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ABSTRACT

A coara"imzted?aﬁ"sgjé%em (cp system for short) consists of a pair of gram-

mars the first of which is right-linear (71) and the second right-boundary (r5). A
right-boundary grammar is like a right-linear grammar except that one does not
distinguish between ferminal and nonterminal symbols - still the rewriting is
applied to the last symbol of a string only (and erasing productions are allowed).
A rewriting in a cp system consists of a pair of rewritings: one in the first and
one in the second grammar - such a rewriting is possible if the pair of produc-
tions involved is in the finite set of rewrifes given with the systern. It is easily
seen that cp systems correspond very clesely to (are another formulation of)
push-down automata: the right-linear component models the input and the finite

state control while the rb component models the push-down store.

A rb grammar G transforms {rewrites) strings which are stored in a one-
way {potentially infinite) tape. If one observes during a derivation § the use of a
fixed n-th cell of the tape and one notes the symbol stored there, each time that
(the contents of) the cell is rewritten, then one gets the n-ackive record of §; the
set of all n-active records for all successful derivations § forms the m-active

language of G, denoted ACT,(G). It is proved that for each rb grammar & and

each n € N*, ACT, (&) is regular and moreover, for each M < N¥, L} ACT,{(G) is
n i

regular.

Another way to register the use of memory during a derivation § is to
record the contents of (a fixed) n-th cell during afl consecutive steps of § - in
this way one gets the n-full record of 6. The set of all n-full records for all suc-
cessful derivations § forms the n-full record language of , dencted FR,{G). It
is proved that, as in the case of aetive records, FR, (&) regular for each n and,

unlike in the case of active records, |J FH,{(G) does not have to be regular
- ney



system by a rb grammear and using this theorem we transfer the above results

on the use of memory to cp systems.



The literature is full of various notions of machines {automata) and gram-
mars each one developed with a specific, practical or theoretical, motivation
behind it (see, e.g., [H] and [S2]). The notion of an ects system provides a com-
mon framework for quite a variety of these models (see [R]). Within the ects
model various notions of machines and grammars are considered as systems of
basic units {(which are rather simple rewriting systems working together in a
"coordinated fashion”). It is demonstrated in [R] that right-boundary grammars
(rb grammars for short) constitute such a basic (perhaps the most basic) unit.
A right-boundar y grammar is like a ﬁght—linear grammar except that one does
not distinguish between terminal and nonterminal symbols - still the rewriting is
applied to the last symbol of a string only (and erasing productions are allowed);
the nction of a rb grammar is a special case of the regular canonical system of
Buchi (see [B] and [S1]). A well-known subclass of ects systems are coordinated
pair systems (cp systems for short). A cp system consists of two grammars the
first of which is right-linear and éhe second is right-boundary; it turns out that
ep systems correspond very closely to {are another formulation of) push-down
antomata. The theory of cp systems (or: the cp system approach to the theory

of push-down automata) is presented in [EHR1] and [EHR2].

This paper continues the research on the theory of cp systems and in par-
ticular it presents results describing the use of memory in right-boundary gram-
mars {and cp systems). The basic idea investigated in the paper is as follows.

A right-boundary grammar G represents {transformations of) a data struc-
ture which is a linear one-way (potentially) infinite array of {(memory) cells the
processing of which takes place at the (right) end of the array. Hence during
each derivation in G one can record the history of the use {(the "scheduling”) of

each single cell. In other words each time (the contents of) a given cell is



rewritten a note is made of the lekfe
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letter at this moment) and thggge‘éuence of all such "notes of activity” during a

r being stored there at that time (the active
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given derivation & forms the active record of this cell during the derivation 4.
The set of all active records of the n-th memory cell in all successful derivations
forms the n-active language of G denoted ACT,{G) (a derivation is successful if

it leads from the axiom of & to the empty word).

Another, very natural, approach to recording the memory use is to apply a
standard 'snapshot’ approach. Here observing the n-th memory cell means to
record the contents of this cell during all consecutive steps of the derivation. In
this way we obtain, for a givel;z derivation § and for a given n € N*, the n-full
record of § (where if a line of 6 is shorter than n, then we insert the $§ syrmbol
syrnbolizing the idle state of the given cell). The set of all n-full records of the
n-th memory cell in all successful derivations forms the n-full record language
of G, denoted FE,{G).

We prove that for each rb grammar G and each m, both ACT,{(G) and
FR,{G) are regular {Corollary 1.3 and Theorem 4.4). Actually the regularity of
active records is quite "deep”; it turns out that for an arbitrary subset M of

positive integers ) ACT,(G) is regular {Theorem 3.4) - this is strong regular-
meM

ity indeed!! The situation is drastically different for full records: infinite unions

U FR,(G) do not have to be regular (even if # is taken to be the set of all

m el
positive integers).

In order to transfer these results to cp systems we prove a rb representa-
tion theorem for cp systems (Theorem 8.1): rather than to consider a cp system
one can consider a rb grammar. This representation theorem allows us to

transfer the above results on aét:lv? and full records for rb grammars to the

framework of cp systems.



0. PRELIMI

We assumenit,l;%”_”;rgz"’re_ader to be familiar with basic formal language theory (see,
e.g., [H] or [SZ]) )

For a set Z, #Z denotes its cardinality. If V is a finite set of integers we use
max V and min V to denote the maximal and the minimal element of V respec-
tively.

For a word z, |z | denoctes its length and, if 1 <k < |z, then z (k) denotes
the k-th letter of x. If z is nonempty, then we use last(z) to denote z{{z|). A
denotes the empty word.

A letter to letter homomorphism is called a coding.

A contfext-free grammar, abbreviated cf grammar, is specified in the form

G=(3, P, S,A), where I is its alphabet, P its set of productions, S €% its
w
axiom and A its terminal alphabet. For z,y € 2% we write = :? y if z directly

derives ¥ using production .

A right-linear grammar, abbreviated 7l grammar, is a context-free grammar

G = (%, P, §,A) which has its productions in the set (X —A) x A*((Z—A)UEM).
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1. RIGHT-BOUNDAREGRAMMARS AND THEIR ACTIVE: RECORDS

-

4

-
In this sectiomrwe introduce basic notions concerning right-boundary gram-
mars and then we formalize the {active) use of mermory by derivations in these

grarmmars.

Definition 1.1. A right-boundary grammar, abbreviated rd grammar, is a
triple ¢ = (Z. P, w), where
L is an alphabet,
P c=x2" is a finite set of productions, and

w € Lt is the azxiom of G. =

For arb grammar G = (I, P,o) we use mazr {G) to denote
max{|w| |4 »w € PJ.

Definition 1.2. Let & = (X, P, ») be arb grammar.

(1) Let z,y €S andlet r=A-oweP. z directly derives y in G (using ),

" .
written z =G-';>y (z ———C-;->y), ifz = 24 and ¥ = zw for some 2z € =",

* £
Let. ————‘? be the reflexive and transitive closure of “——;; Ifz :b‘:;r Yy, then we say

that z derives y in G
(2) A derivation (in G)is a sequence § = (g, T, ..., Tn ), » = 0, of words from
£* such that, for every 1<i<n, z;_, :G> z;. We say that § derives x,, from z,

£

and denote it by &: x4 = Z,.

For 0=1 <n, z, is called the i-th line of § and is denoted by 6(i). m is called

the length of § and is denoted by ig (4).

*
(3) A derivationd : w :? Ais called successful.

(4) Let 6, = (8,0),8:41), §i{m)) and 6z = (6,(0), 82(1), .., 62(n)) be two



derivations in G such thatg;j;(m) = 6,(0). The composition of §, and 8, denoted

51 ® 5z is the derivation (8,(0), 6,(1), ..., 6y(m), 65(1), ..., a(n)). =

Lemma 1.1. Let G= (I, P,w) be a rb grammar and let z,y € Z*. If

o
x ”-—;—‘;’ Yy, then there exists a unique production m € P such that z :5? Y. ®

Definition 1.3. Let G be a rb grammar and let § = (§(0), ..., 8(n)), n =0 be

a derivation in &. The sequence (ry, ..., m,) of productions such that

i
&{i—1) = 8(i) for every 1 <4 <n is called the control sequence of § and is

dencted by cont(§); if n = 0, then cont(§) is the empty sequence. ®

Remark 1.1. (1) Lemma 1.1 guarantees the uniqueness of the control

sequence (for each derivation §).

® x
() Note that if §;:u ? v and 8 : v =G> w are two derivations in a rb gram-

mar &, then
lg(6,®dz) =g () + g () and

cont {§,&85) = cont (G)cont(6,). =

In order Lo simplify our notation we will skip the inscription "G" whenever G
.
is understood from the context. Hence, e.g., we will write = and = rather

b
than ‘;»;> and “—g‘; respectively.

If all the lines of a derivation é in a rb grammar & are written under each
other (adjusted letter-by-letter), then the most natural way of storing § in a
memory suggests by itself that all the first letters of the lines of § are stored in
the first memory cell, all the second letters are stored in the second memory

cell, etc.



Figure 1.

Now if one wants to get an idea of the use of memory within this particular
derivation 4, then one can choose n > 1 and then observe the actions performed
on the n-th memory cell. The significant moments are those when this particu-

lar memory cell becomes active (i.e. the symbol stored there is rewritten).

This natural intuition of the memory use associated with a derivation in a

right-boundary grammar leads us to the following definition.

Definition 1.4. Let 6 = (8(0), ..., 6{k)) be a derivation in a rb grammar G
and let n € N*.
(1) Aline 8(i) of 8§ with |§(i)| = n is called an n —active line of 4.
(2) The m-active record of §, denoted act,(8), is the word
gan{é{O))rpn(d(l)) © - ga(6(k —1)), where ¢, : I L JEA] is the mapping defined
by '
(u(n),if lu| =n,

palu) = i . =
A, otherwise.

Remark 1.2. (1) Note that in determining the m-active record of § the last

word of § is not taken into account. Therefore:

*® *
() Ifd,:u =>w, 83: v => w are two derivations in a rb grammar G, then

act, (8§, ® 8z) = act, (6,)act, (6;). =

Example 1.1. Let G = ({4, B, C}, P, A) be the rb grammar with
P=§4-BC B> AR, B-A\ C- B5|.
Then 8 = (BBB,BB,BAB,BAAR, BAA, BABC,BABBR,BABL ,BAR) is a derivation in

G of length 8 with



o
S,

comt(8) = (B »A-BSAB, B> AB, BN A-»BC, C»BB B-M\EB N,
act,(8) = A acta(8Y=B, acty(s) = BPA, acty(s)= BCH, acts(s)=F and
act, (8) = Afor ezih n > 8,

This is easily seen if we write the consecutive lines of § under each other.

Figure 2.

If we record now, for an m =1, the n-active records for all successful
derivations in a rb grammar (&, then we get a complete picture of the use of the

n-th memory cell {from our "intuitive model”) in G.

Definition 1.5. Let G =(Z, P, w) be a rb grammar and let n € N*. The n-
-

active language of G denoted AC’Fn(G), is the language {act,(8) | 6 : w :?Ag, n

We demonstrate now that for each n, ACT,(G) is regular, which intuitively
means that this "schedule of active use" of each memory cell may be realized
(implemented) by a finite automaton. Actually we can prove a somewhat

stronger result.

Theorem 1.2. Let G=(I, P, w) be a rb grammar and let w,, w, ex”.

®

Then {act,{(§) | 6 1w, = wai is regular for each . € N¥.

Proof.

Let n € Nl*. We construct a finite automaton A, = (&, , L, I, . 7, . F,) as
follows.
A, has as its set of states the set of words of length n over Z together with wy if
\wa| #n;le, Q;L = D7 jwpl.

For uw € Z", v € &), and A € ¥ there exists an edge (uw,4,v) €Il, if and only if
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there exists a derivation 6 : u == v such that act,(8) = A. (Note that then

A =u(n).) IfJw,| # n, then w, has no outgoing edges.
®

I, consists of those w € &, for which there exists a derivation 6 : w; = u such
that act, (§) = A. (Note that if |w,| = n, then [, = fw,}.)

Fn = é'lbgg

L{A,) is regular and obviously L{A,) = {act,(6) | 6 : w, = wgl. ®

Remark 1.3. The effectiveness of the construction of the automaton A,

from the above proof relies on deciding whether or not, for u, v € I, there

. J
exists a derivation 6 : u=> v with act,(8) = A, A = u(n). It is obvious that such

a derivation cannot have lines of length n other than its first (we mean 6{0)) and
last lines. Moreover it is easily seen that, for all p, 7 such that p <j <ig(é),

[8(p)| >n implies [6(j)| >n. Hence it follows that we may write § = §,86,
® ®

where 6:u=> w, §5: w=> v are such that |§,(3)| <7n for 0 <17 <lg(d,) and

{85(1)] >n for 0 <1 <lg(ds). Note that if § contains no lines shorter (longer)

than n, then ig(6,) = 1({g (82) = O respectively). All lines in 6, have the first n

symbols in common since they are not rewritten during d.. Thus w =wvz for
#*

some z €3, 0< |2 | < mazr(&) and there exists a derivation g : z==> A with
cont{u) = cont(8,).

In this way the problem of deciding whether or not {(u, 4,v) 1L, is

E 3

reduced to the problem of deciding whether or not Z:é; A for a given word z.

The latter problem is easily seen to be decidable. The reasoning as above can be

extended in a Sﬁf—}_&ightforward way to the problem of deciding whether or not

* .
) % } )
U, = U, for arbitrary @, , us €% . (If wy # A, then take n = lus|; every deriva-
1= 2 ¥y 2 2 2| b
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tion ¢ : ul? ugcgﬁ be decomposed into an initial part leading to the first line

of length n arxz%~a;§humber of derivations of the form discussed above.) Thus the

construction of the automaton A, is effective. ®

Corollary 1.3. Let G be arb grammar and let n € N*. Then ACT,(G) is reg-

ular. =
Example 1.1. {continued) A finite automaton accepting ACTa(G) can easily

be constructed using the following diagram. This diagram has "virtual'nodes to

*
represent derivations with lines of length less than 3. Note that Xf—;; A for every

X L.

Figure 3.

The finite automaton for ACTs(G) looks as follows.

Figure 4.
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2. SPACE USE&MEZRIVATIONS IN RB GRAMMARS

We have-teatned in the last section that for an arbitrary rb grammar
ACT,(G) is regular for each n. As a matter of fact we are going to prove {in Sec-
tion 3) that the regularity of the use of memory cells in rb grammars is much

deeper than that: it turns out that for an arbitrary subset M of N* the union

U ACT,.(G) is also regular - this is strong regularity indeed !

m ey

In this section we prove an auxiliary technical result (Lemma 2.1} that is
interesting on its own: in deriving a word v from a word u in a rb grammar it
suffices to use (in addition to the space cccupied by % and v) no more than

some constant (for the gramrmar) extra amount of space.
The amount of space used by a derivation is formalized as fellows.

Definition 2.1. Let G =(Z, P, w) be a rb grammar.
(1) The &readth of a derivation § in G, denoted brd(6), is

max{|6(i)] |0=1 =1g(d)}.

®
(2) Let u =>v for some uw, v €% . The (u,u)—breadth, denoted brd(u,v),

+*
equals min{brd(8) | 6§ : u = v). =

Lemma 2.1. Let G = (I, P, ) be arb grammar. There exists an integer mg

*
such that for each pairu, v € E*, % =—;;> v irnplies that

brd{uw,v) < mg + maxi|jul, jvi.

Proof.

*
Let mp = max%b‘rg’(wl, wa) | wy == we and |w|, |ws| € mazr(G)!. Note

that mazr(G) < m;. "

* a
Let 6 : v = v be an arbitrary derivaticn in G. We will prove that there exists a
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derivation ¢' : u.=> v in G, with brd(8') < m¢ + M, where M = max{|u]|, |v]].

{

A line ﬂd\(g})"f:of 6 is called special if M <|6(i)] <M + mazr(G). Let
7= (6(%,), 6(iz). ..., 6(iz)) be the subsequence of § consisting of all special lines.
Since [6(7 -1} —1 = |6()| < |8(j —1)| + mazr(G) for each 1 <j < Ig(8), 6 can-
not have lines longer than ¥ + mazr{G) without having special lines. So if 7 is

empty then the lemma holds.

Assume now that 7 is nonempty. Both &g =(8(0), ..., 6(i,—1)) and

8p01 = (8(iz+1), ..., 6(lg (8))) consist of lines not longer than .

Consider now the subsequence &, = {6(%,+1), ..., 6(ic,;—1)) for some
k €{1,2,...,t§. Either all these lines are not longer than # or they are all longer
than M +maxr{G).
Assume that ¢ is nonempty and that all its lines are longer than M +mazr{G) -

we say then that §; is an external segment of 6. We can write 6(i,) = zw, and

®
w.|, |ws| < maxr{G). Note that wy :é;"’wz,

8{ig 1) = zwy, where |z| = M,
*
because &{ig ) :—“;;» 8{i.+;) and the derivation steps in-between do not influence

{rewrite) z. From the definition of mg it follows that there exists a derivation

*

Mo w = wy, with brd{w) < mg.
*
Consequently there exists a derivation u': 6(%) = zw,=> zw = §(iy ) with

cont () = cont(w') such that brd (') < me+ .

Hence, by replacing the external segments of § by "new’ derivations as

&
above, we obtain a derivation 4': w = v, such that brd(§') < me+HM. Thus the

lemma holds. =

&

Example 1.1. {continued) Consider the following derivation & : CAF = A
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Figure 5.
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Special lines in this figure are indicated by short arrows. ¢ has one external

segment; it is a derivation of CAABBE from CAABER

part above M, see Figure 8) represents the derivation

The "roof part” (i.e., the
(BBB,BBAR,BBA,BBBC,BBBBB,BEBB ,BBR).

Figure 8.

Replacing it by {(BFB) yields the derivation &'.

Figure 7.
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3. UNIONS OF ACTIVE: IANGUAGIS

iy

As we have indicateéﬁlréigdy, arbitrary unions of n-active languages in a rb
grammar are regular. We prove this result in this section.

The reason that this result holds is that each n-active language is of a very
special form (Lemma 3.3). We start by defining some classes of languages useful
in our considerations.

Definition 3.1. A language K is down-closed if for each word w € K all

sparse subwords of w are also in K. = -

The following well-known result (see [C], pp. 83-684) is very crucial in our

proof of Lemma 3.3.

Proposition 3.1. Each down-closed language is regular. =

We use DCy to denote the family of down-closed languages over the alphabet

®. For a regular substitution , DCqx denotes the family ¢m{L) | L € DCg}.
Lemma 3.2. Let m be a regular substitution over an alphabet 8. Then
(1) each language in DCqy; is regular, and
(2) DCq is closed under arbitrary (possibly infinite) unions.
Proof. (1) Obvious. By Proposition 3.1 DCg consists of regular languages
and regularity is preserved under regular substitutions.
(2) DCq is clearly closed under arbitrary unions. Consequently DCq  is closed
under arbitrary unions because

\n(z)y ==(\_)L)

LeP? LeF

for any language family F over 8. =
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Lemma-3.3..Let G = (Eﬁw)bﬁrpa rb grammar. There exist an integer ng,
an alphabet ® and a regul%:@séiibstitution m of ® into &° such that

T

ACT, (G} € DCg , for each n > ng.
Prool.

Let m¢ be a constant (dependent of &) satisfying the statement of Lemma

2.1, let mg = me+1 and let ng = mg+|w|. Let n > ng.

*

Consider a derivation 6 : @ =>A and let 6{(i) and 6(j), 1 < j, be two n-active
lines of 8. We say that 6{i) and 6(j) are n—related if |§(t)]| > n—mg for each
i<t =i

Assume now that 6{i) and 6(;) are two n-related lines of §. Since all lines of
& between 8(i) and 6(j) are longer than n —mg they all have a common prefix z
of length n—mgy Hence for each i<t <j we can write 6(¢) = zw;, where
lz| =n—mgand w; = wy; => - = wy;. Moreover |w;| = |w;| = m,.

Obviously the nction of n-related lines defines an equivalence relation on
the (occurences of) n-active lines of 8. If we take the first (6(¢)) and last (6(7))

line of each n-related equivalence class, then we obtain a "subsequence”

6(i1), 8(41), 6(iz). 6(42). ... 8(%). 8(de)
of §, such that 014, <3, <13<j3< -+ <1 < Jp <lg(d); this subsequence is
referred to as the m—characteristic sequence of 6. (Note that it may happen
that %; = 7; because an equivalence class can consist of just one single n-active

line of §; in that case this line occurs twice in our sequence.)

® )
Let @ ={<uv>|uv el , ju| =|v| =mgl.
The word <u,u;><ugsUs> - <, ¥y > over @ such that w, and w; are the

suffixes of length mg of &(ig}—and J(;,) respectively, is called the

n —signature of § and denoted by S%gn((?}
*

Now let K, = {sig,(8) | 610 => Ao
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The notions tha&ﬁe have introduced above \i‘can be illustrated as follows. Let

4 be a derivation gé,.tla% following form:

Figure 8.

Then the lines 6(%,) and 8(j,) are n-related, while the lines §(j,) and &(i,) are
not n-related. Note that there are no other n-active lines related to §(i,).

The n-characteristic sequence of § is the sequence

6(i 1), 6(j1). 6(i2), 8(ig). 6(is), 6(7a).

The n-signature of ¢ Is <, > <uUpus><UgUg>.

First we will show that X, is down-closed.
Claim 1. X, € DCs.

Proof of Claim 1.

*

In order to prove that X, is down-closed, consider a derivation 6 : @ ';G*) A

.

with §ig,(8) = <u, v, ><usv> - <uy, > k= 1.

Let 6{(i,), 6{71), ..., 6{%), 6(jr) be the n-characteristic sequence of §. Since §{j;)
and 6{i;1), 1<f <k, are not n-related they are separated by a line
8(8:), Jp <& <idyyq, with |6(L)] =n—-mgy Furthermore if we set I =0 and
L, = lg(6), then obviously we have lg <iy fi <l, |6{lg)| = |&| <n-mgy and

[8{le+1)| = [A] <n—mg.
E
For each 1 £ ¢ <k we have 6({;_;) = 6({;). Thus, by Lemma 2.1, there exists a
k]

derivation 4 : 6{L ) = 8({;) with &rd{u,) € me+max{|6(L )|, [6(4)1] <

me+n—my =n-1. Hence act,{y;) = A or, in other words, u; does not contain

n-active lines.
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So if we repace@éfé lines 6{%;_,), ....6(%;) from & by the lines of u;, then we

= »
i
obtain a new derivatien §; : w = A such that

Sign(8e) = <w U > U U DUy Vg > 0 < U

Consequently by erasing an arbitrary symbol in a word of K, we obtain a
word in K,. Thus K, is down-closed. =

In order to illustrate the construction used above consider again the deriva-

tion depicted in Figure 8. According to our construction it is possible to replace

the subderivation (8(I,), 6(L;+1), ..., 6(15)) of 8§ by a derivation uy of 6(I;) from
6{l,) which looks as follows:

Figure 2.
The resulting derivation 63 has the n-signature <w;,u;><ugvg>.

Let m: ® » £° be the substitution defined by

&

m{<w,v>) = {wA | A =v(mg) and w = acty, (u) for some 4 u == v}

Theorem 1.2 implies that 7 is a regular substitution.
In order

to prove

that ACT,{G) € DCq, we will demonstrate that
ACT, (@) = n(Ky,). This in turn is accomplished by proving the following two
claims (corresponding to the two inclusions involved).
Claim 2. ACT, (G) € n(K,).

Proof of Claim 2.

*
Let w € ACT, (&), so_w = act,(6) for some derivation &:w = A Let

8(iy), 8(7 ). ..., 8{ix), 6(4z) Eethe n-characteristic sequence of ¢ and let
Sign{6) = <uv,> - <u,c,'u§;;_>:.
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If we choose Ly, {4, lk,wa@;n the proof of Claim 1, then
act, {8) = act, {8;).- - - act,,_(cég)r where each derivation §; 1<¢ <k, is of the
form 8; = (8(Ls-1), 8l 1+ 1, ... 6(L)).
Moreover, foreach 1 <t <k, §, = 8} RZ Q42
where 6/ = (6(Li—y), ..., 8(it)) . 6F = (6(&t), ... 8(5¢)) and 68 = (6(j.), ..., 6(L)).
Thus act, (6;) = act, (§8)act, (6F)act,(68) = act, (88) 6(5.)(n).

The claim now follows by observing that

®

act, (88) 6(j: ¥(n) = acty () ve (mo) for the derivation g @ u = u; with
cont (67) = cont(u,) and consequently act, (8,) € m(<wu;,v,>); thus

actn(8) € m(sign(6)) € m(&y).

Claim 3. n{K,) € ACT,{G).
Proof of Claim 3.

If wA < n(<u,v>), where A4 =wv(my), then there exists a derivation

®
L = v with acémg(,u,) =w. Thus for an arbitrary z € =" with lz] =n-m,

*
there exists a derivation §' : zu = zv with act,(§') = w.

*
This enables us to replace in a derivation 6 : @ =>A each of the subderiva-

tions 8; = {6(f; (), ..., 8(f;)) (in the notation as above) by a corresponding deriva-

*

tion & : 6(l;-) = &(l;) such that act,(6;) = z,, where 2z, is an arbitrarily
chosen element of {<u;,u; >).

Frorm these observations the claim easily follows. =

So we have shown that ACT,(G) = n(&,) for each n > ng = mg+|w|, where

K, is a down-closed language over the alphabet @. Hence the lemma holds. =
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We are ready nuw_{i prove the main result of this section.

i

A

ot

'Iheoreuz&awfgwélégﬁ“ G be a rb grammar. Then U ACT;(G) is regular for

: ief

k

arbitrary / ¢ N*.
Proof.

Let 7/ ¢ N*. According to Lemma 3.3 there exists a constant ng for G such
that ACT,{G) € DCq for every n > ng, where 7 is a suitably chosen regular sub-
stitution over an alphabet ®.

Llet /1 ={ie€l]|i>ng] and [p=§i €7 |1 =<ng)]. From Lemma 3.2 it follows

that U ACT;{G) is regular.

i€l

Since U ACT(G) = U ACT {(G)v U ACT{G), I is finite and the class of reg-

ielf iel; i€ fy
ular languages is closed under finite unions, Corollary 1.3 implies that

UACTi(G) is regular. =

ief
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4. FULL RECORDS-OF RB GRAMMARS

The n-th ac'btive record of a derivation contains the information about the
active behavior of the m-th memory cell - we observe only those moments of

time when the n-th cell is active and then we record the symbol being there.

Another, very natural, approach to recording the memory use is to apply a
standard "snapshot” approach. Here observing the n-th memory cell means to
record the contents of this cell during all consecutive steps of the derivation. In
this way we obtain, for a given derivation § and for a given n € N*, the n-full
record of 6 {where if a line of § is shorter than n, then we insert the § symbol

symbolizing the idle state of the given cell). This is formalized as follows.

Definition 4.1. Let G = (¥, P, @) be a rb grammar, and let § be a symbol
not in Z. Letn € N%.
(1) Let 8 be a derivation in G and let k = g (8). The n-full record of §, denoted
Fra(8), is the word ¥n (S(0))¥n(86(1)) - Ya(6(k —1)) where ¥n: 5" - Z(J{$] is

the mapping defined by

un) vl =n,
Ynlu) = 3 , otherwise.
(2) The n-full record languoge of G denoted FR,{G), equals

#*®
Efrn(é) | 6:w :*a—’;* A} =
Remark 4.1. As in the case of the n-active record, in defining the n-full

record of a derivation § we do not consider the last line of §. Thus if

® *
d,:uw =»v and dp; v => w are derivations in a given rb grammar G, then

f"'n<‘51 & 62) = an(‘sl}an(dZ}- =

Example 4.1. Let G = ({A,5,C, D4, P, AC) be the rb grammar with

P=$A>BC,B->AC-DC, C-AD-AL
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For each pair:v,&:wge N there exists a derivation 6 ; of the form

(AC, ADC, AD?C, ..., AD, A, BC, BDC, ..., BD'C, BD', ..., BD, B, \).
Obviously fri(8 ;) = A%*+252+2,

*
Since each derivation 6:A4C =>A is of the above form we have

FR(G) = (44)"(BB)".
Consider ¢ = dg3. Then
Fra{8) = CORSCDES,
Frs(8) = 82CDo 87 C8t,
Fra(8) = 35C3'% and
S (8) = $* for eachn = 9.
It is easily seen that ACT (G) = {AB}], ACTy(G) = {CD,C}? and

ACT,{(G) = §CD,C,Aj? for each n. > 3. =

For a rb grammar G and two words u, v over its alphabet the {(u,v)-
specirum is the set of all lengths of all derivations in & leading from u tov. We
will prove that (u,A)-spectrum is ultimately pericdic for each word ». This
result certainly says something about the nature of derivations in rb grammars.
Moreover it will be an essential tool in proving the regularity of full record

languages.

We begin by formally defining spectra.

Definition 4.2. Let /7 = (I, P,w) be a rb grammar. For two words u, v € gt
the (w,uj)-spectrum (in G), denoted specg{u,v), is defined by
]
specg{uw) ={g(8) | 6§  u = vi. =
As usual we will omit the index Gwhenever G is clear from the context.

To prove our result on spectra we need the following lemma.
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Lemmaé—.lw,}ngG = (%, P, ») be arb grammar and let w € 5. There exist
constants ng ,kqa,g;N: satisfying:
if n € spec (uA)Wmth n >ng then {n +c,k | k € N] Cspec(uw,A) for some
cp, ENwith 1=c, < g,

Proof.

There are several ways to prove the lemma. One way would be to consider
some "arithmetic” properties concerning the length of lines in the derivation
and to obtain a pumping property for "long encugh' derivations - such a procf is
presented in [EHR4]. Here we will briefly sketch a "standard” tree-based proof
of the lemma. (Since we use standard reasoning we will present the ideas rather

informally.)

*

A derivation §:u zci> A can be represented by a forest Ty, -, Tjy| of

node-labelled trees: leaves are labelled by A, all other nodes are labelled by
letters from Z (if |« | = 1, then we deal with a single tree rather than a forest,

otherwise each tree of the forest T,,.., T}y represents a derivation
6; s u(i) = A).

For example if § = (A8 , ABA , ABAB , ABA ,AB ,A,AB ,A,AB A A isa

derivation in a rb grammar G, then it is represented by the following forest.
Figure 10.

Given such a representation one can recover the unigue derivation it represents

(because we deal with right-most rewriting).
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The number of: nﬁi rnal nodes in T; equals lg(6;). If no path in 7} is longer

?m‘

than k (countmg:f e number of edges), then 7; has at most

mk —
-1

1+m+m?+ - +mr! = internal nodes, where m = mazr (G).

#E
Hence if lg(6) = ig(6,) + - + lg(6,) is larger than |u | m’———-i——- then at least

one of the trees, say 7}, contains a path 7 that has at least two nodes with the
same label. Let T and 7)) be subtrees of 7, that have their roots in nodes on
7 with identical labels such that 79 is a subtree of 7 and such that 7 is
minimally chosen. Manipulating these subtrees in the standard way within 7; it

is possible to obtain for each k € N a tree T{¥) representing a derivation
680 s () Z?A with Ig(6{%)) = lg(6;) + ¢ 'k, where ¢ equals the number of

internal nodes in 7% minus the number of internal nodes in 7. Due to the

m AL+l

minimality of 7(1) no path in this tree is longer than #¥ + 1, thus ¢ <

4
L

Conib'm'mg T,;(k) with the trees Ty, ..., Tt—1, Tt41 .0 Tju) 2gain we have the tree

representation of a derivation 6%) :u '—‘——E;‘»A with g (6%*)) = lg(8) + ¢c-k. Hence

the lemma holds. =

Corollary 4.2. Let G=(I,P,w) be a rb grammar. For each u €3,
spec (u, A) is an ultimately periodic set.

Proof. letu €2 and let Mg, §¢ be constants satisfying the statement of
Lemma 4.1. Let @ be a common multiple of the numbers 1, 2, ..., ¢4 Thus, if
n € spec(w, A) withn > ng, then {n + 3k |k € N} C
fn + o,k |k € N C spec{u, A) for some ¢, € Nwith 1 € ¢, < g,.

Let [ ={n | n €spec(u, A) and P = {n [ n €spec(u,A), n =ng and n <nq

and n—¢ &£ spec{w, A}
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Then [ and P are finite sets {(elements of P are all different modulo ¢) and

consequently spec{u,A)=7 ) {n +k€ | n € Pandk €N} is an ultimately

periodic set. =

Note that the tree oriented argument used in our proof of Lemma 4.1 works
nicely because we consider derivations that derive A. If we consider derivations
that derive a non-empty word, then a technical difficulty arises: replacing a sub-
tree in a tree that corresponds to a derivation may lead to a tree that does not

represent a derivation.

In this paper we will use Corollary 4.2. However the ultimate periodicily
property holds in a more general sense than presented above. One can prove
that (see [EHR4]):

Proposition 4.3. Let G = (%, P, w) be a rb grammar. For all %, v € =*,

spec {u,v) is an ultimately periodic set. =

Theorem 4.4 Let G(Z, P, ) be a rb grammar. Then FR,(G) is regular for
eachn € N*.

Proof.

Let n € N*. We construct arl grammar H, = {0, , P, , S, A,) as follows.

Let &, = {lUlz | z €r" and 1< 'z =n-1+ mazr{G)]. Besides letters
from Z(Jt$], A, will have terminal symbols representing special sufixes of
words in &,
Let A, =ZUt8]UI<A,2>| there exists an ¥ € £* such that y(n) =4 and
yz € L, 3,
let O, = A, 1UH{z] | z €, and let § =[w].

For eachz €L, , P, contains the following productions.

(1) If |z| <n, then [z] - $[y]< P, for each ¥y €3 such that z=svy (for
Y Y
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simplicity we set [A] = A),
(2) if |z| =n, then [z] » A[y] € P, with A = z(n), for each y € £~ such that
z =2y, and
(3) if |z]| >n, then [z]- <A,z2>[y] € P,, where 4 =z(n) and vy € L™ with
z = yz.

Finally let ¢ be the substitution on A, defined by o{4) = {4}, (%) = § and
0(<A,Z>) = {A*¥ | k € spec(z,A)]. We have to prove that FR,(G) = o(L(H,)).

Claim 1. FR,(G) C o(L(H,)).

Proof of Claim 1.

*

Let 6 : w = A be a derivation in G. Clearly there exists a unique decompo-
sition § = §;RER - - - &, of § such that foreach 1<k =7
{i) either [6,(0)] =n and lg(d,) = 1,
(i) or |6, (1) >nfor 0<1i <Ig{8,) and |8 (g (8))| = n.

For each of the derivations d, there exists a production
e = [6.(0)] » we[0e{lg ()] in P, such that fr,(d;) <€ a{u,). (Note that
8 (lg (6x)) = 6, +1(0) if & <7 and 6,(lg(6,)) = A, remember our convention that
[A] = A.) The existence of m is seen as follows.
(1) It [6¢(0)| <7, thenlg(6,) = 1 and fro(6,) = 8. £, contains the production
(6. (0)] » 8[8c(1)] and o(3) = {3},
(2) If |6,(0)] =n, then Ig(éx) =1 and fr,{8,) = 4, where 4 = 6.(0)(n). 2,
contains the production [6,{0)] = A[8. (1) ]; o(4) = {A].
(3) If |6,(0)| >n then all lines of §; except for the last one are longer than n.
Thus all lines of §; have the prefix §,+,(0);k # v because the last line of §, does

not equal A. Hence we may write 6x(0) = 6¢1{(0)z for some 2z € £* and more-

I

over there exists a derivation w:z = A with cont{u) = cont(é,). Let

A =6.(0)(n) = 6p+1(0)(n). .~ Then P, contains the production
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[6.(0)] » <A4,2>[6, ,1(0)] and fry(5,) = A7) = AW € o(<a,2>).

It is now obvious that (7, ..., 7,) can be used as the control sequence of a

L4

derivation  [w] =>u[A]=w in H, with weA, such that
Fra(8) = fra(8y) - - frn{6;) € o(w). This proves the claim. ®

Claim 2. o(L{H,)) € FRE,(G).

Proof of Claim 2.

For each u € L{H,) and each w € o{u) we can obtain a derivation
6w 2;‘5 Ain G with fr,{(8) = w by reversing the construction used in proving
the prévious claim. & will be the composition of derivations &, , ..., §, that are
based on the control sequence {7, ..., 7.) of a derivation of w in H,. Note that,
due to the form of productions in P, , 7 = |u|.

Let w = w, - - w, withw, € o{ulk)) fork =1, ..., 7.

(1.2) Ifme =[z] > Aly], where |z| <n and A € 2B, then 8, = (z.,y).
(3) Itm =[z] > <4,2>[y] with |z| >n, A =z(n)and z = yz, then w;, = 4® for

some p € spec{z,A). Choose any derivaticn u: 2 = A with Ig{u) = p and let

Ed

8p iz =Yz =y be the derivation such that cont (8;) = cont ().

As in the proof of Claimm 1 it is easily seen that §,®6,8 - - ®0, is a well-

-

defined derivation 6 : @ = Ain & with

Fra(8)y = fri{éy) -+ fra{8,) =w,; - w, =w. Hence the claim holds. ®

From the two claims above we indeed get that FR, (&) = a(L(H,)).
Note that ¢ is a regular substitution because the sets {4* | k € spec{z ,A)} are

regular by Corollary 4.2. Hence, since L(H,) is regular and the class of regular

languages is closed under regular substitution, #7, (&) is regular. =
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We end this sect{&):% by demonstrating that, unlike in the case of active

records, an arbitrarfy"ﬁnion of FR,(G) languages do not have to be regular. As a

matter of fact we exhibit a rb grammar & for which U FR,(G) is not regular.
n e W'

£

Theorem 4.5. There exists a rb grammar G such that U FR,(G) is not

n=1

regular.
Proof.

Let G = ({4,B}, P, A) be the rb grammar such that

P

Il

A > BA, A-A B - Al

All derivations from A to A are of the form
8. = (A, BA, B*A, ..., B¥A, B*, B*~', . B, A)
for some k € N; then obviously g (§;) = 2k +1 and brd(6;) = k +1.
Thus fr,(8,) = 8¢l for each n > £ +1.

For alln <k+1 we have fr,(8,) = §* 1ARAk+1I-n) gn-1

Consequently | | #R,(G)"8"A3" = (5748™ | n < NJ.
n=1
Since {$§"A$" | n € N} is not regular and the class of regular languages is closed

0

under intersections, U FE,{(G) is not regular. ™

n=1

Remark 4.2. (1) If (for the rb grammar from the proof of the previous

E . . . | i -
theorem) we consider arbifrary unions \J) FR,{(G) for # < N*, then we can get
neM

even nonrecursive languages (by taking # nonrecursive):

\J FR.(GINS 48" = (fra(8e) | n € M.k =n—1) = {$"745"" | n € M|,

neM

)

2) In general, givem a rb grammar &, FR,{G) does not have to be even
g

n=l
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context-free. An example.of-such a situation is the rb grammar given in Exam-

ple 4.1. We have then fr(6,,) € 3" C8"C3* ifand only if n = k+2 = 1 +2.
, y

Since freco{fe i) = $FCF*T1CE*! we have

\_J FR.(G)N8" C8™ C8" = (3 Cs*+1C8* ! | k e

n=1

which is not a context-free language. Thus, because the class of context-free

o

languages is closed under intersections with regular languages, U FR.{G) is
n=1

not context-free. =
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5. COORDINATED PAIR SYSTEMS

Right boundary grammars form a very basic building block in the general
theory of grammars and automata presented in [R]. In particular, within this
theory a push-down automaton is seen as a pair of "cooperating grammars”, the
first one rl {(modelling the input and the finite state control) and the other one
rb {(modelling the infinite push-down store); such a pair is called a coordinated

pair system.

In this section we will "transfer” our results concerning the (active and full
records of the) use of memory in rb grammars to the level of cp systems (where
the work of the rb component is coordinated by the right linear compcenent). In
this way investigating the use of memory in rb grammars is being used for learn-

ing about the use of memory in push-down automata.
We begin by recalling the notion of a coordinated pair system.
Definition $.1. A coordinated pair system, cp system for short, is triple
G={(G,, Gy, R), where
G, =(%,,P,, S, ) is arl grammar,
Ga = (L, Pz, S2) is a rb grammar with S» € I3 and
K C P X P3, the set of rewrifes of G. »
Definition 5.2. Let G = (G, , G, R) be a cp system, where

Gi=(Z,,P;,S;,.8) and Gz = (T3, Pa, S3).

m T2
* *® ..
(1) Let z,,y, €%, and z5,yz € 8,. If z, =y and z, ==y, for a rewrite
1 3

m={m , 7z) € R, then we say that (z,, zp) directly computes (y, , yz) in Gusing
T
mand we denocte this by {z,, z5) ‘———C::> (¥, . y2).

* -

::C‘—;-,:» denotes the reflexive and transitive closure of :G> If(z,, zy) :G» (.. ya)

then we say that (zy, zz) computes (y,, yz) (in G).
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2) A computation (in G)is a sequence p = (zg, Z,, ..., Z,), n =0, of elements
0+ %y

from Z; X E; such that z;_; =;;> z; for each 1 =1 <n. We say that p compules

*

x, from zy and denote this by p 1 zg = z,.
n is called the length of p and is denoted by Ilg{p). For 0 <1 <n we use p{i) to
denote z;. If zq =(S,,S;) and z, = (w, A) for some w € A”, then p is called

successful.

*x

(3) The language of G denoted L(G), is the set fw € AT (S, S2) =>(w, A)}. =

The formal notions describing the use of memory in rb grammars are

extended to cp systems in an obvious way.

Definition 5.3. Let G be a cp system and let n € N*.

(1) Let p = {p(0), p(1), ..., p(k)) be a computation in G. The n-active record of ¢,
denoted act,{(p), is the word w,{(p{(0))e.{p{1)) - wnl{p(k—1)), where
@n - E: X 5y - Y, Al is the mapping defined by

v(n), iflv] =n,

@n{(w,v)) =
A , otherwise.

(2) The n-active language of G, denoted ACT,(G), is the language

fact,(p) | p: (S, Sa) = (w, A) for some w € A“‘g. L

Definition 5.4. Let & be a cp system and let n € N*.
(1) Let p = {p(0), p{1), ..., p(k)) be a computation in G. The n-full record of &,
denoted fr,(p), is the word ¥, (0(0)) ¥ (p(1)) - - - ¥n{o(k —1)), where

Yn - Z: X Eg* - 2o\ J{#} is the mapping defined by



u(n),iflv] <n,
Yal(uwv)) =

& , otherwise.

(2) The n-full record language of G, denoted FR,(G), is the language

fralp) | p:(S1, Se)=>(w,A) for some w €A ). =

Since in this paper we are mainly interested in the behavior of‘ the second
component of successful computations in a cp system we introduce the notion of
an internal cp system. A cp system is internal if it has only chain-rules (i.e. of
the form A » B) and A-rules (i.e. of the form A - A) on its first component. If,
for a give cp system G, we erase all terminal symbols in all prodpctiohs of the
first component {and in the corresponding rewrites), then we obtain the infernal
version of G.

Definition 5.5. Let G=(G;,G;, F) be a cp system with
Gi=(Z,, P, 5., 4.

(1) Gis called internal if A = 2.

(2) The internal version of G denoted int(G), is the cp system G= (G, Gz, &)
where G, = (X,-A, P, , S, . @) with

P={X->2)| (X »wZ)< P for some X €L,-A w A" and Z ¢ (Z=A) U A

and R=4{X-2, m) | (X »>wZ m)ck for some Xen,-Awehd” and

Z € (S-A) SN =

Hence int{G) works precisely as G does except that it ignores the "input
aspect” of G. Consequently as far as the use of memory is concerned one can
consider int(G) rather than G.

Lermmma 5.1. For each ¢p system & and each n € N*,

ACT, (G) = ACT, (int(G)) and

FEn(G) = FRy(int (G)). =
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6. CP SYSTEMS AND RB GRAMMARS

In the previous section we have reduced the considerations coﬁcern'mg (the
use of memory in) cp systems to the considerations concerning internal cp sys-
tems. In this section we will further reduce the problem: we show that rather
than to consider internal cp systems it suffices to consider rb grammars. As a
matter of fact we demonstrate how to represent (successful computations in) an
internal cp system by {successful derivations in) a suitable rb grammar.

This "representation theorem" yields then the regularity of the (active and full)

use of memory in ai'bitrary cp systems.

Definition 6.1. Let ©, I, and T, be alphabets and let ¥:0° - %, and
¢: 0" 55, be codings. Let (Z, w) € (Z,UIADXZ, and u € 0", We say that u
(¢, ¢)—represents (Z,w), denoted u[y,¢>(Z,w), if the following hoids.,
(i) Z=Aifu =Aand Z = Y¥(last{u)) otherwise.
(i) w = p(u). =

Definition 6.2. Let G =(G,, Gz, E) be an internal cp system with
G=(Z,,P,,S,,2), Go=(Xs, Py, Sg) and let H=(0, @, T), T, be a rb
grammar. Finally let ¥ : 0" - Z; and ¢ : 0" - Z; be codings.
(1) Let p be a computation in G and let § bc a derivation in /. We say that
5(,p)—represents p, denoted §[Y,p>p, if lg{(d) =lg{p) and &(j)[v.¢>p(j) for
each 0 <7 < lg(4).
(2) Gis (4.¢)—represented by H if the following holds.
(i) For each successful computation p in & there exists a successful derivation §
in H such that 8[¥,¢>p.
(ii) For each successful derivation ¢ in A there exists a successful computation

p in G such that 8[¢,p>p. ®
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Theorem 6.1. For every internal cp system & there exist codings ¥ and ¢

and & rb grammar H such that G is (¢,¢)-represented by H.

Procof.

Let G be an internal cp system with G = (G, Gz, R), G, ={(Z,, P, S,. @)
and Gz = (Zz, ,Ps, Sa).
(The ccnstruction of a rb system H somewhat resembles the usual construction

of a context-free grammar for a given push-down automaton.)

Let # =(0, @, T) be defined as follows
O={{YAZ]]| Ak, YeXUiA and Z € L3,
T =[A Sz, S;]and
@ cornitains the following productions
[V AX]>Aifandonlyif (X » Y, A- AN €Rfordei;, XX, YUl
[V, 4,X]-[Y.B,Z]ifandonlyif (X > Z, A > B) € R for
AB ey, X, Z€Z,, YU, and
(VA X]|-Y.B,.Z][Z,,Bs, Z3] - [Z.—1., By, Z] if and only if
(X->Z A-B, By - B)<Rforr=2,

A By B €S0 X, Y, 2, 7y, o Zey € T USAL
The codings % : 0 > 3%," and @ 0% >3] are given by ¥([¥,4,Z]) = Z and
o[V, A,2]) = A for ¥,Z € 5,JIA] and 4 € 5.

Claim 1. For every successful computation p: (S, Sz) = (A, A) in G

-

there exists a successful derivation § : 7 == Ain H such that §[¥, ¢>p.
Proof of Claim 1.

Let p be a successful derivation in G. For 0=<1i<lg(p) we write
p(i) = (Z, wy).
We will construct a successful derivation § in A that (¥, ¢)-represents p as fol-

lows. Firstlet §(0) = 7. Then §(0)[¥,¢>(S,, Sz) = p{0).
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We proceed inductively. Assume that §(p), p <lg{p), is already constructed.
From the form of the productions in H it easily follows that §{p) is of the form
MNA,, Y 4, Yel [V, 4. Y] for some I=>1; thus

Zy =9(Y o A4 Y] = Y and w; = ¢(8(p)) = 4)4A; - - - 4. Let 7 be the rewrite

™
such that p{p) = p{p +1). We consider separately three cases.

(1) m={(X~>Z,A> BBy - B.)forsomer=>=1,2Z #A
Obvicusly X =1 and A= 4. We use now a production
(Yii A Yl [V, B WilW, Be, Wel -+ - [Wrey, Br . Z] to derive 6(p+1)
from 4{p ).
The variablzs ¥, ..., W,_; are determined as follows. For 1 € {1, 2, ..., 7—11 let
p(s;) be the 2lement of the computation p in which the occurrence B; "becomes
active” on the second component; more precisely, s; is the least integer larger
than p such thet wy = A dg - - - 4B, - B; (thus s, = p+1).
We then‘choose W, = Zs,. Note that W; =A if s; =ig(p) - this is the case if
i =1Ilg{p)-1.

() m=(X > Z, A~ A), where Z # A.
Obviously X = ¥, and 4 = 4,. Since p is a successful computation, { # 1. The
occurrence 4 _; will be "active' in the next step of the computation p and, since
[ Yo, 41, ¥,_;] was introduced by a production as under (1) above, ¥;_; = Z. So
we can apply the production{ ¥, 4 , ¥/] » A to derive 6{p +1) from 6{p).

(3) m(X - A, 4 - A).
Note that this rewrite can be applied in the last step of a computation only.
Thus{ =1, X =7, and 4 = 4,. So we can derive (A,A) = 6(p +1) from §{(p) using
the production [A, 4,, ¥}] = A

It is easily seen that in al the three cases above the requirement

(p+)[v¥.p>o{p+1) is satisfied. Hence the claim holds. =
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L

Claim 2. For every successful derivation 6 : 7 => A in A there exists a
successful computation p : (S, , Sy) =‘> {A, A) in G such that §[¥,¢>p.

Proof of Claim 2.

The proof of this claim is rather obvious. Let 6 be a successful derivation in
H. For 0 <1 <lg{(d) we define p{(i) = (Y(last (6(1))), ¢(6(1))) and
8(lg (8)) = (A A).

It can be easily checked that the so defined sequence p is a successful computa-

tionin G.
The theorem follows from the above two claims. =

Remark 6.1. The above result allows one to replace a {internal) cp systemn
by a rb grammar as for as successful computation are concerned. In [EHR3] a
more general representation theorem is proved where both successful and not

successful computations are considered. Then to represent a cp system one

needs (in general) a finite number of rb grammars. ®

Let ¢ : " -2 be a coding and let 8§ £ @. By g; we denote the coding of
(®U§$§)* into (18" defined by ps(4) = p{A) for every A € O and ¢5(3) = 8.
Using this notation we can express the relation between the record languages of
a cp system G and a rb grammar representing (&) as follows.

Lemma 8.2. Let & be a cp system, let ¢ and ¢ be codings and let # be arb
grammar such that int{G) is (¥, ¢)-represented by .

For everyn € N, ACT,(G) = o{ACT,(H)) and FR,(G) = p3(FR,(H)).

Procl.
If p is a successful computation in int(G) and § is a successful derivation in

H such that §[¢,¢>p, then act,{p) = ¢{act,(8)) for n € N*, because ¢ is a
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coding.
Hence ACT,{(int(G)) = ¢{ACT,(H)) and consequently, by Lemma 5.1,
ACT, (G) = ¢(ACT,(H)) for eachn € N*.

Using the same arguments we see that
FR(G) = FR,(int (G)) = ¢g(FR,(H)) forn € N*. =

We can now carry our results concerning the use of memory in rb systems
to corresponding results for cp systems.

Theorem 6.3. Let & be a cp system.
(1) For eachn = 1, ACT,(G) is regular.
(2) Foreachn =1, FR,/G) is regular.

Prool.

(1) Let, for a suitable pair of codings the internal cp system int{(G) be a
(v, p)-represented by a rb grammar H. Let n € N*. Then according to the pre-
vious lemma ACT,(G) = ¢(ACT,{(#)). This language is regular because by Corol-
lary 1.3 ACT,(H) is regular and the family of regular languages is closed under
homomorphisms. |

(2) Analogously it follows from the regularity of FFR,{(H) - Thecrem 4.4 -

that FR,(G) = ¢5(FR,(H)) is a regular language.

Theorem 8.4.

(1) For each cp system G and each / ¢ NT, U ACT,(G) i~ regular.

nel

() There exists a cp systemn & such that U € N FR,(G) is not regular.
T

Proof.
(1) For a given cp system G let H be a rb grammar, let ¥ and ¢ be codings

such that int(G) is (¢, ¢)-represented by .



Then it foliowsmfz;gf; Theorem 3.4 that U ACT(G) = U wACT,(H) =

el nel nel

of U ACT, (H)‘)*Fs:%egular for each / ¢ N.

nel

() Every rb grammar H = (I, P, A) with A € ¥ can be transformed in a
natural way into a cp system by "adding” a {dummy) first component with one
nonterminal only. Formally, let Hp = (G, Gz, R) be the (internal) cp system
with G, = ({51, P, S, @), P, ={5,+S;. S, > Al, Go= H and R = PxP.
One easily verifles that H,p is (¢.¢)-represented by H, where ¥ : I ESZ* is the
coding that maps each element of Z to S and ¢ % 55" is the identity on s*
Thus, for n € N*, FR,(Hep) = ¢s{FR.(H)) = FR.(H).

If we construct in this way (;p for the rb grammar G given in the proof of

o

Theorem 4.5, then | | FR{(G,) = FE,{(G), which is not regular. =
P g

n=1 n=l

Remark 8.1. The results concerning rb grammars mentioned in Remark 4.2

carry over to cp systems using.the construction described in the proof of

Theorem 8.4.(2). Thus in general, given a cp system G, ) FR,(G) does not
g

n=1

have to be context-free. Moreover if we take arbitrary unions i\\J’ FR,{(G) for
neld

M < N¥, then we can get arbitrarily complex languages. =
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DISCUSSION ~

Within the framework-of ects systems (see [R]) rb grammars form a basic
building block in constructing various types of grammars and machines known
from the literature. Hence there is a need for a fundamental research concern-

ing rb grammars.

In this paper we have investigated the use of memory in rb grammars. We
have chosen two specific ways of "tracing” the use of memory in rb grammars:
either we record the sequence of active use of a particular memory cell during a
derivation or we record the contents of the cell during all steps of a derivation.
Then it turns out that all active records for a given cell for all successful deriva-
tions form a regular language (Theorem 1.2) and ail full records for a given cell
for all successful derivations form a regular language (Theorem 4.4). As a
matter of fact active record languages have a very specific structure which
makes the "overall active use of memory” in a rb grammar regular: the union
over any set of memory cells of all active records for all successful computa-
tions is regular {(Theorem 3.4)H! .This is not the case for full record languages:
the unicn over an arbitrary set of memory cells of all full records for all success-

ful derivations can be arbitrarily complex.

Cp systems form a subclass of ects systems that correspond very closely to
{are another formulation of) push-down automata. A cp system is a 'coordi-
nated pair” of a right-linear grammar and a rb grammar: in this combination
the rb grammar component represents the (infinite) memory structure of the
system. From this point of view investigating the use of memory in rb systems
is very natural (and very much needed).

In order to transfer our results on the active use of memory in rb gram-

mars to the level of cp systems {where the work of the rb component is coordi-

nated by the right-linear component) we prove a representation theorem



(Theorem 5.1) for:*cpifsystems which allows one (in the investigation of computa-

tions in cp systemﬁgz';%o consider a rb grammar rather than a cp system.

We believe that this paper illustrates the usefulness of the fundamental
research concerning rb grammars and of the cp systems point of view at push-
down automata. It seems to be easier {(and more elegant) to prove basic results
on the level of rb grammars and then transfer them to the level of cp systems
{by a "once and forever’" established representation theorem) rather than to

prove the corresponding results directly for cp systéms.

We consider this paper as a first step into the systematic investigation of
the use of memory in rb grammars and cp systems. Clearly one can consider
other than active and full ways of recording the use of a memory in rb gram-
mars. How complicated are other types of "recording the memory'" languages?

Are they regular? Are their arbitrary unions regular?

We are presently working on a number of problems of this nature and hope

to present the results of our research in a forthcoming paper.
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