 such that there are infinitely

many & with either |le; |l; 2 eor ||Z7g, || 2 €. From the Standard Assumptions it

is clear that ||c(z) ]| and ||Z(2)Tg(z) || are uniformly continuous on 5. Thus, there
is some r >0 such that for any =z, if |le;|l, 2 € and ‘H:r—-Jk Il < r, then

lle(z) ll; = %e, andif [[Z]g, || 2 € and |lz=z || <, then [|Z(2)Tg(2) ]| = #e.

Consider an z; with [c; ||, 2 e. By Lemma 1, for any z with |lz—z, | < r,

and any A > 0,

HC ”1
ol

pred(d) = polle(z) ], = p min{-;—,GA }
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= min{p—f— ,p—9~A} .
2 Y,

since |lv ]| < Y1 lle “1
Now, counsider an iterate z; with [|ZJg, || = €, and any z with [lz~z, || < r.

First consider the case that |jv ] < min{—— ,LA}. Then by Lemma 1 and Condi-

48 7
tion #1,

red > Telmin _H_.‘LU__
pred(d) = x, 1274 [min{d — =Ly

Since A= A2=a?|[v >, @ = 1, and |lv] = A, it follows that A = (1—¢°)%A.

Also,

lezTBo |l < [|B||lv]l =< Bfé—,

and [|[Z7¢ || = %—, S0

127g 1 = lIZTg+eBe) | = <.
Thus,

pred(d) = —men{(l— [7)*A  — 45 }.

Second, suppose that |[v ] > min{:fé_ ,(A}. Then by Lemma 1,

pTC(i((“ pa HC “1 =P lHID{I 8 H l }”C ”1

=p min{—M ’LA}
Y1 Y

= L min{ min{—=- LA} BA} .
Y1 4B

Thus we have shown that there are positive constants p,, p,, and r such that

for infinitely many z;, and any & > 0, with de» | = A,

pred(d;) = min{p,,p,A}
for all iterates x; within a distance r of each such z,. Thus, by Lemma 2, there is

some A >0 such that for all k with llep ll; = € or [|Z7g, || = €. and for any
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A=A if llz;— 2 || < r then the trust region step d;(A) will be accepted, and will
vield

ared (d;) = mpred;(d;) = nmin{p,,p,A} .
Consider one such z,. If all the iterates after z; stay in the ball of radius r about
7)., then the trust region radius will be bounded away from 0, which contradicts the
assumption that {&(z;)} is bounded below on S. So, for one such z;, let j = [ be
the smallest index such that H:rjﬂ—:tk |l = r. Then if no steps with the second

order correction are made from z; to z;,
, ] ]
O(zy)—d(z,4)= i}::kared,'( d;) = ;%kn pred;(d;)

I
= ‘kam{p;,pgé,}
2,

= wmin{p,,r},

since each [[d(A,)]] = A,

j

; and }:LH({{(A{) i = r. If, on the other hand, a second
=

order correction step d;+ w,, for some ¢, with &/ = 1 = 7, is taken, then it must be

that A; > A, so

blap)=dla4,) = ared(di+w;)
= mpred{d;)

= mmin{p,,p.A,;} = mminip,,p,A} .

In either case, we have a contradiction of the assumption that {&d(z;)} is bounded
below on S, since there are infinitely many z; yielding this decrease in ¢. Hence,

;=0 and ZJg;~0. O

Note that to prove this theorem the second order correction in Step (11) was
not actually needed, and that the algorithm without such a correction is still glo-
bally convergent in the sense of this result. It is also worth noting that we did not
assume in the statement of the theorem that the sequence of iterates was bounded.

Of course, if the sequence were bounded it would have one or more cluster points,
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all of which would satis{y the Kuhn-Tucker conditions.

Theorem 2 and all the other theorems in this paper assume fixed weights w'
satisfying p' = p?,i-l-p for all £ and for some p > 0. In fact the weights may be
chosen dynamically by requiring, for example, that W' at step k be the maximum of
;EZH-p and the p' at the previous step. Since, by the Standard Assumptions, ;.5,’; are
bounded for all & this procedure would only increase w finitely many times, after

which the weights would be fixed.

4. Second Order Results.

Now we discuss the need for a second order correction step. As is well known,
it can happen that in a neighborhood of a strong minimizer the step generated by
successive (uadratic programiming may not decrease a nondifferentiable merit func-
tion such as ¢. In order to decrease the merit function, a very short step may be
required, and this can impede superlinear convergence. As is shown implicitly by
Coleman and Conn [1982] and by Mayne and Polak [1982], if a second order correc-
tion step of the form

w, = = A,\.{AL.T_/{k}“IC(;rk-i- dl)
1s added to an SQP step d; then a line search algorithm can be made superlinearly
convergent.

An additional reason for requiring a device such as a second order correction
is involved when trying to move away from a point where the Hessian of the
Lagrangian is indefinite. In this case our trust region algorithm will move along a
direction of negative curvature. However, it can happen, as seen in the following
example, that any step along a direction of negative curvature of the Lagrangian

will increase the merit function.
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Example.

minimize 2z,+ %z}

subject to zi+zi = 1.

The only local minimum is at (-1, 0), but there is a Kuhn-Tucker point z = (1,0)

with Lagrange multiplier A\ = —1. The Hessian of the Lagrangian at that point is

vi(z-1)= [2 5]

and

2TV (2,12 = [— 1].
Note that the direction d = (0,1)7 is a direction of megative curvature satisfving
A(x)Td=—=c(z)=0. If our algorithm were exactly minimizing the quadratic model
over a trust region of any radius A, the step from r would have the form Ad. How-
ever, a step of any length along the direction d would increase both the objective
function and the absolute value of the constraint. Therefore, for any radius A and

any positive weight p the trust region step will increase the merit function. O

This example does not seem especially pathological. The key ingredient scems
to be that both constraint and objective have curvature in the same direction, and
the constraint curvature is greater. The phenomenon is similar to the Maratos
effect but is a bit more problematical in that problems occur regardless of the
length of the step or of the weights. It is clear that to decrease the merit function it
is necessary to follow the constraint curve more closely. In the following results we
show that the second order correction step in the algorithm is sufflicient to get
around this difficulty as well as the Maratos effect. Note that in the algorithm the
correction 1s not made at every step, but only when the trust region step d; does

not decrease the merit function sufficiently, the constraints are not relaxed, and

llvp | is at most a fixed fraction of A. Thus the second order correction will
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probably be made only at iterates fairly close to the feasible set.

To begin with we prove the essential property of the second order correction
step, namely that the actual reduction of the merit function obtained by use of the
second order correction agrees with the predicted reduction of the trust region step

d, to within o( ||d, ||?).

Lemma 3

Let the Standard Assumptions hold, and assume that

m

Bk = V{f(.’l’x)'*‘ 2 )\{(’;T;C)VQC’(LTL,) .
=1
Then for any compact subset D of 5, for any € > 0. there is a A > 0 such that for
any iterate r,€D at which the second order correction step dp+w; is taken and

14, || = &,

lared (d+ wp)=pred,(d)] < e ||d, || .
Proof:

Consider any compact set D contained in S, and any € > 0, and an iterate
zeD at which the second order correction step d+ w as in stage (11) of the algo-

rithm is taken, where as usual we drop the subscripts k.

By definition,
lared(d+w)=pred(d)| = [{/ = [(z+ d+u’)+élu‘(|0"l—IC‘(I+ d+w)|)}
-{—gTd-%dTB(Hélui(lﬂi- lei+a'"d|)}]
s |f+gTd+%dTBd— f(z+ d+ w)]

m . ) .
+ | le.’{[c’+ ' Td)=lei(z+d+w)l} | .
=
Since the second order correction is only attempted if ||v | = LA and since {€(0.8),

it follows that « = 1 and ¢'+a'7d = 0.
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We first show that the constraint part is small enough. For each ¢,

cHz+d)= c'(2)+ a'(z)Td+%dTVc'(E,)d

= %dTV2c'(E,)d
for some §; on the line segment between 2z and z+d. Since
w= —A(ATA) Te(z+d), and each V¢’ is bounded, there is a constant v, such

that |Jw || = y-||d ||°. Also,
cz+d+w)= c'(e+d)+ a{(x)Tur+(ai(-§_,»)— a{z))Tw

= ((E)= a'(a))

for some &; on the line segment between r and 2+ d+w. So, there is a constant +y,

such that

lef(z+d+w)l < [la(E)=a'(x) [ [lw || < v [Id ]1® .
Thus,

m ) ) . .
| 2 willeiat drw)= [+ @ T < vy lld I
for some constant 7yg.

Next, to show that the quadratic model of the Lagrangian is close enough to

flz+ d+ w), note that

| [+ 9Td+%dTBd— f(z+ d+ w) |

= |f+gTd+%dTVf(2)d~ flz+ d+ w)
+1/z{£=:"1w'(17‘v9c*‘(1|
= |f+gTd+%d7V(z)d— f(z+ d)—glz+ d)Tw=%w TV (E)w
+%§1xfﬂv2cid[
= [[+gTd+%dTVf(2)d~ [=gTd=%dTV[(E)d— glz+ d)Tw—%w TV f(E)uw
+%§1)\”dTV’~’c‘dl

< %] dT(V2f(2)=V2f(E)d|+ %] wTVEf(E)w]
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+ | =glz+d)Tw+ ‘/z"gl)\'»dTVQ("‘dl
for some € on the line segment between z+d and z+ d+w and £ on the line seg-
ment between z and z+d. The first two terms will clearly be smaller than any
constant multiplied by [|d||® for all small enough d, since V2f is uniformly con-

tinuous on D and |lw ||<v,|/d ||*.
For the last term, note that since

glz+d)Tw = )_\_Tc(:c+ d),
where X = — (4 TAY 1ATg(z+ d), we have that

mo
= g(z+d) w+'21%>\‘d7vlc’d[
(=

< ;S’f Nici+at Td+%d TV (&,)d—%d TV2ci(2)d)]

§=

T S (N= N RdTVEei(2)d]

1=1

m —
Z NI IV=ei(g) = Vo (a) [+ % I =X ] HdH IV )l
So, by the Standard Assumptions, since V=¢* and ¢ are umformly continuous on /7,
it is clear that for small enough A, if ||d, || = A then
[+ gTd+%dTBd—= f(a+d+w)| < B ||d|]*,

for any constant § > 0, and the desired result follows. O

If at some iterate z;, the approximation to the Hessian of the Lagrangian,
7By Z;, is not positive semi-definite, then Condition #2 implies that the predicted
reduction will be greater than some fixed constant multiplied by the step length
squared. Using this with Lemma 3. we can easily extend the proof of Theorem 1 to
show that if the null-space components of the steps satisfy Conditions #1 and #2,
then each inmer iteration of the algorithm will terminate with an acceptable step

after a finite number of iterations, unless the iterate satisfies the second order
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necessary conditions for a solution to (1.1). Note that if ¢, = 0, then v, = 0, so

the second order correction will be tried if the trust region step is not accepted.

Now we show that the sequence of iterates can not converge to a point that
does not satisfy the second order necessary conditions for a solution to {1.1). This
result requires the second order correction to the trust region step, which ensures
that the actual reduction in the merit function by the step from T to 144 will be
close to as large as the predicted reduction indicated by a direction of negative cur-

vature of the Hessian of the Lagrangian.

Theorem 3

Suppose that the Standard Assumptions hold, that Ip-~zs, that

B = Vflz) 5 M) Vcisy)
and that {¢(IU} is bounded below on S. Then if the null-space components v in
stage (7) of the algorithm satisfy Condition #1 and Condition #2, there is a A,
such that glrs)+ A(xah. = 0, clze) = Q, and

) is positive semi-definite.

Z(;z:)T(VDf(‘.rx)-!- g )\aivgt‘,’.(ﬂ':))Z(Ja

1=1
Proof:
By Theorem 2 and the Standard Assumptions, there is a A+ such that
glxs)+ A(zs)N+ = 0 and Mz+) = N+, Suppose to the contrary that the smallest

eigenvalue of

m ) .
Z(x) (V2 f(20)+ IZIR,'V':C’(m),)Z(z:)
i=
is negative. Then there is some r > 0 and some @ > 0 such that for any zeT,

where 7' = {zeR™: ||2— 7. || < r}, we have T contained in § and

vi(Z(2)1(Vef ()4 N(2)V2ei(2))2(2)) < - |

1=1

by the continuity of A, N, V2f and V3¢,
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Now, consider an iterate zeT. For the first case, suppose that |v | < [A.
Then @ = 1 and A = (1=¢%)*A, so by Condition #2 and Lemma 1 there is a con-
stant o; such that pred(d) = o,A” for any zeT and A > 0. Now, if the trust
region step d is accepted, then ared(d)= mo A%, Otherwise, the second order
correction step d+ w will be tried, since [v ] = {A. Thus, since by Lemma 3, for
any € > 0, for all small enough d,

lared(d+ w)—pred(d)| < eA®,
and pred(d) = o A%, the second order correction step d+w will be accepted and

vield ared(d+w) = mo, A" for all small enough A > 0.

The second case is that ||v || > {A. In this case, by Lemma 1,

pred = paljc ||, = pmin{l,eﬁ} e 1,

= p Inin{l,GA—}I—IIr' l=p n1i11{—£—A,-—Q—A} .
o ll ", RS Y1

Hence, by Lemma 2, the trust region step d will be accepted and yield

pred = 0,A = 0,A" for some o, and for all small enough A > 0.

Thus, for any ze7, and any small enough A > 0, either the trust region step

will be accepted and yield

:]—ared(d) = pred(d) = 0,A%,

or the second order correction step will be accepted and yield

—%—arcd(d} = pred(d) = o,A% .
Since {2;} converges to z, this clearly contradicts the assumption that ¢ is

bounded below on §. O

The above theorem can be strengthened to to remove the assumption that
7,~x+ if the algorithm is changed slightly. In particular, suppose the strategy for

choosing A in stage (2) of the algorithm is modified so that A is increased by at
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least a constant factor whenever ared and pred agree to a specified degree on the
previous step. Then an argument like that in Theorem 3.1 of Shultz, Schrabel,
and Byrd [1985] shows that at any cluster point of the algorithm, the reduced Hes-

sian is positive semidefinite.

We now give a local rate of convergence result for the algorithm. When a
good approximation to the Hessian of the Lagrangian is used, the second order
correction allows us to prove that eventually the trust region constraint will
become inactive in the neighborhood of a point that satisfies second order sufficient
conditions for a solution to (1.1). Hence, if the sequence of iterates comes close
enough to such a point, then the sequence will converge quadratically. In this

" M " " M "
paper the terms "quadratic convergence” or "superlinear convergence” refer to Q-

order of convergence.

Theorem 4

Let the Standard Assumptions hold. Let

Blz) = fo(z)+i§n1)\i(z)‘»7?c‘(z) ,
and B, = B(z;). Suppose that z. is a point such that there exists a A+e R™ with
glzs)+ A(z<)h+ = 0, c(z+) = 0, and Z7B.Z+ positive definite. Assume that in some
neighborhood of z., V*f and each VZc¢* for ¢ = 1,...,m are Lipschitz continuous.
Suppose further that Conditions #1 and #3 hold. Then there is a neighborhood

about z. such that if any iterate falls in that neighborhood then {z;}-z., and the

convergence rate is quadratic.

Proof:

Since Z7B+«Z. is positive definite, there is a neighborhood of z. and an w > 0

such that for any z in the neighborhood, v(Z(2)TB(z)7(z)) > w.
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We first show that u' = |\.?| for all 7. Note that since c¢(z:) = 0, the Stan-

dard Assumptions imply that there is some neighborhood about z+ in which

=N = £
for each 7, for any z; in that neighborhood. Also, since A(z) is uniformly continu-
ous in some neighborhood of z«, clearly there is some neighborhood of r. such that

for each 1,

})\“(Ik)“Xtil = ‘g‘
for any z; in that neighborhood. Thus, there is a neighborhood about z. such that
if any iterate x; falls in that neighborhood, then

=N <p
for each ¢, and hence clearly

B it p = N
as desired. Now, since & = |\.|, by Corollary 3 in Coleman and Conn [1980], we

have that for all 2% 2+ in some neighborhood of z«, d(z) > b(z+).

Next we show that there 1s a neighborhood about z. such that if any iterate
lands in this neighborhood, then the entire sequence of iterates will converge to ..
Consider any 8 > 0, small enough that

vi(Z(2)TB(2)Z(z)) > o
and &(x.) < &(zx)for all z# 2+ in

D= {zeR": ||z—z. || <8},
and with 8 small enough that inside D, V*f and each V=¢' are Lipschitz continu-
ous, if any iterate falls in D, then p = |N.|, and v(Z(2)TB(2)Z(2)) > w in D.
For any o > 0, let

E, = {zeD : d(z) = d(z:)+0 } .

Clearly each E is a closed and bounded set. Note that
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hm max { ||[z—z. || : zeE, } = 0,

o-0*
since z+ 1s a strict Jocal minimum of & over D. So, we can choose o > 0 small
enough that for any =zeF,, |lz;—z+] <%8. Further, since for €D,
vi(ZIB,Z,) > w >0, and Z(z+)Tg(2+) = 0, and ¢(z.) = 0, it follows by Condition
#3 that we can pick o small enough that if 7,€E,, then |lz;,,— 12, || < %8. Note
that we can satisfy these conditions for any small enough o > 0. Now, suppose
that z,eE,. Since |lzpp;— 7] < %8, and |jz;—2.] < %8, it follows that
llzp41— 241l <8, so =,,,€D. Thus, since the algorithm ensures that
O(2p4q) < bl2y), 214,€E,. So, we have shown that all the iterates will remain in
L'y, once any iterate falls in £ . Hence, since E, is closed and bounded, the
sequence of iterates must have an accumulation point in E,. But, since ¢{z;} is a
monotone decreasing sequence and z« is a strict local minimum of & over £, the

only possible accumulation point is z.. Thus, {1} converges to z. if some iterate
falls in £,

Now we will show that there is a A > 0 and a neighborhood of z. such that
for any r; in the neighborhood and any 0 < A < A, the trust region step or the
trust region step plus the second order correction will pass the corresponding trust

region acceptance test.
If |le]l = ¢ljd ||, then by Lemma 1,
pred(d) = pofle |,
= p min{l, 6= ” 7 el

=p min{—u’;;u—, —8——A}
1

Y1
= p mm{i Il =l

But, by Lemma 2,
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lared(d)= pred(d)| = v, ||d ||

for some constant y,. Hence, clearly for all small enough A, if [lv || = {]|d ||, then

arzj(! 3)) = 7, and the trust region step d will be accepted.
pr ,

Otherwise, if |lv] < {||d ], and the step d is not accepted, then the step
d+ w will be tried. Now, for any z, close enough to z., ZB,Z, is positive definite,
so by Condition #3, either

w=—(2TBZ)"' 27§

or
lull< & < (2TB2) 1274 .
In either case,

Fa

2T

el = l(z7BZ)= 2G|l (27B2) || 12741 = -

By Lemma 1,

i T -
red(d) = x, ||ZT¢ |lmin{A , -—-UZ——‘Q—]-L}
pred(d) = x, [ Z7¢ || 2787 [

2 k0 B [Jmin{ |Ju || . *é‘““ 11}

z vy, |ld [

for some constant v;, since

N |l = I [F=o flo |F = (1= 14 ]]° .

Thus, since by Lemma 3, for any € > 0, for all small enough d,

lared(d+ w)—pred(d)| = €l||d ||,

it follows that the step d+ w from an iterate close enough to z. will be accepted for
all A > 0 less than some fixed A,

Thus, we have shown that there is some neighborhood of z+ such that if any
iterate falls in that neighborhood, then the sequence of iterates will converge to r«,
and the trust radii are bounded away from 0. So, since clearly ||z;,,—z; ||~0, the

trust region constraint will eventually become inactive.
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Finally we show that the convergence rate is quadratic. Since the trust region
constraint Is inactive, the trust region step d, is just the z-component of the New-

ton step at the point (2;,A(z;)) on the problem

VL(zA) =0

c(z) =0,

where L(z,\}) is the Lagrangian function

m o
Lz A) = fla)+ Z N(x)cH(z).
t=1
Since the Standard Assumptions imply that the Jacobian of the above non-lincar
equations problem is non-singular, and since we have assumed Lipschitz continuity,

it follows by a standard result that the Newton iteration is quadratically conver-

gent in the space of r and . Thus there is a constant vy, such that

g+ dp— 2o [[= vyl lrg— 2o [+ [IN(r )= Mo [1P)
< yyllog—a |7
for some vy, since the derivative of X(z) is bounded in a neighborhood of ..

Now, if the second order correction w; is used, the fact that

lwe | = Cllog+ di— 2o Il
for some constant ¢, implies that
ot dtw—ze || = (14 C) ||+ dp— 2 ||
< (14 Oy llag= o [
Hence, the convergence rate is quadratic. O
Although this result was proved for the case where B is the exact Hessian,
one may make similar claims given weaker assumptions on B,. For example, if B,

were constructed so that

1 ZH(Be= V() + é‘«n NV e M 2pgy = 1) |

-0

”‘Ik-ivl_fk
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then an argument essentially identical to the preceding proof shows that, if z,~z.,
the trust region would eventually be inactive and convergence would be super-
linear. However, we feel that such a result would be interesting only in the context
of some practical quasi-Newton method which satisfied (4.5) while using a trust

region.
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