Diverse: A User Agent for Accessing
External Databases

Dennis Heimbigner
Department of Computer Science
University of Colorado
Boulder, Colorado 80309

July 26, 1985

ABSTRACT

Diverse is a system that is capable of sophisticated access to external database
systems. The requirements for such a system are outlined and the Diverse architecture
1s proposed for meeting those requirements. Diverse allows a user to indicate the infor-
mation that is of interest and then it automatically retrieves the requested data. It is
capable of integrating data from several external sources. The Diverse system is built
upon a relational database system for storing data, a knowledge base about the possi-
ble states of external databases, and a syntax-directed database system for extracting
data from the output of an external database. The detailed structure of Diverse may
be characterized as a hierarchical collection of planning systems. Each level of the
hierarchy has a knowledge base that encodes the structure of that level in the form of
a graph. Associated with each level is a planning procedure that finds appropriate
paths through the graph. The path is then used to invoke the appropriate procedures
for manipulating information at that level. There are 3 levels of the planning hierar-
chy: (1) Universal Relations, (2) Media Access, and (3) Database Access. Diverse
allows a user for formulate a relational query describing the information of interest.
Diverse takes this query and determines which external databases can provide the
requested information. For each such external database, Diverse automatically con-
nects to it, provides appropriate input commands, collects appropriate output data,
and finally disconnects. After doing this for each external database, Diverse calculates
and presents the answer to the user.

Categories and Subject Descriptors: H.2.5 [Heterogeneous Databases], H.3.5 [On-Line
Information Services] H.4.1 [Office Automation] H.4.3 [Communications Applications]
[.2.1 [Applications and Expert Systems]

General Terms: Algorithms, Languages, Management.
Additional Key Words and Phrases: Office Automation, User Agent, Database, Exter-

nal Database, Heterogeneous Database, Universal Relation, Syntax-directed Parsing,
Planning.

1. INTRODUCTION

The trend in oflice automation seems to be towards large numbers of essentially
autonomous workstations networked with larger mainframes. In such a situation,
accessing and integrating information from diverse sources is a fundamental problem.
These sources consist of the various databases available throughout the network, but
also the externally available commercial systems such as Dialog, Compuserve, The
Source, and Dow-Jones. The term "micro-mainframe access” 1s sometimes used in
reference to this problem because the exiernal databases tend to reside on the large

mainframes but the users of the data have their analysis tools on the workstations.

Each of the available databases may have a different command structure and a
different model for structuring data (the database model). Thus, a user must know or
learn many different languages in order to access various systems. Further, once the
external data is captured in a workstation, it must be converted into a form that is
usable by the tools available in that workstation. This conversion is complicated by
the fact that most data is only available in text form. That is, external databases tend
to assume that they are accessed by people rather than computers and so all of their

output is in the form of human readable formatted text.

At the moment, typical workstations access external data in one of two modes:
terminal emulation or tight integration. The first mode is to emulate a terminal cal-
ling into the system. The terminal emulator can capture the raw text output and
place it in file on the workstation. While it does provide access, it provides no help in
understanding the structure of the data. It may be difficult to extract the relevant
parts from the mass of collected text. Additional programs must be constructed (usu-

ally by hand) to convert the data to a form usable by a local data manager.

Tight integration of the external databases is the second mode of access. In this

mode, specialized programs execute on the workstation and on the external database

(host) computer. The local and host programs can communicate with each other to
transfer data. Each "side" of the transfer knows about the other and about the struc-
ture of the data being passed. While useful, such a system has a number of

deficiencies:

(1) The external database must be capable of running, at user request, a specific host
program. Often this is impossible because the external database interface makes

no provision for programmatic interfaces.

(2) The set of integrated databases is usually only a small subset of the total set of
available databases. No help is provided for these other, non-integrated, data-

bases.

(3) The workstation side of the integrated system may be only accessible in the con-
text of some vendor supplied program. This often means that it is impossible to

use other analysis tools.

In light of the limitations of these two approaches, it is reasonable to search for
some better alternative: a system that is capable of more sophisticated access than ter-
minal simulation, but that is also less restrictive than tight integration. This alterna-
tive should possess sufficient flexibility to operate in a heterogeneous environment. [t
should be capable of accessing a wide variety of databases, and it should be extendible
to new databases as they become available. The goal of this paper, then, is to outline
the requirements for such a system, and describe an implemented architecture that is
capable of meeting those requirements. For convenience, I will refer to that system by

the name Diverse (referring to its ability to access data from diverse sources).

2. REQUIREMENTS

The principle characteristics of an external data system are autonomy and hetero-

geneity. Such a system often is a commercial venture over which a user has no con-

trol. It is free to maintain 1ts data in any way it wishes, and it is not required to pro-
vide special interfaces to any of its users. As a consequence, Diverse must provide its

own, local, capabilities for integration, independent of the external data provider.

Since the external systems are autonomous and heterogeneous, it is very unlikely
that they will all adopt identical, or even similar, interfaces and data structures. Of
course, there is always some pressure to standardize, but historical inertia can often
prevail. For example, all of the systems mentioned above (Compuserve, etc.) have rad-
ically different command languages. In fact, some of them have several different
languages in common use depending upon which database is accessed. Thus, Diverse
must be able to deal with the variety of command languages provided by these exter-
nal databases. Diverse takes the approach of providing a common structure into
which the external system is mapped. This map must encompass not only the struc-

ture of data, but also the procedures for accessing the data.

Additionally, Diverse must provide guidance and abstraction for the various
activities involved in accessing data. It must provide step-by-step sequencing of these
activities, it must provide knowledge about the external system, and it must allow the

user to augment his knowledge about existing systems or newly available ones.

Finally, Diverse must be capable of combining data from several external data-
bases. Suppose the user requests that the news headlines for the top ten best perform-
ing stocks be placed into the local database No one external database can can answer
this question directly. But, a combination of data from the Compuserve Microquote
system and data from the Dow-Jones system can provide the answer. Diverse must be
prepared to take the user’s request, figure out that it must access the list of names
from Microquote, and then it must input those names to Dow-Jones to collect the

relevant headlines.

3. AN ARCHITECTURE FOR DIVERSE
Diverse operates under three major assumptions:

(1) It is assumed that the only interface to the external database is through text (i.

e., the same interface available to a person using that database).

(2) It is assumed that all external data can be mapped into some standard database
model; Diverse uses the relational model. The previous assumption (text inter-
face) makes this a reasonable choice since it forces all of the data to come out in

terms of strings and numbers.
(3) It is assumed that only read access is required for external databases.

Diverse allows a user for formulate a relational query describing the information
of interest. Diverse takes this query and determines which external databases can pro-
vide the requested information. For each such external database, Diverse automati-
cally connects to it, provides appropriate input commands, collects appropriate output
data, and finally disconnects. After doing this for each external database, Diverse cal-

culates and presents the answer to the user.

The detailed structure of Diverse may be characterized as a hierarchical collection
of planning systems. Each level of the hierarchy has a knowledge base that encodes
the structure of that level in the form of a graph. Associated with each level is a plan-
ning procedure that finds appropriate paths through the graph. The path is then used

to invoke the appropriate procedures for manipulating information at that level.
There are 3 levels of the planning hierarchy:

Universal Relation:
The first level consists of sets of attributes that are in turn combined into rela-
tions. The user accesses these relations by using a universal relation interface.

Such an interface allows the user to specify a query in terms of the result attri-

butes and the input attributes without having to deal with the joining of relations

that might be necessary to answer the query.

Media Access:
The second level of the planning hierarchy encapsulates information about the
communication media that may be involved in accessing a particular database.
Media knowledge is broken into two pieces. First, there is knowledge about the
underlying carrier (e. g., telephones or ethernet). Second, there is knowledge
about the network commands provided by such systems as Telenet or Tymshare.
Planning at this level involves (1) executing the appropriate commands to set up
the carrier and to physically connect to the Network, and (2) sending network

commands to connect to the desired external database.

Database Access:
The third level of the hierarchy finds and extracts data from the external data-
base. It plans the (database specific) commands necessary to maneuver in the

external database.

In addition to the planning system, Diverse has two other components. These are

in some sense orthogonal to the hierarchy in that they are used by several of the levels:

(1) The syntax-directed database system is used to interpret command results and to
extract the desired data from these results.

(2) A relatively conventional relational database is used to store intermediate and
final results.

Figure 1 outlines the interconnections among the various components of the system.

The rest of this paper describes the detailed operation of each component. Exam-
ples will deal with financial information from the Dow-Jones News Retrieval System
(DJNS) and (to a minor extent) the Compuserve Microquote system. The medium

used is the Telenet network. Dow-Jones provides, among other things, access to news

5

Universal Relation
Interface

Relational
Database

|

Knowledge base:
Media

Syntax-directed
Database

Knowledge base:
External Databases

Figure 1. Diverse Component Level Architecture

headlines and stories about specified companies. These headlines are indexed through
the stock exchange name for that company. Figure 2 shows sample output from a
request for the headlines for the "cbu"! company. The line (in bold) after "ENTER

QUERY" requests page one of headlines about the company "cbu".

4. RELATIONAL DATABASE

The relational database component of Diverse is a standard relational database.
It manages relations with attributes over the domain of strings. The relational data-
base component is the foundation tying the rest of the system together. The relations
connect a user query with specific external databases; The syntax directed database
connects external database output with specific attributes in the relational database.

The output from an external database is stored into the relational database.

IThe name of a company is represented by its stock exchange name. So "cbu” is the name for Com-
modore Business Machines.

DOW JONES NEWS IS BEING ACCESSED

ENTER QUERY
.cbu 01

N CBU 01/02

AV 01/09 COMMODORE INTL ANALYSIS -2-
(DJ)

AU 01/09 SOURCES SAY RUMOR OF POSSIBLE
(DJ) COMMODORE PRICE CUT HURTS STK
AT 01/07 ATARI, COMMODORE INTRODUCE
(WJ) HIGHER-PRICED COMPUTERS

AS 12/26 HEARD ON STREET: ANALYSTS

(WJ) PICK COMPUTER SHAKEOUT WINNERS

Figure 2. Sample Dow-Jones output.

4.1. Attribute Values

The relational database provides two levels for data storage. First, it provides
storage for conventional tuples stored in relation. Second, it provides for temporary
storage of values for attributes. The latter is used to hold both input and output
values resulting from access to an external database. These values are stored in a
value list is associated with each attribute in the database. The value list stores an

ordered list of values (e. g., strings).

4.2. User Relations and External Databases

It is important to understand the connection between the external databases and
the set of relations provided in the user interface. Each relation is associated with un
external database system. That relation is derived in the sense that its contents reflect

the data in the external database. For example the relation
Headlines(company,headline)

is associated with the Dow-Jones system and its content is taken from output such as

figure 2. Figure 3 shows the instantiated relation that is derived from figure 2.

Each relation is directional, which means that some of its attributes are tagged as
input attributes, and the rest as output attributes. In terms of the underlying external
database, this means that at some point, one can send the mput attribute values, and
expect to receive a screen of information that contains the corresponding output attri-
bute values (there may be more than one output for a given input). In effect, the input
attributes together form a key for the relation. For the Headlines relation, the input

attribute is company, and the output attribute is headline.

4.3. Universal Relation Interface

The user interface for Diverse is a simple variant of the Universal Relation (UR)
interface for database systems [Korth 84, Maier 83]. For our purposes, the interface
consists of small relations (corresponding to objects in the UR model) and a collection
of attributes. The user frames a request in terms of the available attributes, but
without worrying about which relations contain those attributes. By considering attri-
butes independent of the relations, the user is freed from the specification of most rela-

tional join operations.

The principal problem for UR systems is converting a query against attribufes
into a series of selects, projects, and joins on the underlying relations. To simplily the
problem, Diverse currently restricts the form of queries by disallowing tuple variables

and restricting comparisons.

company I headline
chu AV 01/09 COMMODORE INTL ANALYSIS ...
cbu AU 01/09 SOURCES SAY RUMOR OF POSSIBLE...
cbu AT 01/07 ATARI, COMMODORE INTRODUCE...
cbu AS 12/26 HEARD ON STREET: ANALYSTS...

Figure 3. Sample Headlines Relation

In Diverse queries are assumed to be of the form:

Retrieve AL A, A
Where Predicate

The A, are attribute names and the predicate is a series of comparisons tied together

"

with "and” and "or" operators. A comparison is between an attribute and a constant.

In practice, Diverse requires that all comparisons be equality comparisons with
constants. This restriction 1s motivated by the capabilities of the external databases.
Most of them cannot answer a request, for example, of the form "give me all the stocks

with prices greater than $50"; it is a query involving inequalities. Given a more intelli-

gent external database, it is fairly easy to extend the class of Diverse queries to match.

Given a query, it is necessary to deduce the set of underlying relations that will
be needed to produce an answer. We explicitly assume the weak equivalence solution
[Ullman 82] in order to limit the number of relations involved in answering the query.
Thus, only relations that have attributes involved in the query will be used in con-

structing the answer.

Diverse deduces the set of involved relations by performing a restricted depth-
first search through the hypergraph [Maier 83] of relations. The result is a set of
non-cyclic paths, which means that (1) the same relation is never used more than once,
and that (2) no attribute is used to derive itself. At the end of the algorithm, ¢ach
returned path will contain, in order, a sequence of relz!ions that can be accessed to
answer the query. This path starts with the given attributes, and ends with the target
attributes. These relations will be connected by attributes common to two or more of

the objects in the path.

Given the set of paths, Diverse chooses the first one in the set of paths. A more
comprehensive analyzer should use some criteria for picking one. Possible criteria

might be to minimize the number of external databases to be accessed, or to minimize

path length.

4.4. An Fixample
As an example, consider the following two relations:

(1) Headlines(company,headlines). This is a relation that can be constructed from

data available in the Dow-Jones system.

(2) Reports(report_jd,company). This relation is available from the Compuserve
Micro-quote financial reporting system. Micro-quote makes available a number of
"reports” listing, for example, the top 10 highest percentage gain stocks in the
last day or week. This relation is intended to capture that information by associ-
ating a report_jd with the companies listed in that report®.

Note that the universal relation for this database is

U(company,headlines,report_id).
Suppose that the following query is posed against that universal relation:

Retrieve headlines
where report_jd = "stocks with highest gain”

Actual operation of the algorithm is a bit more complicated than will be shown below
since it checks for cycles and can try to derive multiple attributes at once. In this
example, there is in fact only one path through this set of relations. Informally, it is

calculated as follows:

(1) Find a relation whose output attribute is "headlines”. The only possibility is the
relation "Headlines". Mark this relation as the last element in the accumulated

path.

(2) Since the attribute "headlines” has been derived, discard it and attempt to derive

the input attributes of the just chosen relation, namely, the attribute "company”.

2Note that this is an example of the limitations of current external databases. In effect, Micro-quote

10

(3)
Add the relation "Reports” to the the path, discard "company”, and try to derive
"report_jd".

(4) Note that "report_jd" is given in the predicate, so quit and return the ordered

path [Reports, Headlines].

Thus, to answer our query, we must access Reports, with report_jd as input, and a set
of companies as output. Theu we access Headlines with those companies as input, and

the set of headlines as output.

4.5. Query Answering

Given the list of relations, the result is formed, in principle, by joining the rela-
tions, applying the selection criteria, and projecting out the target attributes. In fact,
Diverse performs the joins in stages. The reason for this is that the output values
from one relation must be used as inputs to the next relation (and hence the next

external database).

Once a path is constructed, it is the duty of Diverse to use it as a plan for access-
ing some set of external databases. As described above, every relation in the user
interface is associated with an external database. So it is possible to translate the
path of object relations into a series of references to the associated external databases.
Diverse takes each relation in turn and accesses the external database to fill in the

corresponding relation.

Given a relation, Diverse establishes initial value lists for its input attributes.
For the first relation accessed, the initial values come from the query predicate. Suc-
cessive relations take their values from preceding relations. Note that this implies

sequential processing. It is possible that in some cases Diverse could perform accesses

has a number of special built-in queries. It would be better if it let the user formulate more general queries,

11

in parallel, but it is not clear how much time would be saved. In any case. the current

version of Diverse performs strictly sequential processing.

When a relation is to be filled in, the value lists for its input attributes arc ini-
tialized. The external database is contacted (as described below) and the output attri-
bute lists for the relation are filled. A value list for an output attribute may be used in

later relations as an input attribute, but it will never be changed once it is filled.

After the final attribute of a relation is filled in, a procedure called a "generator”
(section 6.3) is invoked to convert the value lists to actual tuples for the relation. The
tuples are then stored in the local relational database. When the final relation has
been calculated, the appropriate selects, projections, and joins can be performed to

produce the desired answer.

5. REPRESENTING KNOWLEDGE ABOUT EXTERNAL DATABASES

The heart of diverse 1s a collection of knowledge bases concerning the operation of
various communications media and about the operation of various external databases.
This knowledge is used to perform the automatic access to the external databases.
The access is broken into two related steps. First, knowledge about a communications
medium is used to connect to (and later disconnect from) the external database. Once
the connection is made, the knowledge about the external database is invoked to

extract the relevant data.

In both cases (medium and database), the knowledge base uses a model based on
the notion of state machine with inputs and output. The knowledge base records the
known states of an external system. It also records the appropriate inputs that can
drive the system from state to state, and the outputs that are produced when moving

from one state to another.

12

The reason the model works is that, by design, external systems such as Dow-

Jones or Telenet operate in a classical state machine fashion:
(1) The user is presented with a screen of information representing an initial state.

(2) The user provides some input. This might be a baud-rate, a menu selection, or it
might be specific data such as the name of a stock (when dealing with a financial

database). This step corresponds to the specification of a transition.

(3) The system accepts the input and provides a new screen of information. this

corresponds to moving to a new state,

Thus, a user drives the system from state to state by providing input data at each

step.

As with any state machine, there is an initial state (entered automatically on con-
nect or login) and a final state (entered on logout or disconnect). It is possible for a
user to re-enter states any number of times. It is important also to note that entering
a new state may cause output of useful information such as the current price for a
stock. Typically, a user will provide input data (e. g., the stock name) at some state,
and some number of states later (usually the next state), the system will provide some

useful output (e. g., the stock price).

Each external database (and medium) is modelled in the knowledge base by a
graph (see figures 4 and 5). The nodes of this graph correspond to the possible states
of the external database. Each node is typed to indicate its purpose. Each graph is
assumed to have a unique root node which is its start state. There may be any number
of final states, although there is usually only one. All other states are typed as inter-
mediate. For the media graphs (such as for telenet, figure 5), one node may be marked
as a database state. This means that when this node is reached, it is time to recur-
sively invoke some external database graph to continue operation. When that external

database graph is finished, traversal of the medium’s graph continues.

13

dowjonesstate

send: ("djns" 'EOL)
echo: ()

passwordstate

send: (!password !EOL)
echo: ("")

logonstate

send: ("//djnews" IEOL)

echo: ()

djnewsstate

send: ("." company " 01" 'EOL)
echo: ()

headlinestate

Send: ("." company " 01" !EOL)
echo: ()

send: ("disc" IEOL)
echo: ()

logoffstate

Figure 4. Dow-Jones Graph

14

cshstate

send: ("tip -" !baudrate " " !phone 'EOL)
echo: ("% tip -" !baudrate " " !phone !EOL)

tipstate

send: (EOL 'EQOL)
echo: ("")

telenetlstate

send: (!terminaltype !EOL)
echo: ()

telenet2state

send: ("¢ " !servicenumber IEOL)
echo: ()

servicestate

[L2adi 1

send: ("7,
echo: (""" IEOL)

disconnectstate

Figure 5. Telenet Graph

15

Associated with each node is a collection of edges leading to other nodes of the
graph. The graph may contain cycles, and in practice it usually does (see figure 4, for
example). Traversing an edge of this graph involves sending some string as input to
the external database. Associated with each edge is a specification of that input and
how it is to be constructed. the specification consists of a concatenation of three kinds

of elements:
(1) constants strings,

(2) parameters, which are system dependent values such as baud rate, phone

numbers, and passwords, and the machine dependent end of line,

(3) attributes, which are values taken from the attributes in the relational database.
It is through these that database values are provided as input to the external
database. Attribute references are normally only present in the graphs for exter-

nal databases. The communications graphs do not use them.

Since the physical interface is usually through some sort of terminal emulation
program (see section 7), any input string will be echoed to the output. The echo is
handled by associating another specification with the edge describing the expected
echo. If not echo specification is given, then the input specification is re-used. After
the input is sent, characters are read from the output and matched with the echo
specification until the whole echo is absorbed. It should be noted that the echo may
not match the input if the local system has turned off or modified the echo. Password
input is an example. The input string is the password, but it has a null string as its

echo.

In figures 4 and 5, the edges are marked with the send and echo specifications sur-
rounded by parenthesis. Constant strings are in double quotes, attributes are names,

and parameters are names preceded by an exclamation point.

186

After an edge is traversed, the destination node of that edge becomes the current
state of the graph traversal. At the same time, the external database is producing a
screen full of text (separate from the echo) in respounse to the input string. Each state
has a grammar associated with it that is used to parse the output produced by the
external database. The detailed operation of this parse is described in section 6. For
now, it is sufficient to note that the parse is used for two purposes. First, a successful
parse verifies that the proper state was reached. Second, the parse may extract data

from the text and place it in the database.

Given a graph, such as the graph for Dow-Jones or for Telenet, diverse must plan
a set of partial paths through the associated graph. Given two nodes, diverse can
easily calculate all paths between them, and so its job involves (1) picking the end-

points of the path, and (2) choosing one of those paths.
For the communications graph, the traversal is straightforward:

(1) Find any path (there is usually only one) from the root of the graph to the node

of type database.

(2) Recursively traverse the designated database graph and then return to finish the

communications graph.

(3) Choose any path from the database node to the final node of the communications

graph.

Traversing a graph for the database proper is a bit more complicated. This

involves choosing three path segments.

(1) Find a path from the root to a desired node. This will consume one of the associ-

ated values from each input attribute.

(2) Find a path from the desired node back to that desired node. This path will be

used only if the input attributes have more than one associated value.

17

(3) Find a path from the desired node to the final node.
Choosing the desired node is performed as follows:

(1) Take the set of all nodes producing at least one of the output attributes of the
relation to be calculated from this external database. A node produces an attri-

bute if its grammar can assign a value to that attribute.
(2) Form all paths from the root node to each of the producing nodes found in step 1.

(3) Examine each path from step 2 to see if it is suitable. Of all the suitable paths,

arbitrarily choose one.
A path is considered suitable if it meets the following criteria:

(1) .The path should consume exactly the set of input attributes for the relation of
interest.

(2) The path should produce exactly the set of output attributes.

(3) The path should consume all input attributes before it produces any output attri-

bute.

These criteria are also used to choose a path from the desired node back to the desired

node.

5.1. An Example Continued

Suppose that the query of section 4.4 has been decomposed, relation Reports has
been filled in, and now relation Headlines is to be obtained from the Dow-Jones exter-
nal database. Dow-Jones uses the Telenet network as its communications media
(review figures 4 and 53).

The traversal algorithm is applied first to the Telenet graph to find a path from

the root state (the one labeled "cshstate”) to the database state (the one labeled "ser-

3Note that both graphs are only partial; There are many more states than shown in the figures.

18

vicestate"). This path is traversed by sending the appropriate commands. The first
part of figure 6 shows actual output from Diverse describing the path to be followed,
the input specification, and the actual inputs sent to traverse that path. After this
path is traversed, the Dow-Jones graph is invoked and paths are traced for it. When
that graph finishes, the remainder of the Telenet graph is traversed to reach its final

state (last part of figure 6).

When the Dow-Jones graph is invoked, the algorithm must first find the desired
state. Without going into details, the only state that produces an attribute is the one
labeled "headlinestate”, and it produces the attribute "headlines”. The only edges that
consume an attribute are (1) the edge from the state labeled "djnewsstate" to the stute
labeled "headlinestate, and (2) the cyclic edge from headlinestate back ﬁo headline-
state. Both consume the attribute "company". Given this information, our algorithm

will pick headlinestate as the desired state.

Now our algorithm will find a path from the root ("dowjonesstate™) to the desired
state ("headlinestate"). This will consume one value from the company attribute value
list and append a set of headlines to the value list for the headlines attribute (sce next
section for details of this extraction). If there are more values left in the company
attribute, then the algorithm will follow the cyclic path from headlinestate back to
headlinestate. It will repeat this until all company attribute values have been con-
sumed. Then to end the traversal, the algorithm will follow the path from the head-
linestate to the final state (labeled "logoflstate”). Figure 7 shows the actual traversal

assuming that two company values ("eex” and "cbu") are available.

6. SYNTAX-DIRECTED DATABASE SYSTEM

A key problem for Diverse concerns the extraction of data from the external data-
base. It must, somehow, obtain the data from the external database and then

transform it into a format that can be manipulated by the local database system.

19

Following path:

cshstate = > tipstate ("tip -" !baudrate " " !phone !EOL)
tipstate = > telenetlstate (!EOL 'EOL)

telenetlstate = > telenet2state (!terminaltype 'EOL)
telenet2state = > servicestate ("¢ " Iservicenumber !EOL)
sending: tip -1200 3376060

sending: n n

sending: d1

sending: ¢ 60942

Following path:

servicestate = > disconnectstate (".")

sending: ~

Figure 6. Telenet Graph Paths

Following path:

dowjonesstate = > passwordstate ("djns" !EOL)
passwordstate = > logonstate (!password !EOL)
logonstate = > djnewsstate ("//djnews" IEOL)
djnewsstate = > headlinestate ("." company " 01" !IEOL)
sending: djns

sending: XXXXXXXXXX

sending: //djnews

sending: .eex 01

Following path:
headlinestate = > headlinestate ("." company " 01" !EOL)
sending: .cbu 01

Following path:
headlinestate = > logoflfstate ("disc" {EOL)

sending: disc

Figure 7. Dow-Jones Graph Paths

Diverse is constrained in its options because the external databases are, by definition,
autonomous. This means that Diverse must use whatever standard interface those sys-
tems provide, namely text strings. The syntax-directed database component is respon-

sible for extracting database information from the textual output of an external data-

20

base.

The SDDB and the knowledge base are connected by a set of grammars. Each
state node in any graph in the knowledge base is associated with one of the grammars.
As described previously, Diverse traverses a graph by constructing input strings that
drive the external database from state to state. Whenever an input is sent, Diverse
moves to the next state in the graph. It then begins parsing the external database out-
put using the grammar associated with that state. This grammar serves two purposes.
First, 1t may be used simply to verify that the external database is in the expected
state. The grammar for such a test usually consists of a search for a series of strings

characteristic of that external database state.

The second kind of grammar both verifies the state and extracts attribute values
from the output. During the parse of the output, substrings of the parse tree are col-

lected and stored in the value list for some specified attribute.

8.1. Parser Detalls

Diverse uses a simple, recursive, parser with backtrack. It expects an attributed
grammar [Knuth 68] that consists of a series of productions. Each production has a
left side, which is a non-terminal, and a set of alternative right sides. A right side con-
sists of a sequence of patterns. The set of possible patterns is heavily influenced by

SNOBOL [Griswold 71]. The patterns are taken from the following possibilities:

String constant
- succeeds if the current input matches a specified string constant. This pattern

is denoted by a string enclosed in double quotes.

Nonterminal
- succeeds if the current input matches an instance of the pattern represented by

some specified non-terminal. This pattern is denoted by the non-terminal name.

21

Class
- succeeds if the current input character is one of the characters in the specified

"

list of characters. This pattern is denoted by "any(<string>)

Length
- succeeds by matching the next n characters of the input. This pattern is

denoted by "len(<integer>)".

End of line

- succeeds if the current input is an end of line. This pattern is denoted by "+".

Arbitrary
- succeeds when it eventually locates an instance of some pattern sequence in the

input string. This pattern is denoted by "arb(< pattern-list>)".

Not - succeeds when reaches a point in the input that does not match a specified pat-

tern sequence. This pattern is denoted by ""(< pattern-list>)".

The last two patterns must be used with care since they will not stop until they
succeed. If, for example, arb is used to search for some string, and that string has been

corrupted by noise, then the parse will loop indefinitely looking for that string.

8.2. Extracting Attribute Values

An attribute may optionally be-associated with each pattern occurring in a right
side of a production. Every time that this pattern is successfully matched, the

matched string is inserted into the value list associated with the attached attribute.

Figure 8 shows an example grammar for parsing headlines about specific com-
panies. The grammar is broken into two parts. The part beginning with the "*:"
defines productions that are common to more than one grammar. The part beginning
with the "headlinestate:" defines the grammar to be invoked whenever the state

labeled "headlinestate” is entered. It may be instructive to compare the grammar to

22

figure 2, which represents data that it is intended to parse. Note the occurrence of the

attribute tag in the production for "headlineseq”. Such tags have the form
(attribute = pattern).

When the parse is completed successfully, each substring of the input that is matched
by the attributed pattern is located. These substrings are copied and placed in the
value lists of the corresponding attribute. In figure 8, this means that all substrings
matching the pattern "headline” in the context of a "headlineseq" will be assigned to

the value list of the attribute "hendlines”.

EOL 5= "4" ;

spaces ::= arb("(any(" "N);

spaces_or_eols ::= arb("(any("+")));

digit ::= any("0123456789") ;

letter ::= any("ABCDEFGHIJKLMNOPQRSTUVWXYZ") ;

headlinestate:
headlineresponse ::= companyhead headlineseq EOL " -
companyhead ::= spaces exchange spaces tickername
spaces pagespec spaces EOL; '
headlineseq ::=
(headlines = headline)
headlineseq
| /*empty*/;
headline ::= headlinel headlinext;
headlinel ::= spaces headindex spaces date headtext
spaces "DELETED" EOL;
]heacllinoxl» ::= spaces headindexext headtext
headindex ::= letter letter ;
headindexext ::= spaces "(" letter letter ")";
headtext ::= arb(EOL);
date ::= digit digit "/" digit digit ;
exchange ::= any("NAO");
tickername ::= len(3);
pagespec ::= digit digit "/" digit digit ;

Figure 8. Example Grammar

23

6.3. Generators

At various points in the parse, special functions, termed generators, are invoked
to convert the value lists of a set of attributes into complete tuples to be stored into
the local relational database. In this way, results collected during the traversal are
available for later user manipulation without the overhead involved in invoking the

external database again.

The attribute value lists by themselves do not constitute a database relation.
They must be converted into tuples and inserted into the relational database. Genera-
tors are functions for converting the value lists of a specified set of attributes into

tuples.

Geﬁerators are constructed from attribute names composed with two possible
primiti\;e functions: cross product and dot product. Typically, two attributes are com-
bined with dot product when they are in one to one correspondence. Cross product is
usually used when two attributes have a one to many relationship Often, one of the

attributes has a single element in its value list.

Figure 9(a,b,c) shows a separate example of the use of generators. Figure 9a indi-
cates the stock price history for the company with ticker name CBU. When this
screen is parsed using an appropriate grammar, it will fill the value lists of the relevant
attributes: Company, Dates, Prices (see figure 9b). Suppose that the accumulated data
is intended to fill in the relation described in figure 9c. The appropriate generator for

converting figure 9b to figure 9c may be defined as
Company X (Dates ® Prices).

This generator pairs the Dates and Prices on a one to one basis using dot product.
Then, each of these pairs is combined with the company to produce the final result

shown in figure 9c.

24

CBU

Date Price
1/1/75 $52
9/1/75 $48

12/1/75 $5

~J

Figure 9a. Sample screen output.

Company = { CBU }
Dates = {1/1/75,2/1/75, ... 12/1/75 }
Prices = { $52, $48, ...857 }

Figure 9b. Value lists after parsing.

QUOTES | Company Dates Price
CBU 1/1]75 $52
CBU 2/1/75 $48
CBU 12/1/75 | $57

Figure 9c. Relation schema and contents.

7. COMMUNICATIONS

The communications subsystem is responsible for connecting to some physical
carrier and then connecting to some particular external database. This involves two
steps. First, a channel must be created over which commands can be sent from
Diverse to the appropriate medium. Second, commands must be sent over this channel

to set up the connections to networks and external databases.

25

The channel is established using the Unix* 4.2 pseudo-teletype device. A pseudo-
teletype has two parts: a terminal device and a master device. The terminal device
acts like an ordinary terminal device, but it has the property that it is controlled by
another program. Thus, output sent to the pseudo-terminal can be read by the control-
ling program. Conversely, the controlling program can send input to the pseudo-
terminal. Diverse acts as the controlling program for a pseudo-terminal attached to a
standard Unix command processor (shell) program. Thus, Diverse can send commands

to, and receive output from, other programs.

Once the channel is established, Diverse must connect to the appropriate
medium. Assuming that this is the phone system, Diverse must connect to a dial-out
modem and cause it either to dial the phone number of an intermediate network (e. g.,

Telenet) or to dial the external database directly.

As a short-cut, Diverse uses an existing program, the Unix Tip program, to handle
the modem operations. Tip is a terminal emulation package for Unix. It can be
invoked with a phone number and a baud rate as arguments, and then Tip will will
perform all necessary dialing and connection functions. Once Tip has a connection, it

transparently passes character data between the user and the phone connection.

To see how Tip is invoked, examine the first line of figure 8. The initial state
("cshstate") assumes that the channel to the Unix shell is running. It send as input a
string invoking Tip with a baudrate and an phone number as argument. A few lines
down, the actual command is shown: "tip -1200 3376060". This creates a 1200 baud
phone connection to Telenet. The graph then moves to the state called "tipstate”, and
from that point on, commands are passed through Unix, through Tip, and over the

modem to Telenet.

4 Unix is a trademark of AT&T Bell Laboratories.

28

For other media, the general rule is to use existing programs where possible. For
ethernet, for example, the remote commands of Berkeley Unix 4.2 (rcp, rsh, etc.) are

used to connect to the external database.

8. ANEVALUATION

A working prototype of Diverse is implemented, and it is is capable of converting
simple requests into the complex sequence of actions needed to answer those requests
from external data. The prototype is written in an object-oriented version of Lisp
called Objtalk [Rathke 83]. Objtalk builds on Franz Lisp by adding classes, message
passing, and multiple inheritance. The pseudo-teletype control is written as Lisp call-
able C procedures. The program consists of about 2200 lines of lisp, and 400 lines of

C.

Sufficient experience has been gained with the prototype to assess how well the
original goals were met and to see the parts that are not completely successful. First,
the current architecture can deal with heterogeneous systems and the associated com-
mand languages very well. The key feature here is the use of formal parsing tech-
niques to connect database attributes with attributed parse trees. This parsing
approach is quite effective in handling the text output of external databases. Second,
the use of a relational database as the common format plus the attribute driven state
machine graphs allow Diverse to combine data from multiple sources in an effective
manuner. Finally, Diverse is successful in hiding the actual databases from the user.
This is due to the use of the state graphs, the automatic planuning features, and the use

of the a relational database as the user interface.

On the minus side, telephone line noise turns out to be one of the more serious
problems for Diverse. Spurious characters or dropped characters can completely foil
the parsing performed by Diverse. Work is currently under way to augment the

Diverse parser with some powerful error correction techniques taken from compiler

27

research [Rohrich 80]. Actually, preliminary results indicate that these compiler tech-

niques can be used two handle two problems:
(1) Noise on telephone lines,

(2) Nonessential changes in the output format from the external database: messages

of the day, for example.

Omne thing that these techniques cannot solve is the corruption of output data (i.e.,
corruption of table entries). It may be that the corruption does not prevent the parse
from completing successfully, but the data are still incorrect. Correcting such errors
requires Diverse to have more semantics about the data it is collecting. This may
necessitate a departure from a strictly relational database model to some sort of

semantic model [Hammer 81, King 85].

At the moment, 1t is difficult to augment the knowledge base to add new states to
existing graphs or to add whole new databases. A simple language exists for specifying
this information and transforming it into the necessary Lisp structures. It would be
better if Diverse had an associated knowledge acquisition system. This would involve
some sort of graphic script editing capability. Work on such a facility is in prelim-

inary stages.

The current grammars for screens do not sufficiently capture all of the structure
perceptible to people. Most screens have a specific format, such as a table, or a list, or
a menu. A promising alternative to specifying the grammar is to specify a. more struc-
tured format in a parameterized form and then let Diverse generate the appropriate
grammar. Given this extra information, Diverse could possibly define the generator

functions and also do better error recovery.

Diverse is currently capable of extracting data, but it is not capable of modifying
its external databases. There are a number of difficult issues here involving con-

currency and recovery for which there are no acceptable answers as yet.

28

9. RELATED WORK

Information retrieval researchers have produced the most interesting and
advanced work that is comparable to Diverse. Here, information retrieval (IS) refers
to systems that extract text based on a user supplied set of keywords. Although there
are a number of such systems [Goldstein 78, Meadow 82, Preece 80]° the most
advanced system appears to be CONIT [Marcus 81,83]. CONIT was designed to pro-
vide a uniform interface to existing information retrieval systems via a standardized
command language. An interesting feature of CONIT is its use of a rule-based (or pro-
duction) system to interpret both user commands and external IS responses. A CONIT
rule is invoked whenever its match string is found at the head of some input stream.
When the rule is invoked, it can send messages to the user and the external system,

and it can perform an arbitrary computation

CONIT and Diverse are oriented to different domains (keyword search versus
database retrieval). From the published work, it would appear that CONIT is some-
what less transparent than Diverse. That is, a CONIT user must use explicit com-
mands to connect and disconnect. By contrast, a Diverse user specifies relations and
then Diverse picks the database and transparently connects and disconnects. The rule
based approach of CONIT is better able to respond to unexpected sequences of input.
Diverse's graphs, by contrast, enforce sequential operations and this can be awkward
in certain circumstances. On the other hand, since rules are inherently dynamic,
CONIT cannot easily pre-plan its access patterns. Diverse, though, can examine its

graphs and, based on conditions, choose the best access plan.

Software engineering has also produced some work of interest. The RITA project
(Rand Intelligent Terminal Access) [Waterman 78] and the CONSUL/CUE project

[Kaczmarek 81,84] are attempts to provide intelligent agents for programmers. RITA

5 See [Marcus 83] for a comprehensive review and bibliography.

29

was based upon a production system that attempted to learn from the activities of the
programmer. It also could deal witli external systems, such as the Arpanet. While
RITA could provide, in theory, smart-terminal access to external databases, it does
not appear that it could provide much help in interpreting and integrating data
obtained from those external sources. CONSUL/CUE, like RITA, attempted to pro-
vide a common interface to computer programs (as opposed to databases). It relied on

a natural language interface plus structures for representing external programs.

Lochovsky and Tsichritzis at the University of Toronto also explored the problem
of accessing external databases [LLochovsky 81]. Their emphasis was on the user inter-
face, and it implicitly used a form of videotex (page-oriented) model. Under this
framework, all data is cast into pages of data and its natural form is suppressed.
While the user interface is important, The Diverse system attempts to provide more
sophisticated understanding of the contents and structure of the external databases.
It too casts much of that data into a fixed form (the relational model), but its use of
text as common model may allow other structures to be used. Finally, and in contrast
to Diverse, the Toronto work does not seem to promote integration of data from

several sources.

Some distributed database systems should be mentioned to show the contrast
with Diverse. Systems such as R* [Lindsay 80] and Multibase [Smith 81] also provide
access to distributed data, but they require modification to the existing database
managers or even a common database system (albeit "autonomous") at each computer.

Diverse requires no such modifications or commonality.

The idea for Diverse grew from the author’s previous work on a federated data-
base [Heimbigner 82], which provided another architecture for combining existing
databases, and his Syntax-directed database system [Heimbigner 84b], which applies

the concept of parsing to provide a relational database interface to text files. A very

30

preliminary discussion of the requirements for Diverse was presented in [Heimbigner

&4 a].

10. SUMMARY

This paper presents the detailed architecture of the Diverse system, which is
designed for sophisticated access to external database systems. Diverse allows a user
to indicate the information that is of interest and then it automatically retrieves the
requested data. It is capable of integrating data from several external sources. The
Diverse system is built upon a relational database system for storing data, a knowledge
base about the possible states of external databases, and a syntax-directed database

system for extracting data from the output of an external database.

REFERENCES

[Goldstein 78] Goldstein, C. M., and Ford, W. H., "The User-Cordial Interface”,
Online Review 2(3):269-275 (1978).

[Griswold 71} Griswold, R. E., Poage, J. F., and Polonsky, I. P., The SNOBOL 4
Programming Language (2nd Edition). Prentice-Hall, 1971.

[Hammer 81] Hammer, M. and McLeod, D., "Database Description with SDM:
A Semantic Database Model”, ACM Transactions on Database
Systems 6(3):351-386 (September 1981).

[Heimbigner 84a] Heimbigner, D. M., "Towards an Integrated Environment for Ac-

cessing External Databases”, Proceedings of the Second ACM-
SIGOA Conference on Office Information Systems, Toronto, Ca-
nada, 25-27 June 1984.

[Heimbigner 84b] Heimbigner, D. M., "A Syntactic Database Model." Department of
Computer Science Technical Report CU-CS-283-84, University of
Colorado, Boulder, December 1984.

[Heimbigner 82] Heimbigner, D. M., and McLeod, D., "A Federated Architecture
for Information Management", ACM Transactions on Office In-
formation Systems, 3(7) (July 1985).

31

[Kaczmarek &1]

[Kaczmarek 8]

[King 85]

[Knuth 68]

[Korth 84]

[Lindsay 80]

[Lochovsky 81]

[Maier 83]

[Marcus 81]

[Marcus 83]

KNaczmarek, T., Mark, W., and Wilczynski, D., "The Cue Pro-
ject™, Technical Report ISI/RS-83-1 (May 1983), Information Sci-
ences Institute, Marina del Rey, CA.

Kaczmarek, T., Mark, W., and Sondheimer, N., "The Consul/Cue
Interface: An Integrated Interactive Environment", Technical Re-
port ISI/RS-83-126 (April 1984), Information Sciences Institute,
Marina del Rey, CA.

King, R., and McLeod, D., "Semantic Database Models", in Data-
base Design. Prentice Hall, 1985, S. B. Yao ed.

Knuth, D. E., "Semantics of Context-free Languages", Mathemati-
cal Systems Theory 2(2):127-145.

Korth, H. F., Kuper, G. M., Feigenbaum, J., van Gelder, A, and
Ullman, J. D., "System/U: A Database System Based on the
Universal Relation Assumption”, ACM Transactions on Database
Systems 9(3):331-347 (September 1984).

Lindsay, B., and Selinger, P. G., "Site Autonomy Issues in R*: A
distributed database management system", Research report
Rj2927, IBM Research Laboratory, San Jose, Ca, September 1920.

Lochovsky, F. H., and Tsichritzis, D. C., "Interactive Query
Languages for External Data Bases"”, Computer Systems Research
Group Technical Report, University of Toronto, March 1981.

Maier, D. and Ullman, J. D., "Maximal Objects and the Seman-
tics of Universal Relation Databases”, ACM Transactions on Da-
tabase Systems 8(1):1-14 (March 1983).

Marcus, R. S., Reintjes, J. F., "A Translating Computer Interface
for End-User Operation of Heterogeneous Retrieval Systems. I.
Design, II. Evaluation”, Journal of the American Society for Infor-
mation Science 32(4):287-317 (July 1981).

Marcus, R. S.; An Experimental Comparison of the Effectiveness
of Computers and Humans as Search Intermediaries”, Journal of
the American Society for Information Science 34(6):381-404 (No-
vember 1983).

32

[Meadow 82]

[Preece 80]

[Rathke 83]

[Rohrich 80]

[Smith 81]

[Ullman 82]

[Waterman 78]

Meadow, R. S., and Reintjes, J. F., "A Computer Intermediary
for Interactive Database Searching. 1. Design", Journal of the
American Society for Information Science 33(5):325-332 (Sep-
tember 1981).

Preece, S. E., and Williams, M. E., "Software for the Searcher’s
Workbench", Proceedings of the 43rd ASIS Annual Meeting,
Volume 17, October 1980, pages 403-405.

Rathke, C., and Laubsch, J. H., "OBJTALK: Eine Erweiterung
von LISP zum objektorientierten Programmieren”, In Objek-
torientierte Software- und Hardwarearchitekturen, Teubner Ver-
lag, 1983, H. Stoyan and H. Wedekind, ed., pp. 60-75,

Rohrich, J., "Methods for the Automatic Construction of Error
Correcting Parsers", Acta Informatica 13(2):115-139 (1980).

Smith, J. M., Bernstein, P. A., Dayal, U., Goodman, N., Landers,
T., Lin, K. W. T., and Wong, E., "Multibase: Integrating hetero-
geneous distributed database systems"”, Proceedings of the Na-
tional Computer Conference (June 1981), AFIPS press, Arlington
Va., pp. 487-499.

Ullman, J. D., Principles of Database Systems (2nd edition).
Computer Science Press, 1982, pp.309-313.

Waterman, D. A., "Exemplary Programming in RITA", Pattern-
Directed Inference Systems, pages 261-279, D. A. Waterman and
F. Hayes-Roth (eds.), Academic Press 1978.

33

DIVERSE: A USER AGENT FOR

ACCESSING EXTERNAL DATABASES
by

Dennis Heimbigner

CU-CS-306-85 July, 1985

University of Colorado, Department of Computer Science,
Boulder, Colorado.

