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1. Introduction

As inexpensive workstations become increasingly available, the personal
computer is rapidly replacing the simple CRT terminal connected to a large
mainframe. At the same time, users continue to require the (occasional) use of
expensive and/or noisy 1/O peripherals or large file storage. Thus, the central
system is often replaced by a communication network for resource sharing, with
server nodes handling shared resources. Since each workstation is dedicated to
an individual who most likely spends most of his or her time typing (eg. word
processing, program editing), these workstations are grossly under-utilized most
of the time. The DCS system is an experimental system designed to investigate
techniques to harness this surplus power to do useful computing.

The concurrent availability of a number of under-utilized workstations
opens up many new possibilities if the physical parallelism inherent in separate
CPU’s can be exploited. The nature of the environment, however, places con-
straints on the classes of algorithms and levels of parallelism that can make
effective use of the available computing power. Though the argument has been
made [Spector 82] that highly optimized micro-coded implementations can make
remote operations on the level of individual memory references cost effective, we
don’t believe that this will be reasonable in most environments in the short
term. Thus, we feel that the relatively high cost of communication between
machines [Popek 81, Peterson 79] when compared to memory access and
instruction execution within a machine, dictates that use of a local area net-
work for distributed parallel computation be restricted to algorithms whose
demand for cycles greatly exceeds their need for interprocess communication.
Schnabel [Schnabel 85] is investigating a class of numerical algorithms that
appear ideally suited for this environment.

There is another constraint on the use of workstations in the environment
described above. As mentioned earlier, workstations are dedicated to individu-
als, who will typically fight fiercely to protect their recently won autonomy from
the threat of encroachment from without. At long last free of having to suffer
at the hands of others’ troff jobs and huge makes, the workstation owner will
not tolerate slowed response. If we are to make use of other workstations we
must do so without incurring the wrath of their owners. Thus we have the
additional constraint that the use of workstations belonging to other users
should be completely non-intrusive. That is, the owner/user of a workstation
should experience neither excessive performance degradation nor any loss of
functionality.



This paper describes the design of an experimental system that allows the
application programmer to make use of multiple workstations, subject to the
constraints mentioned above. The DCS system supports this use by providing a
high-level interface to the applications programmer that allows him or her to
write multiprocess programs that are automatically distributed across a net-
work. The DCS system manages the distribution of program text, arguments
and return values, and supplies simulated globally shared variables. DCS is
experimental in the sense that it is the laboratory or test bench for our research
into practical aspects of supporting distributed computations.

Our current investigations can be classified into two areas: process and
load distribution, and the application of update disciplines to the use of distri-
buted shared variables. In our context, load distribution involves the choice of
particular workstations as the sites on which to run particular computations.
We have two goals to satisfy here, maximally efficient use of excess cycles, and
continued autonomy of individual workstations. One aspect of the decision rule
will clearly involve the load average statistic, though we believe we can make
use of other information as well. Examples might be: owner input on acceptable
load, recent history of commands execution by the owner and the type of load
they represent, historical information on the prior behavior of the computation
being scheduled, or "hints" from the programmer of the computation.

Distributed shared variables are a natural extension of global shared
memory in multiprocess programs into the distributed domain. While variables
in the former case are instantiated only once, it is much more efficient to have
multiple copies of shared data in a distributed environment. This leads to the
inevitable synchronization and update problems that are well known from dis-
tributed data base technology. The introduction of extensive synchronization
mechanisms into distributed computations will lead inevitably to excessive cou-
pling of the processes on the various nodes of the network, and the concomitant
loss in overall efficiency.

Medusa [Ousterhout 80] addressed this problem by introducing "co-
scheduling” for processes of a computation running on separate processing ele-
ments to ensure that processes would run at the same time and would not incur
large communication delays. Co-scheduling across nodes is infeasible in our
case, since each workstation will have its own autonomous kernel and scheduler.
Thus, our approach is to investigate techniques for allowing concurrent updates
and insuring that multiple copies of shared data will eventually have the same
value. One example of such a use occurs quite naturally in large network
optimization problems. A number of processes are put into execution on por-
tions of the search space and share only one variable, which represents the cost
of the cheapest configuration found to date. Each process checks its own pro-
gress against this value and decides to terminate if it is unlikely to be able to
do better. Separate copies of this "lowest cost" variable may be modified
independently and the new values broadcast asynchronously to the other nodes
for subsequent installation. New values must be merged upon receipt in such a
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way as not to lose information. In this case, values may be merged using the
rule that a new value may only replace a higher old value. This ensures that the
desired information will not be lost. A late update will result in a little extra
work by the effected process(es). This is not tragic.

The above scenario may be generalized to distributed shared variables,
whose modification is governed by update disciplines. An update discipline is a
"goodness” rule that determines which of two values is "better”, to allow for a
decision as to which may replace the other. As long as the update discipline
imposes a total ordering on possible values, the values of distributed copies are
guaranteed to converge eventually. Algorithms making use of such variables
must be designed to tolerate this "eventual" convergence perhaps in ways simi-
lar to the example above, i.e. by having some process(es) do a little extra work.
The design of such algorithms is a topic of current research [Schnabel 85].

Finally, the designs of both the user interface and the system architecture
were the result of some compromise. We had two goals in building DCS. We
wanted to develop a system within which we could carry out experiments on
scheduling and the use of distributed shared variables, using real algorithms
designed to solve real problems. This required that we develop an interface
that would be quickly learned and usable by programmers with relatively little
sophistication in systems programming. This would enable us to convince some
of our user community to attempt to write programs using DCS. Our second
goal was to develop a system that depended only on available operating system
and language support. This has the advantage of easing ports to other
machines. Specifically, we wanted to base our system on a network of SUN
workstations running a version of Berkeley Unix 4.2 and the C programming
language, making few or no modifications to either.

Our second goal fit in well with the resources at our disposal, as we didn’t
have the manpower to rewrite the C compiler or make major modifications to
Unix. However, it also required that we introduce some complexity in both the
interface and the implementation to overcome deficiencies in the underlying sys-
tem. Specifically, the relative primitiveness of the macro facility supported by
the standard pre-processor caused us to make several, otherwise undesirable,
design choices. In the end, we did implement an extension to Unix to support
shared memory [Harter 85¢|, since we felt it was necessary for good perfor-
mance. We expand on these details in Section 3.

The remainder of this paper is organized as follows. The next section
gives an overview of DCS functionality and describes the user interface in
detail. Section 3 accounts for the bulk of the paper. It describes the architec-
ture of DCS and discusses the motivation for many of the decisions made during
the design phase. Section 4 contains some preliminary timing results based on a
simulated computationally intensive task, while Section 5 contains a somewhat
larger example with annotations demonstrating some of the capabilities of DCS.
Section 6 discusses the relation of DCS to some other work in the area and



MAIN PROG

SHARED
VARIABLES1

SUB__}?ROG1 SUB_PROG

2

SHARED

VARTABLES, . /

SUB_PROG SUB_PROG

4

Figure 1 - Programmer View



finally, Section 7 concludes with some observations on where we are and now
and what remains to be done.

2. User Interface

The DCS system implements a program environment supporting multipro-
cess programs executing in a network of personal workstations. The underlying
model of computation (see Figure 1) used by the DCS programmer is that a
computation comprises a main program that may call sub-programs, each of
which executes in parallel with the main program and with each other. Sub-
programs may, in turn, invoke other sub-programs or copies of themselves to
execute in parallel. After invoking sub-programs to execute in parallel, a calling
program may subsequently resynchronize with its subprograms by delaying itself
until they terminate. The model currently contains no explicit mention of
separate nodes or a communications network.

Analogous to the sequential case, where sub-programs may access vari-
ables defined in surrounding (global) contexts, the sub-programs in a DCS com-
putation may access "global variables" contained in shared segments, as agreed
upon by the main- and sub-programs. These shared segments are identified
within the computation by seg_id’s which allow multiple segments of the compu-
tation to be distinguished from one another. Thus, a main program may invoke
several copies of two different sub-programs and may share a different segment
with each group.

2.1. Functional Overview

The model described above is based in a collection of macros and systems
routines, which support two new abstractions. The user abstractions provided
by DCS are the asynchronous remote procedure call and distributed shared
variable.

An asynchronous remote procedure call is like a normal procedure call in
that input and output arguments are passed and returned on termination of the
procedure. However, whereas in the case of the synchronous call the caller is
suspended during execution of the procedure, the synchronization semantics of
the asynchronous call allow the caller to continue execution after making the
call. The caller may then either continue to compute or make more asynchro-
nous calls. The procedure may or may not actually execute remotely, so the
programmer may make no assumptions as to the execution site, though pro-
grammer input on location may be investigated in the future.

The asynchronous execution of called procedures has implications with
regard to parameter passing. If two procedures are called, where the output
parameter of one overlaps the input parameter of the other, then timing could
affect the arguments passed to a procedure. To prevent this we guarantee that
the output arguments of a procedure are not returned to the caller until

-4-



explicitly requested via resynchronization. Resynchronization of the caller and
the callee occurs at the caller’s discretion, when he requests that he be
suspended pending completion of some subset of the currently outstanding calls.
After resynchronization, output values and statuses of the waited-for pro-
cedures are available.

In the case of the synchronous procedure call, the called procedure may
access global data declared in some surrounding scope. The utility of this type
of access prompted us to attempt to provide a similar type of access in the
asynchronous case. From a programmer’s point of view, a distributed shared
variable, independent of its size, may be read, written, or updated atomically
with respect to other processes. That is, a process can read the value of even a
large structure, with the assurance that no other process can change it during
the read. The update supported is restricted to an atomic read--compute
value--write paradigm, that is, an update has the form:

var:=user_function (var,arg),

with the constraint that arg may not contain a direct reference to another
shared variable.

Modifications to variables are controlled by an update discipline. These
can be thought of as part of the type of a shared variable. The update discip-
line is used to determine whether the value to be written into the shared vari-
able should replace the value currently there. The update discipline is imposed
whether the attempted write is from a user process attempting a modification
or from a DCS support process (see Section 3) attempting to keep the value
consistent with other nodes. Thus, although the programmer must be aware of
the fact that the variable may change between subsequent reads by a single
process, the variable is always in a consistent state, independent of its size or
the locations of sharing processes.

The user of the DCS abstractions need not be concerned with networks,
addresses, ports (or sockets), or the extra system interfaces for sending and
receiving messages. Argument passing and the maintenance of shared variables
across the network are handled automatically and invisibly in conformance to
the semantics described above.

2.2. User Interface Routines

The DCS wuser interface is provided to standard C programs via an
#Finclude file (des_user.h), which supplies some manifest constants, macro
definitions and procedure definitions for DCS support procedures. In addition, a
user library (deslib) must be specified to the loader to include the run-time sup-
port routines that provide the interface to the DCS system processes. This sec-
tion gives an informal description of the routines involved in the user interface
to DCS. The Unix manual pages for these routines are included as an Appen-
dix.



The facilities provided by DCS may be divided into two relatively
independent sets, shared memory management, and procedure invocation.
Asynchronous procedure invocation and parameter passing are supported via
the routines doprog, parwait, raccept and rreturn. The use of distributed
shared memory is supported via openseg, sharedvar, sharedvec, and
closeseg for declaring variables in shared segments, and aread, agetelt,
awrite, aputelt, aupdate, and aupdtelt for reading, writing, and updating
whole variables or vector elements respectively. In other words, aread will read
the contents of an entire shared variable or entire shared vector, while agetelt
will read the value of a specified element of a shared vector. The vector ele-
ment routines differ from their whole variable counterparts only in that they
reference vector elements, indeed their presence is simply an artifact of the lack
of string processing capability within the C pre-processor. Hence we will ignore
the distinction in the sequel and couch the discussion in terms of aread, awrite
and aupdate.

2.2.1. Asynchronous Invocation

A distributed computation begins with the execution of a "main" program,
which then requests the asynchronous execution of one or more “"sub-programs"
via calls to the doprog procedure. Each call specifies a file name containing an
executable program, a place to put the subprogram’s termination status, a data
block of values to be passed to the subprogram, and a location to put the
results of the subprogram’s computation. Each call to doprog returns an
identifier (or prog_id), for the subprogram started, which may later be used to
refer to the subprogram.

The main program may re-synchronize with a set of subprograms execut-
ing in parallel via a call to the routine parwait. If a subprogram is to return
values in the return block, or if the main program wishes either to wait for the
termination or know the termination status of a subprogram, then a call to
parwait is issued giving the identifier previously returned by the corresponding
call to doprog. The termination status and any values returned from the sub-
program in the return argument area specified in the call to doprog are avail-
able only after the call to parwait returns. This prevents the conflict on argu-
ments mentioned above, and gives the programmer control over when his local
data is modified. Note that a single call to parwait may specify that the main
routine is to be delayed until the completion of any subset of the the currently
executing subprograms specified by a list of their prog_id’s, and that the call to
parwait does not return until all of the sub-programs mentioned in the call
have terminated.

The doprog procedure causes the DCS system to register the request for
execution and queue the request and parameter information. The DCS support
system will then schedule the sub-program for execution on one or more of the
nodes in the network. If the file named in the doprog call does not exist on the
node on which the program is scheduled to execute, it will copy the file from the
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site on which the entire computation was started to a temporary directory and
execute it from there. Any number of sub-programs (up to system limitations)
may be started using repeated invocations of doprog.

Thus, for example, the effect of a simple cobegin-coend, where the state-
ments to be executed in parallel are all procedure calls may be obtained by a
series of calls to doprog followed by a call to parwait specifying a wait on all
of the subprograms as follows

prog_id, = doprog(fname, status,, arg, sizeof(arg), ret,, sizeof(ret ));
prog_id, = doprog(fname,, status,, arg , sizeof(arg ), ret,, sizeof(ret, ));

prog_id = doprog(fname_ , status , arg , sizeof(arg ), ret_, sizeof(ret_));
status = parwait(id,, id,, ..., id , 0).

Here, the names, Jname,, frname, ..., fname name (possibly different) files con-
taining an executable program. The status, arguments will eventually receive

the termination status’ of the respective programs. Finally, the contents of arg
are copied by the call to doprog and passed to the sub-program when it exe-
cutes, and the addresses of the ret and status parameters are kept as the loca-
tions into which to place the results returned by the subprogram and its com-
pletion status respectively.

Procedures that are to execute asynchronously as part of a DCS computa-
tion must be compiled into independently invokable programs. That is, the pro-
cedure must be named "main" or be explicitly mentioned as the entry point of
the module, since they are invoked via the system exec call. No "command
line" arguments are supplied to the sub-program on invocation, so parameter
passing to and from the sub-program is handled via the calls raccept and rre-
turn. The subprogram receives initial values from the main program via the
raccept call. The type of the parameter to the call must be the same as the
type of the argument sent by the main program. The subprogram returns
results to the main program and terminates using the rreturn call. The
parameter to this routine and the return parameter on the doprog must also
have the same type. Upon returning its results, the subprogram terminates, and
the results and program termination status are then made available to the main
program, when it issues a parwait referencing the prog_id of the terminating
sub-program. Note that the termination status is returned whether the sub-
program calls rreturn or not, and that at most one call each to raccept and
rreturn is allowed in a subprogram.

2.2.2. Shared Variables

In addition to the ability to pass parameters in and out of the asynchro-
nous procedures, interprocess communication is possible via a form of distri-
buted shared variables. The programs of a distributed computation wishing to
use shared variables use four macros supplied by DCS to make the necessary
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local declarations, lay out the storage of the shared segment, and perform the
initializations required to permit subsequent access. First the program calls
openseg, specifying a name for the shared segment, as in

openseg ( SEG1 );

Variables may now be placed in this shared segment using the macros shared-
var and sharedvec for declaring variables and vectors respectively. For each
variable, the program specifies a name, a type and an update discipline, and for
sharedvec, a length. The type may be any valid C type, with the restriction
that struct and union types must be specified using their tag’s and can not be
defined within the macro call. For example,

sharedvar ( char, done, UPDT_UNREST );
sharedvec ( double, x, SIZE, UPDT_UNREST);

declare a shared character variable called "done" and a vector of double preci-
sion variables of length SIZE called x, both using the "unrestricted" update dis-
cipline, which places no constraints on value replacement. This is advisable
when it is known that processes will not conflict on writing the same variable.
Other update disciplines are described below. Finally, the segment is ended by
a call to closeseg as in

closeseg ( SEG1 )
specifying the same segment identifier (SEG1) as in the openseg call.

The calls describing a shared segment must appear in the declarations sec-
tion of the "main" routine in the (sub-) program, i.e. before any executable
statements. A subprogram declares its shared segments in exactly the same
manner as a main program. To share a segment, the sharing processes must be
part of the same computation and must declare the segment in exactly the
same way. That is, the name of the segment, the types of all variables, and the
order in which they were declared within the openseg-closeseg must all be
identical. Typically, both would ftinclude the segment declaration from the
same file, thus ensuring agreement on segment identifiers and variable types
and layout. Multiple shared segments may be declared by specifying different
names in successive openseg calls. Declarations of shared segments may not be
nested.

DCS supplies three procedures for accessing the variables in shared
memory. The aread routine allows the user program to read the contents of a
shared variable into local (private) storage without being interrupted by
another program independent of variable size. For example,

stat = aread ( x, &my_x );

copies the current value of the shared variable x into the location of my_x. The
return code may indicate an error condition, for example, that x was never ini-
tialized. The awrite routine similarly provides exclusive access while writing a
variable from local (private) storage, as in



stat = awrite ( x, &my_x );

which copies the current value of my_x in to x, subject to its update discipline.
Here the return code may indicate whether the write was actually performed or
whether the old value was retained. Sometimes exclusive access more complex
than a simple read or write is needed. The aupdate routine provides exclusive
access to a shared variable for the duration of a call to a user function that
may read, compute with and modify the variable. Thus, aupdate provides the
ability to modify a variable based on its current value without losing an update.
For example,

stat = aupdate ( updt_func, x, &updt_arg );

which passes the value of x and the address of updt_arg to updt_func. The
resulting new value for x is written into the shared variable subject to its
update discipline. The only safe access to shared variables is through the use of
these routines, attempts at direct access will give undefined results.

2.2.3. Update Disciplines

True shared variables have semantics specified by the architecture of the
underlying machine and operating system. Distributed shared variables as sup-
ported by the DCS may have certain aspects of their behavior specified at
declaration time. This specification takes the form of an update discipline sup-
plied for each variable, which allows for specific digressions from the semantics
of a true shared variable. The discipline specified affects the manner in which
the access associated with aread, awrite, and aupdate affect the distributed
shared variable.

v The following is a sample list of update disciplines. All disciplines will be
available from the system. It will be easy to include additional disciplines at a
later time.

. Global Update - all copies of this variable are identical.

. Integer Max - only update if new value is larger than old value.

. Floating Max - same as above, with floating variables.

. Integer Min - only update if new value is smaller than old value.

. Floating Min - same as above, with floating variables.

. Unrestrained Update - new values may always supercede old values.
. Unsafe Update - no synchronization, no checking of values.

O Ut A WD

The global update discipline is the most restrictive, it insists that the dis-
tributed shared variable behave as a real shared variable would. That is, all
copies of the variable have the same value at all times.

Disciplines 2 through 5 can all work on integer or floating variables or vec-
tors of these variables treated component-wise. These disciplines specify some
relationship between current values and allowable new values. An update is



done under one of the disciplines if the value to be written and the value
currently in the variable satisfy the given relation (e.g. a floating min-so-far
variable would use discipline 5, and new values would only be written if they
were less then the current value). No global synchronization is implied.

Discipline 6 specifies that new variables can be written into the shared
memory whenever the process interested in writing them can get exclusive local
access, no check on values is performed. Discipline 7 doesn’t require any syn-
chronization at all, i.e. no local or global exclusive access. All disciplines which
do not need global synchronization simply forward the modifications for instal-
lation in the other copies of the shared memory.

If a discipline which requires some relationship between old and new
values (e.g. 2 through 5) is in effect for a variable, there must be some way to
provide that wvariable an initial value. This is achieved by having DCS
automatically accept the first write to such a variable, using either awrite or
aupdate, without applying the test implied by the update discipline. The
aread routine will return a "no value" status if a variable to be read has not
been initialized. Further, the update routine specified in an aupdate call will
be notified if the variable to be updated has not been initialized by an addi-
tional flag parameter.

3. System Architecture

The functionality described above is supported at the user level by macros
included in the compilation of a DCS computation and library routines that are
loaded from deslib. Thus, calls to the user interface routines described in the
previous section all result either directly or indirectly through macros to invoca-
tions of DCS support routines in user process space. These routines are divided
conceptually into three modules. The Remote Service Module (RSM) provides
the doprog and parwait services allowing a program to request and wait for
remote execution. The Remote Execution Module (REM) provides the raccept
and rreturn routines used by a subprogram to accept and return its parame-
ters. Lastly, the Shared Memory. Module (SMM) supplies the interface to
declare and reference shared variables. This includes openseg, sharedvar,
sharedvec, and closeseg for declaring segments containing shared variables,
and aread, awrite, and aupdate for referencing them. In addition to the rou-
tines already mentioned, these modules contain private variables and tables for
implementing the services they provide.

These routines in turn are based on services provided by two DCS
processes running in the background (i.e. system "daemon" processes) on each
node of the network (see Figure 2). These services are requested and received
via messages exchanged between the support modules and the DCS daemon
processes. The Remote Scheduling Processes (RSP’s) provide for local and
remote queuing and execution as well as parameter exchange. The Distributed
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Shared Memory Processes (DSMP’s) maintain consistency of the various copies
of shared variables across the network nodes. The DCS processes on the vari-
ous nodes exchange messages for internal coordination.

There are several levels of communication involved in a DCS computation.
User programs communicate with the DCS service modules (RSM, REM, SMM)
via normal procedure calls. The DCS routines in these modules execute in user
space and have access to user locations directly or indirectly through parame-
ters. The service module routines also communicate with the DCS daemon
processes (RSP, DSMP) using messages passed via sockets. The DCS support
processes communicate as well, the RSP’s to transfer invocation requests and
arguments, the DSMP’s to create and maintain segments of shared variables.

There is a fourth, implicit, channel of communication that exists between
user programs and other user programs as well as between user programs and
the DSMP’s. This channel results from the sharing of physical memory pages
within a node. This additional channel was added to increase the efficiency of
use of our shared variables.

The distributed shared variables associated with a computation must be
equally accessible to all processes of that computation independent of their phy-
sical site of execution. This desire for equal, efficient access excluded an imple-
mentation where processes obtained and assigned values by sending messages to
a special storage or caretaker node. Thus, a copy of each variable is kept at
each node. Further, the various copies of a shared variable must be kept con-
sistent across nodes. This is ensured in DCS by the DSMP’s, one on each node.
The DSMP’s on the various nodes communicate update information to each
other when values are changed by user programs and guarantee adherence to
the update discipline specified for each variable. Thus, the DSMP must also be
able to access the shared data.

Again, our desire for efficiency caused us to reject a solution where the
DSMP "owned" the copy of the shared variable on each node. This implemen-
tation would have the DSMP responding to requests for the current values of
variables as well as requests for updates. Particularly in the case of multiple
concurrent computations or multiple processes of a single computation on one
node, the DSMP could present a performance bottleneck. Thus, to avoid the
cost of sending messages within a node and the bottleneck effect of having one
process do so much work, it is necessary for processes to be able to access the
same set of memory locations.

As this feature was not available in Berkeley Unix and we believed it
might be useful to others as well, we designed and implemented the a shared
memory extension to Unix. The design and implementation of the our extension
are discussed in detail elsewhere [Harter 85c]. We give here only a brief over-
view, in order to make the following discussion of the design of DCS under-
standable. Our extension for shared memory involved the addition of 5 new
system calls to Unix, vshare, vrlse, getsem, Psem and Vsem. In order for
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two processes to share physical memory, both must call the routine vshare to
attach to a shared segment. The first caller specifies a kernel segment identifier
(kern_seg_id) value of 0, and receives the actual identifier for the new segment
allocated by the kernel. The second caller, must specify the kern_seg_id
returned from the first call to attach to the same segment. Each call must
specify the segment size and a starting address for mapping the shared segment
into the callers address space. The shared segment may be subsequently
released by calling vrlse specifying the kern_seg_id.

The DCS interface guarantees that any access to shared variables is
atomic, so that variables are always in a consistent state. There is no problem
with this in communication between nodes to keep variables up to date, since
the protocols have been designed to send and install shared variables in their
entirety. Synchronization becomes important in preserving atomicity within a
node, where the DSMP and one or more user processes all share a single copy of
a shared variable. Thus, we needed to implement some form of mutual exclu-
sion, so that access by both user processes and the DSMP would not conflict.

The routines getsem, Psem and Vsem implement a semaphore-like syn-
chronization facility for processes sharing memory. Semaphores are created and
initialized by calls to getsem, which returns the sem_id for the newly created
semaphore. This sem_id is used to refer to the semaphore in subsequent calls to
Psem, and Vsem, used to decrement or increment its value atomically.

The standard semantics of semaphores [Dijkstra 68a], however, is inade-
quate for synchronizing processes within DCS. Since the DSMP must acquire
exclusive access to install changes from other nodes in the system, it would have
to execute a P on a semaphore that could be held by a user process. Since the
user process may fail or terminate while holding the semaphore, the DSMP
would be stuck forever. Even barring this error case, a user process could hold
the semaphore over a page fault or disk read. Since the DSMP may be serving
many processes and many shared variables, this wasted time could lead to
significant performance degradation. This led us to the design of a semaphore
that could be used in the face of performance constraints. The semaphores we
included provide a timeout period so that a Psem operation will return after
either the semaphore has been decremented or the timeout period has passed.
The timeout period can have zero (for polling), infinite or some finite length.

3.1. User Support Modules

As mentioned above, the user support modules form the interface between
the user program and the DCS daemon processes. When the user requests a
procedure invocation by calling the doprog procedure in the Remote Support
Module RSM, doprog registers the request in a local table, where it also stores
the locations into which to place the termination status and return values. It
then communicates with the Remote Scheduling Process (RSP) on the same
node to request that a subprogram be scheduled for execution. The RSP
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receives the file name containing the program text, and the values of any input
arguments. The RSP will queue the request, and in cooperation with its cohorts
on other nodes, will eventually schedule the program for execution on some node
in the network. Upon receipt of an acknowledgement from the RSP, the
doprog call returns a success value. If there is no acknowledgement, then an
error code is returned.

Once a site is chosen for the execution of the sub-program, the RSP at
that site starts the program executing as a user process. The sub-program
receives its argument (arg) from the main program, using a call to the raccept
procedure in the Remote Execution Module (REM) which has been linked into
the sub-program. The raccept procedure actually gets the argument by send-
ing a getarg message to the local RSP who responds with the values in a sen-
darg message. Thus, the argument value is received by the raccept routine in
the REM and returned to the user when raccept returns.

When the subprogram has finished its computation, it may call the rre-
turn procedure of its REM to return its results (ret). This procedure returns
the results to the local RSP in a retarg message, and then terminates the sub-
program. Since the local RSP is the parent of the subprogram, it will receive
the termination status of the sub-program. The RSP then notifies the caller’s
RSP of the remote termination in a remterm message containing the return
values and termination status. The main program requests this information
from its RSP in a call to the parwait routine in the RSM specifying the prog_id
of the subprogram as returned from doprog. The parwait routine reads its
parameters and sends the identities of the referenced sub-programs to the RSP
in a waiting_on message. It then waits until it has received a subterm mes-
sage from the RSP for each referenced sub-program. These messages contain
the termination status and return values of the corresponding sub-program. As
each subterm is received, the return information is copied into the locations in
the caller as specified in the corresponding doprog call.

Programs in DCS computations make use of shared variables by creating
and interacting with shared segments via the interface supplied by the Shared
Memory Module (SMM). The segment is created via the macros openseg,
sharedvar, sharedvec, and closeseg, which must be used in the declarations
section of the "main" routine of the (sub-) program. Each of these macros
creates a local variable in the stack space of the main routine, which is initial-
ized by calling a segment mapping routine in the SMM. The local variables are
initialized with pointers into the shared segment, and have the names specified
by the programmer for the shared variables. These names are subsequently
used by the programmer in the macros for referencing the shared data and
appear to the user to contain the actual data. The mapping from these local
variables to the shared variables they represent is described below.
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To create the segment, the program first executes the openseg macro
with the computation specific name for that segment (seg_id). The macro
invokes the open_seg routine in the SMM, which creates and initializes an
entry in its table for storing such information as the size and starting address of
the new segment in user space. It also expands the data segment of the pro-
gram by one page, which will eventually become be the first page of the shared
segment. The user program then calls the declaration macros sharedvar and
sharedvec to place variables in the segment. These invoke the routine
smm_vmap in the SMM, which allocates and initializes a variable descriptor
for the new wvariable in the portion of the data segment that will become
shared, expanding the data segment by another page as necessary. It then
returns a pointer to this variable descriptor which is used to initialize the user’s
local variable. When the closeseg macro is called to complete the declaration
of the current segment, it calls the close_seg procedure in the SMM to finish
processing and make the segment sharable. This involves a number of steps.
First, additional space is added to the data segment and allocated to hold the
variables that will occupy the segment. For shared vectors, space is also allo-
cated for run-time dope vectors, whose use will be described below. The next
step is to make the segment sharable by calling vshare. If the segment being
created already exists on the current node due to another (sub-) program of the
current computation, then the call to vshare must specify the correct identifier
(kern_seg_id) to insure that both programs will share the same memory. Thus,
the close_seg procedure sends a message to the DSMP that includes the pro-
cess id (pid) of the declaring process and the seg_id for the segment being
declared. The DSMP will return a kern_seg_id for vshare. If the value
returned is 0, then the segment did not exist previously and this value will make
the segment sharable. The SMM must then then inform the DSMP of the
kern_seg_td returned from vshare so that it may then rendezvous on the newly
sharable segment. '

The SMM controls user access to the variables in a shared segment,
whereas the DSMP maintains the consistency of the different copies. Therefore
some communication between SMM and DSMP is necessary to coordinate
updates to the shared memory. Each variable declared in a shared segment is
described by a small control block or descriptor in the shared segment (see Fig-
ure 3). This descriptor contains the offset into the shared segment of the shared
variable, its size, update discipline, and the sem_id of the semaphore used for
coordination of processes on the same node and flags indicating whether the
variable is a vector, has been modified, initialized, or is globally locked. For
vectors, the descriptor also contains the offset into the segment of a dope vec-
tor. The descriptor is used by the SMM and the DSMP to coordinate and
govern access to the variable.

As seen from the figure, the variable allocated in private user space for a
shared variable contains a pointer to either the descriptor or a dope vector.
The dope vector contains a pointer to the descriptor and one element for each
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element of the variable vector, containing the index of the corresponding ele-
ment and a modified bit. This somewhat bizarre arrangement may be traced to
two factors. First, to make the user interface seem as natural and "C-like" as
possible, we wanted users to be able to access variables using the same syntax
as they would in C. Thus,

stat = aread ( x, &my_x );
and
stat = agetelt ( A[6], &my_A_elt );

will atomically read the shared variable x, and the sixth element of the shared
vector A. Since the user variables x and A must contain pointers into the
shared segment, the pointer contained in A must allow indexing. The reason for
this is that there was no way to determine within a macro that one of its argu-
ments has the form of a reference to an array element. If it were, then the
macro could call the necessary SMM access routine passing the pair (A,6),
where A would just point to the descriptor whence we could locate A[6].
Indeed, in this case, there would be no need for two macros. This effect could
have been obtained by requiring the user to write

stat = agetelt ( A, 6, &my_A_elt );

but we felt strongly about the user interface and felt the situation could be
improved in the future without modifying user code. Upon receiving the
address "&A[6]" when called from the agetelt macro, the SMM reads the vector
index stored at that address, indexes backwards to the front of the dope vector
whence it can find the descriptor. The SMM now has a pointer to the descrip-
tor and the index of the element to be accessed. An earlier design did not
require the dope vector space but necessitated a search through the descriptors.
We opted for speed over space in this case, furthermore the dope vector ele-
ments are relatively small.

Both the SMM and the DSMP have access to the semaphores associated
with shared variables, hence they can insure that they do not interrupt each
others access to the shared memory. Depending on the synchronization con-
straints imposed by the update discipline for the variable, the SMM may update
the variable or may have to request in a message that the DSMP synchronize
with all other DSMP’s for a "globally atomic" update. In the global case, all
copies of the variable in the system are modified at once.

Generally, the SMM routines called by aread, awrite and aupdate
access shared variables by reading the descriptor to find the sem_id of the
semaphore associated with the variable, performing a Psem on the semaphore,
accessing the variable, and finally releasing the semaphore via Vsem. If a
modification is performed by the SMM, the affected variable’s modified indicator
is marked before the modification routine (e.g. awrite or aupdate) returns to
the calling program. When the SMM attempts to write a shared variable which
has its initialized flag clear, the write is always performed and the flag is set
regardless of the update discipline. Thus all variables, of all disciplines are
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initialized at the first write. If the SMM makes an attempt to read a shared
variable which has not been initialized, the attempt returns an error status.

The aupdate, call provides for exclusive access to a shared variable by a
user program for an extended period, i.e. for the duration of the execution of
the user procedure passed as a parameter. In order to prevent the DSMP from
being delayed for an arbitrary time, it must not be required to wait when it
desires exclusive access to a variable. Since it is nonetheless necessary to use
the semaphore primitives provided by the kernel to guarantee disciplined access,
the DSMP makes use of the time-out facility of the Psem call, specifying a
timeout of O (to poll). If the call is successful the DSMP can access the vari-
able, otherwise the DSMP will consider the variable again later.

3.2. Remote Scheduling Process

The RSP’s control and schedule the execution of distributed computations.
They schedule processes for execution across the net, transfer data between
processes, move files from machine to machine, and manage computation and
program naming issues. As a group, the RSP’s cooperate to determine the best
location for queuing and executing processes. All processes that are queued for
execution or are executing on a node are monitored by that node’s RSP.
Parameters are passed between main programs and subprograms by the RSP.
Executable files that are not available on remote machines are transferred
under control of the RSP. Each DCS computation has a network wide, unique
computation name or comp_id, which is constructed by the RSP on the node on
which it originates. The comp_id is the pair <node_addr, pid> containing the
network address of the node and the process id (pid) of the root process. When
sub-programs of the computation are scheduled on other nodes, the comp_id is
forwarded to those nodes so that each program can be correctly associated with
a computation for parameter passing and shared memory management. The
RSP’s act as the distributed manager of the DCS.

DCS uses a distributed scheduling algorithm in order to select the execu-
tion site for a process. Each RSP on the network periodicly broadcasts infor-
mation to the other RSP’s. The individual RSP’s use this information to make
a site placement decision for the processes queued on their own machines as the
result of doprog calls. The only status information broadcast in the initial ver-
sion is the set of load averages for the node. The current scheduling algorithm
is the naive one: schedule the request on the node with the lowest load average.
All requests for execution at a given site are honored. As mentioned above, one
of the important research issues to be investigated using DCS is the develop-
ment of other (better) heuristics for the scheduling decision.

After a site has been selected the local RSP sends a message to the remote
RSP containing the information necessary to run the subprogram. This infor-
mation includes the computation name, the name of the executable file, and the
arguments, as well as the node address to which to return any results. The
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RSP at the chosen site stores this information in a local table. To run the pro-
gram, the RSP fork’s, the new child changes its user id into that of the request-
ing user, and then exec’s the subprogram. As discussed in the previous section,
the subprogram communicates with the RSP for parameter passing. When the
RSP receives a getarg message as the result of a call to raccept, it returns the
arguments from its local table in a sendarg message. Upon completion, the
sub-program may either return values via rreturn and terminate or simply ter-
minate. When the subprogram terminates, the RSP receives a signal from the
system (since the subprogram is a child of the RSP) and then does a wait to
determine the identity and status of the terminating process. If an rreturn is
executed, the SMM sends the return values to the RSP in a retarg message.
The status, along with any return value is sent back to the invoking program’s
RSP. This RSP buffers the data and status returned until the main program
asks for the results in a parwait call.

The design of the distributed shared memory requires that created seg-
ments remain in existance until the entire computation has terminated. Thus,
the RSP’s must detect the termination of a distributed computation. Each RSP
keeps track of those processes that it starts or queues in its local tables. The
table entries indicate, for each process, whether it is executing or has ter-
minated, and if terminated whether there are surviving descendents. Table
entries for processes are updated upon receipt of termination messages or
(SIGCHLD) signals from the kernel. Thus, the local tables of the RSP’s define
a tree for each computation containing the processes that are alive or have liv-
ing descendants. Using this information, an RSP can detect which processes are
still executing on this node, and which children of these processes are still exe-
cuting.

The progress towards termination of a computation is charted as follows.
When a process terminates, the local RSP is notified and a message is sent to
the RSP of the parent as described above. If this process has any live descen-
dents (i.e. executing subprograms created by previous doprog calls) then the
message sent to the parent indicates that there are live progeny for the ter-
minating process. In this case, the table entry for the terminating process is
not deleted, but is changed to indicate that it terminated with progeny still liv-
ing. When the local RSP receives notification that these progeny have finished
(i.e. that there are no more living descendents of this process), a final termina-
tion message i1s sent to the RSP of its parent and the local table entry is
deleted.

Thus, when an RSP detects that a process and all of its descendents have
terminated, it knows that that subtree has completed, and may be pruned.
When the subtree corresponding to the root process of the computation has
completed, then the entire computation is complete. At this time, all other
RSP’s are notified of the termination of the computation and they in turn
inform their local DSMP’s so that shared memory segments used by this compu-
tation may be deleted.
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3.3. Distributed Shared Memory Process

The DSMP’s are responsible for the creation and maintenance of all
shared memories on all nodes. Since a distributed computation may have pro-
grams running on more than one machine in the network, there will be multiple
copies of what is conceptually one shared memory segment, one for each node.
As a result of separate parallel access, the individual copies may occasionally
differ. These changes to the separate copies must be propagated to the other
machines in order to resolve the differences. The DSMP’s are responsible for
keeping the various copies of a shared segment up to date. To accomplish this,
the DSMP’s communicate with each other, exchanging updates to modified
shared variables. When a DSMP receives a new value for one of the variables it
manages, it obtains control of the variable and updates its value. For each dis-
tributed shared segment of a computation, one node is designated as the
"owner" or controlling site. This distinction is necessary for some of our proto-
cols.

To coordinate updates to the various copies of a shared segment in the
network the DSMP’s use a special seg_name to refer to (all copies of) that seg-
ment. The seg_name is actually just the pair <comp_id, seg_id>, combining
the network-wide name for the computation and the name given to the segment
within the computation. Thus all segments on various machines that are
instantiations of a particular computation’s segment are referred to by the same
name. There are thus three names for a shared memory segment. The seg_id
used by the programs within a computation to declare and rendezvous on the
segment (in an openseg). The kern_seg_id is the identifier by which the kernel
memory mapping routines know the segment (from vshare).

Except for global update variables (which are described in the next sec-
tion), the DSMP periodically checks all variables, in all segments, to see if any
have been modified. When a modified variable is found (by checking the
modified flags in the variable descriptors), its value is sent to the other DSMP’s.
When values are received, they are installed in the proper segment, subject to
their respective update disciplines.

The creation and initialization process for a shared segment is somewhat
complex and involves the local RSP, the SMM creating the segment and all the
DSMP’s, particularly the controlling (owner) DSMP. If a segment declared by a
user process causes the DSMP to allocate a new instance of a segment previ-
ously existing in the network on another node, then this new segment’s vari-
ables must be initialized to the current values from the copy on the node of the
controlling DSMP. Thus, as part of the creation process, the creating DSMP
executes the find-owner protocol, which either returns the identity of the con-
trolling DSMP or informs the creator that it is the controlling DSMP implying
that the segment did not previously exist. If the segment existed previously, a
request for initial values is sent to the controlling DSMP, who cycles through
the wvariables in the segment and sends messages with their values to the
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requesting DSMP, acquiring semaphores where necessary. After all initialized
variables have been sent, the controlling DSMP sends a message to indicate
that it has finished the initialization. The requesting DSMP installs these
updates just as if they were the result of modifications from a user program. It
also installs other update for variables in the segment that originate on other
nodes. Thus this new copy is up to date when the DSMP receives word that the
controller is done.

(1)

(2)

(3)

(4)

(8)

The entire procedure is as follows.

The close_seg procedure in the SMM sends the process id (pid) of the
declaring process and the seg_id for the segment being declared. (In
return it will get a kern_seg_id to pass to vshare.)

The DSMP requests the comp_id for the computation of which the declar-
ing process is a member by sending its pid to the RSP. The RSP finds the
comp_id in its local table unless the creating process is the root of a com-
putation and has not previously created a segment. In the latter case, the
RSP constructs a new comp_id for the computation.

The RSP returns the comp_id to the DSMP who then constructs the
seg_name of the segment being created and checks whether a segment by
that seg_name already exists on its node. If it does, the DSMP returns its
kern_seg_id to the SMM otherwise it returns O.

Upon receiving the kern_seg_id from the DSMP, the close_seg routine
calls vshare with the kern_seg_id from the DSMP. If the kern_seg_id
received from the DSMP is non-zero, then the segment already exists and
will be mapped into the space of the caller by vshare. In this case,
close_seg can then exit because the mapping is complete. For the
remainder, we assume that the returned value was zero, i.e. that the SMM
is creating the intial copy. In this case, the call to vshare, returns the
kern_seg_id for the newly created shared segment.

Close_seg now sends the new kern_seg_id to the DSMP, who enters it in
its segment table along with the seg_name.

The DSMP then calls vshare to map the new segment into its address
space (expanding it if necessary).

The DSMP executes the find_owner protocol to determine whether it needs
to initialize the segment from elsewhere. If so, it requests initial values
from the owner as described above. If not, then the DSMP makes itself
the "owner" of the segment and will in the future act as a controller of the
segment.

When the initial values have been installed, the DSMP sends a message to
close_seg, indicating that the segment is ready for use and close_seg
then returns to the user program.
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The DSMP may delete a shared segment when it is no longer being used.
A shared segment is still in use as long as any part of the computation is still
executing, on any machine in the net. The global termination of a computation
is detected by the RSP’s which then informs the DSMP’s of the name of the
computation (see section 3.2). The DSMP’s then delete all shared segments
with this same computation name.

3.4. Implementation of Update Disciplines

As described in the section on the user interface, a shared variable may be
updated in one of several ways. This section discusses some of the implementa-
tion considerations as they affect the DSMP.

The global update discipline requires that the distributed shared variable
behave as a real shared variable would, thus requiring global synchronization.
This is performed within a node through the use of a semaphore attached to the
local copy of the shared variable. Global synchronization is achieved through a
global locking protocol implemented by the DSMP’s. The process works as fol-
lows.

(1)  The user wishes to modify a global update variable and calls aupdate or
awrite. We will assume an aupdate call.

(2) The SMM requests a global lock for the variable from the local DSMP.

(3) The DSMP sends a request for the global semaphore to the segment’s con-
trolling DSMP. When it has been granted, the DSMP acquires the local
semaphore for the variable. (Note, a fully distributed global locking
mechanism such as described by Schneider [Schneider 82b] was considered
but discarded. The reason is that the global update discipline already has
such potential for delaying a distributed computation that we wanted to
make locking as fast as possible.)

(4) After acquiring the semaphores, the DSMP broadcasts a message to the
other DSMP’s telling them to acquire their local semaphores for this vari-
able. The DSMP waits for for acknowledgement from all other DSMP’s
and then replies to the SMM telling it to go ahead with the aupdate.

(5)  The SMM receives this message and performs the update. When the
operation is complete it changes the initialized flag if necessary and sends
a message informing the DSMP that the update is done.

(6) The DSMP broadcasts the change to the other DSMP’s. It again waits for
acknowledgement from all the other DSMP’s. The other DSMP’s install
the change, release their local semaphores, and acknowledge the message.
Once the local semaphore on a node has been released, the new value may
be read by processes on that node. When all acknowledgements have
arrived the DSMP releases its local semaphore and notifies the controlling
DSMP that it is releasing the global semaphore.
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(7)  The SMM is notified that the update is done, and aupdate returns.

Several disciplines specify some relationship between current values and
allowable new values for integer or floating point variables, either for scalars or,
component-wise, for vectors. The SMM must wait on the semaphore for the
shared variable before it is allowed to update that variable. When an SMM
updates a variable, it sets the modified bit in the descriptor to notify its DSMP
that the values has changed. The DSMP must also wait on this local sema-
phore before writing or reading the shared variable. The global synchronization
protocol described above applies to the "Global-update” discipline, and is not
required for the other disciplines.

The unrestrained update discipline specifies that new variables can be
written into the shared memory whenever the process interested in writing them
can get the associated semaphore. The unsafe update discipline doesn’t require
a wait on the semaphore in order to update the variable.

4. Example

This example shows an implementation of the chaotic relaxation method
for solving diagonal dominating systems of linear equations, Ax=b [Chazan 69].
The algorithm involves running separate processes in parallel, one for each row
of the system. Each process repeatedly solves for the component of the solution
vector corresponding to its row. Each time it does so, it uses the most recent
value for the other components calculated by the other processes. The calcula-
tion of component ¢ is given by

n
a..T.
Z ) .'L‘]
=1, i

b.

?

A controlling process monitors the solution vector, checking for convergence.
This example was chosen, not because it represents the type of computation
that would reap maximum benefit from distribution (the computation of each
component is trivial), but because of its simplicity and its illustrative use of the
facilities provided by DCS. There are two parts to the example, a driver pro-
gram and a subprogram. The driver reads in the system to be solved, initializes
variables, starts up a copy of the subprogram for each row of the system, and
then goes into a loop checking for convergence of the solution. The solution
vector is kept in global shared memory, so that each process can read the vec-
tor and modify its component visibly. When convergence is detected, the driver
lets the subprograms know he is satisfied so they can quit, and then waits for
their completion before printing the solution and terminating. Each time a sub-
program solves its row of the system and updates its component of the solution
in shared memory, it checks to see whether the driver has signalled
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convergence. If so, the subprogram returns its final solution component and ter-
minates, otherwise it solves its row again.

The example program given below solves linear systems with dimension up
to SIZE (defined by an option on the cc command). The driver program (see
Figure 4) begins the declaration of a shared segment with an openseg state-
ment. The seg_id is specified in the openseg with the constant SEG1. There
are two variables placed in the segment; a simple variable, done, used to signal
convergence and a vector, z, which holds the current approximate solution to
the system. The convergence flag is declared in the sharedvar statement to be
a character variable using the global update discipline (discipline 1 above).
This discipline is used because it is the only one which will guarantee that all
the subprograms will receive a new value after a single modification. Generally,
the use of "global-update" should be avoided because of the high cost of
updates. In this case, the variable done is written only once per computation,
and reads to global-update variables cost no more than any other shared vari-
able. The solution vector declared in the sharedvec statement contains double
precision floating point numbers, is of length SIZE, and uses unrestrained
update (discipline 6). The individual subprograms will be updating the com-
ponents of this vector independently and repeatedly, thus this discipline is
sufficient to make sure that current values get distributed. The declaration of
the segment is then completed with the closeseg statement using the same
seg_id as specified in the openseg.

The variables used for subprogram bookkeeping are prog_id and status;
prog_id holds the identifiers returned by doprog, status holds the subprogram
termination status’. The system to solve is defined by the variables A, b, and n.
The matrix A holds the coefficients, b contains the right hand side, and n is the
size of the system. When checking for convergence the program uses a non
shared copy, z1, of the shared vector z. The convergence check requires past
values of the solution vector, these are stored in vector oldz, and the error toler-
ance is in error. Finally, the structure arg is the argument block to be passed
to the subprograms. Although the address of this structure is passed to
doprog, the argument is actually passed by value. Therefore rather that a
vector of these structures, only one is needed.

The driver first calls the input_data routine to read in n, A, b, and error.
The vectors z and oldx are zeroed and done is assigned false. Note that the sin-
gle awrite call is sufficient to initialize the entire z vector in shared memory.
Now all variables, local and shared, have been initialized.

The driver then loops for each row of the system, initializing the argument
block and starting a subprogram. The argument block gets assigned the size of
the system, the subprograms row number, the corresponding coefficient matrix
row, and rhs component. A doprog call it executed to request the scheduling
of the subprogram. The identifier for this subprogram is placed in the prog_id
vector, its termination status will be placed in the corresponding element of the
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#include "des/h/des_user.h”

#define TRUE 1
#define FALSE 0]
#define INTERVAL 3
#define SEG1 1
main() /™ chaotic relaxation driver */
{
openseg(SEG1);  /* place the solution vector in shared memory */
sharedvar(char, done, UPDT_GLOBAL); /* termination indicator */
sharedvec(double, x, SIZE, UPDT_UNREST); /¥ solution vector */
closeseg(SEG1);
short  prog_id[SIZE]; /* holds the ids returned by doprog */
int status[SIZE]; /* subprogram termination status */
double A[SIZE] [SIZE]; /* coefficient matrix */
double b[SIZE], /* rhs of system */
oldx[SIZE], /* comparison vector */
x1[SIZE]; /* solution vector - local copy */
int n; /* size of the system */
int 1,j; /* loop control */
int pstatus; /* parwait status */
char converged, /* termination indicator - local copy */
false = FALSE, /¥ pointer to false - for awrite */
true = TRUE; /* pointer to true - for awrite */
double error; /* relative error tolerance */
struct  { /¥ subprogram argument block */
double a[SIZE]; /¥ ..coefficient matrix column */
double b; /* .b vector entry */
int n, /* .number of variables */
pos; /¥ ..equation position */
3 arg;
input_data(A,b,&n,SIZE,&error); /¥ read the array and RHS */
arg.n = n;

/* initialize the shared variables */
for (i=0; i<n; i++)

oldx[i] = 0; /* comparison vector is zero ...*/
awrite(x,oldx); /* ... and so is the initial approximation */
awrite(done, &false); /¥ indicate we have not converged */

/* start a subprogram for each row */
for(i=0; i<n; i++) {

for (j=0; j<n; j++) /* init the argument */
arg.a[j] = Ali][j];

arg.b = bli;

arg.pos = i;

if ( /* request execution of a subprogram */

(prog_id[i] = doprog("/student/cs.paul/paulm/chaos_sub",

&statusli],
&arg sizeof(arg),

&oldx[i],sizeof(oldx[i])))
<=0)
(void) printf(" Error %d in starting subprogram %d.0,
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}

/* loop until the solution vector has converged */

do {

prog_id/[i, i);

sleep(INTERVAL); /* pause here to allow sub_programs to work */
aread(x,x1); /* read the solution vector */

converged = TRUE;

for (i=0; i<n; i++) { /* check accuracy */

if (fabs(x1[i] - oldx[i]) > error)
converged = FALSE;

oldx[i] = x1[i]; /* update previous value */

} while (lconverged);

awrite(done, &true); /* signal convergence */
pstatus = parwait_v(prog_id, n); /* wait for completion */
if (pstatus) { /* all completed ok? */

(void) printf("Parwait status = %d.0,pstatus);
for (1=0; i<n; i++)

if (statusli]) (void) printf("Error %d in computing row %d.0,

status(i]i);

3
for (i=0; i<n; i++) /* print the solution */

(void) printf(" x[%d] = %f0,i,0ldx[i]);

}
input_data(a,b,n,size error)
double al|[SIZE];
double b|j;
int *n,size;
double *error;
{
int L,j;
(void) scanf("%d" n);
if (*n < 1| *n > size) (void) printf("bad dimension0);
for(i=0; i<*n; i++) {
for (j=0; j<*n; j++)
if(scanf("%If",&ali][j]) < 1)
void)printf("data format errorQ);
if (scanf("%1f" &bli]) < 1)
(void)printf("data format error0);
¥
if (scanf("%]If" error) < 1) (void)printf("data format error0);
return; '
}

Figure 4 -- Chaotic Relaxation Driver

status vector.

/* get array size */

/* A values */

/* b values */

After starting all the subprograms the driver begins the convergence
check. First it calls sleep to allow the subprograms to get some work done and
modify their components. This step also gives up the c¢pu so that subprocesses
on the same node as the driver will have a chance to compute (rather than the
driver merely wasting the remainder of his time slice). Next the solution vector
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is read from shared memory in a single aread call. The difference between the
new solution and the previous solution must be less than the error tolerance for
each component in order for convergence to be reached. When the convergence
condition is met, the convergence flag is assigned TRUE.

Parwait_v is now called with the vector of prog_id’s. When all the sub-
programs have terminated parwait_v returns, the final solution is printed out,
and the driver exits. Note that the final solution is returned as the values from
the subprograms (this was set up in the doprog call) and are only available
after parwait_v returns. By the time the driver calls parwait_v, it already
has the solution in shared memory and could terminate without waiting. How-
ever our method has the advantage of getting the results of any work the sub-
programs did after the driver read its last set of values and before the subpro-
gram terminated. Furthermore it demonstrates the use of the parwait_v call.

The subprogram is extremely simple (see Figure 5). The same shared seg-
ment is declared as was described above. The argument sent in the doprog
call is accepted. The computation for this row is executed using the current
solution read from shared memory. The result is written back to shared
memory. The subprogram then pauses to allow other subprograms to work. If
the computation loop is executed twice with the same values, the same solution
will result, so with this pause the subprogram gives up the cpu in order that
other subprograms on the same machine can get a chance to modify the solu-
tion. This is a practical consideration, its absence would not effect the correct-
ness of the solution, but merely waste time. The convergence flag is then read,
if it is true the subprogram returns its last computed component and exits, oth-
erwise the computation is started again.

5. Some Preliminary Timings

The first stage of the implementation of DCS to be completed was the
RSP and its associated user modules, RSM and REM. At this point we ran a
simple test to check on the ease and cost of performing some distributed compu-
tations. Since our system is intended for cpu intensive applications our test was
cpu intensive, consisting of simply the execution of one million floating point
multiplications. We ran two programs, one sequential and the other distri-
buted. Our test was designed to discover the speedup achievable when perfect
parallelism is possible. Therefore the sequential program ran the million multi-
plies serially and the distributed program used ten subprograms, each executing
100,000 operations, to achieve the same goal.

The distributed program has two parts, a driver and a subprogram. The
driver program starts up 10 copies of the subprogram, each with an argument
vector containing 10 floating point numbers, and then waits for them to com-
plete. Each subprogram performs 100,000 floating point multiplies and then
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#include "des/h/des_user.h"”

#define TRUE 1
#define FALSE 0
#define SUB_INTERVAL 1
#define SEG1 1
main() /* chaotic relaxation subprogram */
{
openseg(SEG1); /* place the solution vector in shared memory */

sharedvar(char, done, UPDT_GLOBAL);
sharedvec(double, x, SIZE, UPDT_UNREST);

closeseg(SEG1);
int i /* loop control */
char converged = FALSE; /* local copy of done */
double y[SIZE], /¥ local copy of x */
sum;
struct { /* argument block */
double a[SIZE]; /* ..coeflicient matrix column */
double b; /* .b vector entry */
int n, * .number of variables */
pos; /* ..equation position */
} are;
raccept{&arg, sizeof(arg)); /* get the arg values */
/* loop until the solution converges */
do {
aread(x, y); /* read up the current x values */

/* calculate our component of the solution */
sum = 0;
for (j=0; j< arg.pos; j+-.+—)
 sum += argalj] * y[j;
for (j=arg.pos+1; j<arg.n; j+-+)
sum += arg.afj] * y[j];
sum = (arg.b - sum) / arg.a[arg.pos|;

*

aputelt(x|arg.pos],&sum);  /* write a new x value */

sleep(SUB_INTERVAL); /* pause to allow others to do work */

aread(done, &converged);  /* read the convergence flag */
} while (!converged);

rreturn{&y|arg.pos|,sizeof(y[arg.pos])); /* return the final value */

3

Figure 5 -- Chaotic Relaxation Subroutine

returns the argument vector to the driver. Thus we have 1,000,000 floating
point multiplies, 10 process creations, and the associated communications
involved in the computation. The sequential program merely loops one million

times performing multiplications.
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The distributed test was run on 5 SUN workstations running our modified
kernel supporting shared memory. The test was repeated six times. The
sequential test was run on a single SUN workstation, and was repeated four
times (the variation in run times was so small with this test that further repeti-
tion was considered pointless).

When comparing the running times of these two programs we compare the
process execution time of the sequential program to the real elapsed time for
the distributed program. The process time for the program is a lower bound for
the real time in which the sequential program could execute. The real time
measured for the distributed program can then be compared to this to get an
indication of the speedup achievable using DCS (on unloaded systems). The
results are listed below.

Distributed Sequential

real time seconds  process time seconds
196.1 560.4
244.7 554.6
159.0 553.8
221.0 554.0
155.5
164.7

average 190.2 555.7

These results show that even after all overhead costs are included (because we
measure real time), we get a distributed program which runs approximately 3
times faster (2.9) than the best the sequential program can do.

6. Relation to Other Work

There has not been a great deal of work done specifically in this area,
although there have been a number of projects addressing problems in related
areas. The Worm program [Schoch 82] is the first of which we're aware. The
program expanded onto more workstations as they became available, however it
was based on the "off hours" use of workstations that were assumed idle, and
required rebooting the workstation. Grapevine [Schroeder 84, Birrell 82] and
Medusa [Ousterhout 80] are both examples of distributed programs i.e. pro-
grams with autonomous, cooperating segments working on different sections of
the same problem. The first is a mail-server and name database running on a
network while the second is an operating system running on the network com-
puter Cm* (actually a shared and distributed memory, multiprocessor system).
LOCUS [Popek 81, Walker 83, Mueller 83] is a Unix-based network operating
system in which a file system supporting nested transactions and replicated files
is distributed over the entire network, while the operating system code is repli-
cated on each node. LOCUS also comes close to addressing many of the issues
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we will face, since it has protocols supporting remote command execution to
handle the case where the program implementing the command is located on
another node of the network.

LOCUS does not address the issue of load balancing and automatic site deter-
mination, the latter being determined by a wuser setable "advice list".
DEMOS/MP [Powell 83] contains a mechanism supporting process migration in
networks, but doesn’t address the problem of when to migrate a process.
Powell and Miller maintain that designing "an efficient and effective decision
rule [for process migration] is still an open research topic." As can be seen from
the above discussion, we have some good advice available on related issues that
we will need to consider, but none that deals with the same problem.

The closest work to ours is the work being done by Finkel and Manber in
the context of the Crystal Project at the University of Wisconsin. Their system
DIB (for Distributed Implementation of Backtracking) [Finkel 85|, provides sup-
port for the writing of backtracking recursive treesearch algorithms. The DIB
driver calls a user supplied problem generator to get sub-problems of a given
problem. These sub-problems are then distributed to the nodes of a network
based on minimal load average. The only communication between processes
working on sub-problems possible in their system is via input parameters and
output values. We differ from their work by providing a more flexible interface
that allows arbitrary invocations under programmer control, and also in the
provision of shared variables for communication amongst running processes.

7. Status and Future Work

As of this writing, DCS is approximately 95% functional. Procedure invo-
cation with input and output parameters has been working since early June,
and we've included the results of some early measurements. The design of the
protocols supporting shared variables has turned out to be far more difficult
than we originally anticipated largely for two reasons. First, the shared
memory support protocols typically involve several nodes at once whereas the
procedure invocation protocols generally operate between two nodes. Second,
we decided very early in the design to use the datagram protocol for efficiency.

The justifications for the use of datagrams were first, that datagrams
have fairly high reliability on local area networks, and second that the general
philosophy of our shared variables requires programs to be somewhat tolerant
where shared variables are concerned. In an iterative algorithm, an update
broadcast may be lost, but as the variable is modified repeatedly more update
broadcasts will be sent, and most of these will be received. If the last update is
critical, then steps can be taken to make sure it arrives, such as designing the
sub-program to return the final value, or declaring the variable to have the glo-
bal update discipline as we did in our example in Section 4 for the variables z
and done respectively.
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At the same time, there are instance where lost messages could not be
tolerated or messages had to be processed in order. Examples are segment crea-
tion and the implementation of global updates. In these cases, we were forced
to design tolerance for the unreliable service into our protocols, which made
them more complicated. If a reliable datagram service had been available, we
would have paid the price for the channels used for these functions, and stayed
with the cheaper service for the normal update processing, which will make up
the greatest bulk of the message traffic anyway.

In the near future, DCS will be completely functional, and we can begin
the research for which it was initially planned. That is, we will write and
encourage others to write, programs based on the DCS abstractions. We will
then experiment with some of the heuristics mentioned in the Introduction with
various distributed algorithms and under varying ambient user load to find
some good scheduling algorithms.

We will also be carrying out investigations into the usefulness of update
disciplines for writing distributed programs. Further, the fact that our distri-
buted shared variables may temporarily have inaccurate values will affect the
proof obligations for formal verification. Though approches exist for demon-
strating the correctness of parallel programs with shared memory [Owicki 76],
the known methods assume that the shared variables are all in physicaly shared
memory. We wish to develop a proof methodology or at minimum a set of pro-
grammer guidelines for the use of distributed shared variables.
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DOPROG(3) User Support Routines DOPROG (3)

NAME
doprog - queue a program for (remote) execution.

SYNOPSIS
prog_id = doprog(fname, &status, &arg, sizeof(arg), &ret, sizeof(ret))
int prog_id, status;
char *fname;
X arg;
y ret;

DESCRIPTION
Doprog causes the program on the file named by frname to be queued for remote execution by the
DCS system. Status is the address of an integer to contain the termination status of the pro-
gram {i.e. the main program can determine if a subprogram has crashed by examining this
value). The format of the status is described in <sys/wait.h>, the Fulll field of the status is
used to return DCS system error status codes. Arg contains the value of type 2 to be passed as
an argument to the program. Retis the address of a data block of type y to receive the values
returned by the program. The ref value is not returned until a parwait call has been executed
for the prog_id .

RETURN VALUE
Upon successful completion the remote program identifier, prog_id , for the scheduled program is

returned, this value may be used in subsequent calls to parwait. If a negative number is returned
an error has occured.

DIAGNOSTICS
A negative return value indicates one of the following error conditions:
-1 the global variable errno should be checked.
-2 the DCS system has not responded to the doprog
-3 this program has exceeded the DCS system limit

for the number of outstanding doprog calls.
-4-5  DOS system installation errors.

SEE ALSO
parwait(3)
FILES
des/lib/deslib library containing this routine.

AUTHORS
Paul Harter, Paul Maybee

DRAFT Version of 16 Sep 1985 1



PARWAIT(3) User Support Routines PARWAIT{3)

NAME
parwait - wait for the completion of a set of remote programs.

SYNOPSIS
status = parwait(prog_id0, prog_id1, ..., prog_idn,0)
int status, prog_id0, prog_idl, ..., prog_idn

status = parwait_v(prog_id_v, n)
int prog_id_v[],n
DESCRIPTION
Parwast returns when all subprograms identified by prog_id0, prog_idi, ..., prog_idn have ter-
minated. These prog_id s must be values returned by previous doprog calls. The values com-

puted by the programs (i.e. the doprog ret parameters) are available after the parwait has
returned.

Parwait_v is an alternate calling mechanism, allowing the prog_id s to be elements of a vector,
prog_td_v , with n specifying the length of the vector.
RETURN VALUE

Upon completion a 0 is returned if all subprograms completed without errors. Any other value
returned indicates an error condition.

DIAGNOSTICS
A non-zero, positive return value indicates the number of subprograms that did not terminate

normally (e.g. because of machine crashes or communications failures). A negative return values
indicates a failure in the processing of the parwadt call.

-1 refer to the global variable errno.
-2 the DCS system has not reponded to the parwadt call.
-3 indicates that no doprog proceeded this parwait call.
-4 indicates an internal DCS system error.
SEE ALSO
doprog(3), rreturn(3)
FILES
des/lib/deslib library containing this routine.
AUTHORS

Paul Harter, Paul Maybee

DRAFT Version of 16 Sep 1985 ' 1



RACCEPT(3) User Support Routines RACCEPT(3)

NAME
raccept - remote accept.

SYNOPSIS
raccept((charx) &arg, sizeof(arg))
X arg

DESCRIPTION
This routine is called by a subprogram of a distributed computation to accept the parameter
passed to this subprogram by the main program. Arg is the variable to receive the argument
specified as arg on the doprog call that caused the execution of this subprogram. In order to
insure proper alignment and addressing in the user program, the type, =, of arg must match the
type of the corresponding parameter on the doprog call.

DIAGNOSTICS
If the routine is not successful in obtaining the argument then raccept will cause a process exit.
The exit status portion of the status (see <sys/wait.h>) returned after a parwait has been
called for this subprogram will contain a negative value indicating the failure.

SEE ALSO
doprog(3), parwait(3)
FILES
des/lib/deslib library containing this routine.

AUTHORS
Paul Harter, Paul Maybee

DRAFT Version of 16 Sep 1985 1



RRETURN(3) User Support Routines RRETURN(3)

NAME
rreturn - remote return.

SYNOPSIS
rreturn((char*) &ret, sizeof(ret))
y ret

DESCRIPTION

This routine is called by a subprogram of a distributed computation to return the output vari-
able to the main program. The main program receives ref in the variable specified by ret on the
doprog call which caused the execution of this subprogram. The type, y , of ret must match the
type of the corresponding variable on the doprog call to insure proper addressing and alignment.

SEE ALSO
doprog(3), parwait(3)
FILES
des/lib/deslib library containing this routine.

AUTHORS
Paul Harter, Paul Maybee

DRAFT Version of 16 Sep 1985 1



OPENSEG(3) User Support Routines OPENSEG(3)

NAME

openseg, sharedvar, sharedvec, closeseg - declare shared variables.

SYNOPSIS

f#include "dcs_user.h”
openseg(seg_id);

sharedvar(x_type, x, upt);
sharedvec(y_type, y, length, upt);

closeseg(seg_id);

DESCRIPTION

This set of declarations is an example layout of the macros to define a shared memory segment
in a program of a distributed computation.

Closeseg begins the definition of the segment and uses the integer constant seg_id to identify the
segment. This declaration must appear before any shared memory declarations (i.e. sharedvar
and sharedvec ) for this segment.

Sharedvar declares the non-vector variable z to be of type 2_tfype and allocates space for it in
the shared memory segment specified by the previous openseg . Sharedvec declares the variable y
to be a vector with length length and of type y_type and allocates space for it in the shared
memory segment specified by the previous openseg . X_type (y_type) may be any valid C type
with the exception that if it is a structure or union type then only the tag field is used. The upt
parameter is an integer which specifies the updating discipline to use for this variable. The pos-
sible values for upt are defined in the include file des_user.h. The only access to this variable is
through the aread, awrite, and aupdate routines, all other references have undefined results.

The closeseg macro terminates the mapping of a shared memory segment. The seg_id must be
identical to the seg_id specified in the previous openseg declaration. None of the variables in
this segment (declared with sharedvar, or sharedvec ) can be accessed until this declaration has
appeared.

There may be multiple occurances of sharedvar and sharedvec in between an openseg and its
corresponding closeseg . A single program may declare multiple shared segments, each with a
unique seg_id .

SEE ALSO

aread(3), awrite(3), aupdate(3)
FILES

des/lib/deslib library containing code to process this declaration.
AUTHORS

DRAFT

Paul Harter, Paul Maybee, David C. M. Wood

Version of 16 Sep 1985 1



AREAD(3) User Support Routines AREAD(3)

NAME
aread, agetelt - atomicly read a variable from shared memory.

SYNOPSIS
#include "des_user.h”

openseg(seg_id);

sharedvar(x_type, x, upt);
sharedvec(y_type, y, length, upt);

closeseg(seg_id);

x_type destl;
y_type dest2;

.

aread( x, &destl );

agetelt( yli], &dest2 );

DESCRIPTION
The synopsis above is a segment of an example program of a distributed computation. Aread
and agetelt are used to atomicly read variables stored in shared memory. These functions reads
the contents of a shared variable into nonshared storage.

The aread routine reads an entire variable, whether vector or non-vector. Agetelt reads an ele-
ment of a shared vector variable. X (y/i]) is the variable whose contents is desired. Destl
(dest?) is the variable to hold the value read from shared storage. X and y must be variables
defined with sharedvar, or sharedvec declarations. Destl and dest2 must not have been defined
in this way.

RETURN VALUE
Upon successful completion a 0 is returned. If an error has occured then a -1 is returned. Possi-

ble errors are: the destination address i1s in shared memory, the variable is not in a shared seg-
ment, and the variable has not been initialized.

SEE ALSO

openseg(3), awrite(3), aupdate(3)
FILES

des/lib/deslib library containing code to process this declaration.
AUTHORS

Paul Harter, Paul Maybee, David C. M. Wood

DRAFT Version of 16 Sep 1985 1



AWRITE(3) User Support Routines AWRITE(3)

NAME
awrite, aputelt - atomicly write to a shared variable.

SYNOPSIS
#include "des_user.h"

openseg(seg_id);

sharedvar(x_type, x, upt);
sharedvec(y_type, y, length, upt);

closeseg(seg_id);

x_type destl;
y_type dest2;

.

awrite( x, &sourcel );

aputelt( y[i], &source2 );

DESCRIPTION
The synopsis above is a segment of an example program of a distributed computation. Awrite
and aputelt are used to atomicly write variables stored in shared memory, subject to the update
descipline, upt , with which they were declared. These functions write the contents of a non-
shared variable into a shared variable.

The awrite routine modifies an entire variable, whether vector or non-vector. Aputelt modifies
an element of a shared vector variable. X (y/t)) is the variable which is being modified. Sourcel
(source?) is the variable which contains the value to be written. X and y must be variables
defined with sharedvar, or sharedvec declarations. Sourcel and source?2 must not have been
defined in this way.

RETURN VALUE
Upon successful completion a 0 is returned. If an error has occured then a -1 is returned. Possi-
ble errors are the source address is in shared memory or the variable is not in a shared segment.

SEE ALSO
openseg(3), aread(3), aupdate(3)

FILES
des/lib/deslib library containing this routine.

AUTHORS
Paul Harter, Paul Maybee, David C. M. Wood

DRAFT Version of 16 Sep 1985 1



AUPDATE(3) User Support Routines AUPDATE(3)

NAME

SYNOP

aupdate, aupdelt - atomicly update a shared variable.

SIS
#include "dcs_user.h"

openseg(seg_id);

sharedvar(x_type, x, upt);
sharedvec(y_type, y, length, upt);

closeseg(seg_id);
char sparam;

int iflag;
int procl(param, x, iflag), proc2(param, y, iflag);

.

aupdate( procl, x, param )

aupdelt( proc2, y[i], param )

DESCRIPTION

The synopsis above is a segment of an example program of a distributed computation Aupdate
and aupdtelt are used to atomicly update variables stored in shared memory. These functions
read and modify the contents of a shared variable subject to the update discipline, upt, with
which they were declared.

The aupdate routine works on an entire variable, whether vector or non-vector. Agetelt works
on an element of a shared vector variable. X (y/i/) is the variable whose contents is being
updated. Procl (proc?) is the user routine which will be called to do the modification. Param is
an additional parameter to be passed to the user routine. Iflag is a third parameter which indi-
cates whether z (y) has been initialized yet (Iflag is 1 if initialized). Procl (proc2) has exclusive
access to « (y) during its execution. X and y must be variables defined with sharedvar, or
sharedvec declarations. Param must not have been defined in this way.

RETURN VALUE

Upon successful completion a 0 is returned. If an error has occured then a -1 is returned. A
possible error is the variable is not in a shared segment.

SEE ALSO

openseg(3), aread(3), awrite(3)
FILES

des/lib/deslib library that contains this routine.
AUTHORS

DRAFT

Paul Harter, Paul Maybee, David C. M. Wood

Version of 16 Sep 1985 1



DCSINTRO (DCS)

NAME

DCS SUPPORT FUNCTIONS

intro - introduction to DCS library functions

DESCRIPTION

DCS provides the C programmer with a library of functions to support paralle distributed programs on a
network of SUN workstations. To access this library, compile your program with the dcs library, The link
editor searches this library when the "-ldcs” option is supplied on the C compilaton commmand. Declara-
tions and macros used with DCS are in the include file "/usr/locallinclude/dcs.h”. The functions are listed

below.

LIST OF FUNCTIONS
Function
agetelt
aputelt
aread
aupdate
aupdelt
awrite
closeseg
contin
doprog
openseg
parsync
parwait
raccept
rprintf
rretumn
sharedvar
sharedvec
syncp

AUTHORS

Paul Maybee
Paul X. Harter
David C. M. Wood

University of Colorado, Boulder CO

Sun Release 3.0

See
aread
awrite
aread
aupdate
aupdate
awrite
openseg
contin
doprog
openseg
parsync
parwait
raccept
rprintf
metum
openseg
openseg
syncp

Description
atomicly read a variable from shared memory
atomicly write to a shared vector element
atomicly read a variable from shared memory
atomicly update a shared variable
atomicly update a shared vector element
atomicly write to a shared variable
end declaration of shared variables
continue execution of synchronized programs
queue a program for (remote) execution
begin declaration shared variables
synchronize with a set of subprograms
wait for the completion of remote programs
accept remote parameter
print messages to the controlling terminal
remote parameter return
declare single shared variable
declare single shared vector
synchronize with the parent program

Last change: 13 November 1986
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NAME
aread, agetelt - atomicly read a variable from shared memory.

SYNOPSIS
#include "/usr/local/include/dcs.h”

openseg(seg_id);

sharedvar(x_type, x, upt);
sharedvec(y_type, y, length, upt);

closeseg(seg_id);

x_type destl;
y_type dest2;

.

aread( x, &destl );

agetelt( y[i], &dest2 );

DESCRIPTION

The synopsis above is a segment of a program in a distributed computation. aread and agetelt are used 1o
atomicly read variables stored in shared memory. These functions read the contents of a shared variable
into nonshared storage.

The aread routine reads an entire variable, whether vector or non-vector. agetelt reads an element of a
" shared vector variable. aread reads the value of the shared variable x and copies it to the local variable
destl, likewise agetelt reads y(i] into dest2. x and y must be variables defined with Sharedvar, or
sharedvec declarations. dest] and dest2 must be regular variables, and not have been declared using either
of these.
RETURN YALUE
Upon successful completion 0 is returned. If an error has occurred then -1 is returned.

SEE ALSO

openseg(3), awrite(3), aupdate(3)
AUTHORS

Paul Maybee

Paul K. Harter

David C. M. Wood

University of Colorado, Boulder CO
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NAME
aupdate, aupdelt - atomicly update a shared variable.

SYNOPSIS
#include "/usr/local/include/dcs.h"

openseg(seg_id);

sharedvar(x_type, X, upt);
sharedvec(y_type, y, length, upt);

closeseg(seg_id);

char *param;
int iflag;
int procl(param, x, iflag), proc2(param, y, iflag);

.

aupdate( procl, x, param );

aupdelt( proc2, y{il, param );
DESCRIPTION

The synopsis above is a segment of a progfam in a distributed computation. aupdate and aupdtelt are used
to atomicly update variables stored in shared memory. These functions read and modify the contents of a
shared variable subject to the update discipline, upt, with which they were declared.

The aupdate routine updates an entire variable, whether vector or non-vector; agerelt a single element of a
shared vector variable. aupdate reads the value of the shared variable x and calls the routine procl supply-
ing x as the second actual parameter.

aupdelt reads the value of the shared vector element y/i] and calls the routine proc2 supplying y[i] as the
second actual parameter. The first actual parameter in each case is an arbitrary pointer variable, param,
and the third parameter is iflag, which is 0 or 1 depending on whether the variable to be updated was ini-
tialized previous to the aupdate (aupde!t) call. procl and proc2 may access their second parameter directly
(i.e. without using DCS shared variable access functions). x and y must have been declared using shared-
var or sharedvec declarations, param must be a regular variable, and not have been declared using thesc
calls. )

Nested aupdate and aupdelt calls are not allowed.
RETURN VALUE

Upon successful completion 0 is returned. If an error has occurred then -1 is returned.
SEE ALSO

openseg(3), aread(3), awrite(3)
AUTHORS

Paul Maybee

Paul K. Harter

David C. M. Wood
University of Colorado, Boulder CO
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(" NaME

awrite, aputelt - atomicly write to a shared variable.

SYNOPSIS

#include "/usr/local/include/des.h"
openseg(seg_id);

sharedvar(x_type, x, upt);
sharedvec(y_type, y, length, upt);

closeseg(seg_id);

x_type destl;
y_type dest2;

.

awrite( x, &sourcel );

aputelt( y[i], &source2 );

DESCRIPTION

The synopsis above is a segment of a program in a distributed computation. awrite and aputelt are used to
atomicly write variables stored in shared memory, subject to the update discipline, upr, with which they
were declared. These functions write the contents of a non-shared variable into a shared variable.

AWRITE (DCS)

The awrite routine modifies an entire shared variable, whether vector or non-vector; aputelt a single ele-
ment of a shared vector variable. awrite copies the value of the local variable source! into the shared vari-
able x, likewise aputelt copies source2 into yfi]. x and y must be variables defined with sharedvar, or
sharedvec declarations. Sourcel and source2 must be regular variables, and not have been declared using

these declarations.

RETURN VALUE

Upon successful completion 0 is returned. If an error has occurred then -1 is returned.

SEE ALSO

openseg(3), aread(3), aupdate(3)

AUTHORS

BUGS

Paul Maybee

Paul K. Harter

David C. M. Wood

University of Colorado, Boulder CO

awrite fails when the variable is larger than 1024 bytes. If the variable is a vector then multiple aupdel:

calls can be used to share larger amounts of data.
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NAME
contin, contin_v - allow synchronized subprograms to continue execution.

SYNOPSIS
#include "/usr/local/include/dcs.h"

status = contin(prog_id0, prog_id], ..., prog_idn,0)
int status, prog_id0, prog_idl, ..., prog_idn

status = contin_v(prog_id_v, n)
int prog_id_v{],n
DESCRIPTION

Contin informs all the subprograms identified by prog_id0, prog_idl, ..., prog_idn that they may continue

executing from a syncp. These prog_id’s must be values specified in a previous parsync call with no inter-
vening contin or parwait calls for the same ids.

Contin_y is an alternate calling mechanism, ailowing the prog_id’s to be elements of a vector, prog_id_v,
with n specifying the length of the vector.
RETURN VALUE

0 is returned for normal completion, otherwise -1 is returned. The type of error can be determined from the
system variable errno.

SEE ALSO

doprog(3), parsync(3), parwait(3), syncp(3)
AUTHORS

Paul Maybee

Paul K. Harter

David C. M. Wood

University of Colorado, Boulder CO
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NAME
doprog - queue a program for (remote) execution.

SYNOPSIS
#include "/usr/local/include/dcs.h"

prog_id = doprog(fname, &status, &arg, sizeof(arg), &ret, sizeof(ret),rrs)
int prog_id, status;
char *fname;
typel arg;
type2 ret;
struct res_req_spec rrs( J;
DESCRIPTION

Doprog causes the program in the file named by fname to be queued for remote execution by the DCS sys-
tem. Starus is of type union wait (see <sys/waith>), it will contain the termination status of the remote
program after it has exited. The format of the status is described in <sys/wait.h>, the Fiill field of the
status is used to return DCS system error status codes. arg, a variable of type typel, is passed as an argu-
ment to the remote program. ret, a variable of type type2, is used to contain the return values from the
remote program. The ret value is not available until a parwait or parsync call has been executed for the
prog_id (see the descriptions of these functions). 77s is a list of resource requirements for the subprogram.
This parameter is used by DCS to determine a location for the remote execution of the subprogram. An
execution requirement has a type and an instance .

struct rec_req_spec {

int type; /* type are defined in des_user.h */
char *instance /* instances are type dependent */

Jos(];
The rrs list is a vector terminated by an entry with a type of 0. Thus to insist that a subprogram be started
on a machine named molson the following rec_req_spec would be used.

rs(0].type = MACH_NAME;

rrs{0].instance = "molson™;

rs{1].type = 0;
If no special resources are needed (the defauit is to place the program on the SUN3 with the least load),
then a 0 may be specified for the rrs parameter.

RETURN VALUE

Upon successful completion the remote program identifier, prog_id , for the scheduled program is returned,

this value may be used in subsequent calls to parwait, parsync, and contin. If a negative number is
returned an error has occurred, consuit errno.

SEE ALSO

parwait(3), parsync(3), contin(3), raccept(3), rreturn(3), syncp(3)
FILES

[usr/etc/cohorts static requirements file for network machines.
AUTHORS

Paul Maybee

Paul XK. Harter

David C. M. Wood

University of Colorado, Boulder CO
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NAME

openseg, sharedvar, sharedvec, closeseg - declare shared variables.

SYNOPSIS

#include "/usr/local/include/dcs.h”
openseg(seg_id);

sharedvar(x_type, x, upt);
sharedvec(y_type, y, length, upt);

closeseg(seg_id);

DESCRIPTION

Declarations of shared variables appear as extensions to C; they are implemented as macros to the C
Preprocessor.

Openseg begins the definition of the segment and uses the integer constant seg_id to identify the segment.
This declaradon must appear before any shared memory declarations (i.e. sharedvar and sharedvec ) for

this segment. This seg_id is used by each program in the distributed computation to identify the same seg-
ment.

Sharedvar declares the non-vector variable x to be of type x_type and allocates space for it in the shared
memory segment specified by the previous openseg . Sharedvec declares the variable ¥ 10 be a vector with
length length and of type y_type and allocates space for it in the shared memory segment specified by the
previous openseg. x_type and y_type may be any valid C types. If that type is struct (or union) then only
struct (or union) followed by the tag field appears in the macro. The upt parameter is an integer that
specifies the update discipline to use for this variable. The possible values for upt are defined in the include
file "/usrilocallincludeldcs_user.h”. Shared memory is replicated, one copy of a shared segment to each
machine running a subprogram in the distributed computation. The update discipline governs how the
DCS system will perform updates to the different copies of a variable.

UPDT_UNSAFE - all new values are written without any synchronization.
UPDT_UNREST - all new values are written using only local synchronization.
UPDT_GLOBAL - all new values are written using global synchronization.

The UPDT_UNSAFE discipline allows very efficient access to shared storage, however provides no pro-
tection against two processes simultaneously accessing the same piece of storage. This discipline is
appropriate for situations in which processes will only be reading the segment once it has an initial value.
The UPDT_UNREST discipline insures that only one process will access a particular copy of the shared
variable. However since the variable is replicated on each machine, simultanecus updates may occur and
thus the various copies may differ. This discipline is appropriate when only one process is writing the vari-
able (or vector element) and other processes are reading the result. The UPDT_GLOBAL discipline
insures that only one modification to the variable occurs at a time throughout the computation. This discip-

line makes the shared variables behave exactly as if physical shared memory protected by semaphores
were being used.

The only access to shared variables is through the aread, awrite, and aupdate routines, all other references
have undefined results.

The closeseg macro terminates the mapping of a shared memory segment. The seg_id must be identical to
the seg_id specified in the previous openseg declaration. The declaration of shared variables is not com-

" plete until matching openseg/closeseg statements have been encountered.

There may be multiple occurrences of sharedvar and sharedvec between an openseg and its corresponding
closeseg . A single program may declare multiple shared segments, each with a unique seg id.
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SEE ALSO
aread(3), awrite(3), aupdate(3)

AUTHORS
Paul Maybee
Paul X. Harter
David C. M. Wood
University of Colorado, Boulder CO
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NAME

parsync, parsync_v - synchronize with a set of subprograms.
SYNOPSIS

#include "/usr/local/inciude/dcs.h"

status = parsync(prog_id0, prog_idl, ..., prog_idn,0)
int status, prog_id0, prog_idl, ..., prog_idn

status = parsync_v{prog_id_v, n)
int prog_id_v{],n
DESCRIPTION
Parsync returns when all subprograms identified by prog_id0, prog_idl, ..., prog_idn have executed syncp .

These prog_ids must be values returned by previous doprog calls. The values computed by the programs

(i.e. the doprog ret parameter) are available after the parsync has retumned, if the programs executing syncp
provided return parameters.

Parsync_v is an alternate calling mechanism, allowing the prog_id s to be elements of a vector, prog_id v,
with 7 specifying the length of the vector.
RETURN VALUE
Upon completion a ) is returned. A non-zero, positive return value indicates the number of subprograms
that did not synchronize normally (e.g. because of early termination). A negative return values indicates a
failure in the processing of the parsync call, consult errno.
SEE ALSO
doprog(3), parwait(3), contin(3), syncp(3)
AUTHORS
Paul Maybee
Paul K. Harter
David C. M. Wood
University of Colorado, Boulder CO
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DCS SUPPORT FUNCTIONS F
( NamE
' Darwait, parwaijt v . wait for the completion of 3 get of remote programs,
SYNOPsIs
#include "/usr/local/inc!ude/dcs.h"

Status = parwajt

(prog_id(), prog_idl, .., prog_idn,0)
int status, prog_

ido, prog_idl, ..., prog_idn

Status = parwait‘v(progjd_v, n)
int prog_id_v[},n
DESCRIPTION

Parwait returns when alj Subprograms identified by prog_ido, prog idi, .., Prog_idn have 1o
These Prog_id’s must pe values remimed by previous doprog calls, T,
(i.e. the doprog re; parameter

e values computed by
) are only availahje after the parwait has Tretumed, provideq the
ing subprogram executed an rreturn,

Parwait_y is an alternate calling mechanism
with n Specifying the length of the vector,
RETURN VALUE

» allowing the prog id’s to be elements of 5 vectc

alues indicaeg a failure in the Drocessing of the e
urther mformation
(w SEE ALSO
( doprog(3), Ireturn(3)
AUTHORS
Paul Maybee
Paul K. Harger

David C, M. Wood
University of Colorado, Boulder CO
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NAME

raccept - accept remote parameter.

SYNOPSIS
#include "/usr/local/include/des.h”

raccept((char*) &arg, sizeof(arg))
typel arg :

DESCRIPTION
This routine is called by a subprogram of a distributed computation to accept the parameter passed by the
calling program. arg is the variable to receive the argument specified as arg on the doprog call that started
the execution of this subprogram. In order to insure proper alignment and addressing in the user program,
; the type, fypel, of arg must match the type of the corresponding parameter on the doprog call.
DIAGNOSTICS

If the routine is not successful in obtaining the argument then raccept will cause the process to exit. This
failure will be communicated to the calling program via the status variable of the doprog call.
SEE ALSO
doprog(3), parwait(3)
AUTHORS
Paul Maybee
Paul X. Harter
David C. M. Wood
University of Colorado, Boulder CO
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NAME
rprintf - print messages from a remote process to the controlling terminal.

SYNOPSIS
#include <stdio.h>
#include "/usr/local/include/des.h"

int rprintf(formatf,arg] ...)
char *format;

DESCRIPTION

Rprinif prints to the standard output stream, stdout, of the main program of a distributed computation. The
standard output stream must be a terminal or the output is ignored. The message may be no longer than
132 characters. Otherwise, this function behaves exactly as prinif .

SEE ALSO
printf(3S)
AUTHORS
Paul Maybee
Paul K. Harter

David C. M. Wood
University of Colorado, Boulder CO
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NAME
rreturn - remote retuwm.

SYNOPSIS
#include "/usr/local/include/dcs.h"

rreturn{(char=*) &ret, sizeof(ret))
type2 ret

DESCRIPTION
This routine is called by a subprogram of a distributed computation to return the output variable to the cal-
ling program. The calling program receives re in the variable specified by ret on the doprog call which
caused the execution of this subprogram. The type, rype2, of ret must match the type of the corresponding
variable on the doprog call to insure proper addressing and alignment.
This function exits, it does not return control to the caller.

SEE ALSO
doprog(3), parwait(3)
AUTHORS
Paul Maybee
Paul X. Harter
David C. M. Wood
University of Colorado, Boulder CO
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", NAME

syncp - synchronize with the parent program.
SYNOPSIS
#include "/usr/local/include/dcs.h"

syncp((char*) &ret, sizeof(ret))
type2 ret

DESCRIPTION
This routine is called by a subprogram of a distributed computation to synchronize with, and return the out-
put variable to, the main program. The calling subprogram is suspended at the syncp until the parent pro-
gram executes a parsync call followed by a contin call, both specifying this subprogram. The parent pro-
gram receives ret in the variable specified by ret on the doprog call which caused the execution of this sub-
program. The type, type2, of ret must match the type of the corresponding variable on the doprog call to
insure proper addressing and alignment.

RETURN VALUE
0 is returned for successful completion, otherwise -1 is returned.

SEE ALSO

doprog(3), parsync(3), contin(3)
AUTHORS

Paul Maybee

Paul X. Harter

David C. M. Wood

University of Colorado, Boulder CO
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