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ABSTRACT

There are (at least) three motivations to study the class of regular
directed node-label controlled graph grammars (regular DNLC grammars for short):
(1) it fits very well into the hierarchy of subclasses of DNLC grammars, (2)
it generalizes mnaturally right-linear string grammars and (3) it provides
a 'useful fgamework for the theory of concurrent systems based on the theory
of traces.

The complexity of (the membership problem for) the class of regular DNLC

grammars is investigated.

INTRODUCTION

The theory of graph grammars is a natural extension of the formal string
language theory and it has become a well-established topic of research (see, e.g.,
Ehrig et al., 1983). The potential applicability of graph grammars in many fields
of computer science provides substantial motivation for theoretical studies.

One of such fields is the theory of traces, initiated by Mazurkiewicz (1977),
which has become quite popular as an approach to the theory of concurrent systems
(see, e.g., Mazurkiewicz, 1984a, Mazurkiewicz 1984b, Bertoni et al., 1981, and
Aalbersberg and Rozenberg, 1984b). In Aalbersberg'and Rozenberg (1984a) the theory
of traces was related to the theory of graph grammars through regular directed node-
label controlled graph grammars (abbreviated regular DNLC grammars) — a subclass of
the directed node-label controlled graph grammars (see, e.g., Janssens and Rozenberg,
1981). It also turns out that the class of regular DNLC grammars fits very well into
the hierarchy of various subclasses of DNLC grammars — e.g., it is a very natural
subclass of the (directed version of) boundary NLC grammars (see, Rozenberg and Welzl,
1984). Moreover the notion of a regular DNLC grammar transfers very nicely the notion
of a right-linear grammar into the framework of graph grammars.

In this note we investigate the complexity of regular DNLC grammars and in
particular we prove that the membership problem for regular DNLC grammars is

NP-complete.

0. PRELIMINARIES

We assume the reader to be familiar with both,basic formal string language
theory (see, e.g., Salomaa, 1973) and the theory of NP-Completeness (sge, .8,
Garey and Johnson, 1979).
For sets A and B, A - B denotes their difference; @ denotes the empty set. For
a set A, #A denotes the cardinality of A.
A divected node labeled graph, in the sequel simply called a graph, will be



specified in the form Y = (V,E,Z,L) where V is its set of nodes,
Ec(VxV) - {(v,v) | v €V} is its set of edges, Z is its label alphabet and
L : v —>5Z% 1is its (node) Zabe?ing function. If graphs Y and Y' are isomorphic
(and we consider only the node-label preserving isomorphisms), then we write
Y =7Y'. We will sometimes identify isomorphic graphs as equal (then we really
consider the so-called abstract graphs). For an alphabet I, GZ denotes the set
of all graphs with the label alphabet X.
For a graph Y, #y denotes the number of nodes of Y. For a symbol ¢, a graph
Y = (V,E,%,f) such that ¢ € £, V = {V1’°'°’Vn} for some n > 1, K(vi) = ¢ for
every 1 <1i<n, and E = {(Vi’vi+1) ]l 1 <i<n-1} is called a c-path. A graph
Y is a k-element c—path, where k > 1, if Y is a c-path and #y = k. For graphs
v = (V,E,=,2) and ¥' = (V',E',£',£') where V n V' = @, their union is the graph
(VuvVv', EUE', TuZx', £u£'). (Hence we consider unions of disjoint graphs
only, or, if we consider abstract graphs, then disjoint representatives are chosen).

We recall now basic notions concerning regular DNLC grammars.

Definition 1. (1) A directed node-label controlled graph grammar, abbreviated
DNLC grammar, is a system G = (T,A,P,Cin,Cout,Z), where: (i) T is an alphabet,
called the total alphabet of G, (ii) A & T is called the terminal alphabet of G,
(iii) P g (I-4) «x GP is called the set of productions of G, (iv) C,psTrxT
is called the in-connection relatton of G and C_ & T x T is called the out-
connection relation of G, and (v) Z, called the axiom of G, is a graph over T
consisting of one node labeled by an element of I'-A .

(2) A DNLC grammar G = (F,A,P,Cin,C t,Z) is called regular, if every production

ou
. a Y a
of G is either of the form (X,s>—=) or of the form (X,*), with a € A and

YET - A, =

Informally speaking, a DNLC grammar G = (F,A,P,Cin,Cout,Z) generates a set
of graphs as follows. Given a graph Y to be rewritten and a production of the
form (X,B), where X € I'-A and B € GF’ one chooses a node v of Y labeled by X
and replaces it by (a graph isomorphic to) B. Then, in order to embed B in "the
remainder of Y" (i.e., the graph resulting from Y by removing v), one uses rela-

tions C. and C as follows. For every pair (b,c) € C, one establishes an
in ou in

(incoming) edge fiom each direct neighbour node of v labeled c to each node of B
labeled b. Analogously, for every pair (b,c) € Cout one establishes an (outgoing)
edge from each node labeled b in B to each direct neighbour node of v labeled c.
Every graph Y' isomorphic to the resulting graph is said to be directly derived

from Y in G. Iterating the direct derivation step (starting with the axiom graph



Z of G) and choosing only those derived graphs that are labeled bv labels from
the terminal alphabet A one gets the (graph) language L(G) of G.

These notions are defined formally in Janssens and Rozenberg (1981).

1. THE COMPLEXITY OF REGULAR DNLC GRAMMARS

We consider now the complexity of the membership problem for regular
DNLC grammars.

Theorem 2.1. There exists a regular DNLC grammar G (with the empty out-
connection relatiom) such that the membership problem for L(G) is NP-complete.

Proof. Let G = (F,A,P,Cin,Cout,Z) be the regular DNLC grammar, such that:

(i) T = {AO,AI, BO,BI,a,b},
(i) A ={abl, b Ay b Al a B,
(iii) P = ‘{(BO, —>—"), (B], —>—e"), (Bl’ —— ), (AO’ —>"),

a B1 a BO a B1 a a
(A03 —— )9 (A]’ e ); (Al’ >0 )s (AO’ .)a (AI’ .)}s

(iv) ¢, = {(a,a), (b,b), (B,,b), (A,a)},
() Cout= @, and
(vi) Z is a graph consisting of one node labeled by BO.

Informally speaking G ‘works as follows. G generates sets of b-paths and
a-paths by generating alternatively a b-labeled node and an a-labeled node (''b-
generating nonterminals B. and B, always introduce one of the "a- generating"

0 I

nonterminals AO and Al)' In this way in each graph of L(G) the number of

b-labeled nodes equals the number of a-labeled nodes. Moreover, at any moment G
can "decide" to break the paths it is generating, by introducing one of the
"disconnecting' nonterminals A, and By- However, after breaking

b A
a b-path one has to break the "associated" a-path: (BO, >+ ) 1s the only
production for the "breaking" nonterminal BO.

A "typical"™ graph in L(G) looks as follows:
fig. 1

The following result follows directly from the construction of G.

Lemma 1. Let Y be a graph which is the non-empty union of a-paths and b-paths.

Let, for m > O, Sb = {Bl""’Bm} be the set of disjoint b-paths of Y and let Sa be

the collection of a-paths of Y. Then Y € L(G) if and only if there exists a partition

1
@a,...,Sm} of S , such that, for every 1 < i <m, #B = f . #65, m
a a - T = i s 1
6€Sa



Lemma 2. The membership problem for L(G) is NP-complete.

Proof. Obviously the membership problem for L(G) is in NP.

Tn order to show that the membership problem for L(G) is NP-hard, consider
the following NP-complete problem (see Garey & Johnson, 1979, Problem SPI15,
page 224).

3 - PARTITION

Tnstance: A finite set S of 3n elements, where n > 1, a positive integer k

and, for every s € S, a positive integer v(s), such that, for every s € S,

K/4 < v(s) < k/2 and © )  w(s) = kn.

s€S
Question: Can S be partitioned into n sets Sl""’sn in such a way that,
¥
for every 1 < i < n, L v(s) = k?
sESi

Let f be the function which maps every instance I = (S,n,k,v) of 3-PARTI-
TION into a graph £(I) in GA as follows. f(I) is the union of (i) n k-element
b-paths, and (ii) for every s € S, a v(s)-element a-path (hence, every s € S
corresponds uniquely to an a-path in £(I)).(Thus, for every instance I of
3-PARTITION, £(I) is the union of at least one a-path and at least one b-path))

It is easily seen that f has a polynomial-bounded time—complexity. Further-
more, for every instance I of 3-PARTITION, I is a 'yes"-instance of 3-PARTITION

if and only if £(I) is an element of L(G); this can be seen as follows.

Assume that I = (S,n,k,v) is a "yes" - instance of 3-PARTITION. Hence,
there exists a partition (SI""’Sn) of S, such that, for every ! £ i < n,
Z v(s) = k. Furthermore, since £(I) is the union of at least one a-path and

sESi
at least one b-path, we can partition £(I) into Sb = (BI,...,Bm) and Sa’ in the
way described in the first part of the statement of Lemma I (note that now m > 1).
Let, for every | £ 1 < n, Si be the set of a-paths in Sa corresponding to thgﬂelements
of Si' It is easily seen that: (1) m = n, and (2) for every | <i <n,
#3. = k = D v(s) = ) . #6.

t S€S, 5682
Consequently, by Lemma 1, £(I) € L(G) which proves the "only if'" -~ part of the
claim.

Assume now that I = (S,n,k,v) is an instance of 3-PARTITION, such that

£(I) € L(G).dence,because £(I) is the union of at least one a-path and at least
one b-path, it follows from Lemma | that f£(I) can be partitioned into
s = {B

b 12"

.,B } consisting of b-paths, where m > 1, and S_ consisting of a-paths
- g P a P
in such a way that there exists a partition (S;,...,Sz) of Sa’ such that for



every 1 < i <m, #p, = ) ; #6. Let,for every | <1i<m, S, be the set of elements
6€Sa
in § corresponding to the a-paths of S;. It is easily seen that: (1) m =n, and

(2) for every I < i < n, Z v(s) = X ; #5 = #%A= k.
SESi 6€Sa

Consequently, I is a "yes"-instance of 3-PARTITION, which proves the "if'

L

-part
of the claim.

Since 3-PARTITION is NP-hard, the membership problem for L(G) is NP-hard, and
consequently, the membership problem for L(G) is NP-complete. =

The theorem follows directly from Lemma 2. =

This is a rather surprising result. A regular DNLC grammar (with the empty
out-connection relation) can be considered as a right-linear string grammar in
which during the (léft—to—right) generation of (the graph representation of)
a string (with all edges resulted by "transitivity" also added) some edges are removed
(cutted) according to the in-connection relation. It is well-known that the mem—
bership problem for right-linear grammars is linear while the membership problem

for regular DNLC grammars turns out to be so difficult!!!
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Figure 1. A "typical" graph in L(G). m



