FIFTEEN SIMPLE EXERCISES IN

HIGHER-ORDER INTUITIONISTIC LOGIC
by

Jon Shultis

CU-CS-307-85 July, 1985

University of Colorado, Department of Computer
Boulder, Colorado.

Science,

Fifteen Simple Exercises in Higher-Order Intuitionistic Logic

Jon Shultis
Department of Computer Science
University of Colorado
Boulder, CO 80309

Abstract

Intuit 1.1 is a computer system for deriving programs as byproducts of mathematical
proofs. The proofs are conducted in a higher-order intuitionistic logic. Since the for-
malism of the Intuit logic is likely to be unfamiliar to most computer scientists, fifteen
elementary exercises in the logic are collected in this report, together with their solu-
tions. The introduction of derived inference rules into the system is also discussed,
and several such rules are developed in the course of solving the exercises.

Fifteen Simple Exercises in Higher-Order Intuitionistic Logic

Jon Shultrs
Department of Computer Science
Universtty of Colorado
Boulder, CO 80809

The purpose of these exercises is to introduce the reader to the art of deriving
computer programs by proving mathematical theorems. Because any skill is best
learned by working examples, this report has been structured as a workbook. After
some introductory remarks, we present, in §2, a summary of Intuit [9], [10] the
"programming language” to be used in the exercises listed in §3. Solutions to the

exercises are given in §4.

1. Introduction

Writing correct programs is difficult 1n part because of the conceptual dis-
tance between the text of a program and its purpose. Witness the novice program-
mer explaining a program by tracing its execution: "...then, if x is greater than 1, it
assigns 5 to sum, then does the loop again...”". Nowhere in such an "explanation”
can one find any indication of why these things are being done. Although the pro-
grammer may have some intuitive understanding of how the program accomplishes
its purpose, the formal articulation of that intuition is likely to be prohibitively

difficult and boring, and hence pointless [3].

Although most programs may make boring theorems, good theorems often
make interesting programs. For example, the theorem that for every deterministic
finite automaton there is a minimum-state equivalent automaton leads to 2 pro-
gram having applications in such diverse areas as compilers and VLSI design. So,
though mathematics may not be a panacea for incorrect software, it is one impor-

tant source of software.

Programs can be automatically extracted from proofs of mathematical
theorems, using intuitionistic logic. Prior systems that exploit this fact include
Martin-Lof’s Constructive Set Theory [6], [8], and the program refinement logics
(prls) of Constable et al. [1], [2]. The Intuit systems are based on a different logic,

one that is more suitable for "ordinary” mathematics, with special attention to

topos theory.

The proviso that theorems be proved using a (formal) intuitionistic logic is
important; it is the logic that makes the automatic derivation of software from
mathematics possible. This situation contrasts sharply with the main difficulty fac-
ing program verification in general, viz. that 1t is essentially impossible to extract

an appropriate theorem (or proof} from the text of a program.

One may reasonably wonder whether formal intuitionistic proofs could ever be
involved in the day-to-day social process of "real” mathematics. The growing com-
munity of mathematicians actively pursuing the intuitionistic reformulation of
mathematics makes it unnecessary to become embroiled in a philosophical debate
about intuitionism; the only real issue is whether the amount of detail required for
a complete formal proof is prohibitive. De Millo et al. [3] argue that formal
derivations are necessarily too lengthy to be practical, basing their argument on
studies of the computational complexity of decision problems in formal theories
[11], [7]. These studies, however, are largely irrelevant. They ignore the use of
earlier results as lemmas, and the use of generalization to collapse many specific
results into one pattern. They do not consider the condensation possible from the
use of higher-order abstractions. They make no allowance for the introduction of
derived inference rules, formula matching, and other labor-saving devices. Finally,

the results on derivation length are for decision algorithms, which lack the imagi-

nation {to say nothing of the parsimoniousness) of human mathematicians. When
these things are included in the analysis, it becomes much less clear that the task
of devising a detailed proof is intrinsically more complex than that of writing and
debugging a Pascal program for the same task. When we consider that the pro-
gram derived from the proof is more likely to be correct, filling in the details of a

proof may seem like quite a bargain.

2. Summary of Intuit 1.1

The fifteen exercises collected here represent the most rudimentary kinds of
results that can be obtained with the Intuit system (version 1.1). Intuit is based
on an axiomatization of higher-order intuitionistic logic that is quite small, by pro-
gramming language standards. That is, the axiomatization is more like pure Lisp
than Interlisp in its complexity and sophistication, and the examples are

correspondingly simple,

Intuit consists of a set of axiom schemata and inference rules. The notions of
theorem and proof, and proof from hypotheses, are defined as usual. So, for exam-
ple, the result of each axiom is an object called a "theorem”, and the inference rules

combine theorems and formulae to produce new theorems.

Each theorem has three parts: a (possibly empty) set of hypotheses, a formula
called the conclusion of the theorem, and a A-expression representing a program
which "realizes” the theorem. A theorem with an empty set of hypotheses is called
a proposition, and the program of a proposition is always a closed A-term (i.e., con-

tains no free variables).

Since the purpose of these exercises is to foster proficiency with the logic,
however, we ignore the program component of theorems from now on. After all,

the program is produced automatically as a by-product of a proof, and is not

germane to the art of proving. This may be somewhat disconcerting at first,
because ordinarily we do the exact opposite: we write programs, ignoring their
correctness proofs! For the present, we ask the reader to take it on faith that an
appropriate program is being produced silently and to concentrate on the

mathematics.

In what follows, f ¢ and h denote arbitrary formulae, x y and z are variables,
and T and o denote arbitrary terms. There is one unary primitive predicate E,
such that Et effectively asserts that 7 exists, and one binary primitive predicate =
such that T=0 effectively asserts that 7 and o are equivalent terms. Terms in
Intuit are sorted, but we shall only have occasion to use the sort £} of truth values.
For simplicitly, the reader may therefore assume that all terms are of this sort.

The term !x.f is read as "the unique x satisfying f". Note that, like other terms, Ix.f

may or may not exist.

The axiom schemata are listed below, grouped according to whether they are
propositional, first-order, or higher-order. For each schema we list on one line the
notation recognized by the Intuit system, and the usual mathematical notation on
the following line. In the Intuit notation, each schema takes as arguments an
arbitrary set hyp of formulae to be used as hypotheses, and a tuple of terms and

formulae used to 1nstantiate 1t.

2.1. Propositional Axioms

K hyp (f,g)
hyp b £~ (g = f)

S hyp (f,g,h)
hyp b (= (5 < 1) = ((f ~ &) = (f =)

pl hyp (f,g)

hyp fAg - f
p2 hyp (f,g)
hyp rfAg ~ g

pair hyp (f,g)
hyp £~ (g ~ fAg)

Assume hyp f
where hyp is any set of formulae which includes f

hyp - f

2.2. First-Order Axioms

substitutivity hyp (f,x,y,2)
hyp b= (fly/x] A y=12) = f[2/x]

extensionality hyp (x,y,z)

hyp b (Vx. xSy = x=z} »y=2

instantiation hyp (x,f)
hyp F (Vx.f A Ex) - f

description hyp (y,x,f)
Vy» (yE eXf) - (VX. f o x= y)

2.3. Higher-Order Axiom

comprehension hyp (y,f,v1, ..., vn)
hyp mEly. Vvl. .. Vvn. { «y(vl, ..., vn)

The list of variables v1, ... | vn may be empty, in which case y essentially

represents the characteristic function of the formula f.

2.4. Inference Rules

The inference rules are listed below. As before, the Intuit notation is shown

first, but because this notation conceals the structure of the parameters to infer-

ence rules, the Intuit notation is followed by a note of the form "where ... " indi-

cating the structure of the parameters, along with any restrictions on them.

Curry ¢
where t is a theorem of the form hyp I gAEx - f
and x does not occur free in g.

hyp ghEx - f

hyp f‘g»Vx,f

MP (major, minor)
where major is a theorem of the form hyp - f - g
and minor is a theorem of the form hyp

hyp = - g
hyp F f

hyp g

Sub (7,x,thm}
where thm is a theorem of the form hyp I,
and x does not occur free in any of the formulae in hyp

hyp tf
hyp b= 7 /x]

elaborate ([f1; ... ; fn], [g1; ... ; gn], t}
where f1, ..., fn are arbitrary formulae,
gl, ..., gn are propositional variables,
t is a theorem of the form hyp tf,
and none of the g’s occurs in any of the formulae in hyp.

hyp b f

hyp b f[f1, ... ,fn/ gi, ..., gn]

Invoke (t,f)
where t is any theorem of the form hyp g,
whose hypotheses include f

hyp b g

hyp - f

discharge (t,f)
where t is a theorem of the form hyp g,
whose hypotheses include {.

hyp F g

hyp - {ftFf-g

AddHyp (hypa,t)
where t is any theorem of the form hypb

hypb b f

hypa U hypb

3. The Exercises

The following definitions will be used to abbreviate formulae.

feg & (fagA(g-1)
fv Vo ((f = 20)) A (g ~2(})) - 2()

g
-f A V. f - z()

>

e

Ix V. (Vx. f = z()) ~ z(}

> =~

T Ely.y()

Vz.2()

i

1L

With these definitions, prove each of the following.

LFf=f

2.Ff et

3. Fx=x

4. F(f-g)~((g~h)~(f ~h))
ey g=y0))

6.1 -(fVg)

g~ (fVeg)

<

=3

8. (f=g)~((h=g)=((fVh)~g)
9.F(f-h)=((gAhf)=h)

10. Fx=y - y=x

1L (= g) = ((f ~ -g) ~ -f)

12.F ~f=(f~g)

13. F(fAEx) = 3x. f

4. b -t

15. T

4. Solutions

The theorem resulting from each of the following proofs is given a name, for
convenient reference. The name of a theorem is the label attached to the last step

in its proof.

4.1. id
Using the notation of Intuit, the solution to problem 1 is as follows.

stepl: Assume({f}, f)
id: Discharge(stepl, f)

The translation of this into conventional notation yields the following.

stepl: f F {(by assumption)
id: Ffaf (by deduction)

The solutions to the remaining exercises are given using only the Intuit notation.
This not only encourages the reader to become familiar with the notation; it makes
it a bit harder to "peek™ at the answers! Incidentally, Intuit 1.1 includes a func-
tion called "theorem” which displays a theorem in conventional mathematical nota-
tion at the user’s request. Future versions of the system should give this kind of

feedback automatically.

4.2, reflex«

stepl: pair((f - f), (f = f))
step2: MP(stepl, id)
reflex—: MP(step2, id)

The technique, illustrated by this proof, of forming a conjunction from a pair of
theorems, is so common that it behooves us to formalize it as a derived inference

rule.

10

conjoin (t1, t2})

F o1
12

Fol At2

Since Intuit 1.1 is written in ml [5], it is easy for the Intuit programmer to define
new inference rules, such as conjoin, by composing old ones. By way of illustra-
tion, the ml code for conjoin is as follows. destthm is a function which breaks a

theorem into its three parts: hypotheses, conclusion, and program.

let conjoin (t1, t2) = let (h1, c1, p1) = destthm t1
and (h2, ¢2, p2) = destthm t2 in
MP(MP(pair hl (cl, ¢2), t1}, t2)

Henceforth we will introduce derived inference rules whenever it seems appropriate

to do so, without detailing the ml code.

4.3, reflex=

stepl: elaborate ([x=y], [f], reflex~)
step2: K ((x=y —x=y), ((f = {} A (Ex)))
step3: MP(step2, stepl)

stepd: Curry step3

steps: MP(step4, id)

step6: extensionality {} (x,y,y)

reflex=: MP(step6, step5)

We can extract two derived inference rules from patterns appearing in the preced-
11g proof. The purpose of steps 2 and 3 is to make the conclusion of a theorem into
the consequent of an implication with an arbitrary antecedent. This leads to the

derived inference rule antecede.

antecede (g, t)
where t is a theorem of the form hyp F f

hyp - f

hyp g -1

11

Anteceding stepl is, however, merely preparatory to steps4 and 5, which accom-

plish the overall goal of generalizing the conclusion of stepl. The pattern of steps

2 through 5 therefore define a second derived inference rule, generalization.

generalize (x, t)

where t is a theorem of the form hyp

hyp F f

hyp Fvx. f

Using the new rule of generalization, the proof of reflex= is shortened and made

considerably more conspicuous.

4.4. trans—

stepl:
step2:
step3:
step4:
stepd:
step6:
stepT:

Assume {(f - g), (g = h)} (g » b)
antecede(f, stepl)

S (1 g, 1)

MP{(step3, step2)

Invoke(stepd, (f » g))
MP(stepd, step5)
Discharge(step6, (g ~ h))

trans-: Discharge(step7, (f - g))

The conclusion of a theorem is often less interesting than the method of its proof.

If we recall our motivating analogy between proving and programming this is

hardly surprising; a procedure is often more interesting and valuable than any of

its instances (applications). This is the case with trans-, which leads to a useful

inference rule, trans, but which is almost never cited qua theorem. Steps 2 through

6 supply the pattern of inferences for the rule.

12

trans (t1, t2)
where t1 is a theorem of the form hyp b (f - g)
and t2 is a theorem of the form hyp (g - h)

hyp 1~ g
hypFg-h

hyp Ff-h

4.5. descrip

Henceforth, we will introduce new inference rules by indenting the sequence of

proof steps that they abstract immediately after their first use.

stepl: description {} (z, y, (g < ¥()))
step2: comprehension {} (y, g)
step3: apply(stepl, step2)
step3a: conjoin(stepl, step2)
step3b: instantiation {} (z, (z=1y.(g « y()) = Vy.({(g = y()) = y=12)))
step3c: Sub(ly.(g « y()), z, step3b)
step3d: MP{step3c, step3a)
stepd: simpl step3
stepda: pl {} (Iy(g = y())=ly(g = ¥()) = ¥3((g = y())
- Yy((g = y() = y=ly(g=y())) = Iy(g ~
step4b: MP(stepda, step3)
steph: Sub(ly(g « y()), y, reflex=)
step6: MP(stepd, stepd)
step7: apply(step6, step?2)
step®: simp?2 step7
step8a: p2 {} (g = (ly.g = y()O) =~ y(g = y(N)=ly(g = y()),
(g = y())=lylg = y0) = (g = (Iy.g = ¥())0))
step8b: MP(step8a, step7)
descrip: MP(stepg&, step5)

Once the new inference rules have been defined and their defining patterns elim-
inated, the remaining nine steps of the proof are quite compact and natural, even

though they represent a fairly lengthy "formal derivation” in the sense of [3].

13

4.8. inl

stepl: Assume {(f A Ez), ((f = 2()) A (g = z()))} (f A Ez)
step2: simpl stepl

step3: Invoke(step2, ((f = z()) A (g - z())))

step4: simpl step3

steph: MP(step4, step2)

step6: Discharge(step5, ((f = z{)}) A (g ~ z())))

step7: Discharge(step8, ([A Ez))

inl: Curry step7

4.7. in2

stepl: Assume {{g AEz), ((f » 2()) A (g - 20))))} (g A Ez)
step2: stimpl stepl

step3: Invoke(step2, ((f - z()) A (g = 2())))

stepd: simp?2 step3

steph: MP(stepd, step2)

step6: Discharge(steps, ((f = z()) A (g - 2())))

step7: Discharge(step6, (g A Ez))

inl: Curry step7

Even though we have not discussed the relationship between proofs and programs,
It is instructive to compare the programs that Intuit produces from the proofs of

inl and in2.

inl: Ax. Ay hz.(fst z)(x)
in2: Ax.Ay.Az.(snd z)(x)

These programs act as injections into the first and second summands, respectively,
of a binary disjoint union (V!). Their similarity of structure is a direct consequence
of the similarity of the corresponding proofs. The only difference is the use of the
first or second projection function, corresponding to the use of simpl or simp2 at

step 4 in the proof.

4.8. copair

The notions of disjunction, negation, existential quantificaticn, falsehood, and

truuth are not primitives in Intuit. Instead, they are composed from the primitive

14

conneectives according to the definitions given at the beginning of §3. The
theorem copair, together with inl and in2, establishes that the definition of V
behaves as it should. Problems 11-15 similarly establish the key properties of the

other defined notions.
Let H & {(f = g), (b ~g), (fVh)}.

stepl: Assume H (fVh)

step2: comprehension H (y, g)
step3: apply(stepl, step2)
step4: AddHyp(H, descrip)
steph: simpl stepd

step6: Invoke(steps, (I - g))
step7: trans(stepf, steph)

step&: Invoke(step7, (h - g))
step9: trans(step®, steph)

stepl0: conjoin(step?, step9)
stepll: MP(step3, stepl0)
stepl2: conjoin(stepd, stepll)
stepl3: Discharge(stepl2, (fVh))
stepl4: Discharge(step13, (h - g))
copair: Discharge(stepld, (f ~ g))

4.9. strengthen

stepl: Assume {(f - h), (gAD)} (f = h)
step2: Invoke(stepl, (gAf))

stepd: simp2 step?

stepd: MP(stepl, step3)

steps: Discharge(step4, (gAf))
strengthen: Discharge(step5, (f - h})

After the earlier exercises, this one should have been a snap; I placed it here as a

confidence-builder.

4.10. sym=

{x=y}.

=8

Let H

stepl: Assume H (x=y)

step2: antecede(x=x, stepl)
step3: Sub(x, y, reflex=)

step4: AddHyp(H, step3)
stepb: antecede(XE ¥, step4)
step6: conjoin(steps, step2)
step7: generalize(x, step6)
step8: extensionality H (x, y, x)
step9: MP(stepg, step7)

sym=: Discharge(step9, x=y)

4.11. absurdity
A) . A
Let Ha 2 {(f = g}, (f = ~g)}, and Hb = {(Ez), f}.

stepl: Assume Hb (Ez)

step2: Invoke(stepl, (f = -g)}

step3: Invoke(step2, f)

stepd: MP(step2, step3)

step5: apply(stepd, stepl)

step6: Invoke(steps, (f - g))

step7: MP(step6, step3)

step8: MP(step5, step7)

step9: Discharge(step8, f)

stepl0: Discharge(step9, (Ez))
stepll: elaborate([Ez; f-f; f-z()], [f; g; h], strengthen)
stepl2: AddHyp(Ha, stepli)

stepl3: MP(stepl2, stepl0)

stepld: Curry stepl3

stepl5: AddHyp(Ha, id)

stepl6: MP(stepl4, stepl5)

stepl7: Discharge(stepl6, (f = -g))
absurdity: Discharge(stepl7, (f - g})

4.12. contradiction

Let H A {f, ~f}.

stepl:
step2:
step3d:
step4:
stepo:
stepB:
step7:
step&:
step9:

Assume H (-f)
comprehension H (z, g)
apply(stepl, step2)
Invoke(step3, f)
MP(step3, stepd)
AddHyp(H, descrip)
simp?2 stepb
MP(step7, stepb)
Discharge(stepg, f)

contradiction: Discharge(step9, ~f)

4.13. equant

stepl:
step2:
step3:
step4:
stepb:
stepb:
step7:
step&:
step9:

Assume {((fA(Ex))A(Ez)), (Vx. T = z())} (IAEx))A(Ez))
simp2 stepl

stmpl stepl

simpl step3

step? step3

Invoke(step5, (Vx. f ~ z(}})

apply(step6, steph)

MP(step7, stepd)

Discharge(step8, (Vx. f - z()))

stepl0: Discharge(step9, (TA(Ex))A(Ez)))
equant: Curry stepl0

4.14. initialt

stepl:
step2:
step3:
step4:
stepH:
step6:
step7:

Assume {1} (1)
comprehension {1} (y, f)
apply(stepl, step2)
elaborate([f], [g], descrip)
AddHyp({1}, stepd)
simp?2 steph

MP(step6, step3)

initial L: Discharge(step7, 1)

16

17

4.15. true
Let kf & f (g ~1), and ky & ty kf — y(). Let Ha & {x=ky}, Hb & {x()}.

stepl: comprehension {} (y, kf)
step2: description {} (v, x, x())

step3: apply(step2, stepl)

step4: Assume Ha (x=ky)

step5: Sub(ky, v, symequiv)

step6: AddHyp(Ha, steps)

step7: MP(step6, stepd)

step8: elaborate([kf], [g], descrip)
step9: simpl step8

stepl0: K {} (f, g)

stepl1: MP(step9, step10)

stepl2: AddHyp(Ha, stepl1)

stepl3: conjoin(stepl2, step7)
stepl4: substitutivity Ha (x(), x, ky, x)
stepl5: MP(stepl4, stepl3)

stepl6: Discharge(stepl5, (x=ky))
stepl7: Assume Hb (x())

stepl8: generalize(x, stepl7)

stepl9: AddHyp(Hb, initiality)
step20: MP(stepl9, stepl8)

step21: Discharge(step20, x())
step22: elaborate([x=ky], [f], step21)
step23: conjoin(step22, stepl6)
step24: generalize(x, step23)

step25: simp?2 step3

step26: MP(step25, step24)

step27: conjoin(stepl, step26)
step28: substitutivity newenv (Ez, z, ky, Ix.x())
true: MP(step28, step27)

The reader who is familiar with the semantics of Intuit will be gratified to know
that the program resulting from this proof is simply n:l the simplest semantics

possible for truth in the model.

Acknowledgements

Eight of the exercises, namely nos. 5-7 and 10-14, are due to Fourman [4].

The others were developed specifically to help in solving those eight.

18

References

1.

10.

J. L. Bates and R. L. Constable, Proofs as Programs, ACM Trans. Prog. Lang.

and Systems 7, 1 (January 1985), 113-136.

R. L. Constable and D. R. Zlatin, The Type Theory of PL/CV3, ACM Trans.

Prog. Lang. and Systems 6, 1 (January 1984), 94-117.

R. A. DeMillo, R. J. Lipton and A. J. Perlis, Social Processes and Proofs of

Theorems and Programs, Comm. ACM 22, 5 (May 1979), 271-280.

M. P. Fourman, The Logic of Topoi, in Handbook of Mathematical Logic, J.

Barwise {ed.), North-Holland, 1977, 1054-1090.

M. J. Gordon, A. J. Milner and C. P. Wadsworth, Edinburgh LCF, in Lecture

Notes in Computer Science, Vol. 78, Springer, Berlin, 1979.

P. Martin-Lof, Constructive Mathematics and Computer Programming, 6th
Int’l. Congress for Logic, Methodology, and Philosophy of Science, Hannover,

Aug. 1979.

A. Meyer, The Inherent Computational Complexity of Theories of Ordered

Sets: a Brief Survey, in Int. Congress of Mathematicians, Aug. 1974.

B. Nordstrom, Programming in Constructive Set Theory: Some Examples,
Proc. 1981 ACM Conf. on Functional Prog. Lang. and Comp. Architecture,

Portsmouth, NH, Oct. 1981, 141-153.

J. Shultis, Deduction and Abstraction in Intuit, An Intuitionistic
Programming System, University of Colorado Dept. of Computer Science

Technical Report, forthcoming, 1985.

J. Shultis, A Realizability Semantics for the Logic of Topoi, University of

Colorado Dept. of Computer Science Technical Report, forthcoming, 1985.

19

11. L. Stockmeyer, The Complexity of Decision Problems in Automata Theory

and Logic, Ph.D. Thesis, MIT, 1974.

